
Bauhaus-Universität Weimar
Faculty of Media
Computer Science and Media

Towards Proofreading Using
Human-based Computation

Bachelor Thesis

Teresa L. Holfeld Student number 60172
Born in Jena, Germany, on June 24th, 1986

1. Supervisor: Prof. Dr. Benno Maria Stein
Tutor: Martin Potthast

Date of submission: April 13th, 2011

Declaration

Unless otherwise indicated in the text or references, this thesis is entirely the
product of my own scholarly work.

Weimar, April 13th, 2011

. .
Teresa L. Holfeld

Abstract

The process of writing a text often requires proofreading, which is the task of
detecting and correcting writing errors. There are several methods of proof-
reading, for instance asking friends or co-workers, using tools for automatic
error detection, or consulting a professional proofreader, all involving certain
costs of time or money. In this thesis we present human-based computation as
an approach for semi-automatic proofreading that combines the convenience
and low costs of tools for automatic error detection, and the feeling for lan-
guage of human proofreaders.

In our research, we determined two interface metaphors that apply to the
design of proofreading user interfaces (UIs): editing and annotation. We devel-
oped three different proofreading UIs for the application on Amazon Mechan-
ical Turk (MTurk) that apply these interface metaphors to texts of different
lengths. These UIs are: editing a sentence, editing a paragraph and anno-
tating a paragraph. We further developed a UI for reviewing the results of
proofreading tasks submitted by workers on MTurk.

We conducted six experiments to investigate the impact of different proper-
ties of our proofreading UIs to the proofreading results. As input texts we used
two so-called English learner corpora: English as a Second Language 123 Mass
Noun Examples (ESL123) and the Montclair Electronic Language Database
(MELD). These are collections of erroneous essays or sentences written by En-
glish learners. Where not given, we retrieved all writing error positions and all
correct versions of the texts, and used them as gold standards for our experi-
ments. We then evaluated the results of our experiments in comparing them to
this gold standard. The best experiments achieved a word-wise recall of 0.91
in error detection, and a mean BLEU of 0.67 regarding error correction. In
these experiments we paid $2 for the proofreading of 1 000 words on average,
with a maximum total cost of $12.50 per experiment. Our experiments show
a maximum performance of 28.5 working hours in total. The evaluation of our
experiments reveals that crowdsourcing is a cheap, fast and efficient facility for
proofreading, compared to the costs for professional proofreading and to the
time exposure for retrieving comparable proofreading results with traditional
methods.

Contents

1 Introduction 2

2 Background and Related Work 4
2.1 Writing Errors and Proofreading 4
2.2 Automatic Error Detection . 6
2.3 Human-based Computation . 9
2.4 Crowdsourcing Texts . 13

3 User Interfaces for Proofreading on Mechanical Turk 16
3.1 Metaphors and Design Principles for Proofreading UIs 16
3.2 Our Proofreading UI Implementations 22
3.3 A Backend UI for Result Reviewing 26

4 Evaluation of our Proofreading UIs 31
4.1 Writing Error Corpora . 31
4.2 Experimental Methodology . 34
4.3 Performance Measures . 36
4.4 Evaluation Results . 42

5 Conclusion 49

Bibliography 51

1

Chapter 1

Introduction

Proofreading is an important part of writing a text, since making mistakes
is nearly unavoidable. It is the task of detecting and correcting all kinds
of writing errors, such as errors in spelling and grammar, or poor style and
semantic errors [Naber, 2003]. However, proofreading is not cheap: if the
author wants to consult a professional proofreader, he or she has to pay for
this service. Prices differ according to the text’s properties and negotiation.
Anyway, the Society for Editors and Proofreaders suggests a minimum hourly
wage of £20.25.1 While professional proofreading services are often consulted
for important texts like papers or dissertations, the proofreading of smaller and
less important texts is usually done as a favor between colleagues or friends.
But this, too, has its price, since they have to invest their free time.

Since the beginning of personal computing, there has also been research on
automatic proofreading. This comprises spelling, grammar, and style checking,
implemented by varying approaches that use dictionaries, syntactic analysis
(parsing), language models, or statistical machine translation. Though, at
present, few practical solutions are mature enough to be deployed in large
scale, and there is no common, cheap and reliable software that incorporates
all the desired functionality in a user-friendly way. Thus, writers still lack an
important tool for their writing process.

In this thesis we explore a new approach to proofreading that falls right in
between (semi-)professional and automatic proofreading. It is based on human-
based computation, that is, using the working power of a large group of human
workers and embedding it in a computational environment. By outsourcing
the proofreading task to the “crowd” (crowdsourcing), we hope to achieve the
following: (1) money that would be spent on the proofreading service could
be saved, since crowdsourcing is much cheaper than expert labour, and (2)

1SfEP’s suggestions of minimum freelance wages can be accessed at http://www.sfep.
org.uk/pub/mship/minimum_rates.asp (last access: 2011-03-20).

2

CHAPTER 1. INTRODUCTION

the time and effort of friends and colleagues is saved, since they only need to
proofread a close-to-final draft.

Our working hypothesis is that the feeling for language of average native
English speakers is sufficient to find and correct writing mistakes until a text
conforms to common English. In order to test this hypothesis and to evalu-
ate the feasibility and the quality of our approach, we conduct experiments
on collections of error-annotated writing samples of English learners, so-called
English learner corpora. We develop a user interface for proofreading that is
shown to the workers on the web-based crowdsourcing platform Amazon Me-
chanical Turk (MTurk), and evaluate the impact of various design parameters
on the quality of the proofreading results.

3

Chapter 2

Background and Related Work

There is much research on writing error analysis in the research field of lin-
guistics, and much on automatic proofreading in the research field of computer
science. In economics, the subject of crowdsourcing has grown in popularity
during the last years, and many papers in a variety of research fields deal with
MTurk as a facility for human-based computation. In this chapter we give
an introduction to these background issues and related work. We elaborate
on some terminology and position ourselves in the research fields of related
projects.

2.1 Writing Errors and Proofreading

In this section we give a short survey of the different types of writing errors.
We further describe the task of proofreading a text and distinguish it from the
related task of copy editing.

Categorizing writing errors is not simple. The very same error can be ca-
tegorized in different ways when seen from different angles. For example, the
confusion of “then” and “than” can be classified as a phonetic spelling error as
well as a grammatical confusion of prepositions. Writing error analysis is part
of corpus linguistics. This is a research field of linguistics where large collec-
tions of writing samples (so-called corpora) are analyzed for writing errors, for
example, for research on language learning. In this research field, there have
been many attempts to set up taxonomies of error types and tag systems to an-
notate errors in writing error corpora properly (see section 4.1). For instance,
[Lightbound, 2005] distinguishes 9 categories with up to 7 subcategories and
up to 6 sub-subcategories, whereas [Granger, 2003] distinguishes 9 categories
with up to 9 subcategories.

This sophisticated differentiation may be essential for a deep linguistic un-

4

CHAPTER 2. BACKGROUND AND RELATED WORK

derstanding of writing errors, but it is needlessly complicated for our purpose.
In proofreading, the main concern is where errors are, and which corrections
might be appropriate. Nevertheless, a simple classification is interesting to
determine on which errors an error detection approach works best. Here, it is
sufficient to distinguish a few categories according to existing solutions of auto-
matic error detection. In doing so, we found the categorization of [Naber, 2003]
quite appropriate. Naber distinguishes four error categories, namely spelling
errors, grammar errors, style errors and semantic errors. We briefly describe
these error types in the following overview.

Spelling errors are errors in orthography. This comprises so-called “typo”,
the confusion of similar sounding words, and wrong case-sensitivity. Spell
checkers typically detect these errors by comparing the words to a dic-
tionary of the corresponding language.

Grammar errors comprise errors in punctuation, conjugation, gender or
case, and can be subject-verb-disagreements or similar. These kinds
of errors can, to some extent, be automatically detected using syntax
parsing, or rule-based systems (see section 2.2).

Style errors comprise wrong collocations, and uncommon or complicated
wording. Approaches for automatic style checking make use of, for in-
stance, the probability of words given by language models, or statistical
machine translation.

Semantic errors are errors in meaning or propositional logic, or statements
that simply do not make sense. Grammatical sentences can have se-
mantic errors, too (e.g. “MySQL is a great editor for programming!”)
[Naber, 2003].

In everyday language the terms proofreading and copy editing are often
used interchangeably when talking about manual detection and correction of
writing errors. In the field of professional publishing and printing, there is
a difference between both terms, though. In the publishing process, a text
is written by the author, then edited by the copy editor until it is a finished
typescript. The copy editor hands this typescript to the printing office, where
the typesetter does the layout and hands it to the proofreader. The proofreader
then finally checks the text for remaining errors. When the proofreader has
eliminated all errors, the typescript gets printed.

In this context, a copy editor is employed by the publisher. The copy
editor’s task is to check the correctness of content and argumentation of a text.
A copy editor checks a text for the validity of facts and for the consistency of

5

CHAPTER 2. BACKGROUND AND RELATED WORK

the writing style, as well as the content for being appropriate and fitting the
policy of the publisher [Butcher et al., 2006].

By contrast, a proofreader is employed by the printing office. Proofreading
is the task of detecting and correcting errors originally introduced by typeset-
ting, which was eponymous for “typo” [Wilson, 1901].

With regard to error types, copy editors are supposed to find mainly style
and semantic errors, while proofreaders are supposed to find errors in orthog-
raphy, punctuation and spelling, and to eliminate all errors the copy editor
has missed, and thus do not alter the meaning of the text [Horwood, 1997].

Usually, publishers deal with professional authors with experience in the
usage of written language. In this context, it can be assumed that the error rate
is relatively low, and the distinction between copy editing and proofreading is
reasonable. In contrast, we want to provide a cheap tool for less experienced
authors, too. Beyond professional publishing, this distinction is not always
necessary. Therefore, we refer to “proofreading” more broadly as identifying
and correcting all kinds of the aforementioned errors, which may also include
parts of the task of copy editing.

2.2 Automatic Error Detection

In this section we give an overview of existing approaches for automatic error
detection in natural language writing. We propose a classification of various
approaches, describe the principal solutions, and name some examples.

In the research field of automatic writing error detection, there are several
approaches that detect errors of the first three categories described in section
2.1, that is, spell checking, grammar checking and style checking. These ap-
proaches have been developed to find either one special error type, e.g. mass
noun / count noun confusions, or to cover several error categories, e.g. spelling
errors as well as grammar errors and style errors.

Some of the approaches are publicly available solutions, like the Hunspell1

spell checker, which is the underlying technology for OpenOffice, and the Unix
commands Style and Diction2 for grammar and style checking. However, there
are much more solutions in this field of research, and with increasing diver-
sity of approaches and improving results, the terms spell checker, grammar
checker or style checker get ambiguous, since most software combine different
approaches. With regard to the underlying techniques of these approaches,
the following classification can be made: (1) dictionary-based approaches, (2)

1Hunspell is released at http://hunspell.sourceforge.net (last access: 2011-02-26).
2Style and Diction are released at http://www.gnu.org/software/diction/ (last ac-

cess: 2011-02-26).

6

CHAPTER 2. BACKGROUND AND RELATED WORK

syntax-based approaches, (3) statistics-based approaches, (4) rule-based ap-
proaches, and (5) human-based approaches.

Dictionary-based Approaches

This is the most common concept of spell checkers: every word in the text is
checked against a list of words representing the vocabulary of the particular
language. If the word occurs in this dictionary, it is spelled right, otherwise
it is marked as an error. Examples for spell checkers are Hunspell and its
predecessor MySpell.3 Both implementations are based on Ispell.4 The Unix
command Diction is an example for dictionary-based style checkers. Here, a
text is checked to contain particular words or phrases, that are considered to
be bad style. If a word or phrase matches, Diction displays a comment or
suggestion what to write instead. The English version of Diction contains 685
entries, the Dutch version 339, and the German version 76 entries.

Syntax-based Approaches

The majority of approaches for grammatical error detection use syntax-based
solutions. Usually, the whole text is parsed, and a parse tree is built up for each
sentence, representing the grammatical structure of it. That is, the syntax
of each sentence is determined. A sentence is considered ungrammatical, if
building the parse tree did not succeed.

An early example is the Critique system, a grammar and style checker
that uses parsing [Richardson and Braden-Harder, 1988]. Microsoft Word uses
parsing for grammar checking, too, as is stated in [Helfrich and Music, 2000].

Statistics-based Approaches

These approaches use several statistical methods to detect error candidates in
a text. This can be (1) the use of language models, (2) statistical machine
translation, and (3) readability measures, as we will describe below.

