
Martin-Luther-Universität Halle-Wittenberg
Natuwissenschaftliche Fakultät III
Studiengang Informatik

Precision-Oriented Argument
Retrieval

Bachelor’s Thesis

Danik Hollatz Matriculation Number 218102039
Born December 25 in Odessa

1. Referee: Prof. Dr. Matthias Hagen
2. Referee: M. Sc. Alexander Bondarenko

Submission date: May 10, 2022

Declaration

Unless otherwise indicated in the text or references, this thesis is
entirely the product of my own scholarly work.

Halle, May 10, 2022

. .
Danik Hollatz

Abstract

Argumentation plays an enormous role when it comes to building an opinion
on a controversial topic or making personal choices. The Internet provides a
huge amount of opinions of other people as well as argumentative texts, where
among useful and qualitative good argumens, there are also to find one-sided,
populist, or faked ones.

In this thesis, we create multiple precision-oriented approaches for the task
of argument retrieval. For this purpose, we use (1) models deployed in TARGER
to find premises and claims in arguments, (2) the pre-trained DeepCT model
to extract and use semantic importance of words in arguments, and (3) create
9 different corpora to fine-tune the DeepCT model and use them for further
experiments.

For our experiments and evaluation, we use args.me corpus and relevance
judgments offered by Touché lab. Using manually annotated judgments we
compare our results with other research teams, that have taken participation
in Touché task 1: argument retrieval for controversial questions in the years
2020 and 2021.

Compared with the results of participants of Touché task 1 in the years
2020 and 2021, our fine-tuned models outperform the most effective participant
approaches in the nDCG@5 measurement.

Contents

1 Introduction 1

2 Background and Related Work 4
2.1 Information Retrieval . 4
2.2 Argument Search . 5
2.3 Argument Mining . 6
2.4 Argument Retrieval . 8
2.5 Retrieval Models and Query Expansion 10

2.5.1 BM25 Retrieval Model 10
2.5.2 Dirichlet-smoothed Language Model 11
2.5.3 RM3 Query Expansion 11

2.6 Deep Learning . 12
2.6.1 BERT . 14

3 Data and Data Preprocessing 16
3.1 Data and Data Access . 16
3.2 Data Preprocessing . 17

4 Experiments 20
4.1 Parameter Tuning . 20
4.2 Transforming Data with TARGER 21
4.3 Training and Inference of DeepCT Models 22

5 Evaluation 25
5.1 Evaluation Metrics . 25
5.2 Retrieval Comparison . 26
5.3 Results . 28

6 Conclusions 43

Bibliography 44

i

Chapter 1

Introduction

“An information retrieval system
will tend not to be used whenever
it is more painful and
troublesome for a customer to
have information than for him
not to have it.”

Calvin N. Mooers, Zator
Technical Bulletin

Much of the arguments available on the web can be faked, biased, or
populist, which is why a study field argument retrieval plays a big role in
today’s world [55]. We believe that this implies that the retrieval process of
argumentative texts should not only consider the used words in documents,
but also their semantic importance in the arguments. In this thesis, we aim to
create precision-oriented argument retrieval approaches, which also take into
account the semantic importance of the words in arguments.

Argument retrieval is a research area that deals with sorting argumentative
texts by their relevance to a query on various topics [22]. Modern web search
engines are working incredibly well and are able to retrieve information in a
blink of an eye, but we still can observe some lack of quality of retrieval, due to
the one-sidedness of retrieved documents. As the work of Ajjour et al. [2] states,
the internet is filled with one-sided documents, because of various reasons such
as propaganda or marketing. Due to the way the web engines, work, they will
tend to retrieve documents that are similar to the query in used words, but
they do not consider the semantic importance of the used words, which may
lead to arguments similar to the query, but irrelevant ones retrieved. Because
of that behavior, we aim to consider the semantic importance of the words in
documents when retrieving arguments.

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Example of a debate results on topic “Sex Education should be taught
in public schools” between internet users.

