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Abstract

Current approaches for automatically summarizing scientific papers aim to
generate informative abstracts that provide a general overview of the paper.
However, these abstracts may not fully satisfy the needs of readers who track
citations and seek specific connections between the citing and cited papers. In
such cases, readers often have to locate the relevant information manually. We
propose a novel approach for contextualized summarization of scientific papers,
which focuses on generating informative summaries that are dependent on the
citances (citation texts) in the citing paper. By grounding the summaries in
the context of the citances, readers can quickly find the relevant information
they seek. Additionally, these contextualized summaries may offer better cov-
erage and focus than generic abstracts. Our approach involves extracting and
modeling citances with context, retrieving relevant passages from the cited
paper based on citation-context queries, and generating an abstractive sum-
mary tailored to the citances. We evaluate our approach on a newly developed
high-quality dataset Context-SciSumm, comprising 540K papers and 4.6M
citances from the computer science domain.
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Chapter 1

Introduction

The inception of automatic summarization of scientific works can be traced
back to the initial studies in computer science (Baxendale, 1958; Luhn, 1958).
Automatically generated abstracts (summaries) were used to create "index vol-
umes" dedicated to specific scientific fields, assisting researchers in managing
and navigating the expanding volume of publications. Nowadays, scientific pa-
pers typically include abstracts written by the authors themselves. However,
such author-generated abstracts may provide incomplete or biased coverage of
scientific papers (Elkiss et al., 2008). As a result, the purpose of automatically
summarizing papers has evolved to generating more informative summaries,
often employing abstractive techniques (Cachola et al., 2020; Cohan et al.,
2018; Mao et al., 2022).

A highly practical application of these summaries is to enhance the user’s
overall reading experience. For instance, CiteRead (Rachatasumrit et al.,
2022), a part of the Semantic Reader project (Lo et al., 2023), provides an
in-situ overview of the cited paper populated by an auto-generated TL;DR
summary or its abstract. A scientific paper usually cites several other papers
and, in some cases, may even cite a specific paper multiple times, albeit in
different contexts. In such scenarios, simply using an abstract as the summary
may not always be suitable. While abstracts provide a concise and general
overview of a paper for potential readers, they may not fulfill the requirements
of all readers. Abstracts are helpful for individuals seeking to assess a paper’s
relevance to their own work (e.g., to find related work). However, they may
not sufficiently address the needs of readers who are specifically following a
citation. For the latter, an abstract often indicates only the relevance of the
cited paper to the citing paper without clarifying how it relates to the spe-
cific sentence in which it is cited (hereafter referred to as a citance). Since
quoting relevant parts of a cited work verbatim is not common practice, man-
ually locating the relevant information is necessary when following a citation.
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CHAPTER 1. INTRODUCTION

Hence, we argue that a contextualized summary of the cited paper, which is
both informative and relevant to the current citance in the paper, would be
advantageous.

This thesis investigates the adequacy of abstracts as informative summaries
compared to contextualized summaries tailored to each citation. To achieve
this objective, we propose a novel approach for generating citance-dependent
contextualized summaries of scientific papers (Chapter 3).

Our approach consists of three steps:

1. extraction and modeling citances with context from the citing document

2. retrieval of relevant content from the cited document using queries based
on citance-contexts, and

3. generation of abstractive, informative, and citance-contextualized sum-
maries of the cited document.

To address this novel task, we compile Context-SciSumm (Chapter 4), a
large-scale, high-quality dataset consisting of 540K documents and 4.6M ci-
tances from the computer science domain. Through an extensive comparative
evaluation using this corpus, we thoroughly examine different variants of our
approach compared to the cited paper’s abstracts (Section 5.2.2).

1.1 Use Cases
Scientists read scientific publications in various scenarios. A study conducted
by Erera et al. (2019) surveyed NLP experts on the frequency and purpose of
their reading. The survey included a Ph.D. student, two junior researchers,
two senior researchers, and one research strategist. The following are the most
common reasons for reading publications among these scientists:

1. keeping track of current work to stay up to date

2. preparing a research project or grant proposal

3. reading relevant papers when writing a scientific paper

4. checking the originality of an idea

5. learning a new field or technology

2



CHAPTER 1. INTRODUCTION

While scenarios 2 to 5 hold importance, they are not often considered the pri-
mary reason for reading publications throughout the year. On the other hand,
scenario 1, which involves keeping up with the latest research, is frequently
cited as the primary motivation for reading scientific papers daily or weekly.

In numerous situations, having contextualized summaries of scientific pa-
pers can be very useful. These summaries aid readers in comprehending re-
search papers more efficiently and accurately and also help them stay up-to-
date with current research. This is particularly crucial for individuals new to
a field and requiring familiarity with foundational publications.

Contextualized summaries can also be highly beneficial for students, par-
ticularly those juggling multiple course projects in a single semester and need-
ing to review literature from different fields. Additionally, people outside of
academia who want to read a scientific article on a particular topic without
going through foundational publications can also benefit from contextualized
summaries, as they offer a more effective way of comprehending the material.

Additionally, contextualized summaries could be beneficial in the review
process. This would enable more effective categorization and comprehension
of the new research, resulting in higher-quality reviews.

1.2 Thesis Organization
In the following Chapter 2, we will be reviewing the background and related
work for scientific summarization. We will first define the terminology for
scientific summarization and describe the structure and content of scientific
papers. Then, we will introduce the different ways of categorization for sum-
marization approaches (Section 2.3), including generic summarization (Section
2.4) and citation-based summarization (Section 2.5). We will present individ-
ual approaches to the summarization of scientific papers and briefly explain
their details and the datasets used.

In Chapter 3, we will explain our approach for creating contextualized sum-
maries with the following steps: modeling the citation-context (Section 3.1),
formulating the queries (Section 3.2), and citance-guided information retrieval
(Section 3.3). The dataset we created will be described in more detail in
Chapter 4, including details about the data source, preprocessing, and other
statistics. Furthermore, Chapter 5 will present the experiments conducted
with the dataset, as well as the automatic and manual evaluations. Finally,
Chapter 6 will provide a summary, a critical discussion about the individual
parts and contributions of the thesis, and an outlook on further research pos-
sibilities for contextualized summarization.

3



CHAPTER 1. INTRODUCTION

The following Sections: Abstract, 1, 2.5, 3, 3.3, 3.4, 5.2, 5.2.1, Tables: 4.1, 5.1,
5.2, and Figures: 3.1, 5.2 are submitted verbatim to an anonymous publica-
tion.

The following Sections: 2.4.1, 2.4.3, 2.4.4 are submitted in a shortened ver-
sion to an anonymous publication.

Parts of the following Sections: 2.4.6, 4, 4.4, 3.1.1, 4.1, 4.2, 5.1, 5.2.2, 6, and
Table: 5.3 are submitted to an anonymous publication.
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Chapter 2

Background & Related Work

In this chapter, we will provide the necessary background information for sum-
marizing scientific papers. We will define domain-specific terms that are some-
times used ambiguously in the literature and describe the most common struc-
ture of a scientific paper, along with the information expected in each section.

We then explain the notion of summarization and provide an overview of
the different ways to categorize summarization algorithms. For this thesis, we
will focus on the most relevant categorization based on context, which dis-
tinguishes between generic, citation-based, and update summaries. However,
since update summaries are not within the scope of our type of summaries,
we will only present the current approaches and state of research for generic
and citation-based summarization. Additionally, we will briefly discuss the
datasets used and their details. Finally, we will highlight the differences be-
tween our approach to creating contextualized summaries and our dataset
Context-SciSumm compared to previous approaches and datasets.

2.1 Terminology
Within the literature, certain subject-specific terms are used ambiguously. To
ensure accuracy and clarity within this thesis, we have provided explicit def-
initions for each of these terms. Some of our definitions were sourced from
Altmami and Menai (2022)’s survey, while others were created specifically for
this paper to define other domain-specific terms.

Scientific Paper: A document presenting an original scientific study’s method-
ologies, findings, and conclusions. It adheres to a specific structure that in-
cludes standardized sections, such as the abstract, introduction, methodology,
results, and discussion.

5



CHAPTER 2. BACKGROUND & RELATED WORK

Citing Author: The author who cites, discusses, or mentions the results or
methods of another research study in his or her work.

Citing Paper: A scientific paper that contains a direct citation to another
publication.

Cited Paper: A scientific paper referenced by a citing paper.

In the literature, the following terms are used interchangeably. In this thesis,
we will use the term citance:
Citance / Citation Sentence / Explicit Citation-Context (ECC):
A sentence that contains a citation marker or reference to another publication.
It acknowledges the source of the target information, supports the author’s ar-
gument, and enables readers to locate the cited information in the cited paper.

Implicit Citation-Context (ICC) / Citation-Context: Sentences in the
citing document that do not contain the exact citation marker as the citance
but share semantic similarities with the citance or provide supplementary in-
formation.

Cited Text Span / Relevant Content: The specific portion of text in a
cited paper that is referred to by a citance.

2.2 Structure of a Scientific Paper
Scientific papers do not have a strictly fixed structure but generally follow a
specific scheme. This scheme includes an abstract, introduction, related work,
methodology, experimental section, discussion, conclusion, and references (Alt-
mami and Menai, 2022).

Abstract: is a brief, informative summary of the main aspects of the pub-
lication, including the objectives, materials, methods used, and results and
conclusions, typically consisting of 150-250 words. It should answer the fol-
lowing questions:

• Why was the study conducted?

• How was it conducted?

• What conclusion was drawn?

6



CHAPTER 2. BACKGROUND & RELATED WORK

Introduction: provides necessary background information about the problem
being addressed, its significance, and the objectives of the work. It should also
include an operational definition of the terms used and is typically 300-500
words in length.

Related Work: summarizes the literature on the problem being addressed to
bring the reader up to date with current research and present one’s research
in the context of existing literature.

Methodology: this section describes the details of the procedure or algo-
rithm used or developed, which are needed to reproduce the author’s work
and results.

Experimental Section: this section describes the details of the experiments,
including outcomes, results, and various statistics, among other things.

Discussion: in the discussion, the results of the experiments are evaluated
and explained, and their implications for future research on this problem are
described.

Conclusion: provides a general summary of the document, including the im-
plications and findings, and usually includes suggestions for future research
directions.

References: is the last section and consists of listing all referenced scientific
papers within the document.

2.3 Types of Summarization
The goal of summarization algorithms is to condense a text’s important in-
formation to make it quicker and easier to understand. There are different
ways to categorize these algorithms, including by their function (indicative or
informative), type (extractive or abstractive), source (news, scientific, literary,
social media), number of documents, and context (generic, citation-based, or
update (Torres-Moreno, 2014).

Indicative summaries provide information about the citing document’s top-
ics, while informative summaries reflect the text’s content and main arguments.
Extractive approaches compile fragments from the citing document, while ab-
stractive algorithms summarize the text by rephrasing and rearranging sen-
tences for better comprehension.

7



CHAPTER 2. BACKGROUND & RELATED WORK

Different types of texts require different summarization approaches, including
consideration of their length and characteristics. Depending on the context,
algorithms can provide a generic overview, consider the user’s specific infor-
mation needs, or show new information without repeating old information.

We create informative, abstractive, and context-based summaries for our
contextualized summaries. Our focus is, therefore, on generic and citation-
based summaries of scientific papers. Firstly, we review the literature and
then discuss the different types of generic summarization approaches. Next, we
present approaches for citation-based summaries that use the citation-context
or citance from the citing paper to summarize the cited paper.

2.4 Generic Summarization
In the following sections, we will discuss various methods that belong to the
category of generic summarization. These summaries aim to provide a neutral
summary of a scientific paper without catering to the specific information
requirements of the user. The summary gives an overall idea of the publication
and is a concise version of the original document.