The first uses large-scale corpora of written English that contain either
plain text of written language, or are already organized in the form of n-
grams. Those n-grams can be word n-grams, that is, sequences of n words
of a sentence, or POS n-grams, sequences of n part-of-speech (POS) tags of
the corresponding words. If the corpus does not already consist of n-grams,

3MySpell is released at http://packages.debian.org/src:myspell (last access: 2011-
02-26).

4Ispell is released at http://fmg-www.cs.ucla.edu/fmg-members/geoff/ispell.html
(last access: 2011-02-26).

7

CHAPTER 2. BACKGROUND AND RELATED WORK

they are retrieved in a pre-processing step. Then, a language model is built up
from the corpus. That is, the probability for each n-gram is calculated. If an
n-gram occurs often, it has a high probability to occur in natural language, if it
occurs seldom, it has a low probability. N -grams with a low probability, or n-
grams that just do not exist, are considered error candidates. An example for
POS tagging for English text is the CLAWS (the Constituent Likelihood Au-
tomatic Word-tagging System) tagger. The latest version, CLAWS4, is built
from the British National Corpus [Garside, 1996]. An example of a grammar
checker that uses POS tagging is Granska, a grammar checker for Swedish
text [Domeij et al., 2000]. An example for an approach that uses word n-gram
probabilities is [Islam and Inkpen, 2009], where a language model built from
the Google Web 1T n-gram data set is used for context sensitive spell checking.
The browser and blog software plugin After the Deadline5 is a practical exam-
ple for a language checking service that uses language models built from the
Simple English edition of Wikipedia and Project Gutenberg [Mudge, 2010].

The second method, statistical machine translation (SMT), uses phrasal
SMT paradigms to map ungrammatical phrases to their correct counterparts.
This approach, as described in [Brockett et al., 2006], does not only detect
error candidates but also provides suggestions for possible corrections.

The last method, calculating readability measures, should also be men-
tioned as an approach that applies several statistical computations. An exam-
ple is the GNU command Style. Style does style checking by giving a survey of
several readability measures that help the author estimating the quality of the
text’s style. Such readability measures are, for example, the Kincaid Formula,
the Automated Readability Index, the Coleman-Liau Formula or the Flesch
Reading Ease Score [Cherry and Vesterman, 1981].

Rule-based Approaches

Here, sentences are checked against a set of manually developed rules of gram-
mar and style that use regular expressions or POS information of the text.
An example is FLAG, an approach that uses two steps with different kinds
of rules. First, it checks the text against so-called trigger rules that iden-
tify possible error candidates, then it checks these candidates against evidence
rules that verify whether a candidate is a false positive or an actual error
[Bredenkamp et al., 2000].

5After the Deadline is released at http://www.afterthedeadline.com (last access:
2011-02-26).

8

CHAPTER 2. BACKGROUND AND RELATED WORK

Human-based Approaches

During the last years, the crowdsourcing platform Amazon Mechanical Turk
(MTurk) has grown in popularity in the scientific community for solving human-
based computation tasks. There are also some approaches that make use of
MTurk for error annotation and text improvement. [Tetreault et al., 2010]
describe a method for the detection and annotation of preposition errors by
workers on MTurk [Tetreault et al., 2010]. As another example, Soylent is a
word processing interface that uses MTurk for text improvement. It does text
shortening and proofreading, and suggests corrections [Bernstein et al., 2010].
The approach presented in this thesis falls into this category.

2.3 Human-based Computation

In this section we describe what human-based computation is, and elaborate
on the terminology. We briefly describe existing projects on human-based
computation, and introduce the crowdsourcing platform Amazon Mechanical
Turk.

There are a lot of things that can easily be done by humans but cannot
(yet) be done by computers. Such tasks may fall into the areas of image recog-
nition, speech recognition, and natural language processing. An example is
the recognition of letters or objects in images, as in spam protection services,
or for image labeling [Gentry et al., 2005]. The act of using the processing
power of humans to solve such problems and to embed them in a compu-
tational environment is called human computation [von Ahn, 2005]. Because
it evokes fewer connotations of a science fiction-like bio-computational use of
the human brain (cyborgs, the Matrix, etc.), we prefer the term human-based
computation. This term is borrowed from the research field of human-based
evolutionary computing [Hammond and Fogarty, 2005], which belongs to the
field of interactive evolutionary computing (a detailed survey is to be found in
[Takagi, 2001]).

Human-based computation is also closely linked to crowdsourcing, described
in more detail in section 2.4. Both terms are often used interchangeably, but
while crowdsourcing is rather used with respect to economic issues, human-
based computation is more often used when talking about technical aspects.
In this thesis, we use the term human-based computation for the process of
embedding tasks solved by humans in a computational environment. We use
the term crowdsourcing for the aspect of problem solving by accumulating the
results of a large group of workers.

Human-based computation is successfully used, for instance, for image la-

9

CHAPTER 2. BACKGROUND AND RELATED WORK

beling or for digitizing books. The first can be done with so called games with
a purpose. An example is the ESP Game, a free game where two players who
are not allowed to communicate with each other are shown the same image.
One player has to find a word by guessing what the other player would use
to describe this picture, too. When both proposed the same word, they win
points for their score. The system takes this word as a label for the image,
for example, for image search. To increase the difficulty, the most common
labels are taken as taboo words that the next players are not allowed to use
[von Ahn and Dabbish, 2004].

A project that digitizes books with the aid of human-based computation
is reCAPTCHA. CAPTCHAs are images that show some distorted text, of-
ten seen, for example, at web registration forms. For the purpose of spam
protection, users have to typewrite these texts in order to verify that they
are humans and not computer programs, such as spam bots. Computer pro-
grams still have problems recognizing distorted text, but for humans this is
an easy task to solve, so CAPCHAs are able to protect web services against
the misuse by spam bots. A reCAPTCHA image consists of two words. One
is known by the reCAPTCHA program and verifies whether the user is a hu-
man or not. The other is a word that was not recognized by optical character
recognition after scanning for Google Books. Since users have to typewrite
both words, the crowd involuntarily helps digitizing old books and documents
[von Ahn et al., 2008].

An alternative for implementing computer programs that include human-
based computation tasks themselves is the use of external crowdsourcing plat-
forms. Existing platforms often have a particular purpose for which they offer
crowdsourcing as their solution. Most of these platforms (see table 2.1) use
crowdsourcing for creative tasks (e.g. designing t-shirts like Threadless), mar-
keting innovation and consulting (e.g. InnoCentive, and Chaordix), knowledge
generation and question answering (e.g. evly, Wikipedia, and Yahoo! An-
swers). But most platforms do not provide a suitable way of returning the
crowdsourced solutions so that they can be processed in a computational en-
vironment. There are only two platforms that support human-based compu-
tation: Amazon Mechanical Turk, and CrowdFlower, the latter of which also
uses MTurk.

Amazon Mechanical Turk6 is a platform that can be used by both workers
and so-called requesters. Requesters offer so-called HITs (Human Intelligence
Tasks) and a payment for their completion, whereas workers earn money by
doing these tasks. A reward for a HIT can be $0.01 at minimum, and is rarely
more than $1.00 [Paolacci et al., 2010]. Requesters can review the results of

6MTurk can be accessed at http://mturk.com (last access: 2011-02-26).

10

CHAPTER 2. BACKGROUND AND RELATED WORK

their HITs, and decide afterwards which ones they approve and which they
reject. Only approved work gets paid. [Horton and Chilton, 2010] estimate
the median hourly rate being $1.38. The payment is processed directly via
Amazon Payments. On MTurk, requesters design HITs by themselves. They
can choose from a selection of templates which can be altered to suit the needs
of a given task, or design the HIT from scratch. Apache Velocity Variables7

enable batches of HITs with varying content. The requester can also determine
how many workers can work on one HIT. This atomic task – the work of
one worker on one HIT – is called assignment. Requesters can also set up
qualification requirements, such as small tests, to restrict the access to their
HITs to workers who have proven their abilities first.

MTurk is implemented as a web service, meaning “a software system de-
signed to support interoperable machine-to-machine interaction over a net-
work”, as defined by the World Wide Web Consortium (W3C).8 This enables
requesters to integrate human-based computation tasks on MTurk into a com-
puter program. With MTurk’s API it is possible to control the crowdsourcing
process with nearly every programming language. Further, it provides com-
mand line tools to handle HITs via shell. If a requester uses the API or the
command line tools, a HIT can either be designed as an XML document that
conforms to the QuestionForm schema9 of MTurk, or as an external webpage
that is then embedded into the HIT frame on the MTurk platform. Alterna-
tively, requesters can also design a HIT via the web user interface for requesters,
which is basically a rich text editor. However, the requester is always able to
determine how a task is displayed to the worker, and what the return values
of a HIT are.

This flexible structure for designing HITs is crucial for human-based com-
putation, since it enables the requester to design HITs for arbitrary tasks.
Popular areas of application are e.g. tagging images with the name of the
product it displays, or to investigating office hours and addresses of particu-
lar offices or restaurants. Of course, MTurk can be used as well to improve
some written text. Error annotation and text shortening has already been
researched on MTurk; the former by [Tetreault et al., 2010], and the latter
by [Bernstein et al., 2010]. We will present these papers in section 2.4. The
design and implementation of our proofreading HIT is described in chapter 3.

7The Apache Velocity project is to be found at http://velocity.apache.org/ (last
access: 2011-03-04).

8The W3C definition for “web service” is to be found at http://www.w3.org/TR/

ws-gloss/#webservice (last access: 2011-02-26).
9The QuestionForm schema is specified at http://docs.

amazonwebservices.com/AWSMechanicalTurkRequester/2007-03-12/ApiReference_

QuestionFormDataStructureArticle.html (last access: 2011-02-26).

11

CHAPTER 2. BACKGROUND AND RELATED WORK
N
a
m
e

H
o
m
e
p
a
g
e

P
u
rp

o
se

C
re
a
ti
v
e
ta
sk

s,
id
e
a
s,

d
e
si
g
n

K
lu
st
er

h
t
t
p
:
/
/
w
w
w
.
k
l
u
s
t
e
r
.
c
o
m

Id
ea
s,
cr
ea
ti
ve

ta
sk
s

Id
ea

B
ou

n
ty

h
t
t
p
:
/
/
w
w
w
.
i
d
e
a
b
o
u
n
t
y
.
c
o
m

Id
ea
s,
cr
ea
ti
ve

ta
sk
s,
co
m
p
et
it
io
n
s

12
d
es
ig
n
er

h
t
t
p
:
/
/
w
w
w
.
1
2
d
e
s
i
g
n
e
r
.
c
o
m

D
es
ig
n
,
co
m
p
et
it
io
n
s

V
O
d
A

h
t
t
p
:
/
/
w
w
w
.
v
o
-
a
g
e
n
t
u
r
.
d
e
/

Id
ea
s,
cr
ea
ti
ve

ta
sk
s

T
h
re
ad

le
ss

h
t
t
p
:
/
/
w
w
w
.
t
h
r
e
a
d
l
e
s
s
.
c
o
m

T
-s
h
ir
t
d
es
ig
n

D
es
ig
n
B
y
H
ü
m
an

s
h
t
t
p
:
/
/
w
w
w
.
d
e
s
i
g
n
b
y
h
u
m
a
n
s
.
c
o
m

T
-s
h
ir
t
d
es
ig
n

B
u
si
n
e
ss

so
lu
ti
o
n
s,

co
n
su

lt
in
g
,
m
a
rk

e
ti
n
g
in
n
o
v
a
ti
o
n

B
ra
in
ra
ck

h
t
t
p
:
/
/
w
w
w
.
b
r
a
i
n
r
a
c
k
.
c
o
m

B
u
si
n
es
s
so
lu
ti
on

s
In
n
oC

en
ti
ve

h
t
t
p
:
/
/
w
w
w
2
.
i
n
n
o
c
e
n
t
i
v
e
.
c
o
m

B
u
si
n
es
s
so
lu
ti
on

s
C
h
ao
rd
ix

h
t
t
p
:
/
/
w
w
w
.
c
h
a
o
r
d
i
x
.
c
o
m

C
on

su
lt
in
g

W
it
ol
og
y

h
t
t
p
:
/
/
w
i
t
o
l
o
g
y
.
c
o
m
/
e
n

M
ar
ke
ti
n
g
in
n
ov
at
io
n
,
re
cr
u
it
in
g

K
n
o
w
le
d
g
e
g
e
n
e
ra

ti
o
n
,
q
u
e
st
io
n

a
n
sw

e
ri
n
g

ev
ly

h
t
t
p
:
/
/
w
w
w
.
e
v
l
y
.
c
o
m

K
n
ow

le
d
ge
,
op

in
io
n

W
ik
ip
ed
ia

h
t
t
p
:
/
/
w
w
w
.
w
i
k
i
p
e
d
i
a
.
o
r
g

K
n
ow

le
d
ge

Y
ah

o
o!