The performance of modern search engines is highly influenced by bag-of-
words document representations, but they only consider the frequency of the
terms in the documents [17]. To increase the precision and quality of retrieved
documents, in this thesis we aim to use and create approaches, that differ from
frequency-based schemes. For this purpose we use (1) pre-trained deep learning
network called “DeepCT” created by Dai and Callan [17] on MS-MARCO-Doc
corpus1 to estimate and use the semantic importance of terms in documents,
(2) create 9 different corpora based on args.me corpus [2] to fine-tune the
DeepCT model, (3) extract premises and claims from arguments via models
deployed in TARGER [13] and dismiss the rest of the argument for further
experiments. Args.me corpus crawls arguments from websites, dedicated to
debate and contains almost 400,000 arguments (cf. example 1.1 of debate topic
and outcomes, and an example 1.2 of an argument in the first debate round)

In Section 2 we overview study fields that influence argument retrieval, such
as information retrieval, argument search, argument mining, deep learning,
and the usage of deep learning models in the field of argument retrieval, as
well provide a background to the used retrieval models and query expansion
methods. We analyze various types of retrieval models and the most common
approaches used in the collaborative platform for researchers named “Touché‘
[7–9].

In Section 3, we analyze the args.me corpus, describe how we use it to create
corpora to fine-tune DeepCT models, and provide an example of a training
sample.

Section 4 introduces our precision-based approaches, how we tune the
parameter of retrieval models, which models from TARGER we use, and how

1https://microsoft.github.io/TREC-2019-Deep-Learning/

2

CHAPTER 1. INTRODUCTION

Figure 1.2: Example of an argument in the first round of the debate.

their outputs look like, as well we provide an explanation of how we fine-tune
DeepCT models, what frameworks we use, analyze the output of DeepCT
models and interpret the training plots of various DeepCT models.

In Section 5 we evaluate our approaches. Touché provides manually an-
notated relevance judgments for part of the documents contained in args.me
corpus, which we use to evaluate our approaches. Touché lab has hosted two
events in the years 2020 and 2021 with two tracks: (1) argument retrieval for
controversial questions, and (2) argument retrieval for comparative questions.
We provide an evaluation of our approaches in nDCG@5, nDCG@25, and
Bpref metrics in rankings that were created using all documents from args.me
corpus, and in rankings that consist only from judged documents. We compare
our approaches with the best nDCG@5-score, using only judged documents,
achieved by research teams, that have taken participation in the first track of
Touché. We outperform the most effective participant approach in the year
2020 by 0.04, achieving an nDCG@5-score of 0.86, and outperform the best
team in the year 2021 by 0.01, achieving the nDCG@5-score of 0.73. We also
evaluate our approaches on all topics of the years 2020 and 2021 and their
corresponding judgments.

3

Chapter 2

Background and Related Work

This chapter provides an overview of relevant work in the fields of information
retrieval, argument retrieval, argument search, argument mining, deep learning,
and deep learning models used in argument and information retrieval. We
first overview a study field of information retrieval, since it is the research
field, from which other fields of studies such as argument retrieval, argument
search, and study of retrieval models are derived from. Then we describe
the field of argument search and how the argument search engine work since
it requires a knowledge of multiple fields related to the field of argument
retrieval, to build one. Afterward, we describe two main aspects of any search
engine: argument mining and argument retrieval. We describe the basics of
deep learning and overview (1) the use of neural networks in retrieval systems,
(2) how it can influence the precision of retrieved documents, (3) its advantages
and disadvantages compared to the sparse retrieval systems, (4) the architecture
of common deep learning model used for natural language processing—BERT.

2.1 Information Retrieval
The research field of information retrieval has come a long of way study. With
the advance of computers and their capability of storing large amounts of data,
it has become necessary to be able to quickly retrieve relevant documents
from data saved on a computer. Starting from the 1950s, information retrieval
has been dealing with the task of finding relevant information in document
collections that satisfy the human-defined information need expressed as search
queries [15, 49]. Among the first retrieval models tf ·idf [28] and BM25 [47],
also known as “sparse” retrieval models, were proposed. They are called so
because they represent text input in one-dimensional vectors with the size of the
vocabulary, in such a way, that in the case if a word from vocabulary appears in
text, its entry in the vector will have a non-zero value (e.g. showing how many

4

CHAPTER 2. BACKGROUND AND RELATED WORK

times a certain word appears in the text), and otherwise zero. Since the size of
vocabulary and following the size of the vector is much greater than the number
of unique words in the text, most of the values in such representations will have
the value of zero and only a few of them will have a value different from zero,
hence called “sparse” [5]. Due to the architecture of these models, they might
not consider a relevant document as such, because it contains words that are
synonyms to the words used in a query but are not the same. This motivates
an idea to consider not only the words themselves but also to try to extract
and use the meaning of the words and hence increasing the precision of such
approaches. This can be achieved using deep learning models and so-called
“dense” retrieval models, which use deep learning systems.

