
Leipzig University
Institute of Computer Science
Degree Programme Computer Science, M.Sc.

From Contextualized to Static
Word Embeddings

Master’s Thesis

Hannes Hansen Matriculation Number 3741756
Born Jan 26, 1996 in Husum

1. Referee: Juniorprof. Dr. Martin Potthast
2. Referee: Dr. Martin Hebart

Submission date: September 22, 2022

Declaration

Unless otherwise indicated in the text or references, this thesis is
entirely the product of my own scholarly work.

Leipzig, September 22, 2022

. .
Hannes Hansen

Abstract

Word embeddings play an important role in natural language processing and
cognitive research. Words are projected into a dense representational space
where the embeddings encode the semantic meaning of words. Distributional
static word embeddings are widely used examples for word embeddings. They
provide fixed embeddings that can be used in different downstream tasks like
token or sentence classification. Recent Transformer-based models can achieve
human-level performance in different language tasks and provide contextual-
ized word embeddings that incorporate the context where a word is used. Here
we asked whether contextualized word embeddings could be used to generate
improved static embeddings by averaging across a larger number of contexts.
Embeddings are first extracted from several Transformer-based models using a
large text corpus. Contextualized and aggregated static word embeddings are
then created and further evaluated. The semantic encoding is investigated with
word similarity ratings and similarity ratings of object images. The quality of
these new embeddings is further investigated with downstream tasks like the
prediction of superordinate categories and the prediction of dimension values.
The results show that contextualized and aggregated Transformer-based em-
beddings can lead to improved results under intrinsic and extrinsic evaluation.
Yet, classic static word embeddings can be of similar or even higher quality,
depending on the datasets. The representational similarity with human-based
word similarity ratings can be increased with Transformer-based embeddings
while the representational similarity with human-based similarities of object
images can decrease with Transformer-based embeddings.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 4
1.3 Goals . 4

2 Background 6
2.1 Words and Word Senses . 6
2.2 Word Embeddings . 7
2.3 Similarity . 8
2.4 Transformer Models . 10

2.4.1 Encoder Models . 13
2.4.2 Decoder Models . 13

2.5 Intrinsic and Extrinsic Evaluation 14
2.6 Correlation and Distance Metrics 14

3 Related Work 16
3.1 Creation of Word Embeddings 16
3.2 Evaluation of Word Embeddings 21
3.3 Word Sense Disambiguation . 23
3.4 Creation of Sentence Embeddings 25

4 Datasets, Corpora, and Models 27
4.1 Models . 27
4.2 Static Word Embeddings . 27
4.3 Similarity Datasets . 28
4.4 Text Corpora . 31

5 Methods 33
5.1 Creation of Static Word Embeddings 33
5.2 Creation of Transformer-based Embeddings 34

5.2.1 Finding Synonyms . 34
5.2.2 Finding Word Occurrences 34

i

CONTENTS

5.2.3 Annotation of Word Senses 34
5.2.4 Extraction of Transformer-based Embeddings 35
5.2.5 Decontextualization of Embeddings 36
5.2.6 Produced Embedding Dataset 36

5.3 Isotropy Postprocessing . 40
5.4 Retraining of Embeddings . 40

5.4.1 Model . 40
5.4.2 Dataset . 41
5.4.3 Training and Hyperparameters 42

6 Experimental Results 45
6.1 Representational Similarity

with Human Similarity Ratings 45
6.1.1 Word Similarity Ratings from Simlex-999 47
6.1.2 Word Similarity Ratings from Wordsim-353 56
6.1.3 Similarity Ratings of Object Images from THINGS . . . 62

6.2 Prediction of THINGS Dimension Embeddings 79
6.3 Prediction of Superordinate Categories from THINGS 82

7 Discussion 84

8 Conclusion 90

9 Future Work 91

References 93

A Dimension Prediction 100

ii

Chapter 1

Introduction

1.1 Motivation
Word embeddings play an important part in the field of natural language pro-
cessing as well as other research fields like cognitive science. They are numeri-
cal representations of words that reflect the meaning and relationship to other
words. These representations are usually based on co-occurrences of words
in a text. For example, the words dog and animal may occur often together
and thus would yield similar representations. They can be used in different
downstream tasks, for example, to train a Named Entity Recognition classifier
(Sien, 2015), a tweet classifier (Khatua et al., 2019) or to build representations
of clinical text (Khattak et al., 2019).

Beside the usage in downstream computational tasks, word embeddings
are used in the study of human conceptual knowledge (Grand et al., 2022;
Rubinstein et al., 2015; Lucy & Gauthier, 2017). For this, semantic feature
norms (McRae et al., 2005) or similarity ratings for words (Hill et al., 2015) are
usually used with static word embeddings. A new behavioral ground truth for
similarity ratings for images of objects was introduced by Hebart et al. (2020)
which shall be used in this thesis.

There are different ways of calculating word embeddings. Count-based
methods like pointwise mutual information or predictive methods like Word2Vec
and GloVe to name only a few. The simplest way is an one hot encoding where
the length of the embedding is the number of words in the vocabulary. A word
would then be represented as an one at a specific position. As this method does
not reflect any word meaning, other methods emerged to represent meaning
and similarity. One key idea is that similar words occur in similar contexts.
Count-based methods build upon this idea and represent words as counts in
context. Context can be defined as documents where words occur. In this
case, words can be represented as frequencies across documents. Through di-

1

CHAPTER 1. INTRODUCTION

mensionality reduction, dense word embeddings can then be created through
Latent Semantic Analysis (Deerwester et al., 1990). Context can also be de-
fined as ranges in the text where multiple words occur together.

A more recent approach is the creation of word embeddings using predic-
tive models like Word2Vec from Mikolov et al. (2013). The idea is to learn
static word embeddings by predicting the context the word is used in. The
model is trained using self-supervised methods on a large corpus of text. These
predictive models had a high impact on the natural language processing area
like text classification (Jang et al., 2019; Maas et al., 2011). During training,
multiple contexts are used per word but only a short window of previous and
next words is used. Therefore, the context is quite small. Static word embed-
dings like Word2Vec also reflect only one word sense of a word. For example,
the word bank has the same word embedding for the meaning of a financial
bank and the meaning of a river bank.

Recent advances in natural language processing led to large language mod-
els like BERT from Devlin et al. (2019) and GPT-2 from Brown et al. (2020).
These so-called Transformer models (Vaswani et al., 2017) can reach human-
level performance on many natural language understanding tasks (A. Wang
et al., 2019; C. Wang et al., 2020). Using these models, it is possible to cre-
ate word embeddings by extracting the hidden states. The models produce
dynamic word embeddings that change with every context. For example, the
word bank gets different embeddings in different sentences. Therefore, the
model can create contextualized word embeddings respecting the meaning of a
word in a given context. The embedding for the word bank with the meaning
of financial bank is then different than the embedding for the word bank with
the meaning of a river bank. Thus, Transformer-based models can create word
sense embeddings. Yet, embeddings for words with the same meaning can be
different, too. But for the creation of a word sense embedding set, either an
annotated text corpus or a word sense prediction method is needed to map
words in sentences to word senses. Models like BERT and GPT-2 have been
self-supervised trained on large corpora to predict the next sentences or miss-
ing words and are available through pretrained models. They encode words in
a bidirectional or unidirectional way using the whole input sentence and can
use a longer context.

As Transformer-based models are the state of the art for natural language
processing tasks, it can be assumed that their produced embeddings should
better capture the meaning of words than previous word embeddings like
Word2Vec. One problem with contextualized word embeddings is their compu-
tationally expensive calculation. A trained language model is needed as well as
the processing and extraction of word embeddings from text input. Therefore,
they are not very useful for other research areas like cognitive science where

2

CHAPTER 1. INTRODUCTION

static representations are used to investigate the similarity of objects. Further,
it is not possible to use classic interpretability methods that were developed
for static word embeddings (Bommasani et al., 2020). The embeddings are
also highly context-sensitive which on the one hand can lead to word sense
embeddings where embeddings for different meanings of bank will be different.
On the other hand, they will be also different when the meaning is the same
but other details in the text are different. This can be seen in the sentences I
look at the river bank and feel sad and This bank on the Thames looks really
nice where the contextualized word embeddings of bank will be different even
though they use the same meaning of bank.

Bommasani et al. (2020) described a method to aggregate these contextu-
alized word embeddings where they extracted contextualized word embeddings
from different Transformer-based models and aggregated them to static decon-
textualized word embeddings. They evaluated the produced embeddings on
word similarity tasks. Furthermore, they did not take into account the pres-
ence of homonyms like bank and only produced word embeddings, not word
sense embeddings. This is unsuitable when a different embedding is needed
for multiple word senses, e.g. for calculating the similarity between bank as
a financial bank and bank as a river bank. The results show that aggregated
embeddings can perform better than static embeddings like Word2Vec. The
evaluation of word embeddings as well as new methods to create and aggregate
word embeddings and word sense embeddings shall be explored in this thesis.

3

CHAPTER 1. INTRODUCTION

1.2 Research Questions
This thesis shall try to answer the following research questions.

First, it shall be investigated, how well human similarity ratings are re-
flected by different types of word embeddings. Embeddings with high repre-
sentational similarity with humans can be used as models of human concep-
tual knowledge and might be of higher quality for other downstream tasks.
This will be done by an intrinsic evaluation using different similarity datasets.
Datasets that use similarity between words and a dataset that uses the simi-
larity between object images shall be used. It shall be further answered, how
the different similarity datasets are characterized.

The next research question is, how different word embedding types per-
form compared to each other. This includes classic static word and word sense
embeddings and Transformer-based embeddings, either contextualized or de-
contextualized. This shall bring insights into why and when a specific word
embedding should be used. The experiments to that question are based on
intrinsic and extrinsic evaluations. The results from the previous research
question will be used. The embeddings shall be further used to predict super-
ordinate categories and object dimension values.

To evaluate embeddings from Transformer-based models, a method to ex-
tract and create static embeddings will be created. Therefore, this thesis shall
explore what are the best methods to create static embeddings and how dif-
ferent hyperparameters influence the quality of embeddings.

1.3 Goals
The goals of this thesis are the evaluation of different pretrained word and word
sense embeddings on how well they represent human knowledge about word
and object similarity and the creation of static Transformer-based embeddings.
This will lead to more insights into what information is encoded in word embed-
dings and how large language models work. Further, new Transformer-based
methods shall be explored to create new word and word sense embeddings that
better capture meaning and similarity. To achieve this, several results shall be
produced.

Current methods for the creation of static word and word sense embed-
dings and Transformer-based word embeddings shall be reviewed. Then, the
evaluation results from recent work shall be reviewed. This includes intrinsic
and extrinsic evaluation.

Next, current static word embeddings shall be created as well as contextu-
alized Transformer-based word embeddings. As decontextualized word embed-
dings are not publicly available, a prototype shall be created to extract and

4

CHAPTER 1. INTRODUCTION

decontextualize word embeddings from large language models over multiple
contexts. The prototype shall be able to create word embeddings as well as
word sense embeddings.

After the generation of static, contextualized, and decontextualized
Transformer-based word and word sense embeddings, several evaluations shall
be performed. First, the representational similarity of embeddings with hu-
mans, based on word similarity and similarity of object images, shall be inves-
tigated. Next, the embeddings shall be used in downstream tasks to predict
dimension values and superordinate categories. Finally, a new method to cre-
ate embeddings with higher representational similarity shall be applied. It will
further be investigated whether the creation of word sense embeddings can be
beneficial with respect to the representational similarity with humans.

This work will present a prototype that could be used to create a new
dataset of decontextualized word and word sense embeddings. Further, new
text-based embeddings shall be presented that better capture human concep-
tual knowledge.

5

Chapter 2

Background

The following chapter will define the background of this thesis and define the
needed terms. First, it will be defined what words, word senses, and synsets
are and how they relate to word embeddings. Second, the similarity between
words and objects will be explained and different similarity measures will be
presented. Next, it will be explained how Transformer-based neural network
models work as they will be used to create word embeddings. Last, different
evaluation methods as well as correlation and distance metrics will be defined.

2.1 Words and Word Senses
Words can be ambiguous. The same word can have multiple meanings. For
example, a mouse can be an animal but also a cursor controller. Their meaning
gets settled by the surrounding context of the word. This contextual variation
can then be defined as word senses where "a sense (or word sense) is a discrete
representation of one aspect of the meaning of a word." (Jurafsky & Martin,
2009, p. 646). The word mouse has multiple word senses, e.g mouse1 for the
animal and mouse2 for the controller. The relationship between senses can
then be further defined. If two senses of two different words are the same,
the senses are synonyms of each other, like {car1, automobile1} (Jurafsky &
Martin, 2009, p. 649). This rule is commonly applied to words, too. For
example, {car, automobile} or {couch, sofa} can be seen as synonyms. If two
senses of a word have no particular relation, they are defined as homonyms like
{mouse1, mouse1} (Jurafsky & Martin, 2009, p. 646). If two senses define the
opposite of a scale, they are defined as antonyms like {long1, short1} (Jurafsky
& Martin, 2009, p. 650).

WordNet is a thesaurus for sense and word relations (Kilgarriff & Fellbaum,
2000). The database consists of around 120.000 nouns, 12.000 verbs, and
23.000 adjectives. In WordNet, a synonym set (synset) describes a concept,

6

CHAPTER 2. BACKGROUND

car

automobilecar%1:06:00::

car%1:06:03::

automobile%1:06:00::car.n.01

Word WordWord Sense Synset Word Sense

car.n.03

Figure 2.1: Overview of the relationship between words, word senses, and synsets
in WordNet

for example, the concept of a couch as furniture. It is defined as the group of
word senses that are synonyms, e.g. {couch1, sofa1} (Jurafsky & Martin, 2009,
p. 652).

The senses and synsets in WordNet are further identified by a unique string
(see Figure 2.1). For example, the synset identification car.n.01 refers to a
driving car which can be represented by the words car and automobile. The
word senses for these specific word occurrences can be further identified by
their identification, e.g car%1:06:00: for the word car in the context of a
driving car and automobile%1:06:00: for the word automobile in the context
of a driving car.

Word sense disambiguation is the task of predicting the word sense for a
word in a given context, e.g. a sentence. Several supervised and unsupervised
methods exist to solve this task. To build sense embeddings, it is necessary to
have an annotated text corpus where each word occurrence is labeled with a
word sense. Models to solve the word sense disambiguation task are evaluated
intrinsically by measuring their classification performance on a labeled test set.

2.2 Word Embeddings
Word embeddings are numerical representations of words. They capture word
meaning and similarity in a vector space and can be used in downstream tasks
like word or sentence classification. Values in word embeddings can be discrete
or continuous. Furthermore, word embedding vectors can be sparse or dense.

Word embeddings from predictive models like Word2Vec (Mikolov et al.,
2013) or GloVe (Pennington et al., 2014) shall be referred to as static word
embeddings as they do not depend on the context where the word occurs.
Non aggregated word embeddings from Transformer-based models, generated
with one text input as context, shall be referred to as contextualized word

7

CHAPTER 2. BACKGROUND

embeddings. Aggregated word embeddings from Transformer-based models
shall be referred to as decontextualized word embeddings.

Furthermore, the granularity of the embedding has to be specified. Embed-
dings can be created for words, word senses per part-of-speech tag, WordNet
senses, and synsets. Most embedding models produce word embeddings lead-
ing to the same embeddings for homonyms. Word sense embeddings can be
based on the part-of-speech tag. For example, a word sense embedding can
be produced for the word bank as a noun. More precise is the usage of word
senses and synsets from WordNet (Figure 2.1). Then, embeddings are not only
created for words but also word senses and synsets.

As seen in Figure 2.1, a word embedding for the word car refers to an em-
bedding that was created using texts where the word car occurred. Similarly,
a word embedding for the word automobile is based on texts where the word
automobile occurred. Further synonyms can be incorporated to create word
embeddings. For example, for a main word car, texts with car and automobile
occurrences can be used to create an embedding for the word car.

Furthermore, a word sense embedding for the sense car%1:06:00: is only
based on text where the word car occurs and the word sense is predicted as
a driving car. A synset embedding for the synset car.n.01 is based on text
where the word car or automobile occurred and the word sense was predicted
as either car%1:06:00: or automobile%1:06:00:.

2.3 Similarity
The term similarity is often used with different definitions. Similarity can be
defined in a strict local way where synonyms like keep and possess are highly
similar. Similarity can be also defined in a global conceptual way where words
of the same concept or category are similar like cat and dog because they are
both animals. The term similarity is sometimes used together with relatedness
where words are related when they are used together like money and bank or
clothes and closet. Both words are not synonyms of each other and also don’t
belong to the same concept.

A method to find out how humans define word similarity is to run a rating
task where humans judge the similarity between a pair of words on a scale from
dissimilar to similar. This is done using different word pairs, e.g. nouns, adjec-
tives, and verbs, and different scales, e.g. from 0 (dissimilar) to 10 (similar).
Several studies were performed in the past that led to these word similarity
datasets. For example, the Wordsim-353 (Agirre et al., 2009), Simlex-999 (Hill
et al., 2015) or Rare-Words (Luong et al., 2013) datasets.

This is a simple process to gather human similarity judgements but also

8

CHAPTER 2. BACKGROUND

suffers from multiple problems. First, it is hard to sample enough responses
for all pair combinations. Therefore, most word similarity datasets do only
contain similarity judgements for a subset of word pair combinations. Second,
this approach does not take into account that two words can be similar and
dissimilar, depending on the properties of the concept behind the word. For
example, the words dog and cat are highly similar as they both refer to animals
but can be also considered as dissimilar as both animals reflect different types
of animals, e.g. a dog is seen as a more loyal animal compared to a cat.

Real-world objects can be categorized by different properties, e.g. colorful,
round-shaped or animal-related. Based on their values in these dimensions, it
is possible to access the similarity between objects. As there is no definition of
dimensions, it is possible to define a vast number of dimensions, which could
then be used to calculate similarity. Therefore, the selection of dimensions is
a crucial part of investigating object similarity. Some dimensions can be more
important than others. For example, shape dimensions, e.g. round-shaped, may
be more used in human conceptual knowledge than more niche dimensions, e.g.
able-to-fly. This leads to the idea that there might be a core set of dimensions
that is mainly used by humans to describe and differ real-world objects.

Hebart et al. (2020) defined an approach to extract these core dimensions,
based on human similarity judgements and a computational model. The ap-
proach is based on the THINGS dataset (Hebart et al., 2019) which consists of
1,854 objects annotated with a word, an image, synonyms, a WordNet synset
id, a category, and other features. The authors first used a triplet odd-one-out
task where 5,983 participants had to decide which object in a given image
triplet is the odd one. Using a large behavioral crowdsourcing task, 1.5 million
samples were retrieved. As it is not feasible to get enough participant re-
sponses for all possible triplets, a computational model was further developed
to capture most of the information. The model is based on a m× p represen-
tational embedding matrix with m as the number of THINGS objects and p
as the number of initial dimensions. The matrix was randomly initialized with
m = 1, 854 and p = 90. Then the vector representations of the triplet objects
are extracted and the similarity, based on the dot product, is calculated for all
object pairs. The probability of choosing the odd one out is then computed
using the softmax function. The cross-entropy and a L1 regularization term
were used as the loss function to create sparse representational embeddings.
The following equation defines the loss function and is taken from Hebart et
al. (2020).

n�
log(

exp(xixj)

exp(xixj) + exp(xixk) + exp(xjxk))
) + λ

m�
||x||1 (2.1)

with n for the number of triplets, x as the embedding of an object, and i, j, k

9

CHAPTER 2. BACKGROUND

1

1

1

1

aardvark

aa
rd
va
rk

dog

d
o
g

cat

ca
t

table

ta
b
le

Figure 2.2: Exemplary similarity matrix between objects.

as the indices in the triplet. This model finally produced 49 interpretable
and meaningful dimensions which were then manually labeled with descriptive
names, for example, animal-related, round-shaped, or colorful. Other dimen-
sions have been regularized to zero and were therefore removed. The term
dimension shall refer to these values unless otherwise stated.

Further, a similarity matrix, containing a similarity value between all pos-
sible pairs of objects, was created (see Figure 2.2). This matrix can be seen
as an alternative to word similarity datasets, where human-created similarity
ratings are produced for given word pairs. The authors "defined object similar-
ity in the triplet odd-one-out task as the probability p(i, j) of the participants
choosing objects i and j to belong together, irrespective of context." (Hebart
et al., 2019). For this purpose, the authors "created all predicted choices for
all possible 1.06 billion triplets and calculated the mean choice probability for
each pair of objects." (Hebart et al., 2019). This similarity matrix is used
in this work to study the representational similarity with humans of different
word embeddings.