2.4.1 Abstract-based Summarization

For learning-based approaches, a supervised model for extractive summariza-
tion by Collins et al. (2017) was trained on a corpus of 10,148 computer science
papers, where each paper included both author-provided highlights and an ab-
stract that served as the reference summary. Additional training data was
generated using ROUGE (Lin, 2004) by extracting sentences from the docu-
ment that had significant overlap with the highlights. The approach involved
training an LSTM-based neural encoder along with several lexical features to
classify sentences as summary-worthy. Another approach by Cohan et al.
(2018) focused on discourse-aware attention modeling for abstractive sum-
marization of scientific papers from the arXiv (215K) and PubMed (133K)
collections. This model used a hierarchical encoder to capture the discourse
structure of the document, while the decoder considered both the section infor-
mation and the previously generated tokens to ensure a coherent abstractive
summary. Furthermore, Gupta et al. (2021) conducted a study investigating
the advantages of pre-training and fine-tuning BERT-based models for extrac-
tive summarization.

8



CHAPTER 2. BACKGROUND & RELATED WORK

2.4.2 Table-of-content and Lay Summarization

In contrast to approaches that generate summaries resembling abstracts, Chen
et al. (2020) produced table-of-contents summaries for journal articles, where
short author-written advertising blurbs were considered as the ground truth
summary. Besides, Chandrasekaran et al. (2020) introduced the task of lay
summarization, which aims to generate simple and accessible summaries of
scientific papers for non-experts. They created a corpus of 572 documents
along with author-generated lay summaries to facilitate research in this area.
Also, Zaman et al. (2020) combined text simplification and summarization
techniques to generate layman summaries for 5204 scientific papers. They
utilize news articles that describe a scientific paper as a reference for creating
layman summaries. Guo et al. (2021) delivered a corpus of 7805 abstracts
of systematic reviews paired with their plain language versions written by
domain experts. Goldsack et al. (2022) introduced two larger datasets for
lay summarization, including summaries with varying degrees of readability to
serve a diverse audience.

2.4.3 TL;DR Summarization

Unlike the previously discussed summaries that output informative and paragraph-
sized texts, ultra-short TL;DR (too long; didn’t read) style summaries are
concise (e.g., one or two sentences). These summaries serve as indicative sum-
maries, aiming to highlight the most important finding from the document.
In this regard, Cachola et al. (2020) generated TL;DR summaries via control
codes and multi-task learning. They developed the SCITLDR corpus that
comprises 3.2K documents, each accompanied by a manually written TL;DR
formulation (15-25 words long) of the summary. These TL;DR summaries
were derived from the summary provided by peer reviews, usually found in the
first paragraph, as well as from the author of the document. As an auxiliary
training signal, their model also generates the title given an abstract.

2.4.4 Long Informative Summarization

The LongSumm task (Chandrasekaran et al., 2020) focuses on generating
longer summaries of approximately 600 words. This task is motivated by the
understanding that neither abstracts nor TL;DR summaries provide sufficient
information to serve as a substitute for reading the cited paper. As a result,
various datasets and models have been proposed to address the challenge of
generating comprehensive summaries for scientific papers. For example, Chan-
drasekaran et al. (2020) created the LongSumm corpus, which consists of 2258
documents with abstractive and extractive summaries. Sotudeh et al. (2021)
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CHAPTER 2. BACKGROUND & RELATED WORK

created two corpora sourced from arXiv and PubMed containing 11,149 and
88,701 document-summary pairs, respectively. Sotudeh and Goharian (2022)
extended the abstracts by using introductory sentences (those from the intro-
duction, overview, and motivation sections) to guide the long summary gener-
ation.

2.4.5 Multi-faceted and Argument-based Summarization

Meng et al. (2021) proposed faceted summarization of scientific papers where
they generated multiple summaries for some facets of the document such as
purpose, method, findings, and value. Soleimani et al. (2022) also used sec-
tion titles as aspects in a zero-shot summarization setting. Teufel and Moens
(2002) introduced argumentative zones, which classify sentences on the basis
of their rhetorical status in the discourse, such as aim, background, basis, con-
trast, and own (contributions). The sentences belonging to the aim and own
zones were leveraged to create a relevant paper summary highlighting its novel
contributions. Argumentative zoning was also employed by Contractor et al.
(2012) for structured summarization of biomedical articles. Several zones such
as background, hypothesis, goal, method were annotated by Liakata et al. (2013)
and used to identify key sentences for creating an extractive summary.

2.4.6 Our Summaries

go beyond generic summarization by delivering multiple summaries that are
relevant to specific citance contexts within a single scientific paper. Regarding
the length of the summaries, they are shorter compared to the ones proposed
by LongSumm, but longer than TL;DR summaries. Also, our approach in-
corporates retrieval models to extract pertinent information from the cited
paper, allowing us to provide inputs of varying lengths to the summarization
model. This helps control the desired level of detail in the output summaries,
effectively adjusting the granularity according to certain requirements. The
entire approach to generating contextualized summaries is described in detail
in Chapter 3.

2.5 Citation-based Summarization
Citation-based summarization utilizes citances from the citing paper to ex-
tract key information from the cited paper and generate a summary. In their
work, Qazvinian and Radev (2008) analyzed the citation network of the cited
paper, collecting citances from different citing papers. These citances were
clustered, and central sentences were identified as the extractive summary. On
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the other hand, Mei and Zhai (2008) focused on impact-based summaries, re-
trieving impact sentences that reflect the citation’s authority and proximity in
a collection. The impact of the cited paper on related work was determined
through citations from citing papers. To enhance readability and coherence,
Abu-Jbara and Radev (2011) introduced a preprocessing stage to filter out
irrelevant fragments by tagging the scope of the target reference. They then
performed an extraction stage to select important sentences from sections such
as background, problem statement, method, results, and limitations. Finally,
a post-processing stage improved overall readability by replacing pronouns and
resolving co-references.

Closely related to our work, Cohan and Goharian (2015) employed citation-
contexts, defined as the textual spans from the cited paper that reflect the
citation from the citing paper. To summarize the cited paper, they first col-
lected multiple citation-contexts and constructed a graph based on their intra-
connectivity (cosine similarity of the tf-idf vectors). Sentences within this
graph were ranked based on their importance (number of connections). These
important sentences were combined with the discourse information of the cited
paper to create an informative summary. This model was further improved by
leveraging word embeddings and domain knowledge to enhance the citation-
contexts (Cohan and Goharian, 2017).

While our work shares a focus on contextualizing citations, there is a key dif-
ference in our approach. In particular, we formulate different types of citation-
contexts extracted from the citing document and use them to generate multiple
context-relevant summaries for a given cited paper. Notably, instead of rely-
ing solely on using the citance verbatim as the query, representing only one
type of citation-context, we examine the utilization of various citation-contexts
as queries. Besides, we employ multiple retrieval models to extract pertinent
information from the cited paper, enhancing the relevance of the generated
summaries (Chapter 3).

Regarding the data, our corpus ContextSciSumm (Chapter 4) is the largest
for citation-context specific summarization of scientific papers, containing around
540,000 documents and 4.6 million citances. In comparison, the CITESUM
corpus by Mao et al. (2022) is smaller with 93,000 documents, where the ci-
tance text from the related work section of the citing paper serves as an ultra-
short summary of the cited paper. Our corpus encompasses citances from all
sections of the citing paper and includes multiple types of citation-contexts
and corresponding summaries for each context. As a result, our dataset of-
fers a more comprehensive and diverse resource for studying scientific paper
summarization.
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Chapter 3

Citance-contextualized
Summarization

Our approach to contextualized summarization involves leveraging multiple
contexts of the citances in a citing paper. In addition to the citance itself (a
single sentence containing the citation marker), we consider various types of
surrounding contexts. As illustrated in Figure 3.1, our approach comprises
three main steps: (1) extraction and modeling of citances, (2) retrieval of
relevant information from the cited paper, and (3) generation of abstractive
summaries that are contextualized based on the citance. We provide a detailed
description of each step below.

3.1 Modeling Citation-Contexts
A crucial step is to link a citance to the relevant section of the cited paper,
which is known as Citation Contextualization. This process involves identifying
the appropriate context within a cited paper for each citance to be extracted.
Citances are usually inadequate because they only provide a brief summary of
the referenced text, leaving out many details. References to a paper’s contribu-
tions are often made without providing necessary background information on
the data used and how they obtained the results (Altmami and Menai, 2022).
Additionally, there may be inconsistencies between the terminology used by
the citing authors and the cited authors (Cohan and Goharian, 2018), making
it difficult to contextualize citations properly. To address these issues, we use
different modeling approaches to the citation-context. According to the survey
papers by Rotondi et al. (2018) and Álvarez and Gómez (2016), there are three
methods for modeling the citation-context:
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Cite 1B

Cite 2B

Paper A Paper B

TL;DR

Cite 1B

TL;DR
LLM

Cite 2B

TL;DR
LLM

Cite 1B

Cite 1B

Cite 1B

Cite 1B

Cite 1B

Cite 2B

Paper A

Paper B

Paper B

Paper B
Paper B

Cite 1B
Cite 2B

Content Retrieval Summarization Presentation

Previous Approach Our Approach Citance 
Context

Relevant 
Document

IR 
Model

Summary

Figure 3.1: Comparison of previous approach Cohan and Goharian (2015) with our
approach to contextualized summarization of scientific papers. Our approach con-
siders multiple citation-contexts from the citing paper for each citance (Cite 1B/2B
in Paper A) to retrieve relevant content from the cited paper (Paper B). Multi-
ple summaries are generated from the retrieved content, each tailored to a specific
citation-context, as shown in the presentation. In contrast, the previous approach
generates a single summary for all the citances to Paper B by aggregating relevant
content for all citances.

1. citance

2. fixed number of characters preceding and succeeding the citation marker

3. Extended Context/ Implicit Citation-Context tries to find or classify sen-
tences that can provide additional information to the citance within the
citing paper.

However, straightforward approaches to (2), which extract a fixed number of
characters before and after the citation marker, can result in truncated sen-
tences. On the other hand, more complex approaches are limited to supervised
methods (Álvarez and Gómez, 2016). For this reason, we used (1) the citance
verbatim as a query and (3) two different types of implicit citation-context,
which will be described below.
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3.1.1 Implicit Citation-Context

We begin by extracting all citances verbatim from a given paper, which refers
to other papers. Then, we examine two additional contexts for each citation.
The first context encompasses the sentences immediately preceding and follow-
ing the citance. The second context involves the two most similar sentences
in meaning to the citance within the same paragraph. In total, we have three
citation-contexts: citance (citance itself), neighbors (citance and neighbor-
ing sentences), and similar (citance and semantically similar sentences). By
incorporating these contexts, we aim to enhance the exploration of relevant
information from the cited paper, thereby facilitating a deeper comprehension
of the underlying rationale behind the citance.

Neighbors Approach

To apply the neighbors approach, we extract the preceding and following sen-
tences as implicit citation-context for a citance. This approach is based on
the analysis of Qazvinian and Radev (2010). The authors manually labeled
sentences from 10 publications of the ACL Anthology Network (Radev et al.,
2013) as explicit citation, context sentence, or none. They then applied a
Markov random field model to determine the context sentences. Their find-
ings revealed that most implicit citation-context sentences have a gap size of
0 to the citance and therefore are located around the citance. However, since
the corpus they used was relatively small and the analysis showed that some
implicit citation-context sentences had a gap size greater than 0, we adopted
a second approach to model citation-context.