With the growth of machine learning, there also was found a place for it
in approaches in the field of information retrieval. Another type of retrieval
models is based on “dense” retrieval, such approaches exploit the embeddings of
text inputs created by deep learning systems, such as BERT [18], GPT-2 [46],
and others. Embeddings are representations of words encoded in the form of
a real-valued vector in such a way that words that have similar meanings are
expected to be close to each other in the embedding space [57]. According to
the work of Karpukhin et al. [29], dense models may create embeddings that
are “close” to each other in the embedding space, even when they are created
of texts that differ in used words, but are semantically similar to each other,
while sparse retrieval models would have difficulties retrieving such context.
However, dense models require additional time and resources, due to the need
of using GPUs (Graphics processing units), which makes them not always the
best solution to use.

Sparse and dense retrieval models, being complementary to each other [5],
give an intuition of combining both these approaches, leading to the creation of
so-called “hybrid” models. These models use fast and exact-matching proposed
by sparse retrievers and they close the semantic gap between query and docu-
ment if such appears. Work of Arabzadeh et al. [5] compare above-mentioned
approaches in query latency and effectiveness of approach; in effectiveness and
used resources of sparse models and improved effectiveness when using dense
hybrid models; in used deep learning models for dense models.

2.2 Argument Search
Argument search is a field of study of web search engine technology, which
deals with retrieving the most relevant arguments to the information need
described in a query [2]. Several argument search engines have been built
so far following different methodologies [31, 50, 55]. Search engines are built

5

CHAPTER 2. BACKGROUND AND RELATED WORK

differently, depending on what properties they should have, e.g. be recall- or
precision-oriented [2]. The first step in building an argument search engine
is acquiring data, which will be used in the engine, for instance, args.me [2]
is a corpus that is consisted only of arguments and is used in building search
engine args2 in the work of Wachsmuth et al. [55]. The work by Ajjour et al. [2]
describes three different argument search pipelines (cf. Figure 2.1): opposite to
the args.me corpus, in the work of Stab et al. [50] arguments are being retrieved
not from the corpus, which contains arguments only, but from the heterogeneous
web sources. Using a deep learning system in the work of Stab et al. [50] they
can distinguish between argumentative and non-argumentative units, which
makes argument retrieval possible. Work of Potthast et al. [44] introduces two
opposite to each other paradigms for retrieval pipelines: “mining-after-retrieval”
as done in work of Wachsmuth et al. [55] and “retrieval-before-mining” which
was implemented in the work of Stab et al. [50]. As described above, in the
paradigm “mining-after-retrieval” arguments are first being mined and indexed
offline, hence only leaving retrieving part of the pipeline to the online, whereas
for the “retrieval-before-mining” paradigm heterogeneous documents are indexed
and argument mining is a part of online or query time (cf. Figure 2.1). Using
distant supervision and harvesting arguments in the offline phase increases
the precision of retrieved documents but will decrease the recall, since some
argumentative units may be skipped [2]. Corpus used in the work of Stab et al.
[50] was also translated to the German language via Google translate API
(Application Programming Interface) [51]. Afterward, deep neural networks
were retrained and evaluated, achieving worse but comparable results and
hence giving users an opportunity to find arguments on controversial topics on
their website,3 providing German and English languages to formulate a query
and retrieve arguments in the same language. According to the work of Levy
et al. [31], their approach is more close to the one described in the work of
Ajjour et al. [2]: they also mine arguments from recognized sources, such as
Wikipedia and others, and exploit deep neural networks in order to find claims
and premises from the heterogeneous texts.

2.3 Argument Mining
Argument mining is the process of finding argumentative units in a free text.
The resulting dataset after argument mining will heavily influence whether the
resulting search engine will be recall- or precision-oriented. Since manually
annotating argumentative units in texts is an expensive and time-consuming

2www.args.me
3www.argumentsearch.com

6

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: Overview of different argument search pipelines [2]. From top to bottom:
work of Ajjour et al. [2] and Levy et al. [31], implementing their search engines
args and ProjectDebater according to the mining-after-retrieval paradigm, whereas
ArgumenText [50] uses retrieval-after-mining paradigm and includes mining to the
query time.