2.4 Transformer Models
The Transformer architecture is the basis for the large language models used
in this thesis and the basis for the creation of new word and word sense em-
beddings. The following explanations about the Transformer model are based
on Vaswani et al. (2017).

The Transformer model and architecture were introduced by Vaswani et al.

10

CHAPTER 2. BACKGROUND

(2017). It was introduced as a deep neural network as a machine translation
model. Transformer models are trained on a large amount of text which makes
it possible to use them for the creation of word embeddings. It is composed of
an encoder and a decoder block where the encoder block gets an input and the
decoder block gets the target output and produces an output. An overview of
the architecture is shown in Figure 2.3.

The encoder block takes token representations, that are produced by a
specific tokenizer, as its input. An arbitrary number of encoder layers then
process these token representations. An encoder layer is further composed of
a self-attention sublayer, normalization, and feedforward sublayers as well as
residual connections.

The self-attention layer is used by the model to learn which tokens the
model has to pay attention to when it processes a specific token. It is based on
the matrix multiplication between the query Q, key K, and value V matrices:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (2.2)

The authors further propose to use multiple self-attention heads headi resulting
in the multi-head self-attention, where the number of heads is a hyperparam-
eter. The resulting outputs of the self-attention are then concatenated and
multiplied with a weight matrix WO to retain the layer output dimensions.

MultiHead(Q,K, V) = Concat(head1, ..., headh)W
O

headi = Attention(QWQ
i , KWK

i , V W V
i)

(2.3)

After the multi-head self-attention sublayer processed the input, the results
and the original input are added through a residual connection and normal-
ized by a normalization sublayer. Afterwards, the results are processed by a
feedforward layer, added to the original values, and normalized. Finally, the
results are sent to the next encoder layer. Therefore, the encoder layers process
token representations through attention, normalization, and non-linear trans-
formations. The self-attention process in the encoder block has access to all
tokens in the input. Finally, the output of the last encoder layer is sent to all
decoder layers in the decoder block.

The decoder block gets the token representations of the target output as
input and processes them through several decoder layers similar to the encoder
block.

A decoder layer is built similarly to an encoder layer as it is composed of a
multi-head self-attention sublayer and several normalization and feedforward
sublayers. In contrast to the encoder layer, it also consists of a multi-head
encoder-decoder attention sublayer. The encoder-decoder attention sublayer

11

CHAPTER 2. BACKGROUND

Self-Attention

Add & Normalize

Feed Forward

Add & Normalize

Feed Forward

Encoder #1

Self-Attention

Add & Normalize

Feed Forward

Add & Normalize

Feed Forward

Decoder #1

Add & Normalize

Encoder-Decoder Attention

Linear

Softmax

Encoder #2

This is Das ist

Decoder #2

Figure 2.3: Overview of the Transformer architecture. Adapted from Vaswani et
al. (2017).

takes the output of the last encoder layer and enables the decoder layer to get
access to the encoded information about the original source text. The encoder-
decoder attention sublayer works similarly to the self-attention sublayer as it
uses the query matrix Q from the previous layer but takes the key matrix
K and the value matrix V from the last encoder layer. The self-attention
sublayer in the decoder block is further different from the sublayer in the
encoder block as it can only use token representations from earlier positions
in the text. Therefore, tokens at later positions are masked in this so-called
masked multi-head self-attention.

Finally, a linear feedforward layer processes the output of the last decoder
layer after which a softmax layer produces a probability for the next token.

Different models are built upon the idea of the Transformer. Encoder-based
models are built using only encoder layers whereas Decoder-based models are
built using decoder layers.

12

CHAPTER 2. BACKGROUND

2.4.1 Encoder Models

Following on the work from Vaswani et al. (2017), new models and architec-
tures emerged from the Transformer model.

The BERT (Bidirectional Encoder Representations from Transformers)
model from Devlin et al. (2019) was introduced as a large language model
based on the Transformer architecture. In contrast to the original Transformer
model, it is only composed of the encoder block. Also, the training objectives
are different. Instead of translating a sentence, the BERT model uses a masked
language model objective where the model randomly masks input tokens and
has to predict the correct token and a next sentence prediction objective where
the model has to predict whether a sentence comes next or not. Therefore,
BERT uses a semi-supervised training objective as no task-specific labels exist.

The authors further propose to first pretrain BERT using these training
objectives on the BooksCorpus (Zhu et al., 2015) and English Wikipedia. Af-
terwards, BERT can be either finetuned using supervised methods on specific
tasks like Named Entity Recognition or sentiment analysis, or features can be
extracted from the model and fed into downstream tasks.

Special tokens were further introduced. The SEP token is used to separate
two sentences which is needed for the next sentence prediction and sentence-
based tasks like the prediction of sentence similarity. The CLS token is inserted
as a classification token which can be used in classification tasks where a
classification head is built on top of the CLS token representation.

Improved models, based on the BERT architecture, emerged afterwards.
For example, the RoBERTa model from Liu et al. (2019) introduced more ro-
bust training methods. The DeBERTa model from He et al. (2021) introduced
the separation from positional and token encoding. Further, distilled models
like DistillBERT (Sanh et al., 2019) were built to create smaller and faster
models while maintaining similar performance. In conclusion, BERT is a bidi-
rectional language model which produces token representations based on the
left and right context.

2.4.2 Decoder Models

Parallel to the BERT model, the decoder based large language model GPT
(Generative Pretrained Transformer) was introduced by Radford et al. (2018)
after which the larger successor models GPT-2 (Radford et al., 2019) and
GPT-3 (Brown et al., 2020) followed.

In contrast to the BERT model, the GPT models are trained with the
causal language model training objective where the model has to predict the
next word in a sequence. Decoder-based models are composed of decoder layers

13

CHAPTER 2. BACKGROUND

and use masked self-attention and process tokens unidirectional.
As the GPT-3 model is not available, GPT-2 shall be focused on. It was

trained on the custom WebText dataset. In conclusion, the GPT models are
large language models with human-level text generation capabilities. Models
from this decoder architecture family and the previous encoder architecture
family will be used to create Transformer-based embeddings.

2.5 Intrinsic and Extrinsic Evaluation
Word embeddings can be intrinsically and extrinsically evaluated (Bakarov,
2018). Intrinsic evaluation measures the internal properties of the embeddings.
For example, how well they capture meaning. This can be done by calculating
similarities between word pairs and their comparison with human similarity
judgements. This evaluation method is fast but not useful for specific appli-
cation performance. In the context of this thesis, the intrinsic evaluation will
give insights about how well human knowledge about semantics is encoded in
different word embeddings.

Extrinsic evaluation measures the quality of word embeddings for specific
downstream tasks e.g. text classification. For this evaluation, an algorithm or
model has to be trained on the embeddings which makes the evaluation slow
but useful if the word embeddings shall be evaluated for a specific task. In
the context of this thesis, this evaluation will investigate the quality of recent
embeddings and the quality of the new embeddings produced in this work.

2.6 Correlation and Distance Metrics
For the intrinsic evaluation, correlation with a ground truth, e.g. human sim-
ilarity judgements, has to be investigated by calculating the pearson rp and
spearman rs correlations.

rp =

�n
i=1(xi − x)(yi − y)��n
i=1(xi − x)2(yi − y)2

(2.4)

rs = 1− 6
�

d2i
n(n2 − 1)

(2.5)

where di are the pairwise distances of the ranks of the variables, n as the
number of samples, and xi as a sample. A high similarity between human
similarity ratings and similarity ratings that are based on word embeddings
is reflected in a high correlation. The key difference between both correlation
measures is that spearman correlation operates on ranks instead of regular

14

CHAPTER 2. BACKGROUND

similarities like pearson correlation. This makes a qualitative investigation
possible where pairs with the highest rank difference can be extracted. Pearson
correlation further assumes a ratio scale whereas spearman correlation only
assumes an ordinal scale.

To calculate similarity and dissimilarity between two embeddings x and y in
the vector space, different distance and similarity metrics like the dot product,
cosine similarity or euclidean distance can be used. Euclidean distance is a
dissimilarity measure and is defined as:

euclidean(x, y) =

����
n�

i=1

(xi − yi)2 (2.6)

The dot product is a similarity measure and is defined as:

dot(x, y) = x · y =
n�

i=1

xi · yi (2.7)

Word embedding similarity, based on the dot product, can be biased by word
frequency (Jurafsky & Martin, 2009). Therefore, the cosine similarity is com-
monly used which is defined as the normalized dot product:

cos(x, y) =
x · y

||x|| · ||y|| (2.8)

Cosine similarity will be used in this thesis to calculate embedding similarity.

15

Chapter 3

Related Work

This chapter will introduce related work about the creation of word and word
sense embeddings, the intrinsic and extrinsic evaluation of different embeddings
as well as methods to predict the word sense and methods to predict sentence
similarity.

3.1 Creation of Word Embeddings
Different methods to create word embeddings exist. One method is a simple
one-hot encoding of words (see Figure 3.1). The embedding size equals the
number of words in the vocabulary and each position is assigned to a word.
This method allows fast creation of embeddings but is not useful as it does
not reflect any meaning or similarity. Word embeddings for dog and cat are
equally similar to embeddings for table.

Count-based Methods

The distributional hypothesis states that words are similar when they are used
in similar contexts where the context has to be defined (Firth, 1957).

Count-based methods use this idea by counting the number of times a word
occurs in a defined context. For example, in a co-occurrence count matrix, it

Figure 3.1: One-Hot encoding

16

CHAPTER 3. RELATED WORK

man woman bench

man 1 1 0

woman 1 1 0

bench 0 0 1

‘A man and a woman are sitting on the bench’ with context window size = 3

1, 1, 0

1, 1, 0

0, 0, 1

Figure 3.2: Example of co-occurrence embeddings

can be counted how many times a word occurs with other words in a fixed-
sized window within a text corpus where the window represents the context
a word is used (see Figure 3.2). A different method is to count how many
times a word occurs in different documents where the documents represent the
context. The counts can be binary, normal counts, or weighted occurrences
like TF-IDF.

Pointwise Mutual Information (PMI) is a metric for co-occurrence (Jurafsky
& Martin, 2009, p. 696). It is normally used to quantify the probability that
two words occur together. For example, words like Las and Vegas usually
co-occur. As it could be that it is just likely for both words to occur together
because they are very frequent in the text, the frequency of the single words has
to be taken into account for the calculation of the co-occurrence probability.
PMI is then calculated by

PMI(x, y) = log

�
P (x, y)

P (x)P (y)

�
(3.1)

where x and y are two words and P (x, y) is the probability of both words
occurring together, and P (x) is the probability of a single occurrence of x.

This metric can then be used to calculate word embeddings by defining the
context as surrounding words in an l-sized window and calculating the PMI
for a word and context pair.

Latent Semantic Analysis (Deerwester et al., 1990) uses the frequencies of
words across documents to create a term-document matrix. For this either
counts or normalized counts like TF-IDF can be used. The matrix is then
factorized by applying Singular Value Decomposition which yields dense topic
vectors for words and documents.

17

CHAPTER 3. RELATED WORK

Predictive Methods

Predictive models try to predict the context a word is used where the context is
defined as the l-sized window of surrounding words within a sentence. Models
like Word2Vec from Mikolov et al. (2013) achieved better results on word
similarity tasks than previous methods.

As Word2Vec is one of the most used word embeddings, it shall be explained
in more detail. The basic method of Word2Vec is to loop through a text corpus
with a sliding window with a fixed length. Depending on the architecture, the
model will either predict the surrounding words (Skip-Gram) or the word that
is used within the window (CBOW). The Skip-Gram will be explained further.

The probability of the outside context word o conditional on the central
word c is then calculated by a softmax function:

P (o|c) = exp(uT
o vc)�

w∈V exp(uT
wvc)

where V is the set of all words in the vocabulary, v the set of word embeddings
and u the set of context embeddings. The similarity is measured as the dot
product of the corresponding word vectors. The objective function for one
central word c and one context word o is then the negative log-likelihood:

− logP (o|c) = − log
exp(uT

o vc)�
w∈V exp(uT

wvc)
(3.2)

The text corpus is iterated through a fixed-sized window. This results in
the average negative log-likelihood as the final objective function with T as
the number of positions in the text corpus, d as the context window length,
and wj as a word at position j:

− 1

T

T�

t=1

�

−d<j<d

log(P (wt+j|wj)) (3.3)

Common publicly available word embeddings are the Word2Vec embeddings,
trained on the Google News corpus. It was shown by Levy and Goldberg
(2014) that Word2Vec leads to a factorization of the word-context matrix us-
ing the pointwise mutual information which indicates a strong relationship of
Word2Vec word embeddings with co-occurrences of words. One disadvantage
of the architecture is the loss of positional information as all words in the con-
text are treated equally. The original Word2Vec embeddings used a context
window of five to ten words (Mikolov et al., 2013).

Most predictive models have the disadvantage of encoding all word mean-
ings into a single embedding (E. H. Huang et al., 2012; Pilehvar & Collier,

18

CHAPTER 3. RELATED WORK

2016). For example, the embedding of bank from Word2Vec encodes the mean-
ing of a river bank and a financial bank. Sense2Vec from Trask et al. (2015)
mitigated this problem by building word sense embeddings rather than word
embeddings. The architecture is based on Word2Vec. It differs from Word2Vec
as it uses a sense annotated corpus and defines context as surrounding word
senses. This approach allows the creation of word sense embeddings which are
distinguished by their part-of-speech tag. For example, the word sense embed-
ding for work can be distinguished as work as a noun or as a verb. Still, this
approach does not work for homonyms that have the same part-of-speech tag
like bank as a river bank or a financial bank.

Pilehvar and Collier (2016) created word sense embeddings by leveraging
the semantic network of WordNet and static word embeddings. The goal is
to place word senses in a given semantic space, e.g. from Word2Vec so that
the word sense embeddings are close to words that are semantically related to
the word sense. For example, for a given synset, e.g digit as an anatomical
part of the body, the word sense embedding would be placed close to the word
embeddings from dactyl, finger and toe. Therefore, the words of the synset,
e.g digit or finger, are retrieved from WordNet. As the synset is defined as
the group of synonymous words, the word sense embedding can then be con-
structed based on the word embeddings of these synonyms. The list of related
words is further enlarged by using a graph algorithm to retrieve other synsets
and the respective words that are related to the target synset. Finally, the new
word sense embeddings are created by de-conflating the original word embed-
dings. This is done by minimizing the distance between the new word sense
embedding and the word embeddings, obtained from the list of related words
from the previous step. These embeddings shall be referred to as Deconflated
embeddings.

The GloVe embedding model from Pennington et al. (2014) can be seen
as a combination of count-based and predictive models. It uses co-occurrence
counts to optimize a dense word embedding matrix.

Knowledge-based Embeddings

Saedi et al. (2018) used the WordNet knowledge base to create distributional
word embeddings, called Wnet2Vec. Instead of text and the resulting co-
occurrence between words, they used the semantic network of WordNet to
define word semantics. The similarity is then defined by the number and
length of paths between two word nodes in the network.

19

CHAPTER 3. RELATED WORK

Transformer-based Embeddings

Bommasani et al. (2020) investigated the possibility to create decontextual-
ized embeddings from contextualized embeddings and specified two important
methods. The first method describes the subword pooling and the second
method describes the combination of contexts.

Subword pooling determines the way how representations of subwords of
a word in a fixed context are aggregated to generate one representation for
the word. For example, the mean, maximum, minimum, or the last of rep-
resentations can be used. If a word w in a given context c is not present in
the tokenizer vocabulary, w will be split into k subwords, yielding multiple
representations {w1

c , ..., w
k
c}. The subword pooling function f defines how the

k subword representations are then combined to a single word representation
wc. The following formula specifies this process and is taken from Bommasani
et al. (2020).

wc = f(w1
c , ..., w

k
c); f ∈ min,max,mean, last (3.4)

The second method defines how contexts are used. The authors defined the
strategy Decontextualized where only the word itself is used and no context.
Thus, a static decontextualized word embedding can be created. The strat-
egy Aggregated is defined as the usage of n contexts {c1, ..., cn} per word, e.g.
multiple sentences containing the word. This leads to n word representations
{wc1, ..., wcn}. It shall be noted, that the term decontextualized in this thesis
refers to the process of aggregation rather than the removal of context. As con-
textualized embeddings change with their respecting context, an aggregation
over multiple contexts is needed to create static embeddings. Then the word
embeddings are aggregated, for example by taking the mean, maximum, or
minimum of all embeddings of a specific word. The following formula specifies
this process and is taken from Bommasani et al. (2020).

w = g(wc1, ..., wcn); g ∈ min,max,mean (3.5)

The authors evaluated their approaches by using intrinsic word similarity tasks
and showed higher correlations when mean aggregation across contexts and
subword representations were used (f = mean and g = mean). The au-
thors compared the performance of static, contextualized, and decontextu-
alized word embeddings by an intrinsic evaluation of word similarity. The
datasets Wordsim-353, Simlex-999, RG-65, and SimVerb-3500 were used.

Word2Vec and GloVe were used as examples for static embeddings. Con-
textualized and decontextualized word embeddings were extracted from the
language models BERT, GPT-2, RoBERTa, DistilBERT, and XLNet. They

20

CHAPTER 3. RELATED WORK

further showed that decontextualized word embeddings can outperform clas-
sic static word embeddings. Furthermore, the results indicate that the usage
of more contexts for aggregating contextualized word embeddings as well as
larger models results in better performance. The best results are achieved by a
BERT model with 24 layers and one million total contexts. Embeddings from
early layers perform better than later layers. As the analyses are only based on
the total number of contexts, a new analysis shall be performed in this work,
to find out, what number of contexts per word shall be used.

Akbik et al. (2019) also investigated the process of aggregating word em-
beddings. The authors evaluated their embeddings on the downstream task
Named Entity Recognition. They only used contextualized word embeddings
and did not take the comparison to classic static embeddings into account.
One contextualized embedding per word was used as the baseline. This means
that only one context was used. The results show a slightly better performance
for the aggregated embeddings.

Gupta and Jaggi (2021) used a CBOW-based static word embedding model
that incorporates contextualized word embeddings of the context words.

It was shown by Ethayarajh (2019), Li et al. (2020) and Mu and Viswanath
(2017) that static and contextualized word embeddings are anisotropic. The
embedding vectors are placed in a cone in the embedding space where the
overall similarity is relatively high (Li et al., 2020). Mu and Viswanath
(2017) proposed a postprocessing method to create more isotropic embed-
dings. This is done by "(a) removing the nonzero mean vector from all word
vectors, effectively reducing the energy; (b) projecting the representations away
from the dominating D directions, effectively reducing the dimension." (Mu &
Viswanath, 2017). The authors showed improved correlation for postprocessed
Word2Vec and GloVe word embeddings on word similarity, word analogy, se-
mantic text similarity, and category prediction tasks.

3.2 Evaluation of Word Embeddings
As one goal of this thesis is the creation of new word embeddings, an evaluation
of recent embeddings is done. This includes intrinsic evaluation with different
similarity rating datasets and extrinsic evaluation on different downstream
tasks.

Static word embeddings have been intrinsically evaluated many times with
different word similarity datasets where it was shown that word embeddings
can reflect semantic meaning based on similarity and relatedness (Hill et al.,
2015; Agirre et al., 2009; Bojanowski et al., 2017).

Rubinstein et al. (2015) investigated how well human semantic knowledge is

21

CHAPTER 3. RELATED WORK

represented by distributional word embeddings. The authors use a supervised
task to predict semantic features of concrete nouns, taken from the semantic
feature norm of McRae et al. (2005), e.g. an animal for the word rabbit or has
ears for the word dog. They showed that taxonomic features like a mammal
are harder to predict than attributive features like is large or is green.

This finding correlates with the results from Lucy and Gauthier (2017)
where word embeddings from Word2Vec and GloVe were also used to predict
semantic features of concrete objects, taken from the semantic feature norms
of McRae et al. (2005) and Devereux et al. (2014). The authors showed that
multiple embedding models encode perceptual features worse. They further
show a correlation between this result and wrong cosine similarities between
words.

Grand et al. (2022) built upon the idea that words can be differently similar
depending on the dimension, e.g size or dangerousness and that this informa-
tion might be encoded in word embeddings. The authors used word embed-
dings from GloVe to investigate whether word embeddings can be projected
onto lines, representing these dimensions and whether these projected embed-
dings reflect human similarity judgements. These lines are then defined as the
vector differences between antonyms like large and small for the dimension size
(Grand et al., 2022). Using external human similarity ratings, it was shown
that some dimensions can be modeled by these projections.