A
n
sw

er
s

h
t
t
p
:
/
/
a
n
s
w
e
r
s
.
y
a
h
o
o
.
c
o
m

K
n
ow

le
d
ge
,
q
u
es
ti
on

an
sw

er
in
g

P
la
sh

h
t
t
p
:
/
/
a
n
t
s
.
i
i
s
.
s
i
n
i
c
a
.
e
d
u
.

t
w
/
p
l
a
s
h
/

L
o
ca
ti
on

aw
ar
e
se
rv
ic
es
,
tr
affi

c

S
p
e
ci
a
l
ta
rg

e
t
g
ro

u
p
s

C
ro
w
d
b
an

d
s

t
t
p
:
/
/
w
w
w
.
c
r
o
w
d
b
a
n
d
s
.
c
o
m

M
u
si
c
b
u
si
n
es
s,
m
u
si
c
ra
ti
n
g

T
op

C
o
d
er

h
t
t
p
:
/
/
w
w
w
.
t
o
p
c
o
d
e
r
.
c
o
m

W
ri
ti
n
g
co
m
p
u
te
r
p
ro
gr
am

s

M
ic
ro

-t
a
sk

s,
h
u
m
a
n
-b

a
se
d

co
m
p
u
ta
ti
o
n

A
m
az
on

M
ec
h
an

ic
al

T
u
rk

h
t
t
p
:
/
/
m
t
u
r
k
.
c
o
m

M
ic
ro
-t
as
k
s,
h
u
m
an

-b
as
ed

co
m
p
u
ta
ti
on

C
ro
w
d
F
lo
w
er

h
t
t
p
:
/
/
c
r
o
w
d
f
l
o
w
e
r
.
c
o
m

M
ic
ro
-t
as
k
s,
h
u
m
an

-b
as
ed

co
m
p
u
ta
ti
on

C
li
ck
W
or
ke
r

h
t
t
p
:
/
/
w
w
w
.
c
l
i
c
k
w
o
r
k
e
r
.
c
o
m

T
ex
t
w
ri
ti
n
g,

la
b
el
in
g

T
ab

le
2.
1:

E
x
is
ti
n
g
cr
ow

d
so
u
rc
in
g
p
la
tf
or
m
s.

T
h
is
ta
b
le

sh
ow

s
a
se
le
ct
io
n
of

w
el
l-
k
n
ow

n
cr
ow

d
so
u
ci
n
g
se
rv
ic
es

fo
u
n
d

on
th
e
w
eb
.
P
la
tf
or
m
s
ar
e
ca
te
go
ri
ze
d
b
y
th
ei
r
p
u
rp
os
e.

12

CHAPTER 2. BACKGROUND AND RELATED WORK

2.4 Crowdsourcing Texts

In this section we describe what crowdsourcing is, and what its main fields of
application are. We introduce two projects that apply crowdsourcing to text
improvement, and briefly describe the Soylent word processor, the Find-Fix-
Verify design pattern and the TurKit toolkit.

The term crowdsourcing was coined in 2006 by Jeff Howe, a journalist
who writes for Wired Magazine. He became known for his eponymous arti-
cle “The Rise of Crowdsourcing” [Howe, 2006b]. The article is published on
crowdsourcing.com, where he later published a definition of this term:

“Simply defined, crowdsourcing represents the act of a company
or institution taking a function once performed by employees and
outsourcing it to an undefined (and generally large) network of
people in the form of an open call.” [Howe, 2006a]

There has been much research to prove that crowdsourcing can be used for
the fields of knowledge generation (see [Surowiecki, 2005]) and finding business
solutions (see [Brabham, 2008]). In his book, Surowiecki describes how the
accumulated intelligence of crowds is able to outperform the knowledge of
experts. Brabham—more concretely—explores the potential of crowdsourcing
for problem solving. Summarized, both see crowdsourcing as a new way to
solve problems for commercial issues as well as for not-for-profit issues. In
doing so, the crowd can be cheaper, quicker and better than expert labour.

Yet, crowdsourcing is not the best solution for every situation. Surowiecki
shows that a crowd can be good at solving problems of cognition, coordina-
tion and cooperation. Cognition means problems of predicting events in the
future, or assuming a fact, for instance predicting election results or the num-
ber of sales of a certain product. Coordination problems are problems that
require a group of people to communicate with each other for achieving a goal
that they have in common. Examples are a group of students looking for a
party, or a company looking for costumers that need their particular product.
Cooperation means “the challenge of getting self-interested, distrustful people
to work together” [Surowiecki, 2005]. Examples are the tax system, or the
agreement of seller and buyer on what a reasonable price is. Surowiecki also
states that the right amount of communication between the members of the
crowd and the right size of it are crucial for the success of a crowdsourcing
process. He says that diversity and independence are important prerequisites
of a successful crowd [Surowiecki, 2005].

There are many examples showing that crowdsourcing has already been
successfully applied. A popular example is Wikipedia, which in fact is a form

13

CHAPTER 2. BACKGROUND AND RELATED WORK

of knowledge generation by the crowd [Kittur and Kraut, 2008]. Another is
Yahoo! Answers, which shows that question answering by the crowd does
work well [Little et al., 2009].

Besides, a variety of crowdsourcing platforms have been developed that
enable the application of crowdsourcing for various purposes via the world wide
web. In table 2.1 we present a sample of 19 notable crowdsourcing platforms.
The purposes and target groups of these platforms show that crowdsourcing
seems to work well in the fields of creativity and innovation, business and
marketing, content generation, and question answering.

It is likely that crowdsourcing is also suitable for improving texts, particu-
larly for proofreading. Natural language is not just based on strict grammatical
rules and a definite vocabulary, but is the result of the attempt of humans to
communicate with each other. So language can be seen as an agreement of a
large group of people to express things in a particular way, and writing as a
standardized visual abstraction of it [Fromkin et al., 2003]. Since results re-
trieved by crowdsourcing are always an accumulation of the work of many, a
crowd of people should be able to correct erroneous language in a way so that
most of them would agree that it is used correctly. By crowdsourcing texts and
text improvement, we assume that the accumulated orthographic knowledge
and feeling for language of the crowd leads to a correct result.

In the last years, there have been some projects that successfully harnessed
crowdsourcing on text improvement, proposed e.g. by [Tetreault et al., 2010]
and [Bernstein et al., 2010].

[Tetreault et al., 2010] show that, in annotating preposition errors in En-
glish as a second language (ESL) writing, MTurk is as good as a trained rater
(a person who detects and annotates such errors), but with lower costs and in
less time. The evaluation of their experiment shows that workers achieved a
mean kappa10 of 0.606 compared to the trained raters. The experiment’s pur-
pose was to show that MTurk is suitable for linguistic error annotation, but
it also implies that error detection for purposes of proofreading should work,
too.

[Bernstein et al., 2010] introduce Soylent, a word processor that embeds
crowdsourcing for text shortening and proofreading. The two mentioned tasks
are done by different parts of the tool, called Shortn and Crowdproof. Shortn
uses MTurk to let complicated sentences be shortened and simplified. The
results of the experiment show that workers shortened the texts to a length
of 78% - 90% of the original. Crowdproof uses MTurk for finding and cor-
recting errors, and found 67% of the errors in the experiment. Unfortunately,

10Cohen’s kappa coefficient is a statistical measure for inter-annotator agreement, for
details see [Cohen, 1960] or section 4.3.

14

CHAPTER 2. BACKGROUND AND RELATED WORK

the proofreading experiment just comprised 5 paragraphs with 49 errors allto-
gether, which raises to question how convincing this result actually is.

However, [Bernstein et al., 2010] introduce the Find-Fix-Verify program-
ming pattern for human-based computation on MTurk. It basically describes
a method of chaining iterative HITs so that a proofreading experiment is di-
vided into three steps: The detection of errors (find), their correction (fix),
and the verification whether or not they were corrected accurately (verify).
This chaining of iterative HITs is operationalized using the TurKit toolkit
[Little et al., 2009], which was developed for simplifying the interaction with
MTurk, and to enable an iteration of HITs. “Iteration of HITs” means, taking
the results of one HIT and posting it again on MTurk, either as input for the
same type of HIT, or as input for a different HIT, e.g. the fix and verify steps
of the aforementioned design pattern.

In comparison to these experiments, the purpose of our research is not so
much to show that crowdsourcing on MTurk can be harnessed for proofreading
as it is to quantify how well it actually works, and which parameters work best.

15

Chapter 3

User Interfaces for Proofreading
on Mechanical Turk

The aim of this thesis is to explore several methods of proofreading via crowd-
sourcing, and to figure out which of them work best. By several methods we
mean different ways of proofreading, which we can study by implementing dif-
ferent user interfaces (UIs). With these proofreading UIs we can determine
which interface metaphors and which text lengths are suitable. Therefore, we
conduct experiments with proofreading UIs that implement different interface
metaphors and display texts of different lengths. In these experiments, we let
workers correct the same erroneous texts with different UIs. Of these texts we
know where the errors are, and can then measure how many of these errors
have been detected and how precisely they have been corrected. In this way
we can compare the proofreading UIs and state which of them works best. In
this chapter we introduce these UIs and describe their properties.

We discuss the metaphors and design principles of a proofreading UI in
section 3.1. We describe our implementation of different proofreading UIs for
HITs on MTurk in section 3.2. In section 3.3 we describe our implementation
of a backend UI for result reviewing for MTurk requesters.

3.1 Metaphors and Design Principles for Proof-

reading UIs

In this section we give an introduction to interface metaphors. We recall how
proofreading is done originally, in pen and paper form, and deduce metaphors
that correspond to proofreading. We have a look at how existing computer-
aided proofreading tools apply these metaphors to give an example of how
proofreading UIs may look like. We further give an introduction to interface

16

CHAPTER 3. USER INTERFACES FOR PROOFREADING ON
MECHANICAL TURK

design principles, and describe those that are important for proofreading UIs.

Metaphors are used in everyday language for describing abstract concepts
in a more pictorial way. For example, an argument is often described with the
metaphor of war. Expressions like claims being indefensible or a weak point of
an argument being attacked all use this metaphor [Lakoff and Johnson, 1980].
In general, metaphors are “natural models, allowing us to take our knowledge of
familiar, concrete objects and experiences and use it to give structure to more
abstract concepts” [Erickson, 1990]. Applied to interface design, metaphors are
models of rather abstract, technical concepts that remind the user of familiar
objects or real-world concepts. A well-known example is the desktop metaphor.
The purpose of interface metaphors is “to provide users with a useful model
of the system” [Erickson, 1990]. In the following we describe two metaphors
used in proofreading UIs.

The basic idea of a proofreading task is as follows: a proofreader reads a
text, detects the errors, corrects them, and optionally names the error type.
We can imagine how this is done when we think of a teacher who corrects the
essays of his or her students. He or she would underline wrong words with a
red pen, and would write the type of error alongside. Or he or she would cross
out the wrong words and write the correction above. Corrections may look
like shown in figure 3.1.

Figure 3.1: English essay, corrected by a teacher. Source: Margit Rentschler.

17

CHAPTER 3. USER INTERFACES FOR PROOFREADING ON
MECHANICAL TURK

Here, we make a distinction between two methods, and two metaphors,
respectively:

• Annotation

• Editing

Marking text (e.g. highlighting or underlining) and leaving a related comment
(e.g. an error type or a short explanation) alongside can be seen as charac-
teristics of the metaphor of annotation. Replacing words or passages (e.g.
by crossing them out and writing a correction above), and rewriting of whole
passages or sentences indicate the metaphor of editing.

There are some examples for existing software providing some kind of proof-
reading facility that apply these metaphors. For instance, Microsoft Word
provides adding comments, and the Track Changes feature.1 To add a com-
ment, the proofreader selects a word or text passage, and then chooses the
comment feature from the menu. The comment balloon appears alongside on
the reviewing pane, as shown in figure 3.2.

Figure 3.2: Comments in Microsoft Word.

To track changes, the proofreader selects the Track Changes feature from
the menu. As long as it is activated, all changes made in the text are made
visible. Deleted passages are crossed out and new passages are shown in a
different color than the original text. On the left side, a vertical bar indicates
that something in this line has been changed. An example of the Track Changes
feature is shown in figure 3.3.