process, it becomes more and more important to automize this process [34].
Argument mining is a part of the argument search pipeline and it also can be
implemented differently, e.g. in works mentioned before: Levy et al. [31], Stab
et al. [50]. An argument mining framework, that we use in our work, is called
TARGER [13].4 Given an input as free-text, models deployed in TARGER
extract argumentative units from it, such as premises and claims. Using models
deployed in TARGER, we extract premises and claims from documents from
args.me corpus, dismissing the rest of the documents, and hence try to increase
the precision of retrieval. One of the advantages of TARGER, compared to
other argument mining frameworks, is that it provides 8 different pre-trained
models, giving a user an opportunity to find out which model suits his or her
needs best. These models use a deep neural network to detect argumentative
units. Another framework for argument mining is called “MARGOT” and just
like TARGER, MARGOT [35] provides an online web-service5 for extracting
argumentative units from free-text inputs, but in comparison, they do not use
deep learning models, but approaches that are more likely to be considered as

4https://demo.webis.de/targer/
5http://margot.disi.unibo.it/

7

CHAPTER 2. BACKGROUND AND RELATED WORK

a part of machine learning. TARGER outperforms MARGOT in F1 scores of
claim and evidence detection and works faster.

2.4 Argument Retrieval
One of the last steps in the argument search pipeline is to retrieve documents.
To extract the most relevant arguments to the users need retrieval models are
used. There are no known retrieval models that were specially created for the
task of argument retrieval [44]. Search engines such as args and ArgumenText
both use Lucene’s implementation of BM25 retrieval model, while it is not
specified what is used in ProjectDebater. Work of Wachsmuth et al. [55] offers
an user study of different retrieval models, such as BM25 [47], Terrier’s [45]
implementations of DPH [3, 53], Dirichlet-smoohted Language Model [58], and
tf ·idf . Based on args.me corpus, Wachsmuth et al. [55] evaluated four above
mentioned retrieval approaches in 4 aspects: relevance, rhetoric, logic, and
dialectic quality of retrieved arguments. As the user study shows, DPH yields
to achieve overall best results among other models.

With an increasing interest in the field of argument search [19] there appear
new platforms dedicated to hosting events, where research teams can compare
and evaluate their approaches in argument retrieval. One of such platforms
is created by Touché lab [7–9], where it is already been held 3 events, where
teams could have participated in one or both following tracks:

1. Argument retrieval from corpus consisted of arguments from online de-
bates, to provide opinions of other people on the given controversial
topic.

2. Argument retrieval from corpus consisted of heterogeneous Web docu-
ments, in order to provide documents, that could help a user make a
conclusion on the given comparative question.

Such platforms facilitate the growth of community interest in argument retrieval
and ease the comparison of the results since the approaches are evaluated on the
same corpora. Each participating team is then asked to share their approaches,
hence giving a lot of insights into what kind of methods they use and creating
new ways of research to be done.

Comparing pipelines of participants of Touché lab, a common approach
in works of Dumani and Schenkel [20], Green et al. [25], Luu and Weder [36]
was to exploit embeddings created by a pre-trained deep learning model in
order to evaluate the quality of arguments and consider them in the re-ranking.
Luu and Weder [36] use GPT-2 instead of BERT to create embeddings. A
lot of participants also used query expansion [11, 20, 25, 36], while document

8

CHAPTER 2. BACKGROUND AND RELATED WORK

expansion was only used by one team [39]. Clustering of premises and claims
was used in works of Bundesmann et al. [11], Dumani and Schenkel [20].

All the above-mentioned works are either considering qualities of arguments
that are predicted with already pre-trained deep learning systems and hence
increase the precision of the retrieved documents or they use techniques, that
increase recall, such as query and document expansions. But none of the
works has tried to fine-tune deep learning networks on the used args.me corpus.
That also motivates our work to investigate the performance of the fine-tuned
DeepCT model to implement a precision-oriented argument retrieval pipeline.

Retrieval models such as BM25 and tf ·idf are based on the term frequency,
although such methods also show good results, they do not consider the semantic
importance of the words, which can lead to miss information from the text.
The work of Dai and Callan [17] provides a solution to this problem, they
fine-tuned BERT so that it could predict the semantic importance of the words
in passages. After calculating the importance of the words, Dai and Callan
[17] then created adjusted passages, where each word is repeated depending on
its predicted importance. Words with higher importance are repeated more
often and respectively words with lower importance are either not repeated
at all (removed from new passage) or repeated not that often. After creating
new passages and using variations of BM25 retrieval models, the approach of
Dai and Callan [17] outperforms baseline, in which the index of four different
corpora consists solely of the term frequency of words.