Chronis and Erk (2020) proposed a method to create multi-prototype em-
beddings based on contextualized word embeddings from the BERT-base model.
Instead of creating static word embeddings with one embedding per word, the
authors used K-Means clustering to calculate centroids per word usage type.
According to the authors, single contextualized word embeddings are more
sensitive to outliers and are not suitable to calculate similarity. The authors
further state that this approach does not always lead to word sense clusters
but often differentiates clusters of homonyms. Instead of the cosine similarity
between word embeddings, the cosine similarity between the two closest cen-
troids is used to determine the similarity between two words. This approach
leads to higher correlations of similarity ratings with human-created similarity
ratings. While this approach leverages the ability of contextualized word em-
beddings to reflect the context, it does create multiple embeddings per word
and does not assign word sense identification to the centroids.

Hollenstein et al. (2019) compared the performance of static and contex-
tualized word embeddings by an extrinsic evaluation of the predictiveness of
brain activity. The evaluation was done across multiple modalities (EEG,
fMRI, and eye tracking data) and multiple datasets per modality. The authors
used Word2Vec, GloVe, WordNet2Vec, Fasttext (Bojanowski et al., 2017) as
static word embeddings. Contextualized word embeddings were extracted from

22

CHAPTER 3. RELATED WORK

BERT and ELMo (Peters et al., 2018). Embeddings from BERT, Fasttext, and
ELMo achieved the lowest mean errors. This indicates higher predictiveness
of contextualized word embeddings for brain data.

Ethayarajh (2019) investigated how contextual contextualized word em-
beddings are and whether these models create highly context-specific word
embeddings or assign a word sense embedding depending on the context. To
answer these questions, the author defined different measures of contextualiza-
tion. Self-similarity measures the cosine similarity of word embeddings for a
specific word across different contexts. A high self-similarity value means that
the context does not influence the word embedding whereas a low self-similarity
means a high contextualization. The results show that the self-similarity de-
creases with later layers, indicating a strong effect of contextualization on the
word embeddings. The results further show that contextualized word embed-
dings are anisotropic. The average cosine similarity between random words
gets higher with later layers. This effect leads to almost completely similar
word embeddings in GPT-2.

Tenney et al. (2019) investigated where contextualized word embeddings
improve compared to static word embeddings. The authors used different syn-
tactic and semantic tasks and found out that contextualized word embeddings
improve more on syntactic tasks rather than semantic tasks.

3.3 Word Sense Disambiguation
Simple methods like using the most frequent word sense or the Lesk algorithm
only need WordNet as a resource and not a labeled training dataset (Jurafsky
& Martin, 2009). As word senses are sorted by frequency in WordNet, it is an
easy baseline to predict the word sense. The Lesk algorithm uses the provided
word sense explanation in WordNet to choose the word sense that has the most
overlap of words with the target sentence.

To create more powerful embeddings that are respecting the sense of a
word, it is crucial to either have an annotated corpus or to have an algorithm
that predicts the sense of a word in a given sentence. One way could be to use
contextualized embeddings as they can encode word meaning (Chronis & Erk,
2020; Wiedemann et al., 2019). Therefore, Wiedemann et al. (2019) investi-
gated whether contextualized word embeddings could be used for predicting
the sense of a word in a given sentence. They found out "that CWEs in general
are able to capture senses, i.e. words, when used in a different sense, are placed
in different regions. This effect appeared strongest using the BERT pre-trained
model, where example instances even form clusters. This might give rise to fu-
ture directions of investigation, e.g. unsupervised word sense-induction using

23

CHAPTER 3. RELATED WORK

clustering techniques." (Wiedemann et al., 2019).
Similar approaches leverage the ability of contextualized word embeddings

to capture context (L. Huang et al., 2020; Melamud et al., 2016; Peters et
al., 2018). Using a labeled sense dataset, for each sense, an averaged contex-
tualized word sense embedding can be produced. Then the word sense can
be predicted for any word in a sentence by using a 1-nearest-neighbor search
with the respective contextualized word embedding. This method relies on
the training dataset and can only predict word senses available in the training
dataset.

To overcome this problem, Scarlini et al. (2020b) used contextualized word
embeddings from BERT-large but also knowledge-based methods to be not
restricted to labeled word senses. The authors propose a semi-supervised al-
gorithm ARES which generates embeddings for all WordNet word senses. The
authors also perform aggregation of contextualized embeddings over multiple
contexts, applied k-means clustering to cluster these embeddings, and assigned
a word sense to each cluster. With these embeddings, it is possible to predict
the word sense of a word in a given sentence by using the word sense of the
nearest neighbor embedding. For each synset, sentences containing any word
from the synset are crawled. Then the contextualized word embeddings are
extracted from BERT and clustered using k-means clustering under the as-
sumption that words are used with the same meaning in sentences in the same
cluster. Then using the knowledge-based method UKP the clusters are labeled
with a word sense.

24

CHAPTER 3. RELATED WORK

3.4 Creation of Sentence Embeddings
Reimers and Gurevych (2019) used the BERT architecture to efficiently create
sentence embeddings. The authors state that using BERT for sentence pair
regression leads to good results but is also limited in computational efficiency
as every sentence pair of interest has to be processed by BERT. This makes
the usage of BERT as a cross encoder of sentence pairs unusable in real-world
tasks like clustering millions of sentences.

Therefore, they further investigated the possibility to extract meaningful
sentence embeddings from the pretrained available BERT model which can be
used in more efficient downstream tasks. This was done by two approaches.
First by extracting token embeddings from the last layer and a pooling mech-
anism to create one sentence embedding and second by using the classification
token (CLS). The results show that these sentence embeddings often lead to
worse performance than using static word embeddings like GloVe. As a conse-
quence, the authors decided to finetune a BERT model on different supervised
tasks to create meaningful sentence embeddings.

Depending on the dataset, different training objectives and network archi-
tectures were used (see Figure 3.3). For tasks with sentence pairs, a siamese
network architecture was used. For tasks with three sentences as the input,
a triplet architecture was used. For classification tasks, the training objective
was to predict the corresponding label to the input data. The cross-entropy loss
was used as the loss function in this case. For regressions tasks, the training
objective was to predict a numerical value, indicating the similarity between
sentences, e.g. a cosine similarity value. The mean squared error was used as a
loss function in this case. The third possible training objective was the triplet
objective function where three embeddings from an anchor element, a similar
and a dissimilar example are compared, where the similar example is expected
to have a small distance to the anchor element and the dissimilar example is
expected to have a large distance to the anchor element.

Token embeddings were extracted from the last layer and were pooled by
either using the CLS token, average pooling, or max pooling of all tokens.
The finetuning was done across different datasets and tasks. One approach
was the finetuning on the SNLI (Bowman et al., 2015) and MultiNLI dataset
(Williams et al., 2018) using the classification objective where the task is to
predict whether two sentences are contradicted, neutral, or entailed. A second
approach used this finetuning and a second finetuning on the train set of the
STS dataset (Cer, Diab, et al., 2018), where the regression objective was used.
In the STS dataset, the task is to predict a numerical value from 0 (dissimilar)
to 5 (similar) between two sentences.

For evaluation, the spearman correlation between the similarity vector,

25

CHAPTER 3. RELATED WORK

BERT BERT BERT BERT BERT BERT BERT

Pooling Pooling Pooling Pooling Pooling Pooling Pooling

Sentence 1 Sentence 2 Sentence 1 Sentence 2 Sentence 1 Sentence 2 Sentence 3

cos(x, y)

x x xy y y z

Softmax Classifier
x, y, |x-y|

MSE Loss Cross-Entropy Loss Triplet Loss

Figure 3.3: Overview of Sentence-BERT architectures using the mean squared
error loss (left), cross-entropy loss (middle), and triplet loss (right). Adapted from
Reimers and Gurevych (2019).

based on cosine similarity between sentence embeddings, with the true simi-
larity vector from the STS test set was used.

Several baselines were compared. First, average pooled static word em-
beddings from GloVE were evaluated as they provide fast access to word em-
beddings. Second, similarities, directly predicted by using BERT as a cross
encoder, were evaluated as this approach promised the best results. And third,
state of the art sentence embedding models like InferSent (Conneau et al.,
2017) and Universal Sentence Encoder (Cer, Yang, et al., 2018) were evalu-
ated.

The results show that BERT used as a cross encoder leads to the best
performance. The approaches of the authors show highly competitive perfor-
mance with the advantage of being more computationally efficient than the
cross-encoder approach.

Furthermore, the authors evaluated the usage of these pooled sentence
embeddings for other downstream tasks like sentiment prediction where the
embeddings were used to train a logistic regression classifier. Though the
goal of their work was not to produce embeddings for downstream tasks, the
finetuned embeddings had the best performance in most datasets.

Finally, it was shown, that pretrained embeddings extracted from the last
layer of BERT are not suited for the sentence similarity task. Their perfor-
mance was below the performance of static word embeddings. To improve the
quality, a finetuning step was performed which resulted in high-quality sentence
embeddings. This might indicate a similar expectation for word similarity.

26

Chapter 4

Datasets, Corpora, and Models

4.1 Models
To generate contextualized embeddings, several Transformer-based models shall
be used (Table 4.1). The models BERT, and GPT-2 are chosen as they are
widely used Transformer models and are the foundation of lots of bigger lan-
guage models like GPT-3. As BERT is trained with a masked language model-
ing objective and GPT-2 is trained with a causal language modeling objective,
both of these objectives are covered, too. For both model families, the base
version with twelfth layers and the large version with 24 layers are used. Pre-
trained model weights are used from the transformers 1 library. The BERT
models are pretrained on the BookCorpus and English Wikipedia, which con-
tain around three billion words together. The GPT-2 models are pretrained
on the WebText corpus. Decontextualized embeddings were produced with
the same models. The procedure to extract word, word sense, and synset
embeddings from Transformer models will be explained later.

Finetuned models are used from the Sentence-BERT release2. The original
Sentence-BERT implementation from Reimers and Gurevych (2019) is used
as a comparison to the pretrained BERT-base model and the Sentence-Distill-
RoBERTa model is used as it is a recent and high-performing implementation
on the Semantic Textual Similarity task.

4.2 Static Word Embeddings
Different kinds of static word embeddings shall be investigated (Table 4.2).
One-hot encoding and count-based methods will be ignored as they are out-

1https://github.com/huggingface/transformers
2https://www.sbert.net/

27

CHAPTER 4. DATASETS, CORPORA, AND MODELS

Table 4.1: Overview of used Transformer models and their characteristics: The
number of encoder or decoder layers, the length of input tokens, and the dimension-
ality of the resulting embeddings

Name Number layers Input length Dimensionality

BERT-base 12 512 768
BERT-large 24 1024 1024
GPT-2 12 512 768
GPT-2-medium 24 1024 1024
Sentence-BERT 12 512 768

Table 4.2: Overview of used static word embeddings and their characteristics: the
dimensionality of embeddings and the embedding level, e.g. word or word sense

Name Embedding dimensionality Level

Word2Vec 300 Word
GloVe 300 Word
Deconflated 300 Word Sense

dated.
The Word2Vec embedding model (Mikolov et al., 2013), as well as the

GloVe embedding model (Pennington et al., 2014), are used as examples for
static word embeddings because they are widely used in research and industry.
The pretrained embeddings from the gensim3 library are used. For Word2Vec,
the word embeddings trained on the Google News corpus with a dimensionality
of 300 are used. This corpus contains around three billion words.

The Deconflated embedding model (Pilehvar & Collier, 2016) is used as an
example for static word sense embeddings. The embeddings are retrieved from
the official release4.

4.3 Similarity Datasets
Human word similarity judgements have been studied and collected multiple
times (Agirre et al., 2009; Luong et al., 2013; Hill et al., 2015) and have been
used for intrinsic evaluation of word embeddings (Bommasani et al., 2020;
Chronis & Erk, 2020).

The similarity judgements from Wordsim-353 (Agirre et al., 2009) and
Simlex-999 (Hill et al., 2015) are used as word similarity judgements as they

3https://github.com/RaRe-Technologies/gensim
4https://pilehvar.github.io/deconf/

28

CHAPTER 4. DATASETS, CORPORA, AND MODELS

Table 4.3: Examples of similarity ratings from the Wordsim-353 dataset

Word 1 Word 2 Similarity judgements

love sex 6.77
tiger cat 7.35
tiger tiger 10.00
book paper 7.46
computer keyboard 7.62

Table 4.4: Examples of similarity ratings from the Simlex-999 dataset

Word 1 Word 2 Similarity judgements

old new 1.58
smart intelligent 9.2
hard difficult 8.77
happy cheerful 9.55
hard easy 0.95

are widely used in the area of natural language processing research. The
Wordsim-353 dataset consists of 353 word pairs and average human similarity
judgements that were collected through an online study with 500 participants.
The similarity values range from 0 for dissimilar to 10 for similar (see Table
4.3). The Simlex-999 dataset consists of 999 word pairs and average human
similarity judgements that were collected through a study. The similarity val-
ues range from 0 for dissimilar to 10 for similar (see Table 4.4). The authors
used a more strict definition of similarity and try to reduce the similarity scores
for related words like closet and clothes which are scored more similar in the
Wordsim-353 dataset.

A recent similarity judgements dataset from Hebart et al. (2020) contains
continuous similarity ratings in the range from 0 (dissimilar) to 1 (similar).
They are based on human similarity ratings from 5.983 participants using a
triplet odd-one-out task with triplet images and a computational model.

As the definition of similarity can vary, it is important to compare how
similarity is specified in the overlap of the datasets. Therefore, Table 4.5,
Table 4.6 and Table 4.7 show differences and similarities between Simlex-999,
Wordsim-353 and THINGS. THINGS similarity judgements are continuous
values, ranging from 0 (dissimilar) to 1 (similar). They seem to be high for
word pairs that belong to the same conceptual superordinate category, like cat
and dog or man and woman. Cat and dog are both animals and are similar on
a range of dimensions like outdoors-related. Wordsim-353 has similar ratings

29

CHAPTER 4. DATASETS, CORPORA, AND MODELS

Table 4.5: Differences in similarity ratings between THINGS and Wordsim-353
datasets

Word 1 Word 2 THINGS Wordsim-353

money bank 0.39 8.50
train car 0.96 6.31
bank money 0.39 8.12
bird crane 0.23 7.38
football basketball 0.94 6.81
television film 0.68 7.72
cucumber potato 0.86 5.92
gem jewel 0.87 8.96
television radio 0.88 6.77
tiger cat 0.93 7.35

0 2 4 6 8 10

Similarity value

0

20

40

60

80

100

120

140

N
u
m
b
er

of
w
or
d
p
ai
rs

Simlex-999

0 2 4 6 8 10

Similarity value

0

10

20

30

40

50

60

70

N
u
m
b
er

of
w
or
d
p
ai
rs

Wordsim-353

0.2 0.4 0.6 0.8 1.0

Similarity value

0

10000

20000

30000

40000

50000

60000

N
u
m
b
er

of
w
or
d
p
ai
rs

THINGS

Figure 4.1: Distribution of similarity ratings per dataset

for these word pairs. In contrast to THINGS and Simlex-999, Wordsim-353
similarity judgements for related words seem to be high, e.g. for money and
bank. Both words do not belong to the same concept nor are they synonyms.
Thus, this word pair has a medium to low similarity value in THINGS. Fur-
ther, Wordsim-353 has high similarity values for synonyms like coast and shore.
Similarly, Simlex-999 has high similarity values for synonyms but is more re-
stricted for related word pairs, like clothes and closet.

Figure 4.1 shows the distribution of similarity ratings per dataset. The
Simlex-999 dataset seems to have a more uniform distribution whereas the
Wordsim-353 dataset has more similar ratings than dissimilar and the THINGS
dataset has more dissimilar ratings.

30

CHAPTER 4. DATASETS, CORPORA, AND MODELS

Table 4.6: Differences in similarity ratings between THINGS and Simlex-999
datasets

Word 1 Word 2 THINGS Simlex-999

bottle container 0.31 7.93
dog cat 0.92 1.75
arm knee 0.98 2.75
cat rabbit 0.93 2.37
door gate 0.65 5.25
purse bag 0.78 8.33
chair bench 0.72 6.67
dog horse 0.92 2.38
boat anchor 0.90 2.25
wood log 0.75 7.30

Table 4.7: Differences in similarity ratings between Simlex-999, Wordsim-353, and
THINGS datasets

Word 1 Word2 THINGS Simlex-999 Wordsim-353

woman man 0.88 3.33 8.3
clothes closet 0.87 3.27 8.0

4.4 Text Corpora
Several text corpora are used in this study. First, the Wikitext-2 and the
Wikitext-103 corpora from Merity et al. (2017) were chosen for their high
quality. Wikitext-2 consists of 250.000 tokens and Wikitext-103 of 150.000.000
tokens. The Wikitext corpora are only made of articles that are rated good
or featured on Wikipedia. Furthermore, they were cleaned and preprocessed.
For example, mathematical terms or HTML artifacts were removed. Words
with a frequency less than three were replaced by the unk token. An example
paragraph can be seen in Figure 4.2.

As the THINGS dataset also samples less frequent objects, the Wikitext
corpora did not cover all words from the dataset. This can be seen in Ta-
ble 4.8. Wikitext-2 and Wikitext-103 do not contain all 1,854 target words
from the THINGS dataset. Therefore, the bigger Wikidump5 dataset is used.
Yet, Wikitext-103 already contains all target words from the Simlex-999 and
Wordsim-353 datasets. Wikidump was still used for these target words, to use

5https://dumps.wikimedia.org/

31

CHAPTER 4. DATASETS, CORPORA, AND MODELS

= = = Locations = = =
Gods were linked with specific regions of the universe . In
Egyptian tradition , the world includes the earth , the sky ,
and the Duat . Surrounding them is the dark <unk> that existed
before creation .

Figure 4.2: Example text paragraph from the Wikitext-2 corpus

Table 4.8: Number of target words covered in corpora per similarity dataset

Text corpus THINGS
(n=1,854)

Wordsim-353 ∪ Simlex-999
(n=1,341)

Wikitext-2 770 1,247
Wikitext-103 1728 1,341
Wikidump 1,854 1,341

the same text corpus across similarity ratings. Using the Wikiextractor6 tool,
the XML dump was transformed into text.

6https://github.com/attardi/wikiextractor

32

Chapter 5

Methods

Word embeddings from Transformer models are contextualized as they depend
on the text that is fed into the model. To create static word embeddings, these
contextualized word embeddings have to be decontextualized. A simple ap-
proach is to use one context and extract the respective word embeddings. A
more sophisticated approach is the usage of multiple contexts as they will con-
tain more information about word meaning. Thus, extracted word embeddings
from multiple contexts need to be aggregated to create a single embedding per
word.

Decontextualized word embeddings and word sense embeddings are created
in this study. Next to the aggregation method, the algorithm can be run over a
different number of context sentences that should be used to aggregate. Also,
the number of layers or the pooling method of values between the layers can
be changed.

Therefore, this chapter will explain how static word embeddings are re-
trieved, how contextual embeddings are extracted from different models, and
how they are decontextualized to create new static Transformer-based word
embeddings.

5.1 Creation of Static Word Embeddings
Static word embeddings from Word2Vec and GloVe are extracted from the
lookup tables from the gensim library. Deconflated word sense embeddings
are retrieved from the official dataset1 from Pilehvar and Collier (2016).

1https://pilehvar.github.io/deconf/

33

CHAPTER 5. METHODS

5.2 Creation of Transformer-based Embeddings
The process to extract embeddings from Transformer models, as well as the
decontextualization, will be explained in this section. First, the retrieval of
text paragraphs and the prediction of word senses will be explained. Second,
the extraction process across models and hyperparameters will be specified.
Last, the decontextualization of these extracted contextualized embeddings
will be defined.

5.2.1 Finding Synonyms

To increase the number of available contexts, embeddings are also created for
synonyms of the target words. A strict method for generating synonyms is
applied when the synset of a word is known. In this case, all words of this
synset are used as synonym candidates. Afterwards, all belonging synsets to
that word are extracted and the word is considered as a synonym when the
most frequent synset is the same as the synset of the target word. If all words of
the target synset are used, synonym pairs like aardvark and anteater would be
created as they share at least one synset in WordNet. The proposed approach
yields fewer synonym pairs but of more quality like car and automobile.

Further, other spellings of a word are used. This is done to increase the
coverage of words in the corpus, provide enough context for aggregation, and
counteract misspellings in the word list. For example, the THINGS dataset
contains the words ice cream and iceskate. For ice cream, the spellings icecream
and ice-cream are used. For iceskate the spelling ice skate is used.

5.2.2 Finding Word Occurrences

Afterwards, paragraphs in the text corpus are searched through whether they
contain a word from the word list. This leads to a high number of occurrences
for high frequent words like table and low number of occurrences for low fre-
quent words aardvark (Figure 5.1). For computational efficiency, a maximum
number of n = 1000 paragraphs is sampled per word (Figure 5.2).