Figure 3.3: Track Changes in Microsoft Word.

1A description of comments and the Track Changes feature can be found at http://

office.microsoft.com/en-us/word-help/CH010024383.aspx.

18

CHAPTER 3. USER INTERFACES FOR PROOFREADING ON
MECHANICAL TURK

The first feature, adding comments to selected text passages, uses the an-
notation metaphor. The second, Track Changes, uses the metaphor of editing.

PDF annotation software usually provides functionality that is similar to
the comment feature of Microsoft Word. For instance, Adobe Acrobat, PDF-
XChange, and PDFEdit allow the proofreader to select text in a PDF docu-
ment and to comment this highlighting alongside. Additionally, unrelated com-
ments can be placed anywhere in the document. Figure 3.4 shows a screenshot
of a commented text passage in PDF-XChange Viewer.

Figure 3.4: Annotated text in PDF-XChange Viewer.

As the term “PDF annotation software” indicates, these tools apply the
annotation metaphor.

If we want to design proofreading HITs, we should implement these in-
terface metaphors, too, so the worker can build on his or her experience of
proofreading on paper, or with one of the aforementioned tools. We describe
our implementation of both metaphors in section 3.2. In chapter 4 we evaluate
the interfaces and show how well each metaphor works.

The design of HITs on MTurk is basically web design, since MTurk is a web-
based crowdsourcing platform. If a worker selects a HIT, the meta information
of the HIT is presented to him or her, and an iFrame displays the task that has
been designed by the requester. The content of this task usually consists of
a HIT description, text, images, or other media the worker has to work with,
and an HTML form that the worker has to fill out in order to accomplish the
task.

So, contrary to the design of websites that may comprise multiple pages,
one of the challenges of HIT design is to provide all the required interaction
on a single page with limited space. In addition, the goal of HIT design is
to support crowdsourcing as well as possible. In crowdsourcing, the group
of workers has to be diverse and big enough to achieve best results. Plus,
the costs for human-based computation should be minimized. Therefore, the
HIT should be assigned to many workers rather than to few, and be as small,
simple, and cheap as possible. Moreover, designing a HIT is made difficult by
the fact that a worker is self-interested and naturally wants to work as little as
possible and to spend as little time as possible. For facing these challenges of

19

CHAPTER 3. USER INTERFACES FOR PROOFREADING ON
MECHANICAL TURK

HIT design—(1) limited space, (2) best crowdsourcing performance, and (3)
self-interest of workers—it should be designed as a minimalist user interface.

John Carrol proposed four basic principles of minimalism design in his book
Minimalism Beyond the Nurnberg Funnel [Carroll, 1998], which are presented
and applied to WebUI design in the article An Application of the Principles of
Minimalism to the Design of Human-Computer Interfaces by JoAnn Hackos
[Hackos, 1999]. These four minimalism design principles are:

1. “Choose an action-oriented approach”

2. “Anchor the tool in the task domain”

3. “Support error recognition and recovery”

4. “Support reading to do, study, and locate”

These principles are the outcomes of studies and evaluation of user interfaces
of computer applications and websites. In the following, we introduce the four
principles as described in [Hackos, 1999], and show how these principles can
be applied to UI design of HITs.

1st Principle: Choose an Action-oriented Approach

A HIT is a user interface for a human-based computation task. According to
the first principle, this means that it should support workers to do something.
The basic idea of such an action-oriented approach is to “make critical ac-
tions immediately apparent when the users enter the interface” [Hackos, 1999].
Therefore, the aim of good HIT design should be that workers are able to start
working on a HIT immediately after accepting2 it. That is, the action the
worker is supposed to do should be obvious and self-explanatory in a way that
the need for instructions or user guides is minimized.

2nd Principle: Anchor the Tool in the Task Domain

In working on a HIT, a worker always has a goal in mind. This is probably
earning money in the first place, and should coincide with the task he or she is
supposed to do. In a minimalist interface design, the designer should “ensure
that the users’ goals are well understood by the interface designers so that
the interface makes a clear connection between the users’ goals and the tasks
required to achieve the goals” [Hackos, 1999]. Applied to the design of HITs,

2On MTurk, workers are shown a preview of a HIT with disabled functionality first. If
they want to work on it, they have to accept the HIT, which is done by clicking the “Accept
HIT”-button.

20

CHAPTER 3. USER INTERFACES FOR PROOFREADING ON
MECHANICAL TURK

this leads to two challenges that the requester has to face. The first is to
make the task of the HIT the workers’ goal. That is, the requester has to
make sure that title, description and interface of the HIT are informative and
obvious enough that workers know what to do in order to earn money. The
second challenge is to support workers to achieve this goal. Action-oriented
design should “build on the users’ prior skills, knowledge, and experience”
[Hackos, 1999]. For the proofreading task this means the interface should be
implemented so that it reminds workers of proofreading. This can be achieved
by applying one of the aforementioned proofreading interface metaphors, so
workers would probably be able to guess what to do in order to annotate and
correct errors.

3rd Principle: Support Error Recognition and Recovery

In the best case, there is nothing that could go wrong in using a proofreading
interface. In reality, errors still happen, either due to weak spots in the design,
or due to wrong input by the user. The idea of the third principle is to “assist
users in preventing the error in the first place” [Hackos, 1999]. Considering the
design of HITs, this also means to prevent workers’ submissions from being
rejected, since the rejection of assignments can be seen as the consequence of
an erroneous solution. Workers should be prevented from submitting empty
values, for example, with a JavaScript that disables the submit button unless
the worker has changed anything or filled in all required form fields. Plus,
erroneous input by the worker should be prevented. Here, default values and
completion proposals are helpful. The worker has to know what is wrong, so
the designer should “create informative, helpful, and courteous error messages”
[Hackos, 1999]. For instance, if the submit button is disabled, it should be
labeled with a short note what the worker has to do in order to submit the
HIT.

4th Principle: Support Reading to Do, Study, and Locate

This principle is about user guides and help instructions. In HIT design, these
can be much shorter and less complex than in application interface design, due
to the small size of the task. But it still should be mentioned, since HITs often
provide a short task instruction. Most important is that “user guides should be
as brief as possible” [Hackos, 1999]. A proofreading HIT just requires a short
description in a few sentences, or even less, in case the interface is designed to
be self-explanatory. If the task itself is not obvious on the first glance, a short
visual example (e.g. an image, or an animation) may be helpful for the worker
to understand what to do.

21

CHAPTER 3. USER INTERFACES FOR PROOFREADING ON
MECHANICAL TURK

In summary, good HIT design needs (1) a minimalist and preferably self-
explanatory interface that applies the appropriate interface metaphor, (2)
mechanisms that prevent errors, and wrong or missing input, and (3) mini-
mized but meaningful instructions.

3.2 Our Proofreading UI Implementations

In this section we describe the implementation of three different UIs of proof-
reading HITs. We show how we implemented the interface metaphors of an-
notation and editing, and how we applied the minimalism design principles to
our proofreading HITs.

In the previous section we determined two interface metaphors that are
suitable for proofreading, namely annotation and editing. To test the im-
pact of these metaphors to proofreading results, we implemented two different
proofreading UIs, each applying one metaphor. We further want to test the
impact of the length of the text that workers have to correct, so we imple-
mented two versions of the UI that applies the editing metaphor for different
text lengths. In the end, we had three UIs that we call after their interface
metaphor and text length: annotating a paragraph, editing a paragraph, and
editing a sentence. In the following, we present each implementation in more
detail.

Annotating a Paragraph

The metaphor of annotation means the action of highlighting some wrong
words in a text and providing a comment alongside that contains an error
type, an explanation and/or a correction. The goal of our proofreading UI that
applies the annotation metaphor is to have all errors detected, and therefore all
wrong words highlighted. Furthermore, the best possible correction proposals
should be obtained.

On electronic files, the most natural action is probably to select erroneous
text passages with the mouse. In Microsoft Word and most PDF annotation
software, the user has to click on a menu or the highlighted text to open a
comment balloon, before he or she can write a comment. This is reasonable
since word processors and PDF annotation software support a variety of actions
other than proofreading. For example, in Microsoft Word, you can format text
after highlighting it, or in annotation software, the annotator may wish to just
highlight some text without commenting it.

In our case, the worker should only have one option after highlighting: writ-
ing a correction. According to the first minimalism design principle, the action

22

CHAPTER 3. USER INTERFACES FOR PROOFREADING ON
MECHANICAL TURK

should be instantaneously available to the user. So, the comment input field
should appear immediately after highlighting, and place the worker’s cursor
right into it. Figure 3.5 shows a screenshot of our proofreading UI after the
user selected some text.

Figure 3.5: Proofreading UI for annotating a paragraph.

We implemented this interface as follows: The box that contains the er-
roneous paragraph consists of two div boxes, one superimposed on the other,
with exactly the same content, height, width and position. The only difference
is that the background of the upper one is transparent, and the background
of the lower one is grey. In this way, it just looks like one single box, but is
indeed relevant to the highlighting process, as described below.

If the user selects some text with the mouse, a JavaScript catches the
onMouseUp event, and creates a JavaScript Range object out of the selection.
Then, the start and end character position and the string representation of the
selected text are retrieved. Each is saved as hidden input field values of the
HTML form. With this information the highlighting is done: span elements
surround the selected text passage at the respective start and end positions
in the lower div box so that it is highlighted with a particular background
color via CSS. Here, the reason for the use of two superimposed div boxes
gets clear: The upper box represents the text without any span tags, which
is important for retrieving the correct character positions of the Range object.
Those span elements just occur in the lower div box, where the highlighting
actually happens. Users can just select the text of the upper div box, so
the selection will never contain any span tags, which might cause problems
otherwise.

But placing the right opening and closing span tags in the text is not
trivial. Our goal is to place highlightings anywhere in the text, no matter if
they overlap each other, and to have the active highlighting (the one related
to the annotation the user is currently editing) in a brighter color. This may
look as shown in figure 3.6.

23

CHAPTER 3. USER INTERFACES FOR PROOFREADING ON
MECHANICAL TURK

Figure 3.6: Proofreading UI for annotating a paragraph, with overlapping
highlights.

So, when a user selects the same text passage several times, and selections
overlap each other, the placement of span tags gets difficult. For solving this
problem we came up with a solution that we call the character mask. This
is understood as a JavaScript array with the same length as the number of
characters in the text. Each character of the text is mapped to the value
of the array at its corresponding index. Initially, each value of the array is
0. If the user selects some text, the values at the corresponding indices of
the selected characters are incremented. Each time the highlighting changes,
the character mask is parsed. If an array field has a different value than its
predecessor, the respective closing and/or opening span tag is placed in the
text at this index.

If no text is highlighted, there is an empty correction box on the right side
with a short note that the user should select some text with the mouse, to
encourage the user to do the right thing.

Editing a Paragraph

The metaphor of editing means to change text to eliminate the errors it con-
tains. The goal of a proofreading UI that applies this metaphor is to have
an error-free text in the end. In pen and paper form this is done by striking
out wrong passages and writing the right versions above. Though, if a text
contains many errors and requires heavy correction, the preferred method may
be rewriting of whole passages.

In word processors, this can be done by just editing the text, that is, chang-
ing the text so that wrong words are replaced with their right counterparts.
This is what is done in every text editor. The most simple form of providing a
simple text editor in a WebUI is an HTML textarea with a predefined value
that contains the text. We use this as our proofreading UI, as shown in figure

24

CHAPTER 3. USER INTERFACES FOR PROOFREADING ON
MECHANICAL TURK

3.7.

Figure 3.7: Proofreading UI for editing a paragraph.

One thing that is not trivial in textareas is to adjust the height dynam-
ically to its value. Because for each HIT of this UI a different text is loaded
dynamically into the textarea, we need to alter the height of it dynamically
to avoid having scroll bars at its side. We solved this problem with a hidden
div box, in which the text is loaded, too. We retrieved the height of this div
box and set the height of the textarea to this value, plus some additional
space so that scroll bars do not appear even if a user introduces corrections
that are a bit longer than the original.

We meet the fourth minimalism design principle with keeping instructions
short and simple. The third principle is met by adding a JavaScript that
prevents users from submitting the text without having made any changes.
This JavaScript checks if the text is equal to the original value. If it is, this
means that the worker has not changed anything, so the submit button is
disabled and labeled with the note: “First correct the text”.