To fine-tune BERT Dai and Callan [17] added a fully-connected layer to
the outputs of the pre-trained BERT model to predict the semantic importance
of the words by training the added layer (cf. Figure 2.2). Dai and Callan [17]
offer three different strategies of creating ground truth data:

1. Content-based weak-supervision.

2. Relevance-based supervision.

3. Weak supervision based on machine-generated pseudo-relevant feedback
labels.

We use variations of the first strategy and describe it in Section 4.

9

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.2: At the top is shown the architecture of DeepCT created by Dai
and Callan [17] and the bottom is shown an example of arbitrary passage and the
importance of the words in this passages, created by above mentioned strategies.

2.5 Retrieval Models and Query Expansion
This section provides a brief overview of the RM3 query expansion method and
retrieval models used in this thesis.

2.5.1 BM25 Retrieval Model

BM52 is a probabilistic retrieval model, which estimates the relevance score of
a document based on query terms, frequency of terms in document, document
frequency and document length. For the query Q and for the document D,
relevance score can be calculated by the following equation [16]:

X

i∈Q
log

(ri + 0.5) / (R− ri + 0.5)

(ni − ri + 0.5) / (N − ni −R + ri + 0.5)
· (k1 + 1) fi

K + fi
· (k2 + 1) qfi

k2 + qfi
,

where the summation is done over all terms i in the query Q, ri is the number
of relevant documents containing term i, ni is the number of documents where
term i occurs, N is the total number of documents in the corpus, R is the
number of relevant documents for this query, frequency of the term i in the
document is saved in variable fi and in the query is saved in qfi, and k1, k2 are

10

CHAPTER 2. BACKGROUND AND RELATED WORK

variables whose values should be found empirically, and K is defined as follows:

K = k1

�
(1− b) + b · dl

avdl

�
,

where b is a parameter that also should be found empirically, dl represents the
length of the document, and avdl shows the average length of documents in
the corpus.

2.5.2 Dirichlet-smoothed Language Model

To estimate the relevance score of a document Dirichlet-smoothed language
model uses knowledge about how many times a word from the query appears
not only in the documents, but also in the entire corpus, as:

X

i∈Q
log

fi + µ cfiP
i cfi

dl + µ
,

where Q, i, fi, and dl are defined the same as in the last section, µ is a
smoothing variable that should be found empirically, and cfi represents the
frequency of a term in the entire corpus [4].

Among the advantages of the Dirichlet-smoothed language model it never
assigns zero probability to a term, it considers the frequency of a word in the
entire corpus, and it normalizes the documents and because of that short and
long documents are estimated comparably equally [4].

2.5.3 RM3 Query Expansion

Query expansion methods were created with the idea of extending original
queries with additional terms so that relevant documents would be retrieved
with a higher probability [12]. Extend terms are derived either from feedback
documents that were created by users (for example judgments) or from the
retrieved most relevant documents to the query [24].

Relevance feedback through a relevance model RM1 calculates the weight
of a certain term t via following equations:

RM1(t, R) =
X

d∈R
P (t | d) score(i, d)P

d′∈R score (i, d′)
,

where R is a set of relevance feedback document to the query i, P (t | d)
represents the probability of term t occurring in document d and score(i, d)
represents the estimated relevance score of d to the original query i.

11

CHAPTER 2. BACKGROUND AND RELATED WORK

Relevance model RM1 is improved via linear combination of RM1 weight
and query term weight as:

RM3(t, R) = λ · RM1(t, R) + (1− λ) · P (t | i),

where P (t | i) is the probability that term t occurs in the query i and λ in
range [0, 1] is the feedback impact. In the PyTerrier implementation of RM3,
it considers only top M expansion terms with the highest weights to avoid
efficiency issues of retrieval for very long queries.

2.6 Deep Learning
This section is heavily inspired by the book of Chollet [14] and provides a
brief introduction to the history of artificial intelligence, the machine learning
paradigm, and how machine learning approaches work. In this thesis, we
use deep learning systems for argument retrieval via fine-tuning the BERT
model, which is used in DeepCT architecture, and by using models deployed in
TARGER. According to Chollet [14], the history of artificial intelligence begins
in the 1950s, at the time when a group of pioneers decided to investigate if
computers could “think” in some way. The main goal of artificial intelligence is
to automatize tasks that are performed by humans, it is a broad field, which
includes in it machine learning and deep learning, but also has a wide range of
other fields included.