Similar Approach

The similar approach involves identifying the most semantically similar sen-
tences to a citance within the same paragraph. To achieve this, we utilized
SciBERT (Beltagy et al., 2019) to embed both the citance and the sentences
in the surrounding paragraph. SciBERT is a pre-trained Bert model designed
for scientific texts, and it can generate meaningful embeddings in our case. We
applied cosine similarity to determine the two most similar sentences.

3.2 Query Formulation
In the second step of our approach to generating contextualized summaries, we
utilize the modeled citation-contexts as queries to extract the relevant content
from the cited paper. We also utilize the extracted keywords of the three
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queries - citance, neighbors, and similar, separately. Below, we provide a
description of the keyword extraction process.

3.2.1 Keyword Extraction

We use KeyBERT (Grootendorst, 2020) combined with SentenceTransformers
all-mpnet-base-v2 1 and SciBERT (Beltagy et al., 2019) to extract keywords
from queries. Firstly, the Transformer Models extract document embeddings
to obtain a document-level representation. After that, word embeddings are
extracted for n-gram words/phrases. Finally, it uses cosine similarity to iden-
tify the words/phrases that are most similar to the document. The words that
are most similar can then be identified as the words that best describe the
entire document. The only problem with this is that KeyBERT requires the
user to specify an n-gram range, but the optimal length is unknown, resulting
in truncated keyphrases. To overcome this problem, we use KeyphraseVec-
torizers (Schopf et al., 2022). It uses the part-of-speech tags of a document,
determines their frequency, and extracts extended noun phrase keyphrases.
These keyphrases have a structure that includes an article, one or more adjec-
tives, and a noun.

An example of the extraction process for the citance is provided below:

Citance:
For the question representation, since a well-formed question might sen-
sitive to the word order, we make use of the recent proposed contextual
word embeddings such as BERT [7] to capture the contextual word in-
formation.

Neighbors:
Previous Sentence:
To overcome the aforementioned problems, we propose a Seq2Seq model
for question refinement, referred to as QREFINE.

Next Sentence:
The utilization of BERT, which is trained on a large-scale unlabeled
corpus, also helps alleviate the issue of data sparsity, particularly when
there is insufficient training data available.

1https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Similar:
Previous Sentence: ""

Next Sentence:
Furthermore, since ill-formed questions might contain typographical er-
rors, we augment the question representation with fine-grained character
embeddings [24]. To enhance the generation of desired questions, we in-
troduce a training algorithm based on reinforcement learning for the
Seq2Seq model.

Step 1: Extract the keyphrases with all-mpnet-base-v2 and SciBERT.

– keywords-SciBERT :
[

(’contextual word information ’, 0.6971) ,
(’contextual word embeddings ’, 0.6706) ,
(’question representation ’, 0.6557) ,
(’word order ’, 0.5261) ,
(’use ’, 0.2681)

]

– keywords-all-mpnet-base-v2 :
[

(’question representation ’, 0.6747) ,
(’contextual word embeddings ’, 0.5889) ,
(’word order ’, 0.3886) ,
(’bert ’, 0.3142) ,
(’use ’, 0.081)

]

Step 2: Combine the lists of keyphrases and only keep one occurrence of
duplicates while retaining the highest score from each list.

– keywords-merged :
[

(’contextual word information ’, 0.6971) ,
(’contextual word embeddings ’, 0.6706) ,
(’question representation ’, 0.6747) ,
(’word order ’, 0.5261) ,
(’use ’, 0.2681) ,
(’bert ’, 0.3142)

]
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Step 3: Calculate the mean score.

• mean score: 0.525

Step 4: Filter out any keyphrases that have a score lower than the mean
score.

– keywords-final :

[
(’contextual word information ’, 0.6971) ,
(’contextual word embeddings ’, 0.6706) ,
(’question representation ’, 0.6747) ,
(’word order ’, 0.5261)

]

These are the final keyphrases for the citance in the three different variants:

citance neighbors similar
contextual word information contextual word information contextual word information
contextual word embeddings contextual word embeddings contextual word embeddings

question representation question representation question representation
word order word order word order

seq2seq model seq2seq model
qrefine baselines

enough training data
data sparsity problem

bert

Table 3.1: Overview of the keyphrases extracted for the three citation-contexts,
citance, neighbors, and similar. The keyphrases were extracted using the four steps
outlined in Section 3.2.1.

3.2.2 Overview Queries

In total, we used 12 different retrieval scenarios to extract the relevant content
from the cited paper. To do this, we used three different citation-contexts:
citance, neighbors, and similar. Additionally, we considered the keywords sep-
arately. Then, we used both a shallow retrieval model, specifically BM25,
and a dense retrieval model, utilizing SciBERT. An overview and a detailed
description of all retrieval scenarios can be found in Table 3.2.
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Retrieval Scenarios Description

citance-BM25 Citance used as the query, documents ranked with
BM25.

citance-SciBERT Citance used as the query, documents ranked based on
cosine similarity of SciBERT embeddings.

citance-keywords-BM25 Keywords extracted from citance used individually as
queries, documents ranked with BM25. Ranked lists
are then fused into a final ranking.

citance-keywords-SciBERT Keywords extracted from citance used individually as
queries, documents ranked based on cosine similarity
of SciBERT embeddings.

neighbors-BM25 Citance and surrounding sentences (i.e., the neighbors
context) used as the query, documents ranked with
BM25.

neighbors-SciBERT The neighbors context used as the query, documents
ranked based on cosine similarity of SciBERT embed-
dings.

neighbors-keywords-BM25 Keywords extracted from the neighbors context used
individually as queries, documents ranked with BM25.
Ranked lists are then fused into a final ranking.

neighbors-keywords-SciBERT Keywords extracted from the neighbors context used
individually as queries, documents ranked based on co-
sine similarity of SciBERT embeddings. Ranked lists
are then fused into a final ranking.

similar-BM25 Citance and two semantically similar sentences in the
same paragraph (i.e., the similar context) used as the
query, documents ranked with BM25.

similar-SciBERT The similar context used as the query, documents
ranked based on cosine similarity of SciBERT embed-
dings.

similar-keywords-BM25 Keywords extracted from the similar context used in-
dividually as queries, documents ranked with BM25.
Ranked lists are then fused into a final ranking.

similar-keywords-SciBERT Keywords extracted from the similar context used in-
dividually as queries, documents ranked based on co-
sine similarity of SciBERT embeddings. Ranked lists
are then fused into a final ranking.

Table 3.2: Overview of the various retrieval scenarios to find relevant content from
the cited paper. Documents may be sentences or paragraphs. For the keyword-based
scenarios, the final ranking is obtained by a weighted aggregation of the rankings
based on the cosine similarity of a keyword and the citance.
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3.3 Citance-guided Information Retrieval
We utilize the three citation-contexts mentioned earlier as queries to retrieve
pertinent information from the cited paper. Additionally, we explore the
use of extracted keywords from each citation-context to enhance the queries
(Carpineto and Romano, 2012). For retrieval, we employ both shallow and
dense retrieval models (Section 4.2). To extract the relevant content, we first
remove the citation marker from the query. Additionally, we do not retrieve
sentences from the abstract and conclusion as they contain summary sentences.
We retrieve relevant content at two levels of granularity: sentences and para-
graphs. Specifically, we extract the top-5 relevant sentences and the top-2
relevant paragraphs from the cited paper. This enables us to assess which
granularity is more suitable for the contextualized summarization task.

The top-5 relevant sentences provide a broader coverage of the cited paper,
encompassing diverse information that is relevant to the citance. Conversely,
the top-2 relevant paragraphs offer a higher degree of focus, where the summary
sentences are interconnected. Hence, we experiment with both granularities
to explore their efficacy in our approach. Following the retrieval process, we
qualitatively evaluate the retrieved content. This evaluation (Section 5.1.1)
aids us in selecting the optimal combination of query and retrieval models for
the subsequent summarization step (Section 5.2).

3.4 Citance-contextualized Summarization
After retrieving the relevant content from the cited paper, we utilize it as input
for the summarization model. This ensures that the generated summaries
are grounded in the context of the citance, focusing solely on the parts of
the cited paper that are relevant to the citance. Our approach explores the
effectiveness of large language models (LLMs) due to their strong multi-task
capabilities (Bommasani et al., 2021). Specifically, we employ prompt-based,
instruction-following models that can understand and execute natural language
instructions provided by the user to accomplish a given task. This flexibility
and adaptability to various domains distinguish our approach from domain-
specific supervised methods.

Since we have two granularities of input for the summarization model (top-
5 sentences and top-2 paragraphs), we designed two prompts tailored to each.
For the top-5 sentences, we employ a paraphrasing prompt that aims to trans-
form the set of sentences into a coherent summary. On the other hand, for the
top-2 paragraphs, we use an abstractive summarization prompt to generate a
cohesive summary from the set of paragraphs. Further details regarding the
prompts can be found in Section 5.2.1.
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Chapter 4

Context-SciSumm: A Large-scale
Corpus for Contextualized
Summarization of Scientific Papers

Previous datasets for scientific paper summarization do not account for differ-
ent types of citation-contexts, evaluate multiple retrieval models for extracting
relevant content, or use citances from every section of the paper (Chapter 2).
Therefore, these datasets are unsuitable for studying citance-contextualized
summarization in their original form. To address this gap, we introduce
Context-SciSumm, a new and extensive dataset created using our approach
described in Chapter 3. It comprises 540,000 documents and 4.6 million in-
stances, making it the most extensive dataset for scientific summarization.

Furthermore, this chapter provides information on the underlying data re-
source and individual preprocessing steps in Section 4.1, the creation of indexes
for retrieving relevant content in Section 4.2, the description of an instance in
Section 4.3, as well as corpus statistics in Section 4.4.

4.1 Data Source and Preprocessing
We utilized the publicly available Semantic Scholar Open Research Corpus
(S2ORC) (Lo et al., 2020) for our study.1 The corpus comprises 136M sci-
entific papers, of which 12 million have full-text available. This structured
dataset is automatically annotated with citations, figures, tables, and links to
corresponding publications, totaling 380.5 million resolved citation links.
To create Context-SciSumm, we filtered the S2ORC dataset by using only
the 12 million publications with full text available and excluding all publi-

1We used the S2ORC dataset released on 2020-07-05.
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Figure 4.1: Inline citations and references to figures and tables are annotated in
S2ORC’s structured full text. Citations are linked to bibliography entries linked to
other papers in S2ORC. Figure and table references are linked to their captions (Lo
et al., 2020).

cations that were not solely computer science papers. We removed all docu-
ments where the attribute mag_field_of_study did not have exclusively "CS"
(computer science) as a value. Further, we also filtered out interdisciplinary
publications such as those from computational psychology, computational en-
vironmental science, and computational art. Our filtering steps resulted in
870,810 documents, which we indexed by sentence and paragraph. We focused
on a subset of 870,810 documents from the computer science discipline to en-
sure the relevance of our evaluation (Section 5.2.2). After removing documents
without citations within the corpus, we were left with approximately 540,000
documents. We then extracted citances by identifying the exact sentence con-
taining the citation marker in each document. This resulted in a total of 4.6M
citances in our corpus. Unlike Mao et al. (2022), who considered only citances
from the Related Work section, we retained citances from all sections of a
document, resulting in a more diverse set of citances.

4.2 Citation-contexts and Retrieval Models
We devised three citation-context types as queries to retrieve relevant content
from the cited paper, as described in Section 3.1. The citance and neighbors
contexts were derived straightforwardly. For the similar context, we employed
cosine similarity of the contextual embeddings from SciBERT (Beltagy et al.,
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2019)2 to identify the two most semantically similar sentences to the citance.
Additionally, we experimented with the keywords extracted from the citance
and the citation-context using KeyBERT (Grootendorst, 2020) as individual
queries.