5.2.3 Annotation of Word Senses

As one goal is the creation of word sense embeddings, the word sense of a word
in a paragraph is predicted by using the ARES sense embeddings from Scarlini
et al. (2020b). All sense embeddings of the word are used as candidates. As
the ARES sense embeddings are calculated in the doubled vector space of
BERT-large, the word embeddings for each occurrence of the word in the

34

CHAPTER 5. METHODS

Mouse The mouse is eating cheese

I use the computer mouseMouse

Mouse A cat hunts a mouse. The mouse runs

Figure 5.1: Examples of target words and paragraphs

I use the computer mouseMouse

Mouse A cat hunts a mouse. The mouse runs.

Figure 5.2: Examples after sampling n paragraphs per target word

paragraph have to be extracted from the BERT-large model. Following the
work by Scarlini et al. (2020b), embeddings are extracted from the top 4 layers
with mean pooling between layers. The embedding is then concatenated with
itself to match the vector space. The word sense of the nearest neighbor sense
embedding is then used as the word sense of the target embedding. After this
step, for each word in the target list, the paragraph where it occurs and the
predicted word sense and synset at each position in the paragraph are known
(see Figure 5.3).

5.2.4 Extraction of Transformer-based Embeddings

Using this information, the contextualized word embeddings are extracted from
the defined models with defined hyperparameters. Hyperparameters are the
layer, where hidden states are extracted and the subtoken pooling method if
the word gets tokenized into subwords.

The pretrained Transformer models are used through the transformers li-

35

CHAPTER 5. METHODS

I use the computer mouseMouse

Mouse A cat hunts a mouse. The mouse runs. mouse:1.4

mouse:1.9

mouse:1.4

Figure 5.3: Examples of the word sense annotation process

brary. To use the Transformer-based models, the input text first has to be tok-
enized using the matching tokenizer from the transformers library. Each model
defines its own tokenization and special tokens. For example, the BERT model
family uses a CLS token at the beginning of the sentence as a classification
token and a SEP token to separate and end sentences. The GPT-2 tokenizer
considers spaces that will create different tokens depending on whether a word
is at the beginning or the middle of a sentence.

To extract the hidden states for the target word, the hidden states of the
matching word tokens are extracted. In case a word gets tokenized into mul-
tiple subtokens, the hidden states of the subtokens are mean aggregated.

5.2.5 Decontextualization of Embeddings

After the extraction of the contextualized embeddings for all occurrences of all
target words, they are decontextualized by aggregating all word embeddings
extracted from different contexts. Hyperparameters for the decontextualiza-
tion are the number of embeddings that are used, the level of aggregation,
e.g. whether word embeddings or word sense embeddings shall be created, the
aggregation method, e.g. mean aggregation, and the usage of postprocessing
methods like dimensionality reduction or anisotropy processing.

Here, a mean aggregation across context and subword representations is
used, as it was shown to produce better results under intrinsic evaluation
(Bommasani et al., 2020). Using the notation from Bommasani et al. (2020),
g and f are set to mean.

5.2.6 Produced Embedding Dataset

Table 5.1 shows the total number of word, word sense, and synset embeddings
that were extracted for all THINGS objects from the Wikidump text corpus
as well as how many objects from the 1,854 THINGS objects have at least
one embedding. The creation of word sense and synset embeddings leads to
an incomplete embedding dataset where not all objects from the THINGS

36

CHAPTER 5. METHODS

Table 5.1: Number of embeddings for the THINGS dataset and the coverage per
embedding level.

Total number embeddings Coverage of objects of 1,854

word 1,607,468 1,852
word sense 820,555 1,084
concept 1,620,330 1,854
synset 803,915 1,017

0 1000 2000 3000

number of contexts

0

10

20

30

40

50

60

n
u
m
b
er

of
w
or
d
s

per word

0 1000 2000 3000

per word sense

0 1000 2000 3000

per concept

0 1000 2000 3000

per synset

Figure 5.4: Histogram for THINGS embeddings

dataset are covered. This can be either caused by missing word senses in the
ARES word sense embedding dataset or by false word sense predictions.

Figure 5.4 shows the histogram of the number of contexts per word, word
sense, and synset. It can be seen that the number of contexts is lower for word
sense and synset embeddings. For computational performance reasons, a limit
of 1000 contexts per word is used. As the sampling is done on the word level,
this limit can not be ensured for word senses and synsets. Figure 5.5 shows
the matching boxplot for the THINGS dataset. The results show that at least
50% of the 1,854 THINGS objects have 1000 embeddings per word.

Figure 5.6 shows the histogram of the number of contexts per word for
words from the Simlex-999 and Wordsim-353 datasets. Figure 5.7 shows the
matching boxplot. For almost all words, at least 1000 contexts were found in
the text corpus.

37

CHAPTER 5. METHODS

0 500 1000 1500 2000 2500 3000 3500

number of contexts

word

word sense

concept

synset

Figure 5.5: Boxplot for word, word sense, and synset embeddings for the THINGS
dataset

0 500 1000 1500 2000

number of contexts

0

5

10

15

20

25

30

35

40

n
u
m
b
er

of
w
or
d
s

Figure 5.6: Histogram for word embeddings from the Simlex-999 and Wordsim-353
datasets

38

CHAPTER 5. METHODS

0 500 1000 1500 2000

number of contexts

1

Figure 5.7: Boxplot for word embeddings from the Simlex-999 and Wordsim-353
datasets

39

CHAPTER 5. METHODS

Algorithm 1 Postprocessing algorithm to increase isotropy of word embed-
dings, adapted from Mu and Viswanath (2017)
Input : Word representations {v(w), w ∈ V }, a threshold parameter D,
Compute the mean of {v(w), w ∈ V }, µ ← 1

|V |
�

w∈V v(w), ṽ(w) ← v(w)− µ

Compute the PCA components: u1, ..., ud ← PCA({ṽ(w), w ∈ V }).
Preprocess the representations: v�(w) ← ṽ(w)−�D

i=1(u
T
i v(w))ui

Output : Processed representations v�(w).

5.3 Isotropy Postprocessing
To improve the quality of the generated word embeddings, the method from Mu
and Viswanath (2017) shall be used (see Algorithm 1). First, the mean vector
is subtracted from all embeddings. Afterwards, the principal components are
calculated and the first D components are removed. Static, contextualized,
and decontextualized word embeddings are postprocessed using this method.
The number of dimensions D to be removed is set to D = n/100 with n as the
embedding dimensionality which follows the recommendation of the authors.
This method is not applied by default and will be covered in its own section
in the results chapter.

5.4 Retraining of Embeddings
To increase representational similarity based on word embeddings, a retraining
model is created to transform the decontextualized word embeddings. For this,
the similarity ratings from the THINGS dataset are used as the ground truth
label. The objective of the model is then to learn the similarity defined in
this dataset. Word embeddings from the last layer of the BERT-base model
are retrained. The last layer is chosen under the assumption that it encodes
the most information. The retraining is only applied to the embeddings when
it is stated in the result chapter. The retraining is done using a supervised
contrastive-learning-based approach.

5.4.1 Model

Similar to the approach by Reimers and Gurevych (2019), a siamese network
is used to learn new word embeddings. Their approach uses two BERT models
which take a sentence as input each. Afterwards, the word embeddings from
the BERT model are extracted and pooled into a sentence embedding. The
sentence embeddings are then used in the loss function to optimize the BERT-
model to produce new embeddings that satisfy the learning objective.

40

CHAPTER 5. METHODS

Word Embedding Hidden Layer Retrained Word Embedding

Loss

Figure 5.8: Overview about the model architecture. Layer sizes are variable and
depend on the embedding dimensionality and the chosen hyperparameters.

In contrast, this model uses word embeddings as input as the embeddings
are already extracted. It is built of two feedforward neural networks with
shared weights (see Figure 5.8). The model consists of an input layer with a
dimensionality of 768 and multiple hidden layers and an output layer. The
number of layers and their dimensionality are set as hyperparameters and are
chosen based on the hyperparameter search. The output dimensionality was
chosen to create embeddings with similar dimensionality to common static
word embeddings like Word2Vec. A Rectified Linear Unit (ReLU) activation
function was used between all layers.

5.4.2 Dataset

The goal of the retraining approach is the creation of embeddings that better
capture the semantic knowledge in the THINGS similarity dataset. For this, a
supervised training is performed with the similarity ratings from THINGS as
ground truth. The embedding dataset, containing the BERT-base embeddings
for all 1,854 THINGS objects, is split into a train, validation, and test fold.
Word pairs are only generated within a split (see Figure 5.9). For the train and
validation sets, five word embeddings are chosen randomly for each word in a
pair. The word pairs from the validation set are used for the hyperparameter
search and the word pairs from the test set are used for the final evaluation.

41

CHAPTER 5. METHODS

aardvark

aa
rd
va
rk

dog

d
o
g

cat

ca
t

table

ta
b
le

Test
T
ra
in

Figure 5.9: Exemplary overview of the dataset split. The validation set is left out
for simplicity reasons.

5.4.3 Training and Hyperparameters

The model is trained using supervised methods with different loss functions
and hyperparameters.

Three different loss functions are investigated. This follows the work by
Reimers and Gurevych (2019) who showed that different loss functions impact
the results. First the mean squared error loss:

1

D

D�

i=1

(ŷi − yi)
2 (5.1)

with ŷ as the cosine similarity, y as the true similarity rating from the THINGS
dataset, and D as the number of training samples.

Second, the mean absolute error loss:

1

D

D�

i=1

|ŷi − yi| (5.2)

Contrastive loss is used as a third possible loss function. It decreases the dis-
tance between similar word pairs and increases the distance between dissimilar
word pairs. Given a pair x and y and their true similarity rating Y , the loss
minimizes the distance for Y = 1 and maximizes the distance for Y = 0. The

42

CHAPTER 5. METHODS

term m defines the distance to which dissimilar pairs are optimized.

1

D

D�

i=1

Yi · d(xi, yi)
2 + (1− Yi) ·max(0, m− d(xi, yi))

2 (5.3)

As the similarity of object images is a continuous value from 0 to 1, with
0 being dissimilar, contrastive loss can be used with the similarity value as
ground truth. The margin value for dissimilar pairs m is set to 1. The distance
between two pairs is then defined as the cosine distance with respect to the
cosine similarity from equation 2.8:

d(xi, yi) = cosine_distance(x, y) = 1− cosine_similarity(x, y) (5.4)

The mean squared error loss and mean absolute error loss are chosen be-
cause they are widely used loss functions and were also used by Reimers and
Gurevych (2019) for finetuning BERT. The contrastive loss is chosen as it is
directly based on the distance between word embeddings which is later used
for the intrinsic evaluation.

Several hyperparameters were used and evaluated using the hyperparam-
eter sweeping from Weights&Biases2. These include the batch size, dropout
rate, weight decay, the number of layers, and the number of neurons per layer
(see Table 6.2). For each loss function, a hyperparameter search with 100
trainings is performed. All combinations are trained on 20 epochs with an
early stopping criteria to prevent overfitting. The final hyperparameters are
chosen based on the correlation between similarity ratings, based on the re-
trained embeddings, and the ground truth similarity ratings from THINGS.
Only words from the validation set are used for this evaluation. Dropout is
disabled during evaluation mode.

2https://wandb.ai/site/sweeps

43

CHAPTER 5. METHODS

Table 5.2: Hyperparameters and their ranges and distributions that were sampled
from.

Hyperparameter Values Distribution

Learning Rate [0.00001, 0.1] Log Uniform
Dropout Rate [0, 0.9] Uniform
Batch Size (1000, 5000, 10000) -
Weight Decay (0, 0.001, 0.0001, 0.00001) -
Number of Neurons per Layer (10, 50, 100, 300, 600) -
Number of Layers (1, 2, 3) -

44

Chapter 6

Experimental Results

This chapter first investigates how well human conceptual knowledge is repre-
sented in embeddings. The intrinsic evaluation is based on human conceptual
knowledge from several human-based similarity ratings and embedding-based
similarity ratings. Human-based similarity ratings are used from datasets
where humans were asked to rate the similarity between two entities like words
or images. Embedding-based similarity ratings are created by calculating the
similarity between the embeddings of two words. As similarity ratings are from
humans by definition, the embedding-based similarity ratings are not formally
ratings but this term will be further used for simplicity.

Afterwards, two downstream tasks are evaluated using an extrinsic ap-
proach where the embeddings are used to predict dimension values and super-
ordinate categories from the THINGS dataset.

6.1 Representational Similarity
with Human Similarity Ratings

This section explores how well these similarity judgements are modeled by
different kinds of word embeddings, especially by Transformer-based word em-
beddings, and how the process of decontextualization affects this evaluation.

The results are shown first for the Simlex-999 word similarity dataset. Sec-
ond, the results for the Wordsim-353 word similarity dataset are presented and
afterwards the results for the THINGS similarity dataset are shown. For each,
a correlation analysis is performed to investigate the representational similar-
ity between humans and different word embeddings. The analysis is first per-
formed for static embeddings and contextualized embeddings from pretrained
Transformer-based models. Afterwards, embeddings from finetuned models
are investigated as well as the impact of decontextualization, isotropy process-

45

CHAPTER 6. EXPERIMENTAL RESULTS

ing and the number of contexts for aggregation. Finally, the similarity ratings
are investigated between extraction layers.

The representational similarity analysis from Kriegeskorte et al. (2008)
is used to study how well the similarity ratings from the THINGS dataset
are reflected in different representations. The embeddings for the THINGS
dataset are further investigated whether the word sense annotation is helpful
and whether there is an impact of word frequency and retraining. Using a
reweighting method, it is further investigated whether the information is fully
exploited in the word embeddings.

Human conceptual knowledge is based on similarity ratings that were either
completely collected by studies with human participants or partially collected
and modeled with a computational model. The similarity between words is
defined as the cosine similarity between the corresponding embeddings. Cosine
Similarity is chosen as it is commonly used in natural language processing
(Reimers & Gurevych, 2019; Saedi et al., 2018):

cos(x, y) =
x · y

||x|| · ||y|| (6.1)

The intrinsic evaluation is done by calculating a similarity score between all
word pairs provided by the datasets like mouse and computer. As the word
similarity datasets do not provide word senses, word embeddings are chosen.
The similarity score is based on the respective word embeddings and the used
similarity or distance function. Highly similar pairs will get a similarity score of
1 whereas highly dissimilar pairs will get a similarity score of -1. Afterwards,
the resulting similarity ratings will be correlated with the similarity ratings
from a ground truth similarity rating dataset using the spearman correlation.

46

CHAPTER 6. EXPERIMENTAL RESULTS

6.1.1 Word Similarity Ratings from Simlex-999

Figure 6.1 shows the results of the intrinsic evaluation for several word embed-
dings based on word similarity from the ground truth dataset Simlex-999.

Pretrained Models and Static Word Embeddings

Classic static word embeddings are widely used in research and industry. The
recent success of pretrained Transformer-based models like BERT also showed
the importance of these models. Therefore, the investigation of representa-
tional similarity with humans is important.

Predicted similarity ratings from all embeddings have high correlations with
human word similarity ratings from the Simlex-999 dataset.

Static word embeddings from Word2Vec have a correlation of 0.44 whereas
embeddings from GloVe result in a correlation of 0.37 and Deconflated embed-
dings result in a correlation of 0.45.

Contextualized word embeddings from pretrained Transformer-based mod-
els perform similarly. The BERT-base model achieves a correlation of 0.5
with embeddings from the static embedding layer. The correlation decreases
afterwards with later layers. The correlation is lowest for the eleventh layer
with 0.29. Similarity ratings predicted from embeddings from the BERT-large
model have a similar correlation pattern where the correlation of embeddings
from the first embedding layer is the highest with 0.51. It decreases with later
layers and reaches the minimum of 0.29 at the last layer.

Contextualized word embeddings from the GPT-2 model start with a low
correlation of 0.2 from the static embedding layer. The correlation increases
with later layers where the third layer has the highest correlation with 0.44.
With the next layers, the correlation decreases to almost zero in the last layer.
Embeddings from the GPT-2-medium layer follow a similar pattern. In con-
trast to GPT-2, the embeddings from the static embedding layer start with a
high correlation which then decreases at the first decoder layer. The correla-
tion increases until the 15th decoder layer and decreases afterwards until the
last layer. The minimum correlation is at the last layer with 0.04.

Figure 6.2 shows the scatter plot of similarity ratings from humans with
similarity ratings based on decontextualized word embeddings that were ex-
tracted from the last layer of BERT-base and GPT-2 and similarity ratings
based on static word embeddings from Word2Vec. It shows a similar distribu-
tion between BERT-base and Word2Vec embeddings. It can be further seen
that word embedding pairs from GPT-2 are almost all highly similar.

47

CHAPTER 6. EXPERIMENTAL RESULTS

Finetuned Models

Pretrained Transformer-based models are trained with self-supervised meth-
ods. Therefore, it is possible that semantic similarity is not encoded as well
as possible. It was shown that finetuning these models can lead to better
performance while some information retains (Merchant et al., 2020). There-
fore, public available finetuned models on similarity tasks might encode word
similarity better.

Contextualized word embeddings from BERT models that were finetuned
on the semantic text similarity task have a similar correlation with pretrained
BERT models. Embeddings from the finetuned Sentence-BERT model start
with a similar correlation as the pretrained BERT-base model. The correlation
decreases with later layers but is higher than the correlation of static word
embeddings until the eleventh layer. The last layer has the lowest correlation
of 0.23. The second layer has the highest correlation of 0.53. Embeddings
from the finetuned Sentence-Distill-RoBERTa model have similar correlations
compared to embeddings from the Sentence-BERT model. The correlation
of predicted similarity ratings is lowest for the last layer but higher than the
correlation from static word embeddings.

Decontextualization

Following the last two sections, the investigation of decontextualized embed-
dings shows whether the aggregation across contexts increases the represen-
tational similarity with humans. For this, decontextualized word embeddings
are created from pretrained and finetuned Transformer-based models.

Similarity ratings, based on decontextualized word embeddings, have higher
correlations across all models and extraction layers.

Decontextualized word embeddings from the pretrained BERT-base model
have a similar correlation through all layers. The difference between the corre-
lation between contextualized and decontextualized word embeddings increases
with later layers. The correlation of decontextualized word embeddings from
the BERT-large model increases with later layers, reaching the maximum of
0.58 at the 19th layer. Afterwards, the correlation decreases slightly until
the last layer. Similar to the BERT-base model, the difference in correlation
between contextualized and decontextualized embeddings increases with later
layers.

Decontextualized embeddings from the GPT-2 model have higher corre-
lations in all layers than contextualized embeddings. This effect is higher in
earlier layers where the correlation increases from 0.2 to 0.46 in the static em-
beddings layer. Yet, decontextualized embeddings from the last layer have a
low correlation compared to previous layers. Similarly, correlations for decon-

48

CHAPTER 6. EXPERIMENTAL RESULTS

textualized embeddings from the GPT-2-medium model are higher in all layers
compared to contextualized embeddings. The maximum correlation of 0.55 is
reached at the 12th layer.

Predicted similarity ratings from decontextualized embeddings of finetuned
Sentence-BERT models have the highest correlations with human similarity
ratings. The correlation for embeddings from the Sentence-BERT model in-
creases with later layers, reaching the maximum at 0.65 at the eighth layer.
The correlation for embeddings from the finetuned Sentence-Distill-RoBERTa
model increases with later layers, reaching the maximum at the last layer at
0.62.

49

CHAPTER 6. EXPERIMENTAL RESULTS

0 1 2 3 4 5 6 7 8 9 10 11 12

Extraction layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
p
ea
rm

an
co
rr
el
at
io
n

BERT-base

Contextualzied

Decontextualized

Word2Vec

GloVe

Deconflated

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

BERT-large

0 1 2 3 4 5 6 7 8 9 10 11 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
GPT-2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

GPT-2-medium

0 1 2 3 4 5 6 7 8 9 10 11 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Sentence-BERT

0 1 2 3 4 5 6

Sentence-Distill-RoBERTa

Figure 6.1: Spearman correlation of similarity ratings, based on embeddings, with
word similarity ratings from the Simlex-999 dataset

50

CHAPTER 6. EXPERIMENTAL RESULTS

�

�

�

�

�

��

�
�
�
�
�
��
�
�
�
�
�
�
�
�

���

���

���

���

���

���

�
�
�
��
�
��
��

��
�
��
��
�
�
��
�
�
��
�
�
�
�
�

���

���

���

���

���

�
�
�
��
�
��
��

��
�
��
��
�
�
��
�
�
�
��
�

��� ��� ��� ��� ����

���������������

���

���

���

���

���

���

���

�
�
�
��
�
��
��

��
�
��
��
�
�
��
�
�
�
�
�

���� ���� ���� ���� ����

������������������������������

��� ��� ��� ��� ���

���������������������������

��� ��� ���

��������������������������

Figure 6.2: Similarity ratings by humans from the Simlex-999 dataset and similarity
ratings based on decontextualized word embeddings from the last layer of BERT-
base, GPT-2, and static word embeddings from Word2Vec.