Editing a Single Sentence

As its name implies, the purpose of our third UI is to proofread a single sen-
tence. Here, users do not edit the text itself, but provide a rewritten version
of the sentence in a separate input field. This is in order to provide an even
higher degree of freedom, and to encourage users to revise the whole word-
ing. Additionally, users are asked to indicate what types of errors they found.
Figure 3.8 shows how this interface looks like.

To meet the 1st minimalism design principle, the user can instantaneously
access the task. Short descriptions instruct the user what to do in order to
accomplish the task.

Each of these three UIs provides a different means for proofreading. To
figure out which UI leads to best proofreading results, we did experiments and
compared their outcomes, as described in chapter 4.

25

CHAPTER 3. USER INTERFACES FOR PROOFREADING ON
MECHANICAL TURK

Figure 3.8: Proofreading UI for editing a sentence.

3.3 A Backend UI for Result Reviewing

Our UIs are implemented for an input text of the size of a sentence up to a
paragraph. If these UIs are used to proofread text of a size that is significantly
longer, the text is split into several segments that meet the required length.
Each segment is used as a HIT’s input text, so the whole original text is posted
on MTurk as a batch of HITs. To achieve best crowdsourcing results, each HIT
should be assigned to multiple workers. For example, to gain conclusive results
in our experiments (see chapter 4) we had each HIT be accomplished by up to
10 workers. So, the longer a text gets and the more conclusive results should
be, the more the number of assignments increases.

Requesters get the results of accomplished HITs as a table, either on the
web interface of the MTurk platform, or as a CSV document. Each value
submitted by a HIT’s HTML form field results in a cell of this table, and
each assignment results in a row. As may be imagined, this table might soon
lose clarity. For example, the HTML form of our annotating a paragraph HIT
does submit each selection the worker made, each position of a selection, each
correction proposal, and a flag whether it was saved or deleted. So, result
tables easily get big, complex and confusing.

Nevertheless, a requester has to review each assignment in order to approve
or reject it, which decides whether or not a worker gets paid. To make this task
feasible, we developed two reviewing UIs as backend interfaces for requesters:
one for the annotating a paragraph HIT, and another for the editing a paragraph
HIT. These reviewing UIs provide a clear presentation of the results of a batch
of HITs, and a facility for quick reviewing.

A Reviewing UI for Annotating a Paragraph

The annotating a paragraph UI produces the most complex results, which
include:

• HIT ID

• assignment ID

26

CHAPTER 3. USER INTERFACES FOR PROOFREADING ON
MECHANICAL TURK

• worker ID

• original text

• the text of each selection

• the position of each selection

• the state of each selection (if it was saved or deleted by the worker)

• the text of each selection’s correction (can be more than one)

• the state of each correction (saved or deleted)

We obtain this information from an MTurk results CSV document, and
generate a UI based on HTML, CSS and JavaScript that adopts the look of the
proofreading UI. It consists of two columns: on the left-hand side the erroneous
text is displayed, and on the right-hand side the corrections are displayed as
folding boxes. In addition, each selection and each assignment has a button
for approving or rejecting it. A button on the bottom of the reviewing UI then
generates the CSV the MTurk API takes as input to process approvals and
rejections of assignments.

The results of all assignments can be arranged in different ways: (1) showing
each text with all corrections that had been introduced to it, or (2) showing all
assignments of a text separate from each other, or (3) showing the assignments
of a particular worker. We call the first document view, the second assignment
view and the third worker view. In our reviewing UI the user can switch from
one view to another anytime.

Figure 3.9 shows a screenshot of a result visualization of one of our ex-
periments with the annotating a paragraph UI. Here, each text is shown with
the selection of all its assignments. Like in the proofreading UI, selections are
highlighted in the text, and annotations are displayed as boxes at the right
hand side. These boxes contain the correction proposals made by the worker.
Assignment ID and worker ID are hyperlinks to the respective assignment in
the assignment view or worker view. With clicking on the green tick or the red
cross, reviewers can approve or reject a selection with its corrections. If the
majority of selections of an assignment have been approved, the assignment
is approved and hence the worker gets paid, otherwise the assignment gets
rejected leaving the worker without payment.

Highlightings in the text get brighter the more workers annotated a given
text segment. A pale red means a segment was just found erroneous by only
one worker, whereas a segment in bright red indicates that all workers found
the text erroneous. Hence, the brightness of a highlighting is an indication of

27

CHAPTER 3. USER INTERFACES FOR PROOFREADING ON
MECHANICAL TURK

Figure 3.9: Reviewing UI for annotating a paragraph, document view.

error probability: The more workers annotated a text passage, the higher is
the probability that it contains an error.

Figure 3.10 shows results in the assignment view. Here, for each assignment
each selection with its corrections is shown. The worker ID is linked to the
worker view that shows all the worker’s assignments. An assignment can be
approved or rejected by clicking on the green tick or the red cross below the
text.

Figure 3.10: Reviewing UI for annotating a paragraph, assignment view.

Since the worker view is just a selection of the assignments that are related
to the selected worker, the worker view looks the same as the assignment view.
As an additional feature, reviewers can block the worker whose assignments
are currently displayed in the worker view. If a worker is blocked, he or she
is not allowed to work on the requester’s HITs on MTurk anymore. In this
reviewing UI all assignments of a blocked worker are rejected.

28

CHAPTER 3. USER INTERFACES FOR PROOFREADING ON
MECHANICAL TURK

Our Reviewing UI for Editing a Paragraph

Compared to the results of the annotating a paragraph HIT, the results of
the editing a paragraph HIT comprise much fewer values. The important ones
are the original text and the corrected text. In the reviewing UI, for each
assignment the original text is placed on the left hand side, while the corrected
text is placed on the right hand side. For displaying differences between the
text, the Myers Difference Algorithm [Myers, 1986] calculates all deltas. A
delta represents a difference in the text, and provides information about the
position of the change, and if it was a deletion, an insertion, or a substitution.
To make differences visible at first glance, all deltas are highlighted in both
texts. Deletions are red, insertions are green, and substitutions are yellow.
Figure 3.11 shows a screenshot of such a comparison of an original and a
corrected text.

Figure 3.11: Reviewing UI for editing a paragraph.

Each assignment can be approved or rejected by clicking the respective
buttons, similar to the former reviewing UI. Likewise, there’s a worker view
available by clicking on the worker ID below an assignment. In the worker
view, all assignments of the respective worker are shown, and a feature is
given to block the worker.

In doing our experiments we had to review 54 HITs with 5 assignments
each, resulting in a total of 270 assignments, several times for each proofread-
ing UI. After that experience, we are convinced that doing proofreading with
MTurk does not work without a reviewing UI that represents results in a clear
and revealing manner. This is not only important for deciding which workers
get paid and which do not, nor only for evaluating results of our experiments,

29

CHAPTER 3. USER INTERFACES FOR PROOFREADING ON
MECHANICAL TURK

but simply for making use of the proofreading results, too. No one can benefit
from proofreading via crowdsourcing without an insightfully visualized accu-
mulation of the annotations or edits made by the crowd. We made a first
attempt to visualize results so that they get reviewable, but we think that
there is much more potential for future work in developing suitable UIs that
allow for even easier and quicker reviewing, and helping the writer decide even
better which corrections are appropriate and which are not.

30

Chapter 4

Evaluation of our Proofreading
UIs

Once we have implemented our proofreading UIs, we can conduct experiments
to determine which UI is best suitable for proofreading. This means, we figure
out which UI produces the best results—either by comparing results to each
other, or by comparing results to a gold standard. For these experiments
we distinguish the input parameters of (1) proofreading UI, (2) input text,
and (3) required worker qualification, and the output parameters of (1) error
positions, and (2) correction proposals. By varying the input parameters in our
experiments, we can keep under review how the output parameters react. This
gives us the chance to study the qualities of proofreading via crowdsourcing,
and to make findings that are important for both its further development and
its application.

In this chapter we describe what our input texts are (section 4.1), how we
conducted our experiments (section 4.2), how we measure the quality of results
(section 4.3), and what the evaluation results of our experiments are (section
4.4).

4.1 Writing Error Corpora

In this section we describe the input texts that we used for our experiments. We
describe our source for those texts—English learner corpora—and elaborate on
the properties of the corpora we used to conduct our experiments.

For our experiments we need a collection of texts that contain errors of
which we know where they are located. We use these texts as input, and
let them be corrected by workers on MTurk. Then, we analyze the results
and see how many errors have been detected, so we can assess the quality of

31

CHAPTER 4. EVALUATION OF OUR PROOFREADING UIS

proofreading. These texts should contain spelling errors, grammar errors, and
style errors as well as semantic errors. Ideally, they are already annotated, so
that we know where the errors are, and what their corrections are.

This is the case with so-called English learner corpora. These are collections
of writing samples (mostly essays) by English learners, that were originally
collected for linguistic research on learning English language, namely writing
error analysis and studies of the influence of first languages on learner errors
[Leacock et al., 2010]. For this purpose, many corpora are annotated with so-
called error tagging systems, which describe positions and types of errors, and
provide a correction proposal. These corpora contain errors that have been
naturally introduced, and therefore represent a sample of various naturally
distributed error types. In contrast to artificially generated errors, this is a
comparatively good source for validating our proofreading system for real-
world usage.

There is a variety of English learner corpora with essays written by English
learners with different first language backgrounds. Over the years, there have
been several attempts to create more or less complete lists of existing English
learner corpora, for example, by [Leacock et al., 2010] (pp. 27), [Pravec, 2002],
and [Tono, 2003]. But not all of these corpora are available or suitable for our
experiments. Many of them are not error annotated, and most error tag-
ging systems are very sophisticated. Those tagging systems are described in
more detail, for instance, in [Dı́az-Negrillo and Fernández-Domı́nguez, 2006].
To give an example, figure 4.1 shows an error annotated sentence of the Tswana
Learner English Corpus (cf. [Rooy and Schafer, 2002]).

Figure 4.1: Error annotated sentence of an essay of the Tswana Learner English
Corpus.

Since we neither need that much annotation information, nor distinguish
between so many error types, we had to extract the information we actually
need (error positions and error types, as described in section 2.1). To keep our
pre-processing efforts within limits, we used two relatively small corpora: (1)
the English as a Second Language 123 Mass Noun Examples (ESL123), which
contains no error annotation but is small enough for a subsequent manual

32

CHAPTER 4. EVALUATION OF OUR PROOFREADING UIS

annotation, and (2) the Montclair Electronic Language Database (MELD),
that contains error annotations that just provide information about the errors’
locations and possible corrections.

ESL 123 Mass Noun Examples

The ESL123 corpus consists of 123 sentences found on the world wide web. The
sentences were collected during research in automatic writing error detection
using phrasal statistical machine translation, see [Brockett et al., 2006]. They
contain grammar errors in the form of mass noun and count noun confusion.
An example for a sentence of this corpus were the mass noun “knowledge” was
confused with a count noun is:

“We are more exposed to all knowledges of the World.”

The ESL123 corpus consists of the erroneous sentences and proposals for
their correct counterparts. It is not error annotated, so we did an error anno-
tation subsequently. According to our analysis, the original sentences of this
corpus comprise 4 to 38 words, and 15 words on average. They consist of
1 813 words in total, 358 of which contain errors, resulting in an error ratio of
19.75%.

[Brockett et al., 2006] state that 110 of the sentences contain mass noun /
count noun confusions, and 13 of them contain no errors. In our subsequent
error analysis we just found 4 sentences being entirely without any errors, and
62 containing mass noun / count noun confusions. We further found that they
contain all kinds of errors, comprising spelling errors, style errors, semantic
errors, and multiple kinds of grammar errors, like wrong articles, subject-verb-
disagreements, and others.

We used all 123 sentences of this corpus as input texts for our experiment
with the editing a sentence UI.

Montclair Electronic Language Database

The MELD corpus consists of 18 essays written by learners of the English
language that address two kinds of topics: (1) a debate essay about computer-
aided learning as a replacement for traditional schools, and (2) a review of the
short story “Going into Exile” by Liam O’Flaherty. The corpus is manually
annotated with a simple tagging system that provides information about error
positions and correction proposals [Fitzpatrick and Seegmiller, 2001]. Due to
this manual annotation, some errors have been introduced to both annotation

33

CHAPTER 4. EVALUATION OF OUR PROOFREADING UIS

tags and correction proposals. We revised the annotation, so that these an-
notation errors were eliminated, and we could automatically generate original
and corrected versions of the texts.