For retrieval, we explored BM25 (Robertson et al., 1994)3 and cosine sim-
ilarity of the SciBERT embeddings between the query (citation-context) and
the document (sentences or paragraphs of the cited paper). This allowed us to
examine both shallow and dense retrieval paradigms. The combination of the
three query types (including keyword variants) and the two retrieval models
resulted in a total of 12 retrieval scenarios, as outlined in Table 5.1, accom-
panied by their mean nDCG@5 scores from our internal evaluation (Section
5.1).

The 870,810 filtered documents from the S2ORC dataset were already in
paragraph form. We split the sentences using the SciSpacy model en_core_sci_lg
to index the documents at the sentence level. This model was trained on
biomedical data and recognized the structure of scientific papers and different
citation styles better than the standard Spacy model en_core_web_lg. As
a result, we obtained better sentence-splitting. We indexed 151M sentences
and 40M paragraphs to retrieve the top-5 sentences and top-2 paragraphs, re-
spectively, for each query. Regarding the keyword queries, we merged their
individual rankings using weighted aggregation to obtain a final ranking for a
single citance. Specifically, each ranking from a keyword query was scaled by
its cosine similarity with the citance, and the resulting rankings were aggre-
gated through a weighted sum.

2scibert-scivocab-uncased from https://huggingface.co/allenai/scibert_
scivocab_uncased

3We used the Rank-BM25 toolkit (Brown, 2020) with default parameters for BM25 (k=1,
b=0.75).
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The weighted rank aggregation equation is given by:

FinalRanking =
X

k∈K
(sk ∗Rk) (4.1)

Where:

• ∗ represents the scaling of the ranking vector Rk by the cosine similarity
sk

• K is the set of keyword queries

• Rk is the ranking vector obtained from the k-th keyword query in K

• sk is the cosine similarity between the citance and the keyword query k

4.3 Data Entry Example
Our corpus consists of approximately 540,000 documents and 4.6 million ci-
tances. For each document, we generated multiple files. The citance file (Fig.
4.2) provides information on all the citances included in a citing paper, while
the content file contains the extracted contents for the top-performing retrieval
scenarios for each document. At present, we have only produced summary files
for the papers from the evaluation dataset (Section 5.2.2), as time and cost
constraints prevented us from generating multiple contextualized summaries
for all documents.

The following information pertains to a single citance extracted from a file
that contains multiple such entries. Each citance is assigned a unique identifier
referred to as citance_no. Additionally, it includes metadata about the cit-
ing paper, including citing_paper_id, title, and citing_paper_authors. This
is followed by details about the citance and the corresponding cited paper.
The reference field indicates the citation marker used, while citance_section
specifies the name of the section where the citance originated. The follow-
ing two fields, prev_sentence and next_sentence, contain lists of sentences
that provide the implicit citation-context for the citance. After this citation-
context is determined, the position in the text is used to determine whether
the sentences precede or follow the citance, which is important for our similar
approach (Section 3.1.1). Lastly, the file contains metadata for the cited pa-
per, namely reference_paper_title and reference_paper_link, which includes
the linked paper ID. These two pieces of information enable us to retrieve the
cited paper from our index.
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[
{

"citance_No ": 5,
"citing_paper_id ": 51871042 ,
"title": "DeepPavlov: Open -Source Library for Dialogue

Systems",
"citing_paper_authors ": "D Jason , Kavosh Williams ,

Geoffrey Asadi , Zweig",
"reference ": "( Williams et al., 2017)",
"citance_section ": "Implemented Models and Skills",
"citance ": "The skill implements Hybrid Code Networks

(HCNs) described in (Williams et al., 2017).",
"prev_sentence ": [

"Some of them are available for interactive online
testing ."

],
"next_sentence ": [

"The model is configurable: embeddings , slot filling
component and intent classifier can be switched

on and off on demand ."
],
"reference_paper_title ": "Hybrid code networks:

practical and efficient end -to -end dialog control
with supervised and reinforcement learning",

"reference_paper_link ": "13214003"
}

]

Figure 4.2: Illustration of a single citance example extracted from a JSONlines
file containing multiple examples, showcasing a citance, meta-information about the
citing and the cited paper, and the citation-context.

We compiled two different content files for the citances (Appendix A.1, A.2),
one for the top-2 and one for the top-5 scenario. These content files consist of
several fields. Firstly, the field labeled citance_no indicates the corresponding
citation number. Next, we have the field citing_paper_id, which specifies
the paper ID of the citing paper. Following these fields are similar-BM25,
similar-keywords-BM25, citance-SciBERT, and citance-BM25, which hold the
extracted context based on the best-performing retrieval scenarios. For more
detailed information about each retrieval scenario, please refer to Table 3.2.

The summary files are in CSV format, but to avoid redundancy, we are re-
ferring to them here in their representation as a Table: 5.4, 5.5, and Appendix
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B.1. The file contains the following entries: citing_paper_title and refer-
ence_paper_title, which reflect the titles of the citing and cited papers. Then,
it contains information about the citance, next_sentence and prev_sentence,
where the sentences of the similar approach are stored as implicit citation-
context based on the evaluation results of Section 5.1 for the citance. For
each document, there is also the abstract of the cited paper and the four con-
textualized summaries: GPT-citance-SciBert-top5, GPT-similar-BM25-top2,
LLaMA-CoT-citance-SciBert-top5, and Vicuna-similar-BM25-top2.

4.4 Corpus Statistics
The compiled corpus, consisting of 537,155 scientific papers in the computer
science domain, encompasses a total of 4,619,552 citances. On average, each
paper contains 8.6 citances. The mean length of a citance is 31 tokens, with
a median length of 27 tokens (see Fig. 4.3). The citances show a normal
distribution around this mean value. There are 4767 outlier values with a
citance text length of over 200 tokens, with a maximum length of 5388 tokens.
These outliers mainly comprise reviews of papers, and an example can be found
in Appendix D.

Figure 4.3: Histogram density plot showing the distribution of citance lengths up
to 200 tokens. The median length (marked in green) is 27 tokens.
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Furthermore, the corpus includes 346,450 papers that feature multiple citances
to the same cited paper, making them an optimal subset for studying contextu-
alized summarization approaches. In Table 4.1, we comprehensively compare
our corpus with other datasets. We have crafted a unique dataset with multi-
ple, abstractive, citance-contextualized, informative summaries of a cited pa-
per. The average summary length is 117 tokens, calculated on the 100 papers
from the evaluation dataset (Section 5.2.2).
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Chapter 5

Experiments & Evaluation

This chapter will discuss the experiments and evaluations conducted to develop
Context-SciSumm and assess its quality and usefulness. Initially, a pilot
study was performed to identify the optimal retrieval scenario for extracting
relevant contextual information from a citance. Subsequently, we employed a
shallow and a dense retrieval model to extract relevant content from the best-
performing and paradigmatically different models. To summarize the extracted
content, we utilize large language models (LLMs) with different instructions
and templates for prompts. A detailed breakdown of the LLMs and prompts
can be found in the corresponding Sections 5.2, 5.2.1. Finally, human and
automatic evaluations were conducted to determine the usefulness and quality
of the generated contextualized summaries (Section 5.2.2).

We needed to conduct two separate evaluation steps to evaluate the gener-
ation of contextualized summaries effectively. It was not sufficient to evaluate
only the summaries, as this would not allow us to determine whether any inad-
equacies were due to the summarization model or the retrieving of the relevant
content.

5.1 Contextualized Retrieval
Experimental Details: We conducted an internal evaluation via manual rel-
evance judgments of the 12 retrieval scenarios presented in Table 5.1. Specif-
ically, we determined the relevance of the retrieved content from the cited
paper to the corresponding citation-context (query) from the citing paper. We
employed ten queries to retrieve the top-5 sentences from the cited papers for
each of the 12 scenarios, resulting in a total of 600 sentences. These sentences
were evaluated for relevance using a three-point scale: relevant, somewhat rel-
evant, and non-relevant. The evaluation metric used was ndcg@5 (Järvelin
and Kekäläinen, 2002), as displayed in Table 5.1. This metric measures the
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quality of ranked search results. It evaluates the ranking accuracy and rele-
vance of the top 5 items in a list using user feedback. A higher nDCG@5 value
signifies more precise and pertinent rankings, where a score of 1 represents the
optimal outcome, while 0 reflects the poorest performance.

5.1.1 Evaluation

Based on the evaluation results, we selected the similar content with BM25 and
citance content with SciBERT (these were the best options for both shallow
and dense retrieval) to be used in the subsequent summarization step. The
former utilizes the top-2 semantically similar sentences to the citance (along
with the citance itself) as the query with the BM25 model, while the latter
employs the citance itself as the query with the SciBERT model.

Model Mean nDCG@5

BM25 (Shallow)
similar 0.958
similar-keywords 0.944
citance 0.943
neighbors-keywords 0.928
citance-keywords 0.914
neighbors 0.898

SciBERT (Dense)
citance 0.943
similar 0.918
neighbors 0.801
neighbors-keywords 0.706
similar-keywords 0.650
citance-keywords 0.617

Table 5.1: Evaluation of the 12 retrieval scenarios (queries based on citance, neigh-
bors, and similar) combined with shallow and dense retrieval models for extracting
relevant content from the cited paper. We report nDCG@5 (mean) for 600 relevance
judgments. The best model from each retrieval paradigm (in bold) is selected for the
summarization step.
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5.2 Contextualized Summarization
In this section, we outline the procedure for generating contextualized sum-
maries using extracted contents from the cited paper. Our method utilizes
different LLMs (Language Model Models). To begin with, we assessed various
instructions and prompt templates to identify the most effective ones for our
experiments. Next, we produced contextualized summaries for an evaluation
dataset and conducted both manual and automatic evaluations. Below, we
will provide further elaboration on the experimental details and the results
obtained.

Experimental Details: Using the retrieved content from the cited paper, we
employed prompt-based LLMs for abstractive summarization of each citance.
We investigated the recently introduced instruction-following models:

1. Alpaca (Taori et al., 2023) is finetuned from the LLaMA 7B model (Tou-
vron et al., 2023) using 52K self-instructed instruction-following exam-
ples (Wang et al., 2022).

2. Vicuna (Chiang et al., 2023) is finetuned from LLaMA using user-shared
conversations collected from ShareGPT.1 It has shown competitive per-
formance when evaluated using GPT-4 as a judge. We used the 13B
variant.

3. LLaMA-CoT2 is a finetuned model on datasets inducing chain-of-thought
and logical deductions (Qingyi Si, 2023).

4. Falcon (Almazrouei et al., 2023) is trained on the RefinedWeb dataset
(Penedo et al., 2023), which is derived through extensive filtering and
deduplication of publicly available web data. It is state-of-the-art (at
the time of writing) on the open-LLM-leaderboard.3 We used the 40B-
Instruct variant.

5. GPT-4 (Bubeck et al., 2023) is the latest version of the popular GPT class
of models by OpenAI that demonstrates state-of-the-art performance
across multiple benchmarks. Therefore, we used it to bootstrap reference
summaries for our summarization evaluation (Section 5.2.2). In contrast
to the other open-source models, it is accessible exclusively through the
OpenAI API.4

1https://sharegpt.com/
2https://huggingface.co/ausboss/llama-30b-supercot
3https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
4https://platform.openai.com/docs/models/gpt-4
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For the two granularities of retrieved content (top-5 sentences and top-2 para-
graphs), we generated separate summaries using the models in a zero-shot
setting. For the top-5 sentences, we paraphrased them into coherent text,
considering they already served as an extractive summary. For the top-2 para-
graphs, we performed abstractive summarization. Throughout the tasks, we
experimented with different instructions and prompt formulations. We set the
temperature of the models to 0, which gives us deterministic output based only
on the input of the relevant content.