51

CHAPTER 6. EXPERIMENTAL RESULTS

Correlations per Layer and Number of Contexts

Decontextualization by aggregation over contexts depends on the number of
contexts. Therefore, it might be possible that only a few contexts are enough
to create high-quality static embeddings.

To investigate the impact of the number of contexts that were used for
the aggregation of contextualized word embeddings, the evaluation is repeated
with a fixed number of contexts per word.

Instead of using all available contexts, the number of contexts is set to a
value in the range [1, 10, 50, 100, 300, 500, 1000]. The analysis is done for word
embeddings from all Transformer-based models and all extraction layers.

The results are shown in Figure 6.3. For all models, the correlations increase
for most layers with a higher number of contexts. Models that are based on
the BERT architecture, like BERT-base, BERT-large, Sentence-BERT, and
Sentence-Distill-RoBERTa show a higher increase of correlation for later layers
than for early layers. There is no big improvement after 50 contexts are used
for aggregation. Models that are based on the GPT architecture do not show
a clear influence of the number of contexts on the layer hierarchy. Similar to
the BERT models, most correlations do not improve after 50 contexts.

Similarity Predictions across Layers

Transformer models might encode different information across their layers and
might encode different semantics. To investigate this question, similarity rat-
ings, based on the word embeddings from all model layers, are compared to
each other. This is done by calculating the spearman correlation between the
similarity ratings from all layer pair combinations.

The results are shown in Figure 6.4. It can be seen that the correlation
between similarity ratings, based on contextualized word embeddings from
BERT-like models, decreases with later layers. This indicates that encoder
layers encode different information about semantic similarity. In contrast, the
correlation between similarity ratings, based on decontextualized word embed-
dings from BERT-like models, stays high across all layers. This indicates that
the decontextualization process preserves information about semantic similar-
ity.

Contextualized word embeddings from GPT- like models produce similarity
ratings that are less correlated than similarity ratings from BERT-like models.
Though, the decontextualization process leads to similar results where similar-
ity ratings are highly correlated between all layers except the last layer which
produces similarity ratings that are uncorrelated to similarity ratings from all
other layers.

52

CHAPTER 6. EXPERIMENTAL RESULTS

1 10 50 100 300 500 1000

embeddings aggregated over n contexts

0.1

0.2

0.3

0.4

0.5

0.6

S
p
ea
rm

an
co
rr
el
at
io
n

BERT-base

Layer 0

Layer 3

Layer 6

Layer 9

Layer 12

1 10 50 100 300 500 1000

S
p
ea
rm

an
co
rr
el
at
io
n

BERT-large

Layer 0

Layer 5

Layer 10

Layer 15

Layer 20

1 10 50 100 300 500 1000

0.1

0.2

0.3

0.4

0.5

0.6

S
p
ea
rm

an
co
rr
el
at
io
n

GPT-2

Layer 0

Layer 3

Layer 6

Layer 9

Layer 12

1 10 50 100 300 500 1000

S
p
ea
rm

an
co
rr
el
at
io
n

GPT-2-medium

Layer 0

Layer 5

Layer 10

Layer 15

Layer 20

1 10 50 100 300 500 1000

0.1

0.2

0.3

0.4

0.5

0.6

S
p
ea
rm

an
co
rr
el
at
io
n

Sentence-BERT

Layer 0

Layer 3

Layer 6

Layer 9

Layer 12

1 10 50 100 300 500 1000

S
p
ea
rm

an
co
rr
el
at
io
n

Sentence-Distill-RoBERTa

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Figure 6.3: Correlation of similarity ratings, based on embeddings, with word
similarity ratings from Simlex-999 per layer and number of contexts. Correlations
are shown for all layers.

53

CHAPTER 6. EXPERIMENTAL RESULTS

0 1 2 3 4 5 6 7 8 9 101112

Extraction layer

0
2

4
6

8
1
0

12

E
x
tr
ac
ti
on

la
ye
r

BERT-base - contextualized

0 1 2 3 4 5 6 7 8 9 101112

Extraction layer

0
2

4
6

8
1
0

12

E
x
tr
ac
ti
on

la
ye
r

BERT-base - decontextualized

0 2 4 6 8 1012141618202224

Extraction layer

0
3

6
9

12
15

18
21

24

E
x
tr
ac
ti
on

la
ye
r

BERT-large - contextualized

0 2 4 6 8 1012141618202224

Extraction layer

0
3

6
9

12
15

18
21

24

E
x
tr
ac
ti
on

la
ye
r

BERT-large - decontextualized

0 1 2 3 4 5 6 7 8 9 101112

Extraction layer

0
2

4
6

8
10

12

E
x
tr
ac
ti
on

la
ye
r

GPT-2 - contextualized

0 1 2 3 4 5 6 7 8 9 101112

Extraction layer
0

2
4

6
8

10
12

E
x
tr
ac
ti
on

la
ye
r

GPT-2 - decontextualized

0 2 4 6 8 1012141618202224

Extraction layer

0
3

6
9

12
15

18
21

24

E
x
tr
ac
ti
on

la
ye
r

GPT-2-medium - contextualized

0 2 4 6 8 1012141618202224

Extraction layer

0
3

6
9

12
15

18
21

24

E
x
tr
ac
ti
on

la
ye
r

GPT-2-medium - decontextualized

0 1 2 3 4 5 6 7 8 9 101112

Extraction layer

0
2

4
6

8
10

1
2E
x
tr
ac
ti
on

la
ye
r

Sentence-BERT - contextualized

0 1 2 3 4 5 6 7 8 9 101112

Extraction layer

0
2

4
6

8
10

1
2E
x
tr
ac
ti
on

la
ye
r

Sentence-BERT - decontextualized

0 1 2 3 4 5 6

Extraction layer

0
1

2
3

4
5

6E
x
tr
ac
ti
on

la
ye
r

Sentence-Distill-RoBERTa - contextualized

0 1 2 3 4 5 6

Extraction layer

0
1

2
3

4
5

6E
x
tr
ac
ti
on

la
ye
r

Sentence-Distill-RoBERTa - decontextualized

0.6

0.8

1.0

0.7

0.8

0.9

1.0

0.4

0.6

0.8

1.0

0.7

0.8

0.9

1.0

0.25

0.50

0.75

1.00

0.4

0.6

0.8

1.0

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.4

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.7

0.8

0.9

1.0

Figure 6.4: Correlation of similarity ratings, based on embeddings, between all
extraction layers

54

CHAPTER 6. EXPERIMENTAL RESULTS

0 1 2 3 4 5 6 7 8 9 10 11 12

Extraction layer

0.1

0.2

0.3

0.4

0.5

S
p
ea
rm

an
co
rr
el
at
io
n

BERT-base

Contextualized - without postprocessing

Contextualized - with postprocessing

Decontextualized - without postprocessing

Decontextualized - with postprocessing

Word2Vec - with postprocessing

Word2Vec - without postprocessing

0 1 2 3 4 5 6 7 8 9 10 11 12

GPT-2

Figure 6.5: Effect of isotropy postprocessing on the correlation of similarity ratings,
based on embeddings from BERT-base and GPT-2, with similarity ratings from the
Simlex-999 dataset

Impact of Isotropy Postprocessing

It was shown by Mu and Viswanath (2017) and Ethayarajh (2019) that static
and contextualized word embeddings suffer from anisotropy. Therefore, the
isotropy postprocessing method from Mu and Viswanath (2017) is used to
increase the correlation with similarity ratings from the Simlex-999 dataset.

Word embeddings from BERT-base and GPT-2 are exemplarily used as
Transformer-based embeddings. Word2Vec embeddings are exemplarily used
as static word embeddings.

The postprocessing leads to increased correlation for all word embeddings
across all models and layers (see Figure 6.5). The improvement of the correla-
tion with contextualized and decontextualized word embeddings from BERT-
base gets higher with later layers.

55

CHAPTER 6. EXPERIMENTAL RESULTS

6.1.2 Word Similarity Ratings from Wordsim-353

Figure 6.6 shows the results of the intrinsic evaluation of word embeddings
based on word similarity from the ground truth dataset Wordsim-353.

Pretrained Models and Static Word Embeddings

Predicted similarity ratings from all embeddings have high correlations with
human word similarity ratings from the Wordsim-353 dataset. Generally, they
show a similar correlation pattern compared to correlations with similarity
ratings from the Simlex-999 dataset.

Static word embeddings from Word2Vec have a correlation of 0.69 whereas
embeddings from GloVe result in a correlation of 0.6. Deconflated embeddings
result in a correlation of 0.65.

Contextualized word embeddings from the BERT-base model have the
highest correlations at the static embedding layer with 0.66 and the lowest
correlation of 0.37 at the penultimate layer. Embeddings from the BERT-
large model have the maximum correlation of 0.69 at the second layer. It
decreases with later layers, reaching the minimum of 0.4 at the penultimate
layer.

Contextualized word embeddings from the GPT-2 model start with a corre-
lation of 0.3 at the static embedding layer. It increases to the maximum of 0.55
at the fifth layer and decreases to the minimum of 0.12 at the last layer. In con-
trast, embeddings from the static embedding layer from the GPT-2-medium
model have the highest correlation of 0.62. It decreases to the minimum of
0.11 at the last layer.

Finetuned Models

Contextualized word embeddings from the finetuned Sentence-BERT model
have the highest correlation at the first encoder layer with 0.66 which decreases
then with later layers until the last layer to 0.36. The finetuned Sentence-
Distill-RoBERTa model has the highest correlation of 0.67 at the first encoder
layer. It decreases slightly, reaching the minimum at the third layer with 0.56.
It increases slightly until the last layer to 0.61.

Decontextualization

Similar to the correlations with similarity ratings from the Simlex-999 dataset,
the process of decontextualization increases the correlation across all models
and extraction layers.

56

CHAPTER 6. EXPERIMENTAL RESULTS

For embeddings from the BERT model family, the correlations range be-
tween 0.58 and 0.73. The difference in correlations with contextualized word
embeddings gets higher with later layers. The maximum correlation is reached
at 0.73 at the sixth layer from the BERT-large model. Embeddings from the
GPT-2 model have the highest correlation of 0.67 at the first decoder layer
which decreases with later layers until the minimum of 0.29 at the last layer.
For the GPT-2-medium model, the embeddings from the static embedding
layer have the highest correlation of 0.7 which then decreases to the minimum
of 0.31 at the last layer.

Similarly to the pretrained BERT models, the correlation of decontextual-
ized embeddings from the finetuned models of Reimers and Gurevych (2019)
is higher in later layers compared to the correlations from contextualized word
embeddings. Similarity ratings based on embeddings from the Sentence-BERT
model reach a maximum correlation of 0.7 and ratings based on embeddings
from the Sentence-Distill-RoBERTa model reach a maximum correlation of
0.72.

Correlations per Layer and Number of Contexts

In the previous evaluation, all available contexts were used to create decontex-
tualized embeddings. The results showed higher correlations for decontextu-
alized embeddings compared to contextualized embeddings using one context.
Bommasani et al. (2020) showed that the total number of contexts increases
the correlation with several word similarity ratings, too. To further investigate
the effect of the number of contexts on the correlation of similarity predictions,
based on embeddings, with human similarity ratings, the previous evaluation
was repeated with a different number of contexts for aggregation.

Only words with at least 1000 unique contexts were chosen to avoid up-
sampling of context for low frequent words. Afterwards, n contexts from [1,
10, 50, 100, 300, 500, 1000] were used to create and evaluate decontextualized
word embeddings.

In Figure 6.7 the correlations are shown per model, extraction layer and
number of contexts for aggregation. For pretrained and finetuned BERT mod-
els, the correlations converge after ten contexts. The correlation increases more
at later layers. For pretrained GPT-2 models, the correlations converge after
50 contexts.

Similarity Predictions across Layers

Predicted similarity ratings, based on embeddings, are different depending on
the extraction layer of the embeddings as seen in the previous analyses. To

57

CHAPTER 6. EXPERIMENTAL RESULTS

investigate whether different model layers encode similar or different informa-
tion about the semantic meaning, the predicted similarity ratings for word
pairs are correlated using the spearman correlation. For this analysis, contex-
tualized word embeddings as well as decontextualized word embeddings are
used to further investigate the influence of aggregation on layer encoding.

The results in Figure 6.8 show the correlation matrices between layers. For
contextualized word embeddings from models based on the BERT architec-
ture, the predicted similarity ratings from early layers have high correlations.
The correlations decrease with later layers to a minimum of around 0.4. For
decontextualized word embeddings, the predicted similarity ratings have gen-
erally higher correlations across layers. For embeddings from the BERT-base,
BERT-large, and Sentence-BERT models, the correlations of predicted simi-
larity ratings are high between all layer pairs until the last three layers. For
embeddings from the GPT-2 and GPT-2-medium model, the correlations of
predicted similarity ratings are high between all layer pairs except for the last
layer.

58

CHAPTER 6. EXPERIMENTAL RESULTS

0 1 2 3 4 5 6 7 8 9 10 11 12

Extraction layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
p
ea
rm

an
co
rr
el
at
io
n

BERT-base

Contextualzied

Decontextualized

Word2Vec

GloVe

Deconflated

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

BERT-large

0 1 2 3 4 5 6 7 8 9 10 11 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
GPT-2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

GPT-2-medium

0 1 2 3 4 5 6 7 8 9 10 11 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Sentence-BERT

0 1 2 3 4 5 6

Sentence-Distill-RoBERTa

Figure 6.6: Spearman correlation of similarity ratings, based on embeddings, with
word similarity ratings from the Wordsim-353 dataset

59

CHAPTER 6. EXPERIMENTAL RESULTS

1 10 50 100 300 500 1000

embeddings aggregated over n contexts

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
p
ea
rm

an
co
rr
el
at
io
n

BERT-base

Layer 0

Layer 3

Layer 6

Layer 9

Layer 12

1 10 50 100 300 500 1000
S
p
ea
rm

an
co
rr
el
at
io
n

BERT-large

Layer 0

Layer 5

Layer 10

Layer 15

Layer 20

1 10 50 100 300 500 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
p
ea
rm

an
co
rr
el
at
io
n

GPT-2

Layer 0

Layer 3

Layer 6

Layer 9

Layer 12

1 10 50 100 300 500 1000

S
p
ea
rm

an
co
rr
el
at
io
n

GPT-2-medium

Layer 0

Layer 5

Layer 10

Layer 15

Layer 20

1 10 50 100 300 500 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
p
ea
rm

an
co
rr
el
at
io
n

Sentence-BERT

Layer 0

Layer 3

Layer 6

Layer 9

Layer 12

1 10 50 100 300 500 1000

S
p
ea
rm

an
co
rr
el
at
io
n

Sentence-Distill-RoBERTa

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Figure 6.7: Correlation of similarity ratings, based on embeddings, with word
similarity ratings from Wordsim-353 per layer and number of contexts

60

CHAPTER 6. EXPERIMENTAL RESULTS

0 1 2 3 4 5 6 7 8 9 101112

Extraction layer

0
2

4
6

8
1
0

12

E
x
tr
ac
ti
on

la
ye
r

BERT-base - contextualized

0 1 2 3 4 5 6 7 8 9 101112

Extraction layer

0
2

4
6

8
1
0

12

E
x
tr
ac
ti
on

la
ye
r

BERT-base - decontextualized

0 2 4 6 8 1012141618202224

Extraction layer

0
3

6
9

12
15

18
21

24

E
x
tr
ac
ti
on

la
ye
r

BERT-large - contextualized

0 2 4 6 8 1012141618202224

Extraction layer

0
3

6
9

12
15

18
21

24

E
x
tr
ac
ti
on

la
ye
r

BERT-large - decontextualized

0 1 2 3 4 5 6 7 8 9 101112

Extraction layer

0
2

4
6

8
10

12

E
x
tr
ac
ti
on

la
ye
r

GPT-2 - contextualized

0 1 2 3 4 5 6 7 8 9 101112

Extraction layer
0

2
4

6
8

10
12

E
x
tr
ac
ti
on

la
ye
r

GPT-2 - decontextualized

0 2 4 6 8 1012141618202224

Extraction layer

0
3

6
9

12
15

18
21

24

E
x
tr
ac
ti
on

la
ye
r

GPT-2-medium - contextualized

0 2 4 6 8 1012141618202224

Extraction layer

0
3

6
9

12
15

18
21

24

E
x
tr
ac
ti
on

la
ye
r

GPT-2-medium - decontextualized

0 1 2 3 4 5 6 7 8 9 101112

Extraction layer

0
2

4
6

8
10

1
2E
x
tr
ac
ti
on

la
ye
r

Sentence-BERT - contextualized

0 1 2 3 4 5 6 7 8 9 101112

Extraction layer

0
2

4
6

8
10

1
2E
x
tr
ac
ti
on

la
ye
r

Sentence-BERT - decontextualized

0 1 2 3 4 5 6

Extraction layer

0
1

2
3

4
5

6E
x
tr
ac
ti
on

la
ye
r

Sentence-Distill-RoBERTa - contextualized

0 1 2 3 4 5 6

Extraction layer

0
1

2
3

4
5

6E
x
tr
ac
ti
on

la
ye
r

Sentence-Distill-RoBERTa - decontextualized

0.4

0.6

0.8

1.0

0.7

0.8

0.9

1.0

0.4

0.6

0.8

1.0

0.7

0.8

0.9

1.0

0.0

0.5

1.0

0.4

0.6

0.8

1.0

0.0

0.5

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.8

0.9

1.0

Figure 6.8: Correlation of similarity ratings, based on embeddings, between all
extraction layers

61

CHAPTER 6. EXPERIMENTAL RESULTS

6.1.3 Similarity Ratings of Object Images from THINGS

The previous analyses were based on word similarity which measures the sim-
ilarity between two words without context. It is based on similarity ratings
between word pairs based on human judgements. As these word similarity
datasets are unsuitable to determine why two words are rated similar or dis-
similar, a new similarity dataset from Hebart et al. (2020) shall be used for
evaluation. The evaluation is based on the Representational Similarity Anal-
ysis from Kriegeskorte et al. (2008) which is an analysis method from neuro-
science research. For a set of objects, the similarities of all pairs are calculated
based on a similarity function. Compared to the classical intrinsic evaluation
with word similarity datasets like Simlex-999 and Wordsim-353, it is ensured
that all possible pairs are evaluated.

The resulting similarity matrix is then correlated with a target similarity
matrix to access how well representational similarity is reflected in the base
matrix. Representational Similarity Analysis is usually done between simi-
larities based on a computational model, similarities based on brain activity,
e.g. fMRI data, and similarities based on human behavior. In this evaluation,
word embeddings will be used as the computational model and the similarity
judgements from Hebart et al. (2020) will be used as human behavioral data.

Impact of Word Sense Annotation

As described in the introduction, embeddings can be created for words, word
senses, and synsets. An advantage of using word sense or synset embeddings is
that homonyms get different embeddings. Therefore, they capture their diverse
meaning. To create these embeddings, a word sense prediction is performed.
For this, the ARES embeddings from Scarlini et al. (2020b) are used to predict
the word sense of a target word by choosing the word sense of the closest
ARES embedding to a BERT-large embedding of the word. By using the
NLTK library, the synsets are matched to the word senses. Afterwards in the
decontextualization process, embeddings are aggregated per word sense and
synset.

The representational similarity analysis is then used to access the quality
of the embeddings. As the THINGS dataset has word sense and synset anno-
tations, only the matching embeddings are used. A fixed number of n = 10
contexts is used for decontextualization for a fair comparison as word and
word senses have a different total number of embeddings. Objects without
matching embeddings are removed. Embeddings are exemplarily used from
the BERT-base model because the word sense annotation process only influ-
ences the decontextualization process and not the contextualized embeddings.
Therefore, similar results are expected for other extraction models.

62

CHAPTER 6. EXPERIMENTAL RESULTS

0 2 4 6 8 10 12

0.15

0.20

0.25

0.30

0.35

0.40

All words - n = 905

Word embedding

Word Sense embedding

Synset embedding

0 2 4 6 8 10 12

Only homonyms - n = 12

Figure 6.9: Correlation of similarity ratings, based on word, word sense, and synset
embeddings, with object image similarity ratings from the THINGS dataset.

The results can be seen in Figure 6.9. It shows the correlation of similarity
ratings, based on word, word sense, and synset embeddings with the object
image similarity ratings from the THINGS dataset. For all three embedding
types, the correlations increase with later layers but are highly similar. The
same analysis is performed for homonymous words that occur multiple times
in the THINGS dataset like mouse or bat. As the sample is not big enough, the
results are not significant. Word embeddings are further used in the following
experiments based on this result.