We then divided these essays into 54 paragraphs, the length of which is 14
to 418 words, and 124 words on average. The corpus is composed of 6 659 words
in total, 503 of which are errors, resulting in an error ratio of 7.55%. Since
the essays were written by all levels of second language learners of multiple
first language backgrounds, the paragraphs comprise various kinds of writing
errors (mainly spelling, grammar, and style errors), and differ in their error
ratio. An example for a paragraph (original version) of the MELD corpus is:

“Also if you study at traditional school Montclair State University
you will be able to make friends and to have a fun school, if you
make friends and the school is fun you will be able to finish school
instead if you stay at home you don’t be able to make friends.”

We used the original versions of these paragraphs as input texts for our
experiments with the annotating a paragraph UI and the editing a paragraph
UI.

4.2 Experimental Methodology

In this section we present our experimental methodology. We specify our input
and output parameters, and introduce our experiments that we conducted to
evaluate our proofreading UIs.

We ran six experiments with different proofreading UIs on MTurk. We
extracted the original, unannotated versions of the texts from the writing error
corpora described in section 4.1 as input for our HITs, and had workers correct
them. Each Hit was assigned to and proofread by multiple workers.

After all assignments were submitted by the workers, we downloaded the
results as a CSV file. We parsed the results CSV and visualized it with our re-
viewing UI. With this UI, we approved or rejected each assignment, and hence
decided whether to pay the respective worker or not. Then, we compared the
results to the gold standard, and applied the statistical measures as described
in section 4.3. The results of the evaluation of these experiments are presented
in section 4.4.

With our experiments we want to research the impact of multiple factors
on the quality of proofreading via human-based computation. In doing so, we
want to figure out (1) which factors lead to better results compared to others,
and (2) which factors lead to results that are more approximate to our gold

34

CHAPTER 4. EVALUATION OF OUR PROOFREADING UIS

standard. Therefore, we have to conduct several experiments with different
input parameters, and evaluate the output parameters.

Our input parameters are:

• Proofreading UI with different

– Interface parameters: Annotation, Editing

– Supported text lengths: Sentence, Paragraph

• Different levels of the workers’ qualifications, such as

– Being a U.S. resident

– Having an approval rate1 of at least 95%

– No qualification

The output parameters of our HITs are:

• Original text

• Annotations, containing

– error position

– selected text

– correction proposals

• Corrected text

On these output parameters we apply the performance measures described in
section 4.3. With these measures we want to estimate which input parameters
have a better or worse impact on proofreading results.

We conducted six experiments, each with a varying input parameter. Table
4.1 gives an overview of these experiments and their parameters. Herein we
will reference the experiments with their IDs given in this table.

We expect that experiment #6 leads to better results than the others, even
if it has less qualification requirements than experiments #4 and #5. This is
because the number of assignments is crucially bigger, and since crowdsourcing
works best if the group of workers is large and diverse, a proofreading HIT
assigned to many workers is likely to lead to better results than one assigned
to a few qualified workers.

[Kosara and Ziemkiewicz, 2010] state that 73% of workers are from the
USA, so some HITs are probably solved by workers with English as a second
language. We expect that the access restriction to U.S. residents as a qualifi-
cation in experiment #5 leads to better results than the preceding, since here
the HITs are mostly proofread by native speakers.

1A worker gets an approval if an assignment he worked on gets approved by the requester.

35

CHAPTER 4. EVALUATION OF OUR PROOFREADING UIS

ID Corpus Proofreading UI qualification Assgm.
per HIT

#1 ESL123 Editing a sentence none 3
#2 MELD Editing a paragraph none 5
#3 MELD Annotating a paragraph none 5
#4 MELD Annotating a paragraph 95% approval rate 5
#5 MELD Annotating a paragraph U.S. resident 5
#6 MELD Annotating a paragraph none 10

Table 4.1: Our experiments on MTurk

4.3 Performance Measures

In this section we introduce the measures we used to assess the results’ quality
of our proofreading experiments. We compare the results of both error detec-
tion and error correction to our gold standard (the annotated English learner
corpora mentioned in section 4.1) and applied statistical measures on it. For
error detection, we use the measures of precision, recall, and F-measure. For
error correction, we used the Levenshtein distance algorithm to calculate the
edit distance. We further introduce two statistical measures that were devel-
oped for fields of application other than proofreading, and apply them to the
measurement of proofreading results. These are Cohen’s kappa for error detec-
tion, and the Bilingual Evaluation Understudy (BLEU) for error correction.

Measuring the quality of proofreading is not trivial. It is indeed ques-
tionable if this quality is measurable at all. Natural language is ambiguous,
and there will always be different opinions on what is common language us-
age and what is not. When we let multiple workers proofread the same text,
we will most probably get different error positions and correction proposals
that indeed are valid results. For example, when workers edited the erroneous
sentence

“And we can learn many knowledge or new information from TV.”

from the ESL123 corpus, we got three different results:

Worker 1 : “We can learn more from the TV.”

Worker 2 : “Watching television provides both increased knowledge
and new information on many subjects.”

Worker 3 : “We can also gain much new knowledge and information
from the television.”

36

CHAPTER 4. EVALUATION OF OUR PROOFREADING UIS

In comparison, the correct sentence of our gold standard was:

“And we can gain a lot of knowledge and new information from
TV.”

So, if we want to compare the results of our experiments to our gold standard,
we have to be careful with the interpretation of measurements. For example,
a low precision does not indicate poor proofreading results. It is even possible
that a correction is better English than our gold standard. If we wanted to
measure “quality” per se, we had to rate each single result manually. For our
evaluation results and further discussion on this topic, see section 4.4.

If we want to evaluate our proofreading UIs, we need to measure the out-
put parameters of our experiments, as mentioned in section 4.2. In doing so,
we have to distinguish between evaluating error detection and evaluating error
correction. For error detection we need error positions, for error correction we
need correction proposals. While these are given in the results of the anno-
tating a paragraph UI, we need to subsequently calculate the edit difference in
the results of the editing a paragraph UI and the editing a sentence UI. We
do this by using the Myers Difference Algorithm [Myers, 1986]. From this al-
gorithm we can retrieve the changes made to the text, and information about
their position, the changed text, and if the edit operation was a deletion, an
insertion, or a substitution. We take these positions as error positions, and
the texts of changes as correction proposals.

Measures for Error Detection

If we compare the error positions of the results of our experiments to the
gold standard, we can apply the statistical measures precision, recall, and F-
measure. Given that both gold standard and workers’ results are, in a broader
sense, ratings of humans that tell if words (or sentences) are erroneous or not,
the application of a measure of inter-rater agreement might be interesting. We
use Cohen’s kappa to measure this agreement between gold standard and error
detection.

We can apply these measures in multiple levels of granularity. In grammar
checking, a sentence-wise measurement is reasonable, since in most cases it is
sufficient to determine whether a sentence is grammatical or ungrammatical.
In style checking and spell checking, it is important to have a more precise
information about the error location within the sentence, though. So, a word-
wise measurement is suitable here. We will apply both levels of granularity in
the evaluation of our experiments. We will not apply a character-wise mea-
surement, since it is not our ambition to detect wrong letters within words, but

37

CHAPTER 4. EVALUATION OF OUR PROOFREADING UIS

rather to tell wrong words and right words apart. Plus, a character-wise level
would bias precision and recall, since it would introduce an unwanted weight
of faultiness of a word according to its number of characters. An exception is
the Levenshtein distance (see below), which works on character-level.

In the following, we will describe the aforementioned statistical measures
and their calculation. All descriptions are made on the word-wise level. The
calculation on the sentence-wise level works analogously.

When calculating precision and recall, we compare the errors found by
workers in our experiments, herein called found errors, to the errors in our gold
standard, herein called gold errors. Found errors that match gold errors are
true positives. Words that are not identified as errors by workers, and are not
marked as errors in the gold standard either, are true negatives. Found errors
that are not marked as errors in the gold standard are false positives, while gold
errors that have not been identified as errors by workers are false negatives.
To give an example, figure 4.2 shows a visualization of the comparison of gold
errors to found errors.

Figure 4.2: Comparison of gold errors to found errors.

In this figure, the original sentence “These knowledge are extremely useful”
from the ESL123 corpus is compared to the correction: “This knowledge is
extremely beneficial”. Gold errors are highlighted in yellow, and found errors,
retrieved by the edit difference, are highlighted in red.

Definitions

Let EG be the set of all words being gold errors eg, and EF the set of all words
being found errors ef , with EC

G and EC
F being their complements. The set of

true positives TP , the set of true negatives TN , the set of false positives FN ,
and the set of false negatives FN are then defined as follows:

38

CHAPTER 4. EVALUATION OF OUR PROOFREADING UIS

TP = EG ∩ EF

TN = EC
G ∩ EC

F

TP = EF \ EG

TP = EG \ EF

Precision

Precision describes the ratio of the size of the set of true positives to the size
of the set of found errors.

precision =
|TP |
|EF |

(4.1)

Recall

Recall describes the ratio of the size of the set of true positives to the size of
the set of gold errors.

recall =
|TP |
|EG|

(4.2)

F-measure

The F-measure is the harmonic mean of precision and recall.

F -measure =
2 precision recall

precision+ recall
(4.3)

Cohen’s kappa

Cohen’s kappa coefficient, κ, is a statistical measure for inter-rater agreement
defined by Cohen in 1960 (cf. [Cohen, 1960]). Given two raters R1 and R2

who classify objects into two categories A and B, the probabilities p for their
ratings are:

R1

A B Total

R2

A p11 p12 pA2

B p21 p22 pB2

Total pA1 pB1 1

39

CHAPTER 4. EVALUATION OF OUR PROOFREADING UIS

The observed level of agreement p0 is calculated as:

p0 = p11 + p22

The probability of random agreement pe is calculated as:

pe = pA1 pA2 + pB1 pB2

Cohen’s kappa coefficient κ is then calculated as:

κ =
p0 − pe
1− pe

(4.4)

Measures for Error Correction

Both of the corpora we used for our experiments provide correction proposals
that we can use as a gold standard. We can compare some statistical measures
to calculate the similarity of the experiment’s results to this gold standard.
Results that are quite similar to the gold standard are expected to have a high
probability to be good and valid correction proposals. Further, it is interesting
to estimate how much a text has been edited. We expect corrections that are
quite different to the original to be more creative corrections that possibly
enhance the style of the text. Therefore, we want to measure the difference of
corrections to their original versions.

To measure the difference between original text and corrected text we used
the Levenshtein distance to calculate the edit distance. To measure the sim-
ilarity to our gold standard, we apply the Bilingual Evaluation Understudy
(BLEU) algorithm, which was developed by [Papineni et al., 2002] for evalu-
ating machine translation. It calculates the similarity between a translation
proposal and a machine translation result. In doing so, it takes into account
that a possible re-structuring of a sentence or phrase does not alter its meaning
or quality. Since our correction proposals can be seen as a translation proposal
of erroneous text to its correct equivalent, BLEU is an appropriate measure to
evaluate these corrections.

Levenshtein distance

The Levenshtein distance is an algorithm developed by Levenshtein in 1966 (cf.
[Levenshtein, 1966]). It measures the similarity of two String representations
of texts at character-level. It counts how many operations have to be done
at a minimum in order to change one string into another. An operation is a
change that has to be introduced to one character. Formally, the Levenshtein
distance is calculated as follows:

40

CHAPTER 4. EVALUATION OF OUR PROOFREADING UIS

Let m be a the length of the first string u, and n the length of the second
string v. The cells Di,j of matrix D of the size m · n are then defined as:

Di,j = min





Di−1,j−1 +0 if ui = vj
Di−1,j−1 +1 if character is substituted
Di,j−1 +1 if character is inserted
Di−1,j +1 if character is deleted

(4.5)

with 1 ≤ i ≤ m, and 1 ≤ j ≤ m,

and the special cases D0,0 = 0, Di,0 = i, and D0,j = j.

The complexity of the Levenshtein distance algorithm is O(nm).