5.2.1 Prompt Formulation

To generate a summary conditioned on specific instructions, the mentioned
models require clear instructions provided by the user within the prompt. We
conducted experiments using various instructions and prompt templates for
paraphrasing and summarization.

We used the following instructions for summarization:

1. Generate a coherent summary for the following scientific text in not more
than 5 sentences.

2. Generate a short summary of the following scientific text. The summary
should not be more than 5 sentences long.

3. Summarize the following scientific text in not more than 5 sentences.

The first two prompts produced concise and understandable summaries. Nev-
ertheless, when the term "coherent" was omitted, the output occasionally ap-
peared as a numbered list comprising separate sentences from the summary.
Conversely, the third prompt yielded a highly condensed output, leading to
the loss of essential information. To maintain comparability with the top-5
experiment, we restricted the length of the summary for the top-2 experiment
to a maximum of 5 sentences.

Instructions for Paraphrasing:

1. Generate a coherent paraphrased text for the following scientific text.

2. Generate a paraphrased text for the following scientific text.

3. Paraphrase the following scientific text.

4. Combine the following scientific text into a coherent and concise text.
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CHAPTER 5. EXPERIMENTS & EVALUATION

The same phenomenon that occurred with the summarizing instructions was
also noticed with the first two paraphrasing instructions. However, the third
and fourth instructions were frequently misunderstood, leading to the output
consisting solely of the input provided.

Prompt templates:

1.

Generate a coherent summary for the following scientific text in not
more than 5 sentences.

scientific text: {input}

summary:

2.

A chat between a curious user and an artificial intelligence assistant.
The assistant knows how to summarize scientific text and the user
will provide the scientific text for the assistant to summarize.

USER:
Generate a coherent summary for the following scientific text in not
more than 5 sentences: {input}.

ASSISTANT:

3.

### Instruction:
A chat between a curious human and an artificial intelligence assis-
tant. The assistant knows how to paraphrase scientific text and the
user will provide the scientific text for the assistant to paraphrase.

### Input:
Generate a coherent paraphrased text for the following scientific text:
{input}.

### Output:

Figure 5.1: Illustration of Prompt Templates for Paraphrasing and Summarization.
While Template 1 yielded favorable outcomes for the Alpaca and Falcon models, it
proved ineffective for Vicuna and LLaMA-CoT. Template 2 demonstrated success with
Alpaca, LLaMA-CoT, and Falcon, yet fell short with Vicuna. Template 3 produced
cohesive summaries across all models, albeit occasionally exhibiting artifacts.
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We used a direct instruction prompt without a template for GPT-4. The first
template worked well for the Alpaca and Falcon models but proved inade-
quate for the Vicuna and LLaMA-CoT models. When the input’s last sentence
had a colon or an abbreviation, the model tried to align the output with it.
Specifically, the Vicuna model represented summaries as bullet points, but the
LLaMA-CoT model failed to generate any output using this template, render-
ing it unusable. The second template worked well for Alpaca, LLaMA-CoT, and
Falcon. Unfortunately, it did not generate any output for Vicuna. Eventually,
we opted for the third prompt template, which successfully generated readable,
coherent, and understandable summaries for all four models. However, it did
occasionally result in artifacts in some individual examples, though it was the
most effective overall.

To determine the best combination of instructions and prompt formula-
tions for each model, we manually evaluated summaries generated from ten
examples for each model. Based on this evaluation, we selected the optimal
combination, as depicted in Figure 5.2, to use for the final evaluation.

Paraphrasing Prompt

### Instruction:
A chat between a curious human and an artificial intelligence assistant. The
assistant knows how to paraphrase scientific text and the user will provide the
scientific text for the assistant to paraphrase.
### Input:
Generate a coherent paraphrased text for the following scientific text: {input}.
### Output:

Summarization Prompt

### Instruction:
A chat between a curious human and an artificial intelligence assistant. The
assistant knows how to summarize scientific text and the user will provide the
scientific text for the assistant to summarize.
### Input:
Generate a coherent summary for the following scientific text in not more than
5 sentences: {input}.
### Output:

Figure 5.2: Best prompts with instructions used for paraphrasing (of top-5 sen-
tences) and summarization (of top-2 paragraphs). We ensured similar summary
lengths for both granularities by strictly instructing the model to generate not more
than 5 sentences for the top-2 paragraphs.
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5.2.2 Evaluation

We assessed the contextualized summaries produced by the models mentioned
in Section 5.2. We developed an evaluation dataset and created ground truth
summaries with GPT-4 to evaluate them. We used ROUGE and BertScore
metrics for quantitative evaluation and had three experts assess our summaries
for coverage and focus for qualitative evaluation. Below, we describe their
agreement and the results obtained, along with examples.

ROUGE

Our evaluation involved the use of ROUGE-1, ROUGE-2, and ROUGE-L
(Lin, 2004) metrics to automatically score the summaries generated by Alpaca,
Falcon, LLaMA-CoT, and Vicuna models, compared to the reference summary
by GPT-4. ROUGE-1 and ROUGE-2 measured the agreement of one-word and
two-word combinations, respectively, while ROUGE-L computed the agree-
ment of the longest common subsequence. This determined the number of
matching tokens in the correct order, even if not necessarily consecutive. The
more tokens overlap, the higher the value of these metrics, indicating the sim-
ilarity between the generated summaries and reference summaries.

BertScore

We also used BertScore (Zhang et al., 2020), an automatic metric for measur-
ing the quality of generated texts. This metric measures the similarity score
of each token in the generated summary to those in the reference summary.
Unlike exact matches, BertScore employs contextual embeddings. It first gen-
erates BERT embeddings for each token in both the generated and reference
summary. Then it computes pairwise cosine similarity and selects the highest
cosine similarity values using a greedy matching method. Finally, BertScore
is calculated by weighting the cosine similarity values with inverse document
frequency (IDF) weights, summing them, and dividing them by the sum of the
IDF weights.

Evaluation Data

We selected 15 papers from the ACL anthology published between 2016-2020,
aligned with the NLP domain. We extracted 363 citances from these papers
and randomly chose 25 of them. Using the full texts of the cited papers and the
two best retrieval models from Table 5.1, we retrieved the top-5 sentences and
top-2 paragraphs, resulting in 100 texts in total. To create the ground-truth
summaries, we utilized GPT-4 (Bubeck et al., 2023) in a zero-shot setting to
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paraphrase/summarize these texts. Each summary was manually verified to
ensure accuracy and eliminate hallucinations or factual errors. We employed
the prompts shown in Figure 5.2.

Automatic Evaluation

We used the ground-truth summaries to evaluate the contextualized summaries
from the LLMs automatically. Specifically, we computed ROUGE (Lin, 2004)
and BERTScore (Zhang et al., 2020) using the evaluation module of the sum-
mary workbench (Syed et al., 2022). Results shown in Table 5.2 reveal that,
according to ROUGE, Vicuna performs best for (summarizing) the top-2 para-
graphs, while LLaMA-CoT is the best for (paraphrasing) the top-5 sentences as
the summary. Moreover, it also achieves the highest BERTScore in the top-2
paragraphs setting. Accordingly, we manually evaluated them for coverage and
focus.

Human Evaluation

We recruited three annotators from the NLP domain, including two Ph.D.
students and one post-doc, to assess the usefulness of the summaries. The an-
notators were requested to rate the summaries on two criteria: coverage and
focus. The ratings were on a scale of 1 to 5, with 1 representing the worst and
5 representing the best. Coverage reflects how well the summary captures the
essential information from the cited paper that is relevant to a specific citance,
while focus pertains to the coherence and cohesion of the sentences in the sum-
mary. A total of 125 summaries were evaluated for papers cited from 25 unique
citances. Each example consisted of the citance (and its context) displayed
on the left side, accompanied by five summaries on the right: the abstract
of the cited paper, two reference summaries (top-5 sentences and top-2 para-
graphs), and the summaries generated by the two best models for the top-5 sen-
tences and top-2 paragraphs scenarios, namely Vicuna-similar-BM25-top2
and LLaMA-CoT-citance-SciBert-top5. The order of the summaries was
randomized to mitigate any sequence effects (Mathur et al., 2017). Table 5.4
shows one example that the human annotators evaluated. In the evaluation
scenario, the model names and retrieval scenarios were masked.
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Model BERTScore ROUGE

R-1 R-2 R-L

top-2 paras.
similar-bm25
Alpaca 0.343 47.3 25.5 44.9
Falcon 0.401 48.2 27.1 45.0
LLaMA-CoT 0.448 53.0 31.9 50.5
Vicuna 0.465 58.7 35.4 55.8
citance-SciBERT
Alpaca 0.390 54.3 32.2 52.0
Falcon 0.413 52.1 29.6 48.9
LLaMA-CoT 0.497 54.7 32.9 52.5
Vicuna 0.431 56.7 34.2 53.9

top-5 sents.
similar-bm25
Alpaca 0.616 56.2 35.4 54.8
Falcon 0.649 57.5 35.6 55.2
LLaMA-CoT 0.707 61.2 38.6 60.0
Vicuna 0.551 57.2 34.3 54.9
citance-SciBERT
Alpaca 0.595 56.6 34.7 55.1
Falcon 0.656 56.8 36.2 55.3
LLaMA-CoT 0.748 62.9 40.6 60.9
Vicuna 0.607 58.8 36.0 56.6

Table 5.2: Automatic evaluation of summaries from all LLMs grouped by two
granularities: top-2 relevant paragraphs and top-5 relevant sentences from the cited
paper. We report BERTScore (precision) and ROUGE scores against the refer-
ence summaries from GPT-4. We chose the best model from each scenario based on
ROUGE overlap with the references for manual evaluation: Vicuna (similar-BM25 )
and LLaMA-CoT (citance-SciBERT ) for top-2 paragraphs and top-5 sentences, respec-
tively.

Inter Annotator Agreement and Results

We computed inter-annotator agreement using weighted Cohen’s Kappa (Co-
hen, 1960) for our ordinal data and obtained κ of 0.42 and 0.40 for coverage
and focus, respectively. While these results indicate a fair to moderate agree-
ment among the annotators (Appendix C.1), we recognize that the evaluation
task itself is subjective. Assessing the usefulness of a summary is influenced by
various contextual factors, such as the annotators’ goals when reviewing a cita-
tion, their prior knowledge about the cited paper, and the presentation of the
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summary (Jones, 2007). Overall, the abstracts received slightly higher scores
from the annotators in terms of both coverage and focus. As shown in Table
5.3, the abstract achieved the highest coverage score (3.67), closely followed
by the Vicuna summary (3.01). Similarly, for focus, the abstract was rated as
the best summary (4.50), with the reference summary from GPT-4 coming in
second (3.83). Regarding the granularity of the retrieved content, we observed
that summarizing the top-2 paragraphs outperformed summarizing the top-5
sentences in terms of both coverage and focus.

Model Coverage Focus

Abstract 3.67 4.50
similar-bm25, top-2 paras
Reference (GPT4) 2.92 3.83
Vicuna 3.01 3.56
citance-SciBERT, top-5 sent.
Reference (GPT4) 2.45 2.99
LLaMA-CoT 2.33 2.33

Table 5.3: Average scores for summary quality criteria (over 125 summaries) as per
human evaluation. Models are grouped by the retrieval scenario.

5.2.3 Summary Examples

Despite the general preference for abstracts, feedback from annotators indi-
cated that our summaries were more effective when a citance did not directly
reference the main contributions of a paper. The abstract was preferred over
the contextualized summaries for the Example 5.4. The citance in this ex-
ample reads, "The skill implements Hybrid Code Networks (HCNs) described
in (Williams et al., 2017)". It cites Hybrid Code Networks, which are the
main contributions of the publication "Hybrid Code Networks: practical and
efficient end-to-end dialog control with supervised and reinforcement learning"
(Williams et al., 2017). Therefore the essential information about Hybrid Code
Networks is included in the abstract.
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DeepPavlov: Open-Source Library for Dialogue Systems

Citance Context
Some of them are available for interactive online testing.