Machine learning is a programming paradigm that differs from the “classical”
programming paradigm. Classical programming is based on a set of rules,
defined by the programmer and followed by them. As for machine learning, this
set of rules is created by the computer itself, while machine learning systems
are rather “trained” than defined with rules. Such a system requires a lot of
data relevant to the task it should “learn” to solve, the rules in such systems
are created by the influence of training samples and adjusting of the model to
minimize the loss.

12

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.3: Paradigms of classical programming and machine learning. Figure 1.2,
page 4 [14].

Both machine learning and deep learning are having the same goal: to learn
to produce useful representations of the data. This means, that given input
data, both machine and deep learning approaches learn how to transform input
data into some representations, which then is transformed into the meaningful
(for the humans) output.

Deep learning is considered to be a subfield of machine learning, the differ-
ence between machine and deep learning consists in the fact that the systems
of the latter are built with multiple “layers”, in other words, some functions
that create representations and adapt to the data. The “depth” of the model is
defined by the number of layers it is built with, often involving tens or hundreds
of them.

Layers are parameterized by their weights. Weights are the core of any deep
learning system and are represented by a bunch of real numbers. While being
trained, weights are being adjusted, so that a deep learning network minimizes
the loss function (in other literature also often called “cost function” or “error
objective function”).

Loss functions are necessary to understand how good or bad the model
works. Considering the output of the deep or machine learning system, a loss
function returns a score that defines how far is the prediction from the real
data (also called “ground truth” data). Depending on the loss score, weights
are accordingly adjusted. The process of adjusting the weights of the models
is called “backpropagation” and is performed by its optimizer. We omit the
description of what is optimizer and how does backpropagation work due to it
not being the main objective of our research and requires a lot of additional
explanations.

13

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.4: Training process of neural network, consisted of data transformations
through layers, receiving the predictions, comparing them to the true targets or
ground truth, calculating the loss score via loss function and updating the weights of
the layers with optimizer. Figure 1.9, page 10 [14].

Deep learning systems made it possible to automize and achieve much
better results in such tasks as image classification, speech and handwriting
transcription, text-to-speech conversion, and many other fields [14].

2.6.1 BERT

Bidirectional Encoder Representations from Transformers (BERT) is a language
representation model, created by Devlin et al. [18]—a group of researchers
from Google. Language models can be seen as a function that estimates the
probability of certain linguistic units, such as symbols, words, or sequences [15].
At the time of publishing, BERT was a breakthrough model, achieving state-
of-the-art results on eleven natural language processing tasks. The main idea,
which differs BERT from other language models, is the bidirectional training
of an attention mechanism—Transformer [54]. The idea behind the attention
mechanism is to recalculate the representation of the sequence, produced by
other layers in the deep learning model. It is generally accepted, that this
attention mechanism is what makes BERT outperform the old state-of-the-art
approaches [48]. The word “bidirectional” here means that the context of the
token or word in the sequence is created depending on the tokens both from
the left and right side of him, while older approaches were considering either
the tokens from the left or the right sight of the certain token.

14

CHAPTER 2. BACKGROUND AND RELATED WORK

Another interesting idea in the training process of BERT is its prediction
goal. Compared to ELMo [27], which was also a breakthrough architecture
at the time it was published, BERT possesses two prediction goals: Masked
Language Model (MLM) and Next Sentence Prediction (NSP). While the
training process for ELMo is built by predicting each next word in the sequence,
thus recreating the whole sequence, in the case of BERT, 15% of tokens are
being randomly masked and the goal is to predict the masked tokens.

As written above, another prediction goal of BERT is Next Sentence Pre-
diction. The idea behind this task is to predict whether the second sentence of
the given pair of sentences is subsequent to the first one. In the training phase,
50% of the given pairs are subsequent and the other 50% are not.

Work of Rogers et al. [48] gives an insightful overview of research on what
is actually learned by embeddings created by BERT and what is the advantage
of MLM and NSP objectives. Work of Mickus et al. [41] states that due to
the NSP objective representations of tokens created by BERT are dependent
on the position of the token in a sentence and through MLM objective BERT
shows knowledge for semantic roles [23].

What also makes BERT especially good is its ease to fine-tune. For example,
by taking the pre-trained model and adding a linear layer to the model, we can
train the model for the classification task, e.g. sentiment analysis. Similar to
this approach, in Section 4 we describe how we fine-tune the BERT model in
our argument retrieval pipeline.

15

Chapter 3

Data and Data Preprocessing

This chapter describes the corpus that is used for argument retrieval experiments
including its characteristics, data sample examples, and data processing. We
also give an overview of how training examples for the DeepCT model [17] are
created.