BLEU

The Bilinguial Evaluation Understudy (BLEU) is an algorithm that calculates
the similarity of two texts that takes into account that texts may be equivalent
despite re-structuring (cf. [Papineni et al., 2002]). BLEU calculates a modi-
fied precision score pn for each n-gram length. Applied to the sentence-wise
evaluation of correction proposals, the BLEU formula reads as follows:

Let Sc be a sentence that has been corrected by workers in our experiment,
and Sg the corresponding correct sentence from our gold standard. The BLEU
score is then calculated as

Score = exp

�
4�

n=1

0.25 log(pn)−max

�
Lg

Lc

− 1, 0

��
(4.6)

with
Lg = the number of words in Sg

Lc = the number of words in Sc

pn =
n(Sc, Sg)

n(Sc)

where

n(Sc) = the number of n-grams in Sc

n(Sc, Sg) = the number of n-grams in Sc with co-occurence in Sg

There are even more measures that could be valuable for the evaluation of error
detection and error correction. There are further basic statistical measures that
can be applied, like true negative rate and accuracy for the evaluation of error
detection, and word error rate for the evaluation of error correction. There are

41

CHAPTER 4. EVALUATION OF OUR PROOFREADING UIS

a vast number of algorithms that calculate the difference or similarity of texts,
too. A few examples are the cosine similarity, the Hamming distance and
the Jaccard similarity coefficient. Even the aforementioned algorithms have
improvements, such as the Damerau–Levenshtein distance for the Levenshtein
distance, and the NIST algorithm (cf. [Doddington, 2002]) for BLEU. In this
thesis, we confine ourselves to the measures introduced in this section, which
we found to be the most basic. The evaluation with further measures, with
which the evaluation of evaluation measures would gain in importance, is left
for future work.

4.4 Evaluation Results

In this chapter, we evaluate the experiments described in section 4.2 using
the performance measures described in section 4.3. We present the evaluation
results and discuss their meaning for assessing the quality of proofreading. We
further provide some statistics about costs and working time spent on these
experiments.

After we conducted our experiments and retrieved their results, we applied
several statistical measures to them, as described in section 4.3. With these
measures we want to quantify error detection and error correction. To measure
error detection performance we calculated precision, recall, F-measure and
Cohen’s kappa by comparing the positions of errors detected by workers to the
error positions of our gold standard. To measure error correction performance
we compared the corrected texts to both their uncorrected versions and the
correct versions in our gold standard. To do the former, we calculated the edit
distance using the Levenshtein distance. To do the latter, we calculated the
similarity of corrections to our gold standard using BLEU.

Measuring Error Detection Performance

For each experiment we calculated precision, recall and F-measure. These
measures give an idea of how error detection agrees with the errors in our
gold standard. They describe how precise an error detection matches the
gold standard (precision), how many of the gold standard errors were covered
(recall), and how big this agreement is regarding both of these measures (F-
measure).

We calculated precision, recall and F-measure at both word-wise and sen-
tence-wise granularity level. In our evaluation we focus on the word-wise level,
since it is more our concern which erroneous words or passages have been
found, rather than which erroneous sentences. Nevertheless, we present the

42

CHAPTER 4. EVALUATION OF OUR PROOFREADING UIS

Granularity Experiment Measure
level #1 #2 #3 #4 #5 #6

Word-wise 0.26 0.28 0.21 0.18 0.20 0.20
Precision

Sentence-wise 0.97 0.85 0.86 0.81 0.85 0.85

Word-wise 0.90 0.76 0.63 0.83 0.85 0.91
Recall

Sentence-wise 1.0 0.96 0.86 0.94 0.99 0.98

Word-wise 0.40 0.41 0.32 0.30 0.33 0.33
F-measure

Sentence-wise 0.98 0.90 0.86 0.87 0.92 0.91

Table 4.2: Precision, recall and F-measure of error detection.

results in both word-wise and sentence-wise granularity level. The results of
our evaluation with recall, precision, and F-measure are found in table 4.2.

Experiment #1 shows highest overall values. Since precision, recall and
F-measure are all measures that do not regard true negative rates, the inter-
pretation of experiment #1 having best proofreading results is not quite valid.
Cohen’s kappa is a measure that does factor true negatives in, and as table 4.3
shows, the values of experiment #1 are crucially smaller. Nevertheless, these
high precision and recall values indicate that workers probably do a better job
if they focus on a rather small text segment.

Regarding those experiments that use input texts of paragraph size (#2–
#6), experiment #5 shows the highest values in precision and F-measure. It
shows that the editing a paragraph UI leads to more precise results than the
annotating a paragraph UI. This is probably the case because in this UI workers
edited less, which may be an indicator for the phenomenon that even though
an editor presents a higher degree of freedom to the user, he or she does not
rewrite large text passages, but rather picks the most obvious words that have
to be corrected. Regarding these results, we can deduce that a higher degree of
freedom for text editing does not encourage but rather discourages the user to
rewrite large text passages. Yet, this hypothesis needs to be tested in further
experiments that focus on this phenomenon, which remains as future work.

The comparison of experiments #3 and #4 shows a similar effect in which
reduced work leads to a higher precision. These two experiments differ in their
worker qualification requirement: #3 does not require any qualification, while
#4 restricts the access to its HITs to workers that have an approval rate of at
least 95%. Our evaluation results show that #3 has a higher precision than
#4, but a lower recall. This is probably because the missing qualification
requirement of #3 leads to a group of workers who might be less serious about

43

CHAPTER 4. EVALUATION OF OUR PROOFREADING UIS

Granularity Experiment Measure
level #1 #2 #3 #4 #5 #6

Word-wise 0.1659 0.2218 0.1544 0.1012 0.0808 0.0752
κ

Sentence-wise 0.0 0.1473 0.5302 0.3571 0.2051 0.1847

Table 4.3: Cohen’s kappa of error detection.

their job than it is the case in #4. If workers wanted to reduce the amount of
work, they would just annotate the most obvious errors. This would lead to an
error detection that is probably more precise compared to our gold standard.
In contrary, workers in #4 obviously annotated larger text passages, seemingly
more concerned about a common wording and good style. In doing so, they
covered more of the errors in our gold standard, which leads to a higher recall.

The highest recall in experiments #2–#6 occurs in experiment #6. In this
experiment we assigned each HIT to 10 workers instead of just 5. The results
show that the more people annotate a text, the more errors they find. This is
exactly what crowdsourcing is about: a larger crowd leads to a higher coverage
in error detection, which is certainly more important for proofreading than the
precision of the detection of few predefined errors.

Regarding the experiments with 5 assignments per HIT that use the anno-
tating a paragraph UI (#3–#5), experiment #5 has the highest overall values,
especially in recall. Since in #5 the qualification requirement was U.S. resi-
dency, this means that proofreading results apparently benefit from an access
restriction to a group mostly consisting of native English speakers.

Another interesting fact is that our human-based computation approach
seems to significantly outperform the automatic proofreading approach of
[Brockett et al., 2006]. Brockett et. al. collected the ESL123 corpus to evaluate
their approach that utilizes phrasal statistical machine translation to detect
and correct writing errors. As stated in their paper, their algorithm reached
a sentence-wise recall value of 0.62, while ours reached a sentence-wise recall
of 1.0. Even though this number is not significant individually, it nonetheless
proves that humans find more existing errors than their algorithm, or change
the text so that errors are eliminated.

Unlike precision, recall, and F-measure, Cohen’s kappa is a measure that
factors in the rates of true positives, false positives, false negatives, and true
positives as well. Regarding each value, the inter-rater agreement coefficient,
κ, is calculated. The results are presented in table 4.3.

Here, experiments #2 and #3 show the highest values. This is due to a
higher agreement to the gold standard, and confirm the observations stated

44

CHAPTER 4. EVALUATION OF OUR PROOFREADING UIS

Experiment Measure
#1 #2

24.99 69.15 Mean distance
0 1 Minimum

184 542 Maximum
5.48 10.75 Standard deviation

Table 4.4: Levenshtein distance between original text and corrected text.

above. Similarly to the precision values in table 4.2, this is an indicator for a
smaller amount of work, or frankly speaking, for a certain laziness of workers.

Measuring Error Correction Performance

The experiments that use the annotating a paragraph UI (#3–#6) may provide
precise error position data, but rather less useful values for measuring error
correction. Even though these experiments provide a correction value for each
annotated error, it is often the case that these correction proposals do not fit
into the annotated text passage. Workers often propose corrections for bigger
text passages than they marked as errors, and in several cases workers provide
some information other than a proper correction proposal. Eventually, the
benefit of this UI is that authors who use this UI to let workers proofread
their text can choose between multiple correction proposals and decide for
themselves which one is the most appropriate. Anyway, we decided to just
measure the text correction of those experiments that used the editing UIs:
experiments #1 and #2. Here, we can compare the corrected text to (1)
the erroneous original text, and (2) to the respective correct text of our gold
standard.

To measure the edit distance between original text and the worker’s correc-
tion, we calculated the Levenshtein distance. The results comprising the mean
distance, minimum and maximum values, and standard deviation are shown
in table 4.4.

These results show that more editing operations have been made in experi-
ment #2 than in #1. This is not surprising, since the texts in #1 are sentences
while the texts in #2 are paragraphs. In #2 there is simply more text that can
be changed, which naturally leads to a greater number of changes. So these
results are not quite conclusive. In a further evaluation of experiment #1 we
therefore tried to find out if a higher Levenshtein distance indicates a higher
quality of corrections. For this purpose we manually rated the correction qual-

45

CHAPTER 4. EVALUATION OF OUR PROOFREADING UIS

Experiment Measure
#1 #2

0.48 0.67 Mean BLEU
0.0 0.23 Minimum
1.0 0.93 Maximum
0.44 0.16 Standard deviation

Table 4.5: BLEU of corrected sentences compared to our gold standard.

ity of each assignment with values from 0 to 2, with 0 being the poorest quality
and 2 being the best quality. We then calculated the correlation between Lev-
enshtein distance and quality assessment and came to a correlation coefficient
of 0.06. This low value rather indicates that there is no convincing correlation
between the amount of editing and the correction’s quality.

To measure the similarity of corrections and the correct texts given in
our gold standard we applied the BLEU algorithm. BLEU calculates the
similarity of two text passages (in our case sentences) while regarding possible
co-occurrences. Table 4.5 shows the mean BLEU of experiments #1 and #2,
their minimum and maximum values, and their standard deviation.

In comparison, experiment #2 has a higher mean BLEU than experiment
#1. This means that corrections of #2 are more similar to our gold standard,
regardless if a sentence is re-structured in some way. The different standard
deviations here show that the sentences in #1 have been edited in a way
that they are more different to the gold standard than the sentences in #2.
This corresponds to the aforementioned assumption that short texts encourage
workers to rewrite them, whereas larger texts displayed in a text editor dis-
courage workers to rewrite longer text passages. Another possible explanation
is that the error rate of the ESL123 corpus used in #1 is considerably higher
than the error rate of MELD used in #2 (ESL123: 19.75%, MELD: 7.55%, see
4.1). So, workers were more encouraged to re-write larger text segments in #1
than in #2, merely due to the higher amount of given errors.

To see all these measures as indicators of quality is highly questionable.
They are rather measures for the agreement between error detection or error
correction results and the gold standard. A higher agreement may be an indi-
cator for higher proofreading quality, but a low agreement is not compulsorily
a sign for poor proofreading quality. A proper assessment of the proofreading
quality can only be made by manually reviewing and rating all results. Such a
quality assessment could also help evaluating the different performance mea-
sures. But since this is a crucially labor-intensive and time-consuming task,

46

CHAPTER 4. EVALUATION OF OUR PROOFREADING UIS

Experiment Measure
#1 #2 #3 #4 #5 #6

3.68 3.50 11.00 12.50 4.70 9.85 Total cost [$]

1 813 2 223 6 659 6 659 2 223 2 223 Number of words in original texts

Table 4.6: Costs of our experiments compared to number of words and rejection
ratio.

Experiment Measure
#1 #2 #3 #4 #5 #6

13.7 8.5 28.1 28.5 9.7 16.8 Total working time [h]
398 100 269 275 94 197 Number of assignments
2 5 6 6 6 5 [min] per assignment

Table 4.7: Working time and hourly wage of experiments.

such further evaluation is beyond the scope of this Bachelor thesis and is left
for future work.

Costs and Working Time

Besides the quality of error detection and error correction, there are some other
values that should be analyzed to evaluate if human-based computation is a
good way for doing proofreading. An interesting factor for comparison to the
traditional way of consulting a professional proofreader is how much it costs.
For our experiments that comprised 21 800 words in total we paid a sum of
$45.23. Table 4.6 shows the single values of each experiment, comparing the
costs to the number of words.

In experiments #1–#5 we paid about $2 per 1 000 words on average, and
about $4 per 1 000 words in experiment #6. According to the Society for
Editors and Proofreaders (SfEP) a minimum hourly wage of about $30 is
standard.2 Compared to this, proofreading via crowdsourcing is quite inex-
pensive. In table 4.7 we further present the working time that has been spent
by workers on each experiment.