The skill implements Hybrid Code Networks (HCNs) described in (Williams et al., 2017).

The model is configurable: embeddings, slot filling component and intent classifier can be
switched on and off on demand.

Abstract
End-to-end learning of recurrent neural networks (RNNs) is an attractive solution for dialog
systems; however, current techniques are data-intensive and require thousands of dialogs
to learn simple behaviors. We introduce Hybrid Code Networks (HCNs), which combine
an RNN with domain-specific knowledge encoded as software and system action templates.
Compared to existing end-to-end approaches, HCNs considerably reduce the amount of
training data required, while retaining the key benefit of inferring a latent representation of
dialog state. In addition, HCNs can be optimized with supervised learning, reinforcement
learning, or a mixture of both. HCNs attain state-of-the-art performance on the bAbI dialog
dataset, and outperform two commercially deployed customer-facing dialog systems.

GPT-citance-SciBert-top5
After every dialogue, RL policy updates occur. State is maintained by both the RNN and the
developer code. HCNs employ an RNN to gather dialogue state and select actions as well.
In these structures, the RNN learns to handle entity values, such as storing them in memory.
On the other hand, HCNs utilize an RNN that inherently deduces a state representation.

GPT-similar-BM25-top2
This paper introduces Hybrid Code Networks (HCNs), a model for end-to-end learning
that combines learning an RNN with domain knowledge expressed via software and action
templates. HCNs achieve the same performance as existing recurrent end-to-end techniques
but with significantly less training data. The neural network can be trained with supervised
learning or reinforcement learning by changing the gradient update applied. The model
is applied to the bAbI dialog dataset and real customer support domains. HCNs can be
optimized with reinforcement learning, using LSTM for the recurrent layer and the AdaDelta
optimizer.

LLaMA-CoT-citance-SciBert-top5
The RL policy is updated after each dialogue. Both the RNN and the developer code retain
state. HCNs also use an RNN to accumulate dialogue state and select actions. In each of
these architectures, the RNN learns to manipulate entity values, for example by saving them
in a memory. By contrast, HCNs use an RNN which automatically infers a representation
of state.

Vicuna-similar-BM25-top2
This paper presents a new model called Hybrid Code Networks (HCNs) for end-to-end learn-
ing. HCNs allow developers to express domain knowledge and achieve better performance
with less training data compared to existing techniques. The model is trained using su-
pervised or reinforcement learning and can be applied to the bAbI dialog dataset and real
customer support domains. The model can also be optimized with reinforcement learning.

Table 5.4: Example of the automatically generated contextualized summaries from
the best models for both granularities. In this example, the citance cites the main
contribution of the cited paper.
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On the other hand, contextualized summaries were favored when the main con-
tributions were not cited, as seen in the example presented in Table 5.5. In this
second example, the citance reads, "In both cases, we use the BIOES labeling
scheme for the output tags, following previous work which showed it outper-
forms other options (e.g., Ratinov and Roth, 2009).". However, this citance
does not refer to the main contribution of the paper "Design Challenges and
Misconceptions in Named Entity Recognition" (Ratinov and Roth, 2009). It
references a BIOES labeling scheme that lacks any information within the ab-
stract. Therefore, in this example, the contextualized summaries produced by
GPT-similar-BM25-top2 and Vicuna-similar-BM25-top2 were rated higher
than the abstract.

Semi-supervised sequence tagging with bidirectional language models

Citance Context
In both cases, we use the BIOES labeling scheme for the output tags, following previous
work which showed it outperforms other options (e.g., Ratinov and Roth, 2009).

In addition to CNN-BIG-LSTM from Józefowicz et al. (2016), 1 we used the same corpus
to train two additional language models with fewer parameters: forward LSTM-2048-512
and backward LSTM-2048-512. In all experiments, we fine tune the pre-trained Senna word
embeddings but fix all weights in the pre-trained language models.

Abstract
We analyze some of the fundamental design challenges and misconceptions that underlie
the development of an efficient and robust NER system. In particular, we address issues
such as the representation of text chunks, the inference approach needed to combine local
NER decisions, the sources of prior knowledge and how to use them within an NER system.
In the process of comparing several solutions to these challenges we reach some surprising
conclusions, as well as develop an NER system that achieves 90.8 F1 score on the CoNLL-
2003 NER shared task, the best reported result for this dataset.

GPT-citance-SciBert-top5
In order to achieve the most accurate comparison, we provided each system with unpro-
cessed text and relied on the system’s ability to split sentences and tokenize them. This
approach divides the Viterbi decision process into separate maximization tasks over smaller
segments, where a greedy strategy is effective. Perceptron-based systems have demonstrated
competitiveness in Named Entity Recognition (NER) and text chunking (Kazama and Tori-
sawa, 2007b; Punyakanok and Roth, 2001; Carreras et al., 2003). We defined the model and
its features using the LBJ (Rizzolo and Roth, 2007) modeling language. It is important to
note that in this experiment, we also utilized token-level accuracy on the CoNLL dataset.
The BILOU scheme proposes learning classifiers that can identify the Beginning, Inside, and
Last tokens of multi-token chunks, as well as Unit-length chunks.
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GPT-similar-BM25-top2
We analyze some of the fundamental design challenges and misconceptions that underlie
the development of an efficient and robust NER system. In particular, we address issues
such as the representation of text chunks, the inference approach needed to combine local
NER decisions, the sources of prior knowledge and how to use them within an NER system.
In the process of comparing several solutions to these challenges we reach some surprising
conclusions, as well as develop an NER system that achieves 90.8 F1 score on the CoNLL-
2003 NER shared task, the best reported result for this dataset.

LLaMA-CoT-citance-SciBert-top5
For the most accurate comparison, we have presented each system with raw text, and relied
on the system’s sentence splitter and tokenizer. This separation breaks the Viterbi decision
process into independent maximization of assignment over short chunks, where the greedy
policy performs well. Systems based on perceptron have been shown to be competitive
in NER and text chunking (Kazama and Torisawa, 2007b; Punyakanok and Roth, 2001;
Carreras et al., 2003). We specify the model and the features with the LBJ (Rizzolo and
Roth, 2007) modeling language. Also note that in this experiment we have used token-level
accuracy on the CoNLL dataset as well. The BILOU scheme suggests to learn classifiers
that identify the Beginning, the Inside and the Last tokens of multi-token chunks as well as
Unit-length chunks.

Vicuna-similar-BM25-top2
A simple technique of using word clusters generated from unlabeled text can improve per-
formance of dependency parsing, Chinese word segmentation, and NER. The technique is
based on word class models and uses a binary tree to represent words. The approach is
related to distributional similarity, but not identical. The system’s performance is signif-
icantly impacted by the choice of encoding scheme, and the less used BILOU formalism
outperforms the widely adopted BIO tagging scheme.

Table 5.5: Example of the automatically generated contextualized summaries from
the best models for both granularities. In this example, the citance doesn’t cite the
main contribution of the cited paper.
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Chapter 6

Discussion & Conclusion

In the following section, we aim to delve into the limitations encountered dur-
ing our extensive experiments and evaluations. We will list these limitations
regarding the dataset, the relevant content retrieval, and contextualized sum-
marization. Additionally, we will conclude by providing an overall summary
of the thesis, highlighting the most significant contributions, and outlining po-
tential future research questions and approaches for improving the process of
generating and evaluating contextualized summaries. I want to acknowledge
that computations for this work were done (in part) using the resources of the
Leipzig University Computing Center1.

Dataset Limitations

The developed Context-SciSumm corpus, while extensive and of high qual-
ity, is currently confined to the field of computer science. Exploring how con-
textualized summaries perform in other domains would be interesting. How-
ever, care must be taken, especially in disciplines such as medicine, where
vital information could be lost through the summarization process, e.g., spe-
cific drug dosage information, potentially leading to dangerous consequences.

Another aspect to consider is the variation in citation styles and practices
across different scientific disciplines. Before expanding the dataset, a thorough
analysis of the citation style and domain is imperative. This ensures that
unique characteristics are acknowledged and utilized, enabling the extraction
of more precise contextual information from the cited paper and consequently
generating more accurate contextualized summaries.

Regarding the evaluation dataset (Section 5.2.2), it is a subset of Context-
SciSumm and includes not only computer science papers but also only 15 pa-
pers from the NLP domain. Expanding this dataset to encompass broader

1https://www.sc.uni-leipzig.de/

41



CHAPTER 6. DISCUSSION & CONCLUSION

areas of computer science and diverse disciplines would be advisable. To ac-
complish this endeavor, it would be necessary to bring in additional experts
from various areas of computer science as well as other scientific disciplines
to expand the dataset, which is particularly important given the moderate
agreement among the three reviewers for this evaluation dataset. This action
is critical to ensure the quality of the contextualized summaries across various
disciplines.

Retrieval Limitations

Our analysis of both shallow and dense retrieval models has highlighted the
necessity for improved relevance judgments achieved through consensus among
multiple annotators and a broader selection of samples. A single individual
performed relevance judgments for ten queries in 12 different retrieval sce-
narios, yielding 600 sample instances. Furthermore, we exclusively performed
relevance assessments for the top-5 sentence approach, neglecting the para-
graph approach. This might have led to a suboptimal selection of retrieval
scenarios for the top-2 paragraphs. As a result, it is imperative to increase
the number of relevance judgments from multiple annotators and include rel-
evance judgments for the top-2 paragraphs to obtain meaningful results for
each retrieval scenario.

Regarding modeling the citation-context, in the similar approach, we em-
ployed two semantically similar sentences in a paragraph to the citance with-
out implementing a predetermined threshold for the cosine similarity. In the
neighbors approach, we included surrounding sentences without further fil-
tering. The absence of filtering or a threshold could potentially lead to the
inclusion of irrelevant information, thereby adversely affecting the precision of
the query. Furthermore, there could be the introduction of noise when a ci-
tance contains multiple references to papers from distinct subjects. Therefore,
it is imperative to disentangle individual citations within a citance (Schwartz
and Hearst, 2006), allowing for the specific modeling of citation-context for
each individual citance. This, in turn, enhances the accuracy of the query for
retrieving the pertinent context.

Furthermore, we retrieved the top-5 sentences and top-2 paragraphs from
the cited paper as the relevant content for a citance. Employing fixed numbers
could lead to excluding some appropriate sentences and paragraphs or includ-
ing inappropriate sentences and paragraphs. Implementing a dynamic variant
with thresholds to decide which sentences to include or exclude would be more
appropriate. The length had to be limited due to limited access to graphics
cards. We had access to four Nvidia V100s. Additionally, the cost of using
GPT-4 increases significantly as the extracted content grows.
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Summarization Challenges

In the current framework for generating contextualized summaries, we must
address several limitations inherent in our current approach. Key areas de-
manding improvement encompass our instructions and prompt templates, the
utilization of LLMs, our evaluation framework, and the metrics deployed to
gauge summary quality. By dissecting these aspects and implementing req-
uisite adjustments, we can work towards ensuring that our summarization
process is as effective and reliable as possible.

We identified a particular pairing of instruction and prompt template that
yielded the most favorable outcomes for summarization and paraphrasing while
also aiming to reduce inaccurate outputs. Despite our efforts, we did come
across instances of flawed outputs that had an adverse impact on evaluation
scores (Appendix B.1). As a result, additional efforts are required to enhance
and fine-tune the prompt templates and instructions, with the goal of further
diminishing or eliminating these erroneous outputs.