3.1 Data and Data Access
In our work, we use the args.me corpus that consists of 387,740 arguments
from 59,637 debates crawled from 4 online debate portals [2]. Each argument or
data entry in args.me corpus consists of a conclusion, one or more premises, and
their respective stances: either supporting or attacking the given conclusion.
Additionally, the context such as the text of the debate in which premises
and claims appear and meta information such as acquisition time, the title
of the debate, and its URL are provided; for each argument, a unique ID is
assigned. To the date of writing, args.me is one of the largest corpora created
for argument retrieval.6

Instead of using json files downloadable from online resources, we use
ir_datasets—a package for Python created by MacAvaney et al. [37]. We found
it easier to work with args.me dataset via mentioned package, since it provides
useful features such as selecting ranges of data, fast lookup of documents
content, much easier access to data in comparison to reading json files, and
others [37].

For the evaluation of our approaches, we use two sets of controversial topics
(see example in Listing 3.1), saved in xml format. These sets were used in Touché
in the years 2020 and 2021 for the task of argument retrieval for controversial
questions. For each topic, we aim to retrieve the most relevant documents from

6https://webis.de/data/args-me-corpus.html

16

CHAPTER 3. DATA AND DATA PREPROCESSING

the entire args.me corpus. To measure the performance of retrieval for each set
of topics we use the corresponding set of relevance judgments created by human
assessors, named qrels. Qrels are saved in Text REtrieval Conference (TREC)
format and can be easily read by PyTerrier [38]7—a Python framework that
we use for retrieval and for evaluation of approaches. Documents annotated in
qrels with relevance judgments have labels of -2, 0, 1, and 2, where -2 means
that the document is spam to the query, and the higher the label gets, the
more relevant to the query the document is.

Listing 3.1: Example of controversial topic. Element ”number” represents the
serial number of topic. Element ”title” displays the controversial topic. Element
”description” is a possible context of search and element ”narrative” describes what
kind of documents are considered relevant for this topic.
<topic>
<number>1</number>
<title>Should teachers get tenure?</title>
<description> A user has heard that some countries do give teachers tenure

and others don't. Interested in the reasoning for or against tenure, the
user searches for positive and negative arguments. The situation of

school teachers vs. university professors is of interest. </description>
<narrative> Highly relevant arguments make a clear statement about tenure

for teachers in schools or universities. Relevant arguments consider
tenure more generally, not specifically for teachers, or, instead of
talking about tenure, consider the situation of teachers' financial
independence. </narrative>

</topic>

3.2 Data Preprocessing
To prepare data for fine-tuning the DeepCT model, we first split the premises
of debates into smaller passages, so that they can be used as input to DeepCT.
First, we create 3 datasets, by using different documents from the original
corpus:

1. All documents available, even ones that are judged—“All documents”.

2. All documents available, except those that are judged—“With pools”.

3. All documents available, except those that are judged and except top-50
documents that were retrieved by participants of Touché 2021—“Without
pools”.

Since we split the texts into smaller passages, the number of training samples is
increased (cf. Table 3.1). From each of the above-mentioned datasets, we create

7https://github.com/terrier-org/pyterrier

17

CHAPTER 3. DATA AND DATA PREPROCESSING

Table 3.1: Number of passages in the original dataset and after splitting into smaller
passages.

Data Number of passages

Original 387,740

All documents 831,758

With pools 819,181

Without pools 717,551

another 3 datasets, that are used for training of DeepCT model and differ in
used reference field: (1) topics, (2) conclusions, (3) both topics and conclusions.
To create training samples for the network we use the content-based weak-
supervision strategy proposed by Dai and Callan [17]. We first remove all stop-
words, using a set of stop-words that was chosen by Natural Language Toolkit
(nltk) [6]—a Python toolkit, both from passages and corresponding reference
field. Afterward, we apply stemming via PorterStemmer [43] implementation
in nltk to all tokens from text passages and reference fields. Each training
sample (cf. example of training sample 3.3) consists of a passage, its serial
number, its ID (in the form “{ID from args.me}___{serial_number}”), and
its ground truth labels. The latter is based on the reference field and is done
according to content-based weak supervision described by Dai and Callan [17]:
if there is a stem of a word from a passage and this stem also appears in stems
created from the corresponding reference field, this word is then considered as
an important one and will have a value of 1.0 in ground truth field of training
sample (cf. Table 3.2). As Table 3.2 shows, since it is not always the case,
that stems of words in passages are also intersecting with stems of words in
the reference field, some of the training samples do not possess any tokens as
ground truth data. According to Dai and Callan [17], such global derivation
of term weights for tokens from the entire document might be seen to be not
as effective, as finding local important words for each passage. However, the
DeepCT model is still able to find locally important words and if a passage
introduces noise in the data, the DeepCT model will assign 0 weights to tokens
from these passages.