The values of total working time can be seen as the amount of working

2SfEP’s suggestions of minimum freelance wages can be accessed at http://www.sfep.
org.uk/pub/mship/minimum_rates.asp

47

CHAPTER 4. EVALUATION OF OUR PROOFREADING UIS

time that has been saved. Each of our experiments was conducted in less than
24 hours. That the value of total working time can even exceed this time is
due to the simultaneous work of many people. Imagine that the author or the
person charged with proofreading would have to spend this amount of time,
the enormity of time saving becomes clear. Regardless of the amount of time
spent in the consequent reviewing process (which the writer has to spend either
way), the amount of working hours undertaken by workers is the most valuable
benefit of crowdsourcing.

48

Chapter 5

Conclusion

In this thesis, we examined the qualities of human-based computation as an
approach for semi-automatic proofreading. We developed three different user
interfaces for proofreading tasks on MTurk, and one for reviewing the proof-
reading results. We conducted six experiments with these different proofread-
ing UIs and input texts with different properties. By evaluating these experi-
ments we found that workers do less re-writing with the editing a paragraph UI
than with the editing a sentence UI, and cover more errors with the annotat-
ing a paragraph UI as more workers are assigned to a HIT. We further found
that the access restrictions for HITs to US residents as qualification require-
ment helps to increase the quality of error detection. Further evaluation of the
quality of proofreading results and of proofreading performance measures are
left for future work, as well as further development of proofreading UIs and
reviewing UIs. The following statement does not only summarize the value
of crowdsourcing for proofreading, but also illustrates how proofreading via
MTurk works: for this purpose we had this thesis’ last paragraph corrected
with our editing a paragraph UI, and visualized deletions in red and crossed
out, and insertions in green.

When talking about crowdsourcing as a way for of proofreading, sooner or
later the question rises arises if as to whether the anonymous crowd can be
trusted. To many people, it seems unlikely that a group of strangers barely
qualified for proofreading would provide high quality error detection and cor-
rection. In this thesis, we evaluated proofreading via crowdsourcing, and re-
sults show that crowdsourcing is indeed a good and cheap resource for this
kind of work. But even regardless Regardless of the quality of proofreading
results, crowdsourcing brings some further values value for the writer than the
traditional ways methods. The crowd is able to perform a high amount of
working hours in a relatively short time period for an amazing amazingly low
price. In the end, the diversity of the crowd leads to a selection of multiple

49

CHAPTER 5. CONCLUSION

annotations and corrections, which this is the actual value of crowdsourcing.
There Currently, there is no other tool and no or method of accumulating so
many different proposals for corrections to one text that is that as easy simple,
fast, cheap, and easy to use. We hope that, inspired by our work on that issue,
other and better tools will be developed and to make proofreading easy and
affordable for everyone.

50

Bibliography

[Bernstein et al., 2010] Bernstein, M. S., Little, G., Miller, R. C., Hartmann,
B., Ackerman, M. S., Karger, D. R., Crowell, D., and Panovich, K. (2010).
Soylent: A word processor with a crowd inside. In Proceedings of the 23nd
annual ACM symposium on User interface software and technology, pages
313–322. ACM.

[Brabham, 2008] Brabham, D. C. (2008). Crowdsourcing as a model for prob-
lem solving. Convergence: The International Journal of Research into New
Media Technologies, 14(1):75.

[Bredenkamp et al., 2000] Bredenkamp, A., Crysmann, B., and Petrea, M.
(2000). Looking for errors: A declarative formalism for resource-adaptive
language checking. In Proceedings of the 2nd International Conference on
Language Resources and Evaluation.

[Brockett et al., 2006] Brockett, C., Dolan, W. B., and Gamon, M. (2006).
Correcting esl errors using phrasal smt techniques. In Proceedings of the 21st
International Conference on Computational Linguistics and 44th Annual
Meeting of the ACL, pages 249––256, Sydney, Australia. Association for
Computational Linguistics.

[Butcher et al., 2006] Butcher, J., Drake, C., and Leach, M. (2006). Butcher’s
copy-editing: the Cambridge handbook for editors, copy-editors and proof-
readers. Cambridge University Press, 4 edition.

[Carroll, 1998] Carroll, J. M. (1998). Minimalism Beyond the Nurnberg Fun-
nel. Massachusetts Institute of Technology.

[Cherry and Vesterman, 1981] Cherry, L. and Vesterman, W. (1981). Writing
Tools: The STYLE and DICTION Programs. Bell Telephone Laboratories.

[Cohen, 1960] Cohen, J. (1960). A coefficient of agreement for nominal scales.
Educational and psychological measurement.

51

BIBLIOGRAPHY

[Dı́az-Negrillo and Fernández-Domı́nguez, 2006] Dı́az-Negrillo, A. and
Fernández-Domı́nguez, J. (2006). Error tagging systems for learner corpora.
Revista española de ling
”úıstica aplicada, (19):83.

[Doddington, 2002] Doddington, G. (2002). Automatic evaluation of machine
translation quality using n-gram co-occurrence statistics. In Proceedings
of the second international conference on Human Language Technology Re-
search, pages 138–145. Morgan Kaufmann Publishers Inc.

[Domeij et al., 2000] Domeij, R., Knutsson, O., Carlberger, J., and Kann, V.
(2000). Granska - an efficient hybrid system for swedish grammar checking.
In Proceedings of the Twelfth Nordic Conference in Computational Linguis-
tics (NoDaLiDa), pages 49–56.

[Erickson, 1990] Erickson, T. D. (1990). Working with interface metaphors.
The Art of Human-computer Interface Design, pages 65–73.

[Fitzpatrick and Seegmiller, 2001] Fitzpatrick, E. and Seegmiller, M. S.
(2001). The montclair electronic language learner database. In Proceedings
of the International Conference on Computing and Information Technolo-
gies.

[Fromkin et al., 2003] Fromkin, V., Rodman, R., and Hyams, N. (2003). An
Introduction to Language. Wadsworth, 7 edition.

[Garside, 1996] Garside, R. (1996). The robust tagging of unrestricted text:
The bnc experience. Thomas and Short, pages 167–180.

[Gentry et al., 2005] Gentry, C., Ramzan, Z., and Stubblebine, S. (2005). Se-
cure distributed human computation. In Proceedings of the 6th ACM Con-
ference on Electronic Commerce, pages 155–164. ACM.

[Granger, 2003] Granger, S. (2003). Error-tagged Learner Corpora and CALL:
A Promising Synergy. CALICO Journal, 20(3):465–480.

[Hackos, 1999] Hackos, J. T. (1999). An application of the principles of min-
imalism to the design of human-computer interfaces. Common Ground,
9:17–22.

[Hammond and Fogarty, 2005] Hammond, M. O. and Fogarty, T. C. (2005).
Co-operative oulip-ian generative literature using human based evolutionary
computing. Proceedings of GECCO-2005.

52

BIBLIOGRAPHY

[Helfrich and Music, 2000] Helfrich, A. and Music, B. (2000). Design and eval-
uation of grammar checkers in multiple languages. In Proceedings of the 18th
conference on Computational Linguistics, volume 2, pages 1036–1040. Asso-
ciation for Computational Linguistics.

[Horton and Chilton, 2010] Horton, J. J. and Chilton, L. B. (2010). The labor
economics of paid crowdsourcing. In Proceedings of the 11th ACM Confer-
ence on Electronic Commerce, pages 209–218. ACM.

[Horwood, 1997] Horwood, T. (1997). Freelance Proofreading and Copy-editing
- a guide. Action Press, Virginstow, 2 edition.

[Howe, 2006a] Howe, J. (2006a). Crowdsourcing: A definition. Crowdsourc-
ing: Tracking the Rise of the Amateur. (weblog, 2 June). URL (accessed
February 26, 2011): http://crowdsourcing.typepad.com/cs/2006/06/

crowdsourcing_a.html.

[Howe, 2006b] Howe, J. (2006b). The rise of crowdsourcing. Wired, 14(6).

[Islam and Inkpen, 2009] Islam, A. and Inkpen, D. (2009). Real-word spelling
correction using google web 1t n-gram data set. In Proceeding of the 18th
ACM Conference on Information and Knowledge Management, pages 1689–
1692. ACM.

[Kittur and Kraut, 2008] Kittur, A. and Kraut, R. E. (2008). Harnessing the
wisdom of crowds in wikipedia: Quality through coordination. In Pro-
ceedings of the ACM 2008 Conference on Computer Supported Cooperative
Work, pages 37–46. ACM.

[Kosara and Ziemkiewicz, 2010] Kosara, R. and Ziemkiewicz, C. (2010). Do
mechanical turks dream of square pie charts. In BELIV Workshop, pages
373–382.

[Lakoff and Johnson, 1980] Lakoff, G. and Johnson, M. (1980). Metaphors We
Live By. The University of Chicago Press.

[Leacock et al., 2010] Leacock, C., Chodorow, M., Gamon, M., and Tetreault,
J. (2010). Automated Grammatical Error Detection for Language Learners.
Morgan & Claypool, 1 edition.

[Levenshtein, 1966] Levenshtein, V. I. (1966). Binary codes capable of cor-
recting deletions, insertions, and reversals. In Soviet Physics Doklady, vol-
ume 10, pages 707–710.

53

BIBLIOGRAPHY

[Lightbound, 2005] Lightbound, P. M. (2005). An Analysis of Interlan-
guage Errors in Synchronous/Asynchronous Intercultural Communication
Exchanges. PhD thesis, Universitat de València.

[Little et al., 2009] Little, G., Chilton, L. B., Miller, R., and Goldman, M.
(2009). Turkit: Tools for iterative tasks on mechanical turk. In Proceed-
ings of the ACM SIGKDD Workshop on Human Computation, pages 29–30.
ACM.

[Mudge, 2010] Mudge, R. (2010). The design of a proofreading software ser-
vice. In Proceedings of the NAACL HLT 2010 Workshop on Computational
Linguistics and Writing, pages 24—-32. Association for Computational Lin-
guistics.

[Myers, 1986] Myers, E. W. (1986). An o (nd) difference algorithm and its
variations. Algorithmica, 1(1):251–266.

[Naber, 2003] Naber, D. (2003). A rule-based style and grammar checker.
Master’s thesis, Universität Bielefeld, Technische Fakultät.

[Paolacci et al., 2010] Paolacci, G., Chandler, J., and Ipeirotis, P. G. (2010).
Running experiments on amazon mechanical turk. Judgment and Decision
Making, 5(5):411–419.

[Papineni et al., 2002] Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J.
(2002). Bleu: a method for automatic evaluation of machine translation.
In Proceedings of the 40th annual meeting on association for computational
linguistics, pages 311–318. Association for Computational Linguistics.

[Pravec, 2002] Pravec, N. A. (2002). Survey of learner corpora. ICAME Jour-
nal, 26:81–114.

[Richardson and Braden-Harder, 1988] Richardson, S. and Braden-Harder, L.
(1988). The experience of developing a large-scale natural language text
processing system: Critique. In Proceedings of the Second Conference on
Applied Natural Language Processing, pages 195–202. Association for Com-
putational Linguistics.

[Rooy and Schafer, 2002] Rooy, B. V. and Schafer, L. (2002). The effect of
learner errors on pos tag errors during automatic pos tagging. Southern
African Linguistics and Applied Language Studies, 20(4):325–335.

[Surowiecki, 2005] Surowiecki, J. (2005). The Wisdom of Crowds. Anchor
Books, 1 edition.

54

BIBLIOGRAPHY

[Takagi, 2001] Takagi, H. (2001). Interactive evolutionary computation: Fu-
sion of the capabilities of ec optimization and human evaluation. In Pro-
ceedings of the IEEE, volume 89, pages 1275–1296. IEEE.

[Tetreault et al., 2010] Tetreault, J. R., Filatova, E., and Chodorow, M.
(2010). Rethinking grammatical error annotation and evaluation with the
amazon mechanical turk. In Fifth Workshop on Innovative Use of NLP for
Building Educational Applications, page 45. Association for Computational
Linguistics.

[Tono, 2003] Tono, Y. (2003). Learner corpora: Design, development and
applications. In Proceedings of the Corpus Linguistics 2003 Conference,
pages 800–809.

[von Ahn, 2005] von Ahn, L. (2005). Human computation. PhD thesis,
Carnegie Mellon University.

[von Ahn and Dabbish, 2004] von Ahn, L. and Dabbish, L. (2004). Labeling
images with a computer game. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 319–326. ACM.

[von Ahn et al., 2008] von Ahn, L., Maurer, B., McMillen, C., Abraham, D.,
and Blum, M. (2008). recaptcha: Human-based character recognition via
web security measures. Science, 321(5895):1465–1468.

[Wilson, 1901] Wilson, J. (1901). The Importance of the Proof-reader. A Paper
read before the Club of Odd Volumes, in Boston, by John Wilson. Cambridge
University Press.

55