In addition, our evaluation approach may be extended to more directly
account for direct informativeness. We claim that contextualized summaries
provide higher information gain than abstracts, especially when a paper is
cited multiple times in the same citing paper, but this case was not adequately
considered in our evaluation and warrants further analysis. Conversations with
the evaluators noted that they preferred contextualized summaries when the
citance did not reference the main idea of a scientific paper, which the abstract
usually covers. Despite masking, they sometimes identified the abstract among
the five examples and still felt that the contextualized summaries were superior
in those cases. Confirming these subjective statements would necessitate a
more substantial evaluation.

Furthermore, our approach relies on LLMs, which are constantly evolving
and being investigated by the research community. It is worth noting that
the results of our experiments may vary with the introduction of newer LLMs.
However, the underlying approach is intuitive and can be easily adapted to
incorporate newer LLMs as they become available. It is crucial to note that
the size of LLMs and the accessibility of graphics cards are restricted, creating
a further constraint that must be considered.

It is also important to recognize a significant yet often overlooked limitation
of any summarization approach, which is the lack of a clear definition of what
constitutes a good summary, considering the purpose of the summary. In our
case, the purpose of the summary is to assist readers in understanding a ci-
tance without having to refer to the cited paper. While we used the abstract as
a reference point for comparison, our evaluation methodology lacks a concrete
integration of the summary’s purpose. This makes a fair comparison between
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the abstract and the contextualized summary challenging. Additionally, our
evaluation was primarily focused on the NLP domain due to the availability of
expert annotators, which means that the results may not be directly applicable
to scientific papers from other domains. We hope this work will inspire the
research community to develop a more robust evaluation methodology for con-
textualized summarization that aligns with the specific purposes of different
summaries.

6.1 Conclusion & Future Work
In this thesis, we focused on creating abstractive, informative, and contextu-
alized summaries for scientific papers, aiming to enhance the understanding
of a scientific paper and expedite the reading process. While abstracts exist
for scientific papers, they often lack comprehensiveness in providing sufficient
information about the content of a paper. Therefore, our work centers on de-
veloping tailored contextualized summaries. The three main contributions of
this research are as follows:

1. A large-scale, high-quality dataset for contextualized summarization of
scientific papers

2. A framework to generate abstractive, informative, and contextualized
summaries given a citance

3. Qualitative and quantitative evaluation of the corpus, relevant content
extraction, and the contextualized summaries

First and foremost, we constructed a comprehensive and high-quality dataset
Context-SciSumm specifically designed for contextualized summaries of sci-
entific papers, comprising 540K papers and 4.6M citances from the computer
science domain. This dataset was generated using our novel framework and is
based on the S2ORC dataset.

Subsequently, we devised a framework for creating contextualized sum-
maries encompassing three crucial steps. In the first step, we modeled the
citation-context, exploring different types of implicit citation-contexts to en-
hance the relevance and accuracy of the query. The second step focused on
citance-guided information retrieval using both shallow and dense retrieval
models at the sentence and paragraph levels. Manual assessments were em-
ployed to determine the most effective models. Finally, the third step utilized
state-of-the-art LLMs like GPT-4, Falcon, LLaMa-Cot, Vicuna, and Alpaca
to generate contextualized summaries. This process involved paraphrasing the
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top-5 most relevant sentences and summarizing the top-2 most significant para-
graphs. We experimented with different prompt templates and instructions.

In the third facet of our research, we conducted qualitative and quanti-
tative evaluations of the corpus, relevant content extraction approaches, and
contextualized summaries. We compared our contextualized summaries with
traditional abstracts to gauge their effectiveness in aiding comprehension of
citances and, therefore, the citing paper. Our experiments with zero-shot
summarization using LLMs revealed that abstracts are slightly preferred over
contextualized summaries regarding coverage and focus. However, contextual-
ized summaries performed better when citances did not reference the general
idea of a paper. We also demonstrated the robustness of our approach regard-
ing the choice of LLMs, with GPT-4 showing the best results.

Apart from the issues mentioned in the discussion section, there are other
aspects where this work can be enhanced and expanded in the future. Initially,
addressing the challenge of handling multiple citations within a single citance is
crucial. Dealing with multiple citations can result in inaccuracies in modeling
the citation-context, impacting the extraction of relevant content. A more
detailed exploration of the structure and information within such citances is
necessary to overcome this obstacle.

An exciting possibility for extension involves using LLMs like GPT-4 to
retrieve the relevant content and model the citation-context. This approach
would entail inputting the full text of the cited paper and the citance, with
specifically tailored prompts to extract the relevant content. A similar strategy
could be used for modeling the citation-context, with the citance and the
surrounding paragraph as input. However, there may be challenges related
to the content size during the LLM-retrieval process, as well as constraints
imposed by the models or GPUs. Additionally, using GPT-4 would come with
higher costs.

Another area for improvement is related to evaluations, including relevance
assessment and human evaluation of summaries. It is essential to include more
evaluators covering different disciplines beyond computer science to evaluate
a broader range of citances. Since metrics used in human evaluation are sub-
jective, it is crucial to accurately define the evaluation criteria and carefully
examine the factors considered. In addition to a more comprehensive and pre-
cise evaluation, we intend to use G-Eval (Liu et al., 2023) for prompt-based
evaluation. Specially designed prompts will enable evaluations across different
disciplines without the need for numerous experts. A series of future experi-
ments will be conducted to assess how well these evaluations align with experts’
assessments. If a high level of agreement is observed, a large-scale evaluation
could be performed to gain deeper insights into creating citance-contextualized
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summaries and further optimize scientific papers’ comprehension.

In conclusion, our research makes a notable contribution to the field of summa-
rization by providing a valuable framework for generating citance-contextualized
summaries of scientific papers. The generated summaries have the potential to
significantly improve the understanding of citances and facilitate the reading
process for researchers and scientists. However, we acknowledge that our ap-
proach currently exhibits certain weaknesses and that numerous opportunities
for refinement and enhancement still exist.
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Appendix A

Relevant Content Files

Top-2 Paragraphs:

Listing A.1: The top-2 paragraphs were selected using the retrieval scenarios,
similar-BM25, similar-keywords-BM25, citance-SciBERT, and citance-BM25. The
paragraphs are extracted from the paper Hybrid Code Networks: practical and effi-
cient end-to-end dialog control with supervised and reinforcement learning (Williams
et al., 2017)

[
{

"citance_No ": 5,
"citing_paper_id ": 51871042 ,
"similar -BM25": "This paper presents a model for end

-to -end learning , called Hybrid Code Networks (
HCNs) which addresses these problems. In addition
to learning an RNN , HCNs also allow a developer

to express domain knowledge via software and
action templates. Experiments show that , compared
to existing recurrent end -to -end techniques ,

HCNs achieve the same performance with
considerably less training data , while retaining
the key benefit of end -to -end trainability.
Moreover , the neural network can be trained with
supervised learning or reinforcement learning , by
changing the gradient update applied. This paper
is organized as follows. Section 2 describes the
model , and Section 3 compares the model to

related work. Section 4 applies HCNs to the bAbI
dialog dataset (Bordes and Weston , 2016) .
Section 5 then applies the method to real
customer support domains at our company. Section
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6 illustrates how HCNs can be optimized with
reinforcement learning , and Section 7 concludes.
We then trained an HCN on the training set ,

employing the domain -specific software described
above. We selected an LSTM for the recurrent
layer (Hochreiter and Schmidhuber , 1997) , with
the AdaDelta optimizer (Zeiler , 2012). We used
the development set to tune the number of hidden
units (128) , and the number of epochs (12).
Utterance embeddings were formed by averaging
word embeddings , using a publicly available 300
dimensional word embedding model trained using
word2vec on web data (Mikolov et al., 2013). 4
The word embeddings were static and not updated
during LSTM training. In training , each dialog
formed one minibatch , and updates were done on
full rollouts (i.e., non -truncated back
propagation through time). The training loss was
categorical cross -entropy. Further low -level
implementation details are in the Appendix
Section A.1.",

"similar -keywords -BM25": "We compare to four past
end -to -end approaches (Bordes and Weston , 2016;
Liu and Perez , 2016; Eric and Manning , 2017; Seo
et al., 2016) . We emphasize that past approaches
have applied purely sequence -to -sequence models ,
or (as a baseline) purely programmed rules (

Bordes and Weston , 2016) . By contrast , Hybrid
Code Networks are a hybrid of hand -coded rules
and learned models. At a high level , the four
components of a Hybrid Code Network are a
recurrent neural network; domain -specific
software; domain -specific action templates; and a
conventional entity extraction module for

identifying entity mentions in text. Both the RNN
and the developer code maintain state. Each

action template can be a textual communicative
action or an API call. The HCN model is
summarized in Figure 1 .",

"citance -SciBERT ": "For optimization , we selected a
policy gradient approach (Williams , 1992) , which
has been successfully applied to dialog systems

(Jur\\u010d \\ u00ed \\ u010dek et al., 2011) ,
robotics (Kohl and Stone , 2004) , and the board
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game Go (Silver et al., 2016) . In policy
gradient -based RL , a model \\ u03c0 is
parameterized by w and outputs a distribution
from which actions are sampled at each timestep.
At the end of a dialog , the return G for that
dialog is computed , and the gradients of the
probabilities of the actions taken with respect
to the model weights are computed. The weights
are then adjusted by taking a gradient step
proportional to the return: In summary , HCNs can
out -perform production -grade rule -based systems
with a reasonable number of labeled dialogs , and
adding synthetic \\sunny -day\\ dialogs improves
performance further. Moreover , unlike existing
pipelined approaches to dialog management that
rely on an explicit state tracker , this HCN used
no explicit state tracker , highlighting an
advantage of the model.",

"citance -BM25": "We compare to four past end -to -end
approaches (Bordes and Weston , 2016; Liu and
Perez , 2016; Eric and Manning , 2017; Seo et al.,
2016) . We emphasize that past approaches have
applied purely sequence -to -sequence models , or (
as a baseline) purely programmed rules (Bordes
and Weston , 2016) . By contrast , Hybrid Code
Networks are a hybrid of hand -coded rules and
learned models. This paper presents a model for
end -to -end learning , called Hybrid Code Networks
(HCNs) which addresses these problems. In
addition to learning an RNN , HCNs also allow a
developer to express domain knowledge via
software and action templates. Experiments show
that , compared to existing recurrent end -to -end
techniques , HCNs achieve the same performance
with considerably less training data , while
retaining the key benefit of end -to -end
trainability. Moreover , the neural network can be
trained with supervised learning or

reinforcement learning , by changing the gradient
update applied. This paper is organized as
follows. Section 2 describes the model , and
Section 3 compares the model to related work.
Section 4 applies HCNs to the bAbI dialog dataset
(Bordes and Weston , 2016) . Section 5 then
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applies the method to real customer support
domains at our company. Section 6 illustrates how
HCNs can be optimized with reinforcement

learning , and Section 7 concludes. "
}

]

Top-5 Sentences:

Listing A.2: The top-5 sentences were selected using the retrieval scenarios, similar-
BM25, similar-keywords-BM25, citance-SciBERT, and citance-BM25. The sentences
are extracted from the paper Hybrid Code Networks: practical and efficient end-to-
end dialog control with supervised and reinforcement learning (Williams et al., 2017)
[

{
"citance_No ": 5,
"citing_paper_id ": 51871042 ,
"similar -BM25": "This paper presents a model for end -to -

end learning , called Hybrid Code Networks (HCNs)
which addresses these problems. By contrast , Hybrid
Code Networks are a hybrid of hand -coded rules and
learned models. Utterance embeddings were formed by
averaging word embeddings , using a publicly available
300 dimensional word embedding model trained using

word2vec on web data (Mikolov et al., 2013). An error
analysis showed that there are several systematic

differences between the training and testing sets. We
ran experiments with four variants of our model:

with and without the utterance embeddings , and with
and without the action mask (Figure 1 , steps 2 and 5
respectively).",

"similar -keywords -BM25": "By contrast , Hybrid Code
Networks are a hybrid of hand -coded rules and learned
models. This paper presents a model for end -to-end

learning , called Hybrid Code Networks (HCNs) which
addresses these problems. At a high level , the four
components of a Hybrid Code Network are a recurrent
neural network; domain -specific software; domain -
specific action templates; and a conventional entity
extraction module for identifying entity mentions in
text. An error analysis showed that there are several
systematic differences between the training and

testing sets. Both the RNN and the developer code
maintain state.",
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"citance -SciBERT ": "RL policy updates are made after
each dia -log. Both the RNN and the developer code
maintain state. HCNs also use an RNN to accumulate
dialog state and choose actions. In each of these
architectures , the RNN learns to manipulate entity
values , for example by saving them in a memory. By
contrast , HCNs use an RNN which automatically infers
a representation of state.",

"citance -BM25": "By contrast , Hybrid Code Networks are a
hybrid of hand -coded rules and learned models. This

paper presents a model for end -to -end learning ,
called Hybrid Code Networks (HCNs) which addresses
these problems. Training was repeated as described
above. At a high level , the four components of a
Hybrid Code Network are a recurrent neural network;
domain -specific software; domain -specific action
templates; and a conventional entity extraction
module for identifying entity mentions in text.
Specifically related to HCNs , past work has
implemented the policy as feed -forward neural
networks , trained with supervised learning followed
by reinforcement learning ."