Pretrained Language Models and Static Word Embeddings

Figure 6.10 shows the results of the intrinsic evaluation for all word embed-
dings. Static word embeddings have the highest correlation with the human
ground truth similarity judgements whereas embeddings from large language
models perform worse.

Word2Vec embeddings lead to a correlation of 0.37, GloVe embeddings to
0.29, and Deconflated embeddings to 0.46.

Single contextualized word embeddings show different performances across
models. For BERT-base embeddings, the correlations are similar across layers
with the maximum of 0.16 at the first encoder layer and the minimum of
0.12 at the eleventh layer. Embeddings from the BERT-large model have the
highest correlation of 0.18 at the sixth layer and the lowest correlation of 0.08
at layer 23. GPT-2 embeddings result in a maximum correlation of 0.12 at the

63

CHAPTER 6. EXPERIMENTAL RESULTS

eighth layer and a minimum correlation of 0.03 at the static embedding layer.
Embeddings from the GPT-2-medium model result in a maximum correlation
of 0.12 at layer 15 and a minimum correlation of 0.03 at the last layer.

Finetuned models

Single contextualized word embeddings from finetuned models have similar
correlations compared with embeddings from pretrained models.

Similarity ratings, based on embeddings from the Sentence-BERT model,
have a maximum correlation of 0.19 at the eleventh layer and a minimum
correlation of 0.1 at the last layer. Embeddings from the Sentence-Distill-
RoBERTa model result in a maximum correlation of 0.23 at the sixth layer
and a minimum correlation of 0.08 at the fourth layer.

Impact of Decontextualization

Decontextualized embeddings have higher correlations than contextualized em-
beddings across all models. For BERT-base, decontextualized embeddings
result in a maximum correlation of 0.25 at the tenth layer and a minimum
correlation of 0.15 at the static embedding layer. For BERT-large, decontex-
tualized embeddings result in a maximum correlation of 0.25 at layer 21 and
a minimum correlation of 0.14 at the second layer. In both GPT-2 models,
the correlations increase with later layers, resulting in a maximum correlation
of 0.22 for GPT-2 and 0.25 for GPT-2-medium in the last layers. Yet, the
correlation of the final decoder layer decreases to 0.08 for GPT-2 and 0.06 for
GPT-2-medium. Embeddings from the Sentence-BERT model have the max-
imum correlation of 0.27 at the eleventh layer and the minimum correlation
of 0.15 at the static embedding layer. Embeddings from the Sentence-distill-
RoBERTa model have the maximum correlation of 0.23 at the last layer and
the minimum correlation of 0.12 at the fourth layer.

Qualitative Analysis

The rank differences d2i from the spearman rank calculation can be used to
further analyze the embeddings. A high rank difference of a word pair indicates
a difference in representational similarity compared with humans.

In Table 6.1, word pairs with the highest rank difference are shown with
the respective similarity ratings from humans and based on decontextualized
word embeddings from BERT-base. The list contains homonyms that are not
directly marked as homonyms in the THINGS dataset. For example, the word
gyro is used for food in the THINGS dataset, but it also has the meaning of a

64

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.1: Word pairs where similarity ratings based on cosine similarity between
word embeddings and object image-based similarity ratings from humans differ the
most. Pairs are sorted by ascending spearman rank difference.

Word 1 Word 2 Human Judgement Cosine Similarity

piglet ratchet 0.07 0.70
gyro periscope 0.07 0.69
cornucopia unicycle 0.07 0.72
beaver cardinal 0.94 0.25
scaffold scallop 0.08 0.73
cardinal vulture 0.96 0.26
target volleyball 0.94 0.26
cornucopia tripod 0.07 0.68
gyro tripod 0.08 0.76
blouse tag 0.92 0.24
eggbeater seagull 0.07 0.68
cobra moth 0.91 0.23
gyro gyroscope 0.08 0.88
beetle cobra 0.92 0.25
jackhammer meatball 0.08 0.69
beetle earwig 0.95 0.27
jackhammer pancake 0.07 0.68
sweater tag 0.93 0.26
skunk whisk 0.07 0.66
fox lizard 0.92 0.26

playing toy. The word cardinal is used for the bird but also has the meaning
of a leading dignitary in the catholic church.

65

CHAPTER 6. EXPERIMENTAL RESULTS

0 1 2 3 4 5 6 7 8 9 10 11 12

Extraction layer

0.0

0.1

0.2

0.3

0.4

0.5

S
p
ea
rm

an
co
rr
el
at
io
n

BERT-base

Contextualized

Decontextualized

Word2Vec

GloVe

Deconflated

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

BERT-large

0 1 2 3 4 5 6 7 8 9 10 11 12
0.0

0.1

0.2

0.3

0.4

0.5
GPT-2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

GPT-2-medium

0 1 2 3 4 5 6 7 8 9 10 11 12
0.0

0.1

0.2

0.3

0.4

0.5
Sentence-BERT

0 1 2 3 4 5 6

Sentence-Distill-RoBERTa

Figure 6.10: Correlation of similarity ratings, based on embeddings, with object
image similarity ratings from the THINGS dataset.

66

CHAPTER 6. EXPERIMENTAL RESULTS

1 10 50 100 300 500

Number of contexts for aggregation

0.05

0.10

0.15

0.20

0.25

S
p
ea
rm

an
co
rr
el
at
io
n

BERT-base

Layer 0

Layer 3

Layer 6

Layer 9

Layer 12

1 10 50 100 300 500

S
p
ea
rm

an
co
rr
el
at
io
n

BERT-large

Layer 0

Layer 5

Layer 10

Layer 15

Layer 20

1 10 50 100 300 500

0.05

0.10

0.15

0.20

0.25

S
p
ea
rm

an
co
rr
el
at
io
n

GPT-2

Layer 0

Layer 3

Layer 6

Layer 9

Layer 12

1 10 50 100 300 500
S
p
ea
rm

an
co
rr
el
at
io
n

GPT-2-medium

Layer 0

Layer 5

Layer 10

Layer 15

Layer 20

1 10 50 100 300 500

0.05

0.10

0.15

0.20

0.25

S
p
ea
rm

an
co
rr
el
at
io
n

Sentence-BERT

Layer 0

Layer 3

Layer 6

Layer 9

Layer 12

1 10 50 100 300 500

S
p
ea
rm

an
co
rr
el
at
io
n

Sentence-Distill-RoBERTa

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Figure 6.11: Correlation of similarity ratings, based on embeddings, with object
image similarity ratings from the THINGS dataset per layer and number of contexts

Impact of Number of Contexts

To investigate the importance of the number of contexts used for aggregation,
the intrinsic evaluation was performed on a fixed size of contexts. For a fair
comparison, only word pairs that have more than 1000 unique contexts were
used. Further, all layers were used for extraction to investigate the dynamic
between the number of contexts and the extraction layer.

As seen in Figure 6.11, the number of contexts affects the representational
similarity. The more contexts are used, the higher the correlation. This effect
stops after 100 contexts for the GPT models and after ten to 50 contexts for
BERT models. Afterwards, the correlation converges.

67

CHAPTER 6. EXPERIMENTAL RESULTS

0 1 2 3 4 5 6 7 8 9 10 11 12

Extraction layer

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S
p
ea
rm

an
co
rr
el
at
io
n

BERT-base

Contextualized - without postprocessing

Contextualized - with postprocessing

Decontextualized - without postprocessing

Decontextualized - with postprocessing

Word2Vec - with postprocessing

Word2Vec - without postprocessing

0 1 2 3 4 5 6 7 8 9 10 11 12

GPT-2

Figure 6.12: Effect of isotropy postprocessing on the correlation of similarity rat-
ings, based on embeddings from BERT-base and GPT-2, with object image similarity
ratings from the THINGS dataset.

Impact of Isotropy Postprocessing

Figure 6.12 shows the effect of the postprocessing step to increase isotropy.
In contrast to the correlations with similarity ratings from the word similar-
ity datasets, it decreases the correlation with the similarity ratings from the
THINGS dataset. For Word2Vec embeddings, the correlation decreases from
0.37 to 0.06. Similarly, the correlation decreases for contextualized and decon-
textualized word embeddings from BERT-base and GPT-2.

68

CHAPTER 6. EXPERIMENTAL RESULTS

Impact of Low Frequent Words

The correlations of predicted similarity ratings between word pairs with sim-
ilarity ratings from the THINGS dataset are lower than compared with word
similarity ratings from the Simlex-999 and Wordsim-353 datasets.

One reason for this difference might be the composition of the THINGS
dataset. It contains living and non-living concrete objects covering high fre-
quent objects as well as low frequent objects whereas the word similarity
datasets Simlex-999 and Wordsim-353 seem to be composed of more high fre-
quent words. This can be seen in the distribution of the number of contexts
per word in Figure 5.6 where it is possible to sample 1000 contexts for almost
all target words from the word similarity datasets. It was further shown by Li
et al. (2020) that word frequency might bias word embeddings and the pre-
dicted similarity as it is based on the cosine similarity between embeddings.
The frequency of a word might influence the training of an embedding model
or influence the aggregation as less context are available. Static word embed-
dings like Word2Vec are trained on a bigger corpus than Transformer-based
models which results in more contexts per word.

The influence on the aggregation was shown in Figure 6.11. To investigate
the effect of word frequency on the training, the object frequency metadata
from the THINGS dataset is used to approximate the frequency of words dur-
ing training as this information is not available. The 1,854 words are first
sorted by descending frequency and then split into 30 batches. For each non-
overlapping batch, a similarity matrix, based on the cosine similarity between
word pair embeddings, is calculated. In a second analysis, the batches are
merged, starting with the batch containing the most frequent words and end-
ing with a batch containing all words. Decontextualized word embeddings
from BERT-base are used. BERT-base is chosen as similarity ratings based on
the model embeddings have high correlations and are fast to compute.

The results can be seen in Figure 6.13. On the left side, the correlation
for each batch is shown as well as the mean frequency, based on the COCA
frequency. On the right side, the correlation of similarity ratings based on
cumulative batches is shown. Both analyses do not show a significant impact
of the frequency of words on the representational similarity.

Similarity Predictions across Layers

Similar to the analysis of word similarity ratings, based on word embeddings,
the predicted similarity of object images, based on word embeddings, shall be
compared across extraction layers.

The same method was applied where the spearman correlation between
similarity predictions, based on word embeddings, from two layers is calculated

69

CHAPTER 6. EXPERIMENTAL RESULTS

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Batch of THINGS word sorted by ascending freq of words

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S
p
ea
rm

an
co
rr
el
at
io
n

BERT-base

GPT-2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Cumulated batches of THINGS words

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

S
p
ea
rm

an
co
rr
el
at
io
n

BERT-base

GPT-2

0

10000

20000

30000

40000

50000

60000

70000

M
ea
n
C
O
C
A

w
or
d
fr
eq
u
en
cy

10000

20000

30000

40000

50000

60000

70000

M
ea
n
C
O
C
A

w
or
d
fr
eq
u
en
cy

Figure 6.13: Effect of low frequent words on the correlation of similarity ratings,
based on embeddings from BERT-base and GPT-2, with object image similarity
ratings from the THINGS dataset.

as a measure whether the similarity is encoded in a similar or different way.
It is expected to match the results based on the Wordsim-353 and Simlex-999
datasets as only the vocabulary changes. Yet, the focus of the THINGS dataset
on living and non-living concrete objects might influence the result.

In Figure 6.14, overall low correlations can be seen between similarity rat-
ings based on contextualized word embeddings. Especially for embeddings
from the GPT-2 and GPT-2-medium model. Similarity ratings based on de-
contextualized word embeddings have higher correlations between layers across
all models.

70

CHAPTER 6. EXPERIMENTAL RESULTS

0 1 2 3 4 5 6 7 8 9 101112

Extraction layer

0
2

4
6

8
10

12

E
x
tr
ac
ti
on

la
ye
r

BERT-base - contextualized

0 1 2 3 4 5 6 7 8 9 101112

Extraction layer

0
2

4
6

8
10

12

E
x
tr
ac
ti
on

la
ye
r

BERT-base - decontextualized

0 2 4 6 8 1012141618202224

Extraction layer

0
3

6
9

12
15

18
21

24

E
x
tr
ac
ti
on

la
ye
r

BERT-large - contextualized

0 2 4 6 8 1012141618202224

Extraction layer

0
3

6
9

12
15

18
21

24

E
x
tr
ac
ti
on

la
ye
r

BERT-large - decontextualized

0 1 2 3 4 5 6 7 8 9 101112

Extraction layer

0
2

4
6

8
10

12

E
x
tr
ac
ti
on

la
ye
r

GPT-2 - contextualized

0 1 2 3 4 5 6 7 8 9 101112

Extraction layer
0

2
4

6
8

10
12

E
x
tr
ac
ti
on

la
ye
r

GPT-2 - decontextualized

0 2 4 6 8 1012141618202224

Extraction layer

0
3

6
9

12
15

18
21

24

E
x
tr
ac
ti
on

la
ye
r

GPT-2-medium - contextualized

0 2 4 6 8 1012141618202224

Extraction layer

0
3

6
9

12
15

18
21

24

E
x
tr
ac
ti
on

la
ye
r

GPT-2-medium - decontextualized

0 1 2 3 4 5 6 7 8 9 101112

Extraction layer

0
2

4
6

8
10

12

E
x
tr
ac
ti
on

la
ye
r

Sentence-BERT - contextualized

0 1 2 3 4 5 6 7 8 9 101112

Extraction layer

0
2

4
6

8
10

12

E
x
tr
ac
ti
on

la
ye
r

Sentence-BERT - decontextualized

0 1 2 3 4 5 6

Extraction layer

0
1

2
3

4
5

6E
x
tr
ac
ti
on

la
ye
r

Sentence-Distill-RoBERTa - contextualized

0 1 2 3 4 5 6

Extraction layer

0
1

2
3

4
5

6E
x
tr
ac
ti
on

la
ye
r

Sentence-Distill-RoBERTa - decontextualized

0.25

0.50

0.75

1.00

0.4

0.6

0.8

1.0

0.25

0.50

0.75

1.00

0.4

0.6

0.8

1.0

0.25

0.50

0.75

1.00

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.25

0.50

0.75

1.00

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.6

0.8

1.0

Figure 6.14: Correlation of similarity ratings, based on embeddings, between all
extraction layers

71

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.2: Hyperparameters and their ranges and distributions that were sampled
from.

MSE MAE Contrastive loss

Learning Rate 0.000019 0.000045 0.000057
Dropout Rate 0.048 0.1948
Batch Size 1000 - 5000
Weight Decay 0.000001 - 0.00001
Number of Neurons per Layer 600 600 600
Number of Layers 1 1 1

� � � � � � � � � ���������������������

�����

�����

�����

�����

�����

�����

�
�
�
�

�����������������������

�����

����������

� � � � � � � � � � ��������

����

����

����

����

����

������������������������

� � � � � � � � � ���������������������

������

������

������

������

������

������

������

������

������

����������������

Figure 6.15: Training and validation losses per epoch for training with mean
squared error loss, mean absolute error loss, and contrastive loss.

Impact of Retraining

The previous analyses showed that Transformer-based word embeddings en-
code the similarity of object images worse than static word embeddings. There-
fore, a retraining method is applied to the Transformer-based word embeddings
to create new embeddings and to investigate whether it is possible to improve
the embeddings.

The final retraining is based on the optimized hyperparameters. The train-
ing and validation losses per epoch are shown in Figure 6.15.

Figure 6.16 shows the effect of retraining on the representational similarity
of embeddings for words from the train, validation, and test set. The cor-
relation of similarity ratings from retrained word embeddings with similarity
ratings from the THINGS dataset is higher for all extraction layers compared
to decontextualized word embeddings without retraining. Similar to previous
results, the correlation is higher with later layers. It is possible to reach a

72

CHAPTER 6. EXPERIMENTAL RESULTS

� � � � � �� ��

����������������

���

���

���

���

���

���

���

�
�
�
�
��

�
�
��
�
��
�
��
��
�
�

�����

������������������

�����������������������

������������������������

����������������

� � � � � �� ��

����������

� � � � � �� ��

����

Figure 6.16: Correlation of similarity ratings, based on embeddings, with object
image similarity ratings from THINGS before and after retraining on train, valida-
tion, and test sets

maximum correlation of 0.7 with all three loss functions.
Figure 6.17 shows the distribution of similarity ratings for embeddings of

word pairs from the validation set before and after retraining and the scatter
plot of true similarity ratings and embedding-based similarity ratings. The
retraining adjusts similar as well as dissimilar pairs which leads to a more
diagonal aligned scatter plot.

Table 6.3 shows wrongly optimized word pairs from the test set that are
sorted by decreasing squared rank difference di2 from the spearman correlation.
It can be seen that the retraining leads to similar word pairs containing animals
and the word wok.

73

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.3: Word pairs from the test set sorted by spearman rank difference after
retraining. Human judgements range from 0 (dissimilar) to 1 (similar). Cosine
Similarities range from -1 (dissimilar) to 1 (similar).

Word 1 Word 2 Human Judgement Cosine Similarity

chinchilla wok 0.07 0.75
llama waffle_iron 0.07 0.74
poodle wok 0.07 0.71
cocktail funnel 0.79 0.03
llama tupperware 0.08 0.73
mongoose wok 0.07 0.70
bongo chinchilla 0.08 0.76
paper_plate wok 0.78 0.04
plate soup 0.79 0.05
ottoman turkey 0.09 0.86
llama wok 0.07 0.68
bongo hamster 0.08 0.71
cinnamon peg 0.85 0.08
possum wok 0.07 0.69
bus rim 0.83 0.08
cilantro hedge 0.91 0.10
crow wok 0.07 0.68
dish llama 0.08 0.72
tape_measure wax 0.09 0.73
bongo ferret 0.08 0.69

74

CHAPTER 6. EXPERIMENTAL RESULTS

��� ��� ��� ��� ��� ���

�����������������

�

���

���

���

���

���

���

���

���

�
�
�
�
�
��
�
��
�
�
��
�

�����������������

��� ��� ��� ��� ��� ���

�����������������

����������������

��� ��� ��� ��� ���

������������������������

���

���

���

���

���

���

�
��

��
�
��
��
��
�
��
�
�
��
�
�
�
�
��
�
��
�
�
�
�
�
��
�

�����������������

��� ��� ��� ��� ���

������������������������

����������������

Figure 6.17: Similarity distribution of the validation set before and after retraining

75

CHAPTER 6. EXPERIMENTAL RESULTS

Feature-Reweighted
Representational Similarity Analysis

As the previous analysis assumed the same importance of all embedding di-
mensions, it is possible that the encoded information is not fully exploited as
different dimensions can have a different high influence on the similarity. For
example, some dimensions might be more important for the encoding of lexical
meaning rather than semantic meaning.

To investigate this question, a feature-reweighted representational simi-
larity analysis is performed to predict the dimension-based similarity. The
framework from Kaniuth and Hebart (2020) is used to perform this analy-
sis. The term feature refers to the dimensionality of the word embedding, e.g.
768 for embeddings from the BERT-base model. Instead of calculating the
similarity between word embeddings based on all features, this algorithm first
calculates the similarity between words based on a single feature. Then the
target similarity is predicted using a multiple regression model with y as the
target similarity based on all features, β as the regression coefficients, p as the
length of the word embeddings, e.g. 768 for a BERT-base based word embed-
ding, and xij as the similarity value based on a single feature j of a word pair
i:

yi = β0 +

p�

j=0

βj · xij (6.2)

The model then uses predictor variables for every single feature and the sim-
ilarity ground truth as the target yi. A mean squared error term and ridge
regularization are used as the objective term:

1

m

m�

i=0

(yi − ŷi)
2 + λ ·

p�

j=0

β2
j (6.3)

Word similarity is not investigated with this approach, as the algorithm is
based on similarity matrices and therefore requires all possible pairs to be
compared.

As the ground truth is based on similarity rather than dissimilarity, a
similarity measure has to be used to perform the reweighting. The dot product
u · v is used to calculate similarity based on a single feature. K-fold cross-
validation with k = 5 is used. The feature-reweighting process is applied on
decontextualized word embeddings from all layers of BERT-base and GPT-2
and static word embeddings from Word2Vec and the Deconflated embedding
model.