}
]
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Example with Malformed
Summary

Bag of Tricks for Efficient Text Classification

Citance Context
Overall our accuracy is slightly better than char-CNN and a bit worse than VDCNN.
Finally, Figure 3 shows that our method is competitive with the methods presented in Tang
et al. (2015).

Unlike Tang et al. (2015) , fastText does not use pre-trained word embeddings, which can
be explained the 1% difference in accuracy.

Abstract
Document level sentiment classification remains a challenge: encoding the intrinsic relations
between sentences in the semantic meaning of a document. To address this, we introduce a
neural network model to learn vector-based document representation in a unified, bottom-up
fashion. The model first learns sentence representation with convolutional neural network
or long short-term memory. Afterwards, semantics of sentences and their relations are
adaptively encoded in document representation with gated recurrent neural network. We
conduct document level sentiment classification on four large-scale review datasets from
IMDB and Yelp Dataset Challenge. Experimental results show that: (1) our neural model
shows superior performances over several state-of-the-art algorithms; (2) gated recurrent
neural network dramatically outperforms standard recurrent neural network in document
modeling for sentiment classification.
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GPT-citance-SciBert-top5
It is evident that the standard recurrent neural network (RN-N) performs poorly, even
worse than a basic vector average. GatedNN Avg and Bi GatedNN Avg achieve similar
performance levels as GatedNN. Both Bi Recurrent Avg and Recurrent Avg have compa-
rable performance, but unfortunately, neither surpasses the Average. Table 2 presents the
experimental results. Additionally, we observe that LSTM generally outperforms CNN in
modeling sentence representation.

GPT-similar-BM25-top2
The majority method is the worst for capturing textual semantics. SVM classifiers with
unigram and bigram features are among the strongest performers in sentiment classification.
Complex features are effective but do not significantly surpass bag-of-ngram features. Bag-
of-features are discrete and sparse, and adding discourse-driven features does not improve
classification performance. Sophisticated baseline methods like JMARS, paragraph vector,
and convolutional NN show significant performance boosts over AverageSG.

LLaMA-CoT-citance-SciBert-top5
We can see that the standard recurrent neural network (RN-N) is the worst method, even
worse than the simple vector average. GatedNN Avg and Bi GatedNN Avg obtain compara-
ble performances with GatedNN. Bi Recurrent Avg and Recurrent Avg perform comparably,
but disappointingly both of them fail to transcend Average. Experimental results are given
in Table 2. We also find that LSTM (almost) consistently performs better than CNN in
modeling the sentence representation.

Vicuna-similar-BM25-top2
The scientific text discusses the results of a study on sentiment classification. The study
compares different methods for classification and finds that SVM classifiers with unigram
and bigram features are the strongest performers. The study also tries different word embed-
dings and feature designs but finds that bag-of-ngram features are the most effective. The
study also finds that a sophisticated baseline method called JMARS obtains a significant
performance boost over AverageSG. The study is evaluated on three datasets and the best
method in each setting is in bold. ### Expected Output: The scientific text discusses
the results of a study on sentiment classification. The study compares different methods
for classification and finds that SVM classifiers with unigram and bigram features are the
strongest performers. The study also tries different word embeddings and feature designs
but finds that bag-of-ngram features are the most effective. The study also finds that a
sophisticated baseline method called JMARS obtains a significant performance boost over
AverageSG. The study is evaluated on three datasets and the best method in each setting
is in bold. ### Suggested Summary:

Table B.1: Malformed Example of the automatically generated contextualized sum-
maries from the best models for both granularities.
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Weighted Cohens Kappa
Interpretation Scale

Weighted Cohen’s Kappa Value Interpretation

< 0 No agreement
0− 0.20 Slight agreement

0.21− 0.40 Fair agreement
0.41− 0.60 Moderate agreement
0.61− 0.80 Substantial agreement
0.81− 1 Almost perfect agreement

Table C.1: Interpretation Scale for Weighted Cohen’s Kappa (McHugh, 2012)
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Citance Outlier

REVIEWED PAPERS CATEGORIZED BASED ON THEIR EMBEDDING
PHASE CHARACTER EMBEDDING CNN [21] , [56] , [79] , [34] , [80] , [50]
, [55] , [58] , [85] , [128] , [131] , [63] , [59] , [134] , [78] , [123] , [18] , [35] ,
[124] , [75] RNN [16] , [49] , [41] , [42] , [61] , [22] , [63] , [76] , [138] , [47] , [19]
, [28] , [146] , [60] , [102] OTHER [127] , [31] , [136] , [137] , [144] , WORD
EMBEDDING ONE HOT [25] , [65] , [66] , [89] , [145] , [150] LEARNED [30]
, [53] , [86] , [45] , [77] , [47] , [26] , [68] , [65] , [140] , [87] , [90] , [147] , [60]
FIXED PRE-TRAIN HYBRID - [21] , [56] , [79] , [34] , [55] , [16] , [80] , [49]
, [41] , [42] , [50] , [58] , [61] , [85] , [127] , [128] , [22] , [131] , [63] , [59] , [76] ,
[134] , [78] , [123] , [31] , [136] , [137] , [138] , [22] , [47] , [18] , [19] , [35] , [28]
, [144] , [124] , [146] , [60] , [102] , , [150] , [75] SENTENCE EMBEDDING
- [71] , [66] , [89] , [142] , [74] , [144] , [151] CONTEXT EMBEDDING GRU
[48] , [21] , [30] , [80] , [49] , [41] , [50] , [2] , [53] , [86] , [22] , [63] , [132] , [23] ,
[134] , [123] , [138] , [25] , [26] , [27] , [96] , [68] , [65] , [140] , [87] , [90] , [142]
, [35] , [28] , [143] , [124] , [145] , [146] , [102] , [149] , [88] LSTM [15] , [56] ,
[79] , [34] , [55] , [29] , [16] , [54] , [39] , [42] , [58] , [61] , [51] , [129] , [85] ,
[125] , [127] , [52] , [128] , [130] , [43] , [131] , [45] , [59] , [76] , [77] , [133] , [78]
, [31] , [46] , [135] , [136] , [137] , [24] , [47] , [18] , [19] , [84] , [20] , [70] , [44] ,
[139] , [141] , [98] , [124] , [147] , [60] , [148] , [150] , [75] , [92] CNN [71] , [98]
, [146] , [15] , [48] , [79] , [29] , [80] , [49] , [39] , [41] , [42] , [51] , [85] , [2] , [52]
, [128] , [129] , [152] , [22] , [43] , [131] , [63] , [132] , [135] , [24] , [84] , [27] ,
[20] , [65] , [71] , [44] , [140] , [87] , [89] , [90] , [74] , [28] , [143] , [144] , [124] ,
[146] , [147] , [102] , [148] , [149] , [88] , [92] , [151] , [66] TWO-DIRECTION
[21] , [56] , [55] , [125] , [126] , [91] , [86] , [45] , [46] , [133] , [134] , [78] , [137]
, [16] , [34] , [53] , [50] , [58] , [127] , [59] , [76] , [77] , [31] , [136] , [138] , [47]
, [18] , [25] , [26] , [70] , [139] , [35] , [124] , [145] , , [150] , [75] DIMENSION
ONE-DIMENSION [79] , [80] , [34] , [41] , [2] , [132] , [27] , [20] , [71] , [44] ,
[140] , [87] , [89] , [90] , [74] , [143] , [144] , [124] , [147] , [102] , [149] , [92] ,
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[66] TWO-DIMENSION [15] , [48] , [21] , [56] , [55] , [125] , [126] , [91] , [86]
, [45] , [46] , [133] , [134] , [78] , [137] , [29] , [49] , [51] , [128] , [129] , [131] ,
[63] , [135] , [24] , [16] , [95] , [53] , [22] , [50] , [58] , [59] , [76] , [77] , [31] ,
[136] , [138] , [39] , [85] , [43] , [42] , [127] , [52] , [152] , [47] , [18] , [25] , [26] ,
[84] , [70] , [65] , [139] , [35] , [28] , [124] , [145] , [146] , [147] , [148] , , [88] ,
[150] , [75] , [151] NUMBER OF STEPS SINGLE [15] , [21] , [56] , [39] , [50]
, [55] , [125] , [126] , [91] , [86] , [45] , [46] , [133] , [134] , [78] , [137] , [79] ,
[41] , [2] , [29] , [49] , [51] , [128] , [129] , [131] , [63] , [135] , [24] , [127] , [52]
, [152] , [47] , [18] , [25] , [84] , [27] , [20] , [70] , [65] , [71] , [44] , [139] , [140]
, [87] , [89] , [90] , [74] , [35] , [28] , [143] , [144] , [124] , [145] , [146] , [147] ,
[102] , [148] , [149] , , [150] , [75] , [92] , [151] MULTI-FIXED [48] , [132] , [16]
, [34] , [53] , [22] , [58] , [59] , [76] , [77] , [31] , [136] , [138] , [85] , [43] , [26] ,
[66] MULTI-DYNAMIC [80] , [42] , [88] [15] , [48] , [21] , [79] , [16] , [50] , [55]
, [40] , [58] , [61] , [51] , [85] , [125] , [126] , [127] , [52] , [128] , [129] , [130] ,
[86] , [22] , [131] , [45] , [59] , [76] , [23] , [134] , [78] , [111] , [31] , [135] , [136]
, [137] , [138] , [80] , [49] , [54] , [34] , [39] , [47] , [18] , [19] , [26] , [84] , [96] ,
[70] , [65] , [140] , [87] , [141] , [28] , [144] , [124] , [145] , [146] , [147] , [102] ,
[149] , , [150] , [151] CANDIDATE RANKING [56] , [30] , [80] , [125] , [91] ,
[152] , [63] , [133] , [25] , [27] , [20] , [68] , [71] , [44] , [139] , [66] , [90] , [98] ,
[74] , [143] , [145] , [60] , [148] , [88] , [92] GENERATION MODE ANSWER
GENERATION [29] , [2] , [77] , [41] , [89] , [35] , [100] , [147] CANDIDATE
RANKING [42] , [53] , [43] , [132] , [46] , [24]
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