76

CHAPTER 6. EXPERIMENTAL RESULTS

The results in Figure 6.18 show a high increase in correlation of predicted
similarity ratings for all feature-reweighted embeddings. The correlation in-
creases from 0.39 to 0.59 for Word2Vec. The correlation is slightly higher than
the correlation for Transformer-based embeddings. The correlation of simi-
larity ratings from Deconflated embeddings increases from 0.62 to 0.72. For
feature-reweighted embeddings from BERT-base, the correlation starts at 0.25
in the first static embedding layer and increases with later layers. It reaches
the maximum at the eleventh layer with a correlation of 0.58. The effect of
feature-reweighting improves the correlation, especially in later layers. For the
GPT-2 model, the correlation of feature-reweighted embeddings starts at 0.3
and reaches the maximum at the eleventh layer with 0.58.

The results indicate that some embedding dimensions are more useful for
calculating similarity. The difference in representational similarity between
static word embeddings and decontextualized Transformer-based word embed-
dings is smaller when feature-reweighting is used. This leads to the assump-
tion that both, static and Transformer-based, word embeddings represent the
similarity of object images in a similar way. The higher dimensionality of
Transformer-based embeddings and the encoding of more information, not rel-
evant to the similarity of object images, might lead to worse correlations when
all embedding dimensions have the same weight for calculating the similarity.

77

CHAPTER 6. EXPERIMENTAL RESULTS

0 1 2 3 4 5 6 7 8 9 10 11 12

Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
p
ea
rm

an
co
rr
el
at
io
n

BERT-base

feature reweighted synset

feature reweighted word

feature reweighted Word2Vec

feature reweighted Deconflated

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Layer

S
p
ea
rm

an
co
rr
el
at
io
n

BERT-large

0 1 2 3 4 5 6 7 8 9 10 11 12

Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
p
ea
rm

an
co
rr
el
at
io
n

GPT-2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Layer

S
p
ea
rm

an
co
rr
el
at
io
n

GPT-2-medium

Figure 6.18: Correlation of similarity ratings, based on embeddings, with object
images similarity ratings from THINGS. Feature-reweighting is used to calculate the
similarity between object pairs.

78

CHAPTER 6. EXPERIMENTAL RESULTS

6.2 Prediction of THINGS Dimension Embed-
dings

The similarity metric from Hebart et al. (2020) is based on 49 interpretable
object dimensions (see Table A.1). These dimensions meaningfully reflect con-
ceptual and perceptual properties. For example, they measure how important
the dimension animal-related is for an object like dog or how unimportant the
dimension colorful is for an object like airplane.

To assess which dimensions are encoded in the word embeddings, a multiple
regression model is trained on the word embeddings to predict the dimension
values with y as the dimension value, β as the regression coefficients, p as
the length of the word embeddings, e.g. 768 for a BERT-base based word
embedding and i as the index of the THINGS object.

yi = β0 +

p�

j=0

βj · xij (6.4)

For this purpose, an Elasticnet model is chosen which uses Ridge and Lasso
regularization and minimizes the following loss:

1

m

m�

i=0

(yi − ŷi)
2 + λ(

1− α

2
·

p�

j=0

β2
j + α ·

p�

j=0

|βj|) (6.5)

The model is then trained for each of the 49 dimensions using nested cross-
validation to first choose the best hyperparameters and then predict the di-
mension values.

Different scores are then used to define the predictiveness of the word em-
beddings (see Table 6.4). First, the coefficient of determination R2 is used as
a measure of explained variance:

R2 = 1− RSS

TSS
=

�
i(yi − ŷ)2�
i(yi − ȳ)2

(6.6)

with ŷ as the predicted dimension value, ȳ as the mean dimension value for all
objects and yi as the true dimension value for object i.

Second, the spearman correlation between the predicted and true dimension
values is used (C1).

Third, the representational similarity is calculated based on all predicted
dimension values (C2). The spearman correlation between the predicted simi-
larity ratings of all pairs from the test set with the similarity ratings from the
THINGS dataset is calculated.

79

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.4: Cross-validated results for prediction of dimensions

Model C1 C2 R2 C3

Word2Vec 0.29 0.64 0.15 0.24
GloVe 0.25 0.55 0.09 0.20
Deconflated 0.32 0.70 0.24 0.27
BERT-base 0.28 0.62 0.18 0.24
BERT-large 0.32 0.63 0.28 0.26
GPT-2 0.15 0.20 0.04 0.04
GPT-2-medium 0.10 0.11 0.02 0.02

Fourth, the representational similarity is calculated based on single pre-
dicted dimensions (C3). For this, the spearman correlation between the pre-
dicted similarity ratings of all pairs with the similarity ratings, based on a
single dimension, from the THINGS dataset is calculated.

The metrics R2, C1, and C3 are calculated separately for each dimension
and averaged across test folds. The metric C2 is calculated across all dimen-
sions.

In Figure 6.19, the average cross-validated scores C1, C3, and R2 can be
seen per dimension for decontextualized word embeddings from the BERT-
base model. In Table 6.4, the average cross-validated scores C1, C3, and R2

across all dimensions are shown as well as the cross-validated C2 score. The
Deconflated word sense embeddings have the highest correlations and R2 values
which indicate the highest quality for the prediction of these dimension values.

80

CHAPTER 6. EXPERIMENTAL RESULTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Dimension ID

−0.4

−0.2

0.0

0.2

0.4

0.6

C
o
effi

ci
en

of
D
et
er
m
in
at
io
n

Coefficient of Determination

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Dimension ID

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
or
re
la
ti
on

Correlation of Similarity Vectors based on Dimension

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Dimension ID

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
or
re
la
ti
on

Correlation between predicted and true dimension values

Figure 6.19: Cross-validated averaged results for dimension prediction with de-
contextualized BERT-base word embeddings. The bars include a 95% confidence
interval based on the cross-validation.

81

CHAPTER 6. EXPERIMENTAL RESULTS

6.3 Prediction of Superordinate Categories from
THINGS

This experiment investigates how well different word and word sense embed-
dings perform when they are used in downstream tasks. The task to predict
superordinate categories of objects also investigates how well human concep-
tual knowledge is represented in the embeddings.

For this, superordinate categories from the THINGS dataset for all 1,854
objects are used. A Support Vector Classifier is then trained on top of the em-
beddings for all 1,854 objects and cross-validated using k-Fold cross-validation
with k = 5. The predictiveness of the embeddings is accessed as the predic-
tion accuracy over the test fold. The static word embeddings from Word2Vec,
GloVe, and the Deconflated embedding model are used. Further, BERT-base,
BERT-large, GPT-2, GPT-2-medium, Sentence-BERT, and Sentence-Distill-
RoBERTa are used as Transformer-based models.

The results are shown in Figure 6.20. It shows the mean accuracy over test
folds for the static word and word sense embeddings as well as contextualized
and decontextualized word embeddings. Static word and word sense embed-
dings from Word2Vec and the Deconflated embedding model have the highest
accuracy in predicting categories. Contextualized word embeddings have the
lowest accuracy. Their accuracy increases in later layers in BERT-base and
BERT-large. For GPT-2, the accuracy increases slightly but decreases in later
layers.

Decontextualized word embeddings have a higher accuracy than contextual-
ized word embeddings. The decontextualization process is especially increasing
the accuracy in later layers in all large language models.

82

CHAPTER 6. EXPERIMENTAL RESULTS

0 2 4 6 8 10 12

Extraction layer

0.40

0.45

0.50

0.55

0.60

0.65

0.70

M
ea
n
cr
os
s
va
li
d
at
ed

ac
cu
ra
cy

BERT-base

Word2Vec

GloVe

Deconflated

Contextualized

Decontextualized

0 5 10 15 20 25

BERT-large

0 2 4 6 8 10 12

0.40

0.45

0.50

0.55

0.60

0.65

0.70

GPT-2

0 5 10 15 20 25

GPT-2-medium

0 2 4 6 8 10 12

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Sentence-BERT

0 1 2 3 4 5 6

Sentence-Distill-RoBERTa

Figure 6.20: Cross-validated accuracy for superordinate category prediction of
objects from the test set

83

Chapter 7

Discussion

The results show that it is possible to generate word, word sense, and synset
embeddings from Transformer-based models. These contextualized and de-
contextualized embeddings can be of high quality, depending on the task and
dataset.

The intrinsic evaluation was performed with representational similarity
analysis to investigate how well human knowledge about semantic meaning,
similarity, and relatedness is encoded in different embeddings. The results show
that different human similarity ratings are encoded in static, contextualized,
and decontextualized word and word sense embeddings. Word similarity is well
encoded in all embedding types whereas similarity of object images is best en-
coded in static word sense embedding and worse encoded in Transformer-based
embeddings.

The extrinsic evaluation with two downstream tasks was used to investigate
the quality of embeddings for specific tasks. The first task was the prediction
of THINGS dimension values and the second task was the prediction of su-
perordinate categories. In both tasks, static word and word sense embeddings
performed better compared to Transformer-based embeddings.

Creation of Static Word Embeddings from Large Language Models

It is possible to extract and decontextualize word embeddings from large lan-
guage models to create new static word embeddings that can be efficiently
used in other tasks. Decontextualization further improves the representational
similarity with humans leading to more qualitative embeddings. Aggrega-
tion might counteract the anisotropy or contextualization effects shown by
Ethayarajh (2019).

While contextualized word embeddings capture the meaning of a word in a
given text context well, it is difficult to use them as static embeddings as they
are highly sensitive to the context. Thus, aggregation over multiple contexts

84

CHAPTER 7. DISCUSSION

recovers the general meaning of a word. The ability to reflect different mean-
ings for homonyms is lost as a word gets a fixed embedding. To circumvent
this problem, a word sense prediction method was applied based on the ARES
approach from Scarlini et al. (2020a).

The postprocessing method from Mu and Viswanath (2017) was further
applied to create new embeddings. While this created embeddings with higher
representational similarity with humans, based on word similarity datasets,
it created embeddings with worse representational similarity, based on the
similarity of object images.

A retraining method was developed to create word embeddings with higher
representational similarity with humans, based on the similarity of object im-
ages. This training step was performed in alignment with previous research
where several problems with pretrained contextualized word embeddings were
shown (Reimers & Gurevych, 2019). The results showed that the representa-
tional quality can be improved by supervised methods. Still, the direct train-
ing on the similarity dataset did not improve the representational similarity
as much as expected. This might indicate that Transformer-based embeddings
do not encode all information for the similarity of object images.

Classic static word embeddings are still competitive against Transformer-
based word embeddings when intrinsic evaluation is performed. It is possible to
produce high-quality static word embeddings from Transformer-based models
when intrinsic evaluation with word similarity is performed. Though, this
does not generalize to other similarity definitions. Transformer-based word
embeddings can still be used for downstream tasks where they can lead to
better performance, compared to static word embeddings (C. Wang et al.,
2020).

The results further show that the last layer often produces worse embed-
dings when pretrained models are used. Especially the last decoder of GPT-2
has low representational similarity with humans when intrinsic evaluation is
performed. Under extrinsic evaluation, embeddings from the last layer re-
sult in higher performance than embeddings from early layers but have lower
performance compared to the previous last layers.

Word Sense Disambiguation

The process of word sense disambiguation was used to create word sense em-
beddings. Though, this did not increase the representational similarity.

It might be possible that the sampling of paragraphs, used to create decon-
textualized embeddings, led to poor candidates for the word sense prediction.
The random sampling was based on the word level rather than the word sense
level as the prediction of the word sense for all word occurrences would have

85

CHAPTER 7. DISCUSSION

been too computationally expensive. Low frequent word senses are then harder
to predict if only paragraphs with high frequent word senses are sampled.

It is further possible that the method by Scarlini et al. (2020a) does not
work well or that homonyms do not influence the representational similarity.

Word Similarity

Word similarity is well encoded in static word embeddings. Transformer-based
word embeddings encode word similarity similar but with differences across
model architectures, layers, and the number of contexts for aggregation. Em-
beddings from encoder models seem to perform better than embeddings from
decoder models, indicating a stronger representational encoding in encoder
models. This might be caused by the bidirectional training of encoder models
in contrast to the unidirectional training in decoder models.

Single contextualized embeddings have a decreasing representational sim-
ilarity in later layers. This seems counterintuitive as later layers incorporate
more context. Contextualized word embeddings have been shown to strongly
reflect the context rather than encoding strict word meaning (Ethayarajh,
2019). This could cause a broad distribution of word embeddings leading
to similar word pairs when single contextualized embeddings are chosen. As
shown by Ethayarajh (2019), the effect of contextualization might cause or
might be correlated with the effect of anisotropy where the embeddings form
a narrow cone and the cosine similarity across words gets higher. This effect
is especially shown for later layers. This could also affect the representational
similarity as the cosine similarity is not a suitable similarity metric anymore.
Similarly, Reimers and Gurevych (2019) showed that the vector space of BERT
embeddings is unsuitable for similarity measures like cosine similarity. This
effect has the highest impact in decoder models like GPT-2 where embed-
dings from the last decoder layer result in similarity ratings with a very low
correlation with human similarity ratings. Furthermore, the decrease in repre-
sentational similarity could be caused by later layers encoding more informa-
tion relevant to the training objective. For example, later layers in the BERT
model may encode more information concerning the masked language model
objective.

The aggregation of multiple embeddings with different contexts improves
the representational similarity across all models and layers. Especially embed-
dings from later layers encode more relevant information with this method.
Decontextualized word embeddings from the BERT-large model outperform
static word embeddings when similarity ratings, based on the embeddings, are
compared with human-made similarity ratings. This approach might coun-
teract the anisotropy effect or the contextualization effect in later layers as it

86

CHAPTER 7. DISCUSSION

improves the representational similarity of later layers. Further, aggregation
might have a positive effect as it incorporates the semantic meaning of words
across different contexts and different relationships to other words. As context
is more encoded in later layers, the aggregation then has the biggest effect on
embeddings extracted from later layers.

Though, there seems to be a limit to the number of contexts that are used
in aggregation. After around 50 contexts per word, there is no improvement
in the representational similarity. The results show further that plain static
word embeddings as well as contextualized word embeddings encode semantic
meaning based on word similarity well. Decontextualization and the usage of
large models result in better performance. The Wordsim-353 dataset measures
similarity and relatedness. As all word embeddings have a high correlation, this
indicates that relatedness is well encoded across embeddings and models. The
Simlex-999 dataset measures strict similarity and the correlations are lower
for all embeddings. This indicates that the encoding of semantic similarity is
harder than the encoding of relatedness.

Postprocessing to increase isotropy in word embeddings has a positive in-
fluence on the representational similarity across all embedding types. The
correlation of similarity ratings, based on static, contextualized, and decon-
textualized word embeddings, increased across all layers and models.

Similarity of Object Images

To investigate how well the similarity of object images is encoded in word
embeddings, a new representational similarity analysis was performed be-
tween similarity ratings from word embeddings and similarity ratings from
the THINGS dataset.

In contrast to word similarity, the similarity of object images is worse re-
flected in word embeddings. Static word embeddings show the highest rep-
resentational similarity whereas Transformer-based word embeddings perform
worse. This seems counterintuitive as the training objectives of static word
embedding models like Word2Vec and Transformer models like BERT are sim-
ilar.

Similar to word similarity, single contextualized word embeddings are in-
fluenced by anisotropy and contextualization processes. Therefore, they might
reflect the similarity of object images worse in later layers.

Aggregation over multiple contextualized word embeddings improved the
representational similarity across all models and layers.

The usage of postprocessing to increase isotropy in word embeddings de-
creased the representational similarity across all models and layers. At this
point, the reason for this effect is not clear.

87

CHAPTER 7. DISCUSSION

These results indicate that the similarity of object images is not well rep-
resented in word embeddings, especially Transformer-based word embeddings.
To further investigate whether the semantic information needed for this simi-
larity task is not fully exploited in Transformer-based models, different down-
stream tasks were performed.

Using the word embeddings in a decoding model to predict superordinate
categories showed, that later layers also encode more information needed to
predict the global structure of THINGS objects. Again, static word embed-
dings performed better than contextualized and decontextualized word embed-
dings.

Feature-reweighted representational similarity analysis was used to inves-
tigate the influence of single embedding features on representational similar-
ity. The results showed almost equal representational similarity between the
static word embeddings from Word2Vec and GloVe and Transformer-based
word embeddings. An increasing representational similarity with later layers
was further shown. As the reweighting process assigns weights to the embed-
ding dimensions, this could mean that Transformers-based models may encode
more information that is not relevant to the similarity of object images (Tenney
et al., 2019). All Transformer-based embeddings have a higher dimensionality
than all static word embeddings. This might provide more possibilities to en-
code other information. Still, the embeddings from the Deconflated embedding
model showed the highest representational similarity. This might be caused by
the accounting for different word senses or by encoding more taxonomic and
functional information about objects, based on the WordNet graph.

The embeddings were further used to directly predict the dimension values
of THINGS. A cross-validated regression approach was used for prediction.
The static word sense embeddings from the Deconflated word embedding model
have the best performance whereas embeddings from the BERT model family
show higher predictiveness than embeddings from the GPT model family.

Overall, the results indicate that static word and word sense embeddings
are still highly competitive with regard to modeling human conceptual knowl-
edge. New Transformer-based embeddings may provide better representational
similarity but this does not generalize to all similarity measures and might be
dependent on the dataset.

Differences in Representational Similarity across Similarity Datasets

The similarity of object images seems to be worse encoded than word similar-
ity. This could be caused by several differences in the THINGS dataset, for
example, a focus on nouns, visual dimensions, the usage of rare objects, or the
usage of more homonyms.

88

CHAPTER 7. DISCUSSION

By focusing on nouns of concrete objects, the power of large language
models might not be fully exploited as fewer linguistic properties might be
needed for similarity prediction. In contrast, the semantic comparison of two
verbs might be easier to encode in text and therefore, easier to encode in word
embeddings. As word similarity datasets are composed of adjectives, verbs,
and nouns and not only nouns, it might be easier for text-based embedding
approaches to encode the relevant information.

As the data collection is based on a triplet image odd-one-out task, partic-
ipants are also biased to use visual properties for similarity comparison. This
can be seen in the resulting interpretable dimensions where visual dimensions
like colorful, red and white emerged. The approach to directly predict these
dimension values indicates that these dimensions are harder to predict by word
embeddings as it might be harder to encode visual information from text. Hu-
mans might use other information in text when they describe an object than
when they see an image of the same object. For example, a cardinal (bird)
might be described more taxonomic or conceptual in text but might be more
described with the color red when it is seen in an image.

The usage of rare objects in the THINGS dataset might lead to embeddings
with less training data as rare objects are also less frequent in text. Yet, the
analysis of the influence of word frequency showed no strong effect. Future
analyses could use the Rare-Words dataset to further investigate this question.

The usage of homonyms in the THINGS dataset might lead to worse repre-
sentational similarity. For example, the THINGS dataset contains homonyms
like mouse, bat and calf where multiple word senses are used in the dataset.
Further, other words like cardinal, beetle, or gyro are present in the dataset
where only one word sense is used. The usage of word embeddings leads to
the same embeddings for multiple word senses. This might be a reason why
the word sense embeddings from the Deconflated embedding model have the
highest correlation with similarity ratings from the THINGS dataset. Future
investigations using the number of word senses per word could give more in-
sights into this question.

89

Chapter 8

Conclusion

This work evaluated several word and word sense embeddings from differ-
ent embedding models. Static word and word sense embeddings as well as
Transformer-based contextualized and decontextualized word and word sense
embeddings were created and evaluated using intrinsic and extrinsic evalua-
tions.

It was shown that human similarity ratings can be well encoded in different
word embeddings. Yet, this depends on the similarity rating dataset. Word
similarity can be well represented by word embeddings while similarity of ob-
ject images is not well represented across all embedding types. Transformer-
based embeddings reflect this worse than standard static embeddings. The
extrinsic evaluation showed that static word embeddings can still outperform
newer Transformer-based embeddings.

Several methods to improve Transformer-based embeddings and to create
new static decontextualized word embeddings were performed. It was shown
that decontextualization of Transformer-based embeddings can lead to im-
proved performance. This depends on the chosen model, extraction layer, and
the number of contexts used for aggregation.

A method to create decontextualized word and word sense embeddings was
developed which can be used with any Transformer model and text corpus. The
creation of word sense embeddings did not yield improvements.

90

Chapter 9

Future Work

Future work could further investigate newer language models like the De-
BERTa or GPT-3 models as they can achieve higher performance on natural
language tasks.

Transformer models use a higher context window, e.g. BERT-base and
GPT-2 use 512 tokens compared to five to ten tokens in Word2Vec. There-
fore, the influence of different context window lengths could be investigated. A
shorter context length could influence the contextualization effect on word em-
beddings which could lead to a smaller difference in representational similarity
between contextualized and decontextualized word embeddings.

Word embeddings could further be used as a replacement for humans in
the method from Hebart et al. (2020) where the triplet odd one out task could
be based on triplet word embeddings. The odd one out would then be defined
as the object with the lowest word embedding similarity. This could lead
to more insights into which dimensions are used by large language models.
Further, the original data collection process of Hebart et al. (2020) could be
repeated with the usage of words instead of images. This could lead to a
higher representational similarity between large language models and humans
as there will be no visual bias.

Most Transformer-based models use a tokenizer in the processing of text
which can lead to identical subtokens in words. This can have a positive
influence on similar words like gyro and gyroscope when both words refer to
the word sense of a tool but can have a negative influence on dissimilar words
like teepee and t-shirt.

The isotropy postprocessing method from Mu and Viswanath (2017) has a
positive influence on representational similarity with humans based on word
similarity. This effect could further be studied using new methods, e.g. the
BERT-flow method from Li et al. (2020), to circumvent the anisotropy of
contextualized word embeddings.

91

CHAPTER 9. FUTURE WORK

The influence of the used text corpora could be further investigated. For
example, domain-specific corpora might increase the representational similarity
of words belonging to a domain.

These future steps could lead to more insights about the encoding of infor-
mation in word embeddings and language models as well as new embeddings
with higher quality.

92

References

Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M., & Soroa, A.
(2009). A study on similarity and relatedness using distributional and
wordnet-based approaches. In Naacl hlt 2009 - human language technolo-
gies: The 2009 annual conference of the north american chapter of the
association for computational linguistics, proceedings of the conference.
doi: 10.3115/1620754.1620758

Akbik, A., Bergmann, T., & Vollgraf, R. (2019). Pooled contextualized em-
beddings for named entity recognition (Vol. 1; Tech. Rep.). Retrieved
from https://github.com/zalandoresearch/flair doi: 10.18653/
v1/n19-1078

Bakarov, A. (2018). A Survey of Word Embeddings Evaluation Methods (Tech.
Rep.).

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching Word
Vectors with Subword Information. Transactions of the Association for
Computational Linguistics, 5 . doi: 10.1162/tacl_a_00051

Bommasani, R., Davis, K., & Cardie, C. (2020). Interpreting Pretrained
Contextualized Representations via Reductions to Static Embeddings.
In Proceedings of the 58th annual meeting of the association for com-
putational linguistics (pp. 4758–4781). Association for Computational
Linguistics. Retrieved from https://tedunderwood.com/2019/07/15/
doi: 10.18653/v1/2020.acl-main.431

Bowman, S. R., Angeli, G., Potts, C., & Manning, C. D. (2015). A large
annotated corpus for learning natural language inference. In Conference
proceedings - emnlp 2015: Conference on empirical methods in natural
language processing. doi: 10.18653/v1/d15-1075

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., . . .
Amodei, D. (2020). Language models are few-shot learners. In Advances
in neural information processing systems (Vol. 2020-Decem).

Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., & Specia, L. (2018). SemEval-
2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual
Focused Evaluation.. doi: 10.18653/v1/s17-2001

Cer, D., Yang, Y., Kong, S.-y., Hua, N., Limtiaco, N., St John, R., . . . Kurzweil

93

References

Google Research Mountain View, R. (2018). Universal Sentence Encoder.
AAAI .

Chronis, G., & Erk, K. (2020). When is a bishop not like a rook ? When it’s like
a rabbi! Multi-prototype BERT embeddings for estimating semantic re-
lationships. Proceedings ofthe 24th Conference on Computational Natural
Language Learning, Online, November 19-20, 2020 , 227–244. Retrieved
from https://doi.org/10.18653/v1/P17 doi: 10.18653/v1/P17

Conneau, A., Kiela, D., Schwenk, H., Barrault, L., & Bordes, A. (2017). Su-
pervised learning of universal sentence representations from natural lan-
guage inference data. In Emnlp 2017 - conference on empirical methods
in natural language processing, proceedings. doi: 10.18653/v1/d17-1070

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harsh-
man, R. (1990). Indexing by latent semantic analysis. Journal of
the American Society for Information Science, 41 (6). doi: 10.1002/
(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9

Devereux, B. J., Tyler, L. K., Geertzen, J., & Randall, B. (2014, dec).
The Centre for Speech, Language and the Brain (CSLB) concept prop-
erty norms. Behavior Research Methods , 46 (4), 1119–1127. Retrieved
from http://link.springer.com/10.3758/s13428-013-0420-4 doi:
10.3758/s13428-013-0420-4

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-
training of deep bidirectional transformers for language understanding.
In Naacl hlt 2019 - 2019 conference of the north american chapter of the
association for computational linguistics: Human language technologies
- proceedings of the conference (Vol. 1).

Ethayarajh, K. (2019). How Contextual are Contextualized Word Representa-
tions? Comparing the Geometry of BERT, ELMo, and GPT-2 Embed-
dings (Tech. Rep.).

Firth, J. (1957). A Synopsis of Linguistic Theory 1930-55. Studies in Linguistic
Analysis: Special Volume of the Philological Society .

Grand, G., Blank, I. A., Pereira, F., & Fedorenko, E. (2022). Seman-
tic projection recovers rich human knowledge of multiple object fea-
tures from word embeddings. Nature Human Behaviour . Retrieved
from https://doi.org/10.1038/s41562-022-01316-8 doi: 10.1038/
s41562-022-01316-8

Gupta, P., & Jaggi, M. (2021, aug). Obtaining Better Static Word Embed-
dings Using Contextual Embedding Models. In Proceedings of the 59th
annual meeting of the association for computational linguistics and the
11th international joint conference on natural language processing (vol-
ume 1: Long papers) (pp. 5241–5253). Online: Association for Com-
putational Linguistics. Retrieved from https://aclanthology.org/

94

References

2021.acl-long.408 doi: 10.18653/v1/2021.acl-long.408
He, P., Liu, X., Gao, J., & Chen, W. (2021). DeBERTa: Decoding-enhanced

BERT with Disentangled Attention. ArXiv , abs/2006.0 .
Hebart, M. N., Dickter, A. H., Kidder, A., Kwok, W. Y., Corriveau, A., Van

Wicklin, C., & Baker, C. I. (2019). THINGS: A database of 1,854 object
concepts and more than 26,000 naturalistic object images. PLoS ONE ,
14 (10). doi: 10.1371/journal.pone.0223792

Hebart, M. N., Zheng, C. Y., Pereira, F., & Baker, C. I. (2020). Revealing the
multidimensional mental representations of natural objects underlying
human similarity judgements. Nature Human Behaviour , 4 (11). doi:
10.1038/s41562-020-00951-3

Hill, F., Reichart, R., & Korhonen, A. (2015). Simlex-999: Evaluating semantic
models with (Genuine) similarity estimation. Computational Linguistics ,
41 (4). doi: 10.1162/COLI_a_00237

Hollenstein, N., De La Torre, A., Langer, N., & Zhang, C. (2019). CogniVal:
A framework for cognitive word embedding evaluation. In Conll 2019 -
23rd conference on computational natural language learning, proceedings
of the conference. doi: 10.18653/v1/k19-1050

Huang, E. H., Socher, R., Manning, C. D., & Ng, A. Y. (2012). Improving
word representations via global context and multipleword prototypes. In
50th annual meeting of the association for computational linguistics, acl
2012 - proceedings of the conference (Vol. 1).

Huang, L., Sun, C., Qiu, X., & Huang, X. (2020). Glossbert: BERT for word
sense disambiguation with gloss knowledge (Tech. Rep.). Retrieved from
https://github.com/HSLCY/GlossBERT

Jang, B., Kim, I., & Kim, J. W. (2019). Word2vec convolutional neural
networks for classification of news articles and tweets. PLoS ONE , 14 (8).
doi: 10.1371/journal.pone.0220976

Jurafsky, D., & Martin, J. (2009). Speech and Language Processing. In Speech
and language processing. (Vol. 2).

Kaniuth, P., & Hebart, M. N. (2020). Tuned representational similarity analy-
sis: Improving the fit between computational models of vision and brain
data. Journal of Vision, 20 (11). doi: 10.1167/jov.20.11.1076

Khattak, F. K., Jeblee, S., Pou-Prom, C., Abdalla, M., Meaney, C., & Rudzicz,
F. (2019). A survey of word embeddings for clinical text (Vol. 4). doi:
10.1016/j.yjbinx.2019.100057

Khatua, A., Khatua, A., & Cambria, E. (2019). A tale of two epidemics:
Contextual Word2Vec for classifying twitter streams during outbreaks.
Information Processing and Management , 56 (1). doi: 10.1016/j.ipm
.2018.10.010

Kilgarriff, A., & Fellbaum, C. (2000). WordNet: An Electronic Lexical

95

References

Database. Language, 76 (3). doi: 10.2307/417141
Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity

analysis - connecting the branches of systems neuroscience. Frontiers in
Systems Neuroscience, 2 (NOV). doi: 10.3389/neuro.06.004.2008

Levy, O., & Goldberg, Y. (2014). Neural word embedding as implicit ma-
trix factorization. In Advances in neural information processing systems
(Vol. 3).

Li, B., Zhou, H., He, J., Wang, M., Yang, Y., & Li, L. (2020). On the
sentence embeddings from pre-trained language models. In Emnlp 2020
- 2020 conference on empirical methods in natural language processing,
proceedings of the conference. doi: 10.18653/v1/2020.emnlp-main.733

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., . . . Stoyanov, V.
(2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach.
ArXiv , abs/1907.1 .

Lucy, L., & Gauthier, J. (2017). Are distributional representations ready
for the real world? evaluating word vectors for grounded perceptual
meaning. In Proceedings of the 1st workshop on language grounding for
robotics, robonlp 2017 at the 55th annual meeting of the association for
computational linguistics, acl 2017. doi: 10.18653/v1/w17-2810

Luong, M. T., Socher, R., & Manning, C. D. (2013). Better word representa-
tions with recursive neural networks for morphology. In Conll 2013 - 17th
conference on computational natural language learning, proceedings.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C.
(2011). Learning word vectors for sentiment analysis. In Acl-hlt 2011 -
proceedings of the 49th annual meeting of the association for computa-
tional linguistics: Human language technologies (Vol. 1).

McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic
feature production norms for a large set of living and nonliving things.
Behavior Research Methods , 37 (4). doi: 10.3758/BF03192726

Melamud, O., Goldberger, J., & Dagan, I. (2016). context2vec: Learning
generic context embedding with bidirectional LSTM. In Conll 2016 -
20th signll conference on computational natural language learning, pro-
ceedings. doi: 10.18653/v1/k16-1006

Merchant, A., Rahimtoroghi, E., Pavlick, E., & Tenney, I. (2020). What Hap-
pens To BERT Embeddings During Fine-tuning? In Proceedings of the
third blackboxnlp workshop on analyzing and interpreting neural networks
for nlp (pp. 33—-44). Association for Computational Linguistics. doi:
10.18653/v1/2020.blackboxnlp-1.4

Merity, S., Xiong, C., Bradbury, J., & Socher, R. (2017). Pointer sentinel mix-
ture models. In 5th international conference on learning representations,
iclr 2017 - conference track proceedings.

96

References

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation
of word representations in vector space. In 1st international conference
on learning representations, iclr 2013 - workshop track proceedings. In-
ternational Conference on Learning Representations, ICLR.

Mu, J., & Viswanath, P. (2017, feb). All-but-the-top: Simple and effective
post-processing for word representations. arXiv . Retrieved from http://
arxiv.org/abs/1702.01417

Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors
for word representation. In Emnlp 2014 - 2014 conference on empirical
methods in natural language processing, proceedings of the conference.
doi: 10.3115/v1/d14-1162

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., &
Zettlemoyer, L. (2018). Deep contextualized word representations. In
Naacl hlt 2018 - 2018 conference of the north american chapter of the
association for computational linguistics: Human language technologies
- proceedings of the conference (Vol. 1). doi: 10.18653/v1/n18-1202

Pilehvar, M. T., & Collier, N. (2016). De-conflated semantic representations.
In Emnlp 2016 - conference on empirical methods in natural language
processing, proceedings. doi: 10.18653/v1/d16-1174

Radford, A., Narasimhan, T., Salimans, T., & Sutskever, I. (2018). Improving
Language Understanding by Generative Pre-Training. In Preprint.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019).
Language Models are Unsupervised Multitask Learners..

Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence embeddings
using siamese BERT-networks. In Emnlp-ijcnlp 2019 - 2019 conference
on empirical methods in natural language processing and 9th interna-
tional joint conference on natural language processing, proceedings of the
conference. doi: 10.18653/v1/d19-1410

Rubinstein, D., Levi, E., Schwartz, R., & Rappoport, A. (2015). How well
do distributional models capture different types of semantic knowledge?
In Acl-ijcnlp 2015 - 53rd annual meeting of the association for compu-
tational linguistics and the 7th international joint conference on natural
language processing of the asian federation of natural language process-
ing, proceedings of the conference (Vol. 2). doi: 10.3115/v1/p15-2119

Saedi, C., Branco, A., António Rodrigues, J., & Silva, J. (2018). WordNet Em-
beddings. In Proceedings of the third workshop on representation learning
for NLP (pp. 122–131). Melbourne, Australia: Association for Com-
putational Linguistics. Retrieved from https://aclanthology.org/
W18-3016 doi: 10.18653/v1/W18-3016

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled
version of BERT: smaller, faster, cheaper and lighter. arXiv. Retrieved

97

References

from http://arxiv.org/abs/1910.01108 doi: 10.48550/ARXIV.1910
.01108

Scarlini, B., Pasini, T., & Navigli, R. (2020a). SensEmBERT: Context-
Enhanced Sense Embeddings for Multilingual Word Sense Disambigua-
tion. In Aaai 2020 - 34th aaai conference on artificial intelligence
(Vol. 34, pp. 8758–8765). doi: 10.1609/aaai.v34i05.6402

Scarlini, B., Pasini, T., & Navigli, R. (2020b). With More Contexts Comes
Better Performance: Contextualized Sense Embeddings for All-Round
Word Sense Disambiguation. In Proceedings of the 2020 conference on
empirical methods in natural language processing (emnlp) (pp. 3528–
3539). Association for Computational Linguistics. doi: 10.18653/v1/
2020.emnlp-main.285

Sien, S. K. (2015). Adapting word2vec to Named Entity Recognition. Pro-
ceedings of the 20th Nordic Conference of Computational Linguistics
(NODALIDA 2015)(Nodalida).

Tenney, I., Xia, P., Chen, B., Wang, A., Poliak, A., Thomas McCoy, R.,
. . . Pavlick, E. (2019). What do you learn from context? Probing
for sentence structure in contextualized word representations. In 7th
international conference on learning representations, iclr 2019.

Trask, A., Michalak, P., & Liu, J. (2015). sense2vec - A Fast and Accu-
rate Method for Word Sense Disambiguation In Neural Word Embed-
dings. CoRR, abs/1511.0 . Retrieved from http://arxiv.org/abs/
1511.06388

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
. . . Polosukhin, I. (2017). Attention is all you need. In Advances in
neural information processing systems (Vol. 2017-Decem).

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. R. (2019).
Glue: A multi-task benchmark and analysis platform for natural lan-
guage understanding. In 7th international conference on learning repre-
sentations, iclr 2019.

Wang, C., Nulty, P., & Lillis, D. (2020). A Comparative Study on Word Em-
beddings in Deep Learning for Text Classification. In Acm international
conference proceeding series. doi: 10.1145/3443279.3443304

Wiedemann, G., Remus, S., Chawla, A., & Biemann, C. (2019). Does BERT
make any sense? Interpretable word sense disambiguation with contex-
tualized embeddings (Tech. Rep.).

Williams, A., Nangia, N., & Bowman, S. R. (2018). A broad-coverage challenge
corpus for sentence understanding through inference. In Naacl hlt 2018
- 2018 conference of the north american chapter of the association for
computational linguistics: Human language technologies - proceedings of
the conference (Vol. 1). doi: 10.18653/v1/n18-1101

98

References

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A.,
& Fidler, S. (2015). Aligning Books and Movies: Towards Story-Like
Visual Explanations by Watching Movies and Reading Books. In 2015
ieee international conference on computer vision (iccv) (pp. 19–27). doi:
10.1109/ICCV.2015.11

99

Appendix A

Dimension Prediction

Table A.1 shows the 49 interpretable dimensions of the THINGS dataset. The
dimension names can be used in section Prediction of THINGS Dimension
Embeddings where the dimension ID is shown in the plots.

Figure A.1 shows the results for the BERT-large model, Figure A.2 for the
GPT-2 model and Figure A.3 for the GPT-2-medium model.

100

APPENDIX A. DIMENSION PREDICTION

Table A.1: Number and names of THINGS dimensions

Dimension ID Dimension Name

1 made of metal / artificial / hard
2 food-related / eating-related / kitchen-related
3 animal-related / organic
4 clothing-related / fabric / covering
5 furniture-related / household-related / artifact
6 plant-related / green
7 outdoors-related
8 transportation / motorized / dynamic
9 wood-related / brownish

10 body part-related
11 colorful
12 valuable / special occasion-related
13 electronic / technology
14 sport-related / recreational activity-related
15 disc-shaped / round
16 tool-related
17 many small things / course pattern
18 paper-related / thin / flat / text-related
19 fluid-related / drink-related
20 long / thin
21 water-related / blue
22 powdery / fine-scale pattern
23 red
24 feminine (stereotypically) / decorative
25 bathroom-related / sanitary
26 black / noble
27 weapon / danger-related / violence
28 musical instrument-related / noise-related
29 sky-related / flying-related / floating-related
30 spherical / ellipsoid / rounded / voluminous
31 repetitive
32 flat / patterned
33 white
34 thin / flat
35 disgusting / bugs
36 string-related
37 arms/legs/skin-related
38 shiny / transparent
39 construction-related / physical work-related
40 fire-related / heat-related
41 head-related / face-related
42 beams-related
43 seating-related / put things on top
44 container-related / hollow
45 child-related / toy-related
46 medicine-related
47 has grating
48 handicraft-related
49 cylindrical / conical

101

APPENDIX A. DIMENSION PREDICTION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Dimension ID

−0.2

0.0

0.2

0.4

0.6

C
o
effi

ci
en

of
D
et
er
m
in
at
io
n

Coefficient of Determination

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Dimension ID

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
or
re
la
ti
on

Correlation of Similarity Vectors based on Dimension

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Dimension ID

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
or
re
la
ti
on

Correlation between predicted and true dimension values

Figure A.1: Metrics for dimension prediction for decontextualized BERT-large
word embeddings

102

APPENDIX A. DIMENSION PREDICTION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Dimension ID

0.00

0.05

0.10

0.15

0.20

C
o
effi

ci
en

of
D
et
er
m
in
at
io
n

Coefficient of Determination

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Dimension ID

0.00

0.05

0.10

0.15

0.20

C
or
re
la
ti
on

Correlation of Similarity Vectors based on Dimension

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Dimension ID

0.0

0.1

0.2

0.3

0.4

C
or
re
la
ti
on

Correlation between predicted and true dimension values

Figure A.2: Metrics for dimension prediction for decontextualized GPT-2 word
embeddings

103

APPENDIX A. DIMENSION PREDICTION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Dimension ID

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

C
o
effi

ci
en

of
D
et
er
m
in
at
io
n

Coefficient of Determination

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Dimension ID

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

C
or
re
la
ti
on

Correlation of Similarity Vectors based on Dimension

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Dimension ID

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
or
re
la
ti
on

Correlation between predicted and true dimension values

Figure A.3: Metrics for dimension prediction for decontextualized GPT-2-medium
word embeddings

104

	Introduction
	Motivation
	Research Questions
	Goals

	Background
	Words and Word Senses
	Word Embeddings
	Similarity
	Transformer Models
	Encoder Models
	Decoder Models

	Intrinsic and Extrinsic Evaluation
	Correlation and Distance Metrics

	Related Work
	Creation of Word Embeddings
	Evaluation of Word Embeddings
	Word Sense Disambiguation
	Creation of Sentence Embeddings

	Datasets, Corpora, and Models
	Models
	Static Word Embeddings
	Similarity Datasets
	Text Corpora

	Methods
	Creation of Static Word Embeddings
	Creation of Transformer-based Embeddings
	Finding Synonyms
	Finding Word Occurrences
	Annotation of Word Senses
	Extraction of Transformer-based Embeddings
	Decontextualization of Embeddings
	Produced Embedding Dataset

	Isotropy Postprocessing
	Retraining of Embeddings
	Model
	Dataset
	Training and Hyperparameters

	Experimental Results
	Representational Similarity with Human Similarity Ratings
	Word Similarity Ratings from Simlex-999
	Word Similarity Ratings from Wordsim-353
	Similarity Ratings of Object Images from THINGS

	Prediction of THINGS Dimension Embeddings
	Prediction of Superordinate Categories from THINGS

	Discussion
	Conclusion
	Future Work
	References
	Dimension Prediction