18

CHAPTER 3. DATA AND DATA PREPROCESSING

Table 3.2: Overview of empty training’s samples for 9 different datasets. Column
“Empty” shows number of training samples that have 0 important tokens, column “At
least one” shows number of training samples that contain at least one important word.
Column “Total” indicates the overall amount of training’s sample in the corresponding
dataset.

Data Reference Field Empty At least one Total

With pools Conclusions 189,654 629,527 819,181
With pools Topics 190,007 629,174 819,181
With pools Topic and conclusions 187,041 632,140 819,181
All documents Conclusions 191,328 640,430 831,758
All documents Topics 191,651 640,107 831,758
All documents Topic and conclusions 188,663 643,095 831,758
Without pools Conclusions 173,933 543,618 717,551
Without pools Topics 174,385 543,166 717,551
Without pools Topic and conclusions 171,707 545,844 717,551

Table 3.3: Example of training sample created using conclusion as reference field,
which is defined as “Domestic Violence Awareness should be increased”.

Passage “As I mentioned in my previous claim, raising awareness can make the
perpetrator feel targeted and cause an increase in abuse. Rather than
raise awareness for drugs and alcohol, it would encourage the perpe-
trator to take out his anger because of the people who judge him/her.
Humans can be deceitful, cynical, and untrustworthy. According to
the Centers for Disease Control and Prevention, “Every minute, about
20 people are physically abused by an intimate partner in the U.S.,”
(1). The sad truth is that when victims decide to stand up for them-
selves and ask for help, they cannot all be helped. Currently, there
are not enough funds to help everyone and increasing awareness will
not benefit victims because they will be risking their lives to receive
help but not be able to receive it on time. The National Network to
End Domestic Violence reported that ”more than 22,000 calls were
answered by local domestic violence hotlines, and on that same day,
more than 9,500 requests for services were unmet due to inadequate
funding or staff available to assist these survivors” (2).”,

Position 1
ID S21b181c6-A10c0da05___1
Ground truth “violence”: 1.0, “awareness”: 1.0, “increase”: 1.0, “increasing”: 1.0,

“domestic”: 1.0

19

Chapter 4

Experiments

This chapter describes our experiments for precision-oriented argument-retrieval.
The experiments are based on trying different retrieval models on args.me corpus,
we transform the corpus with models deployed in TARGER, transform the
corpus with pre-trained on MS-MARCO-Doc corpus DeepCT model, fine-tune
DeepCT model on different variations of args.me corpus, and analyze the
outputs of our approaches.

4.1 Parameter Tuning
For every variation of the dataset that we created, we compare the effectiveness
of argument retrieval with four common retrieval models: BM25, BM25 with
RM3, Dirichlet-smoothed LM (DLM), DLM with RM3. Parameters of retrieval
models have a strong influence on the effectiveness of IR [32] and hence we
tune them via grid-search and two-fold-cross-validation, which are implemented
in the PyTerrier framework. The two folds that we use for cross-validation are
two sets of search topics that are used respectively in Touché task 1 for the
year 2020 and for the year 2021. We find the best Parameters for the following
retrieval models in the following ranges, inspired by the work of Lin [33]:

• BM25, b from [0.15, 0.75] with a step size of 0.2, k1 from [0.6, 4.4] with a
step size of 0.6 and k2 for following values: [2,5,8,10].

• DLM, the smoothing parameter µ from [0,10000] with a step size of 250.

• RM3 variant of retrieval models, number of terms M to add to the query
from [4, 16] with a step size of 2, number of feedback documents N from
[4, 10] with a step size of 2 and the relevance of the original query λ from
[0.2, 1] with a step size of 0.2.

20

CHAPTER 4. EXPERIMENTS

Table 4.1: Overview of statistics of original args.me corpus and after extracting
premises and claims via models deployed in TARGER. Values are given in the number
of tokens. St.D stays for standard deviation.

Data Embeddings Max Min Mean Median St.D

args.me - 16,751 1 317 140 406

Combined fastText 15,955 0 212 92 285
Essays fastText 15,154 0 219 94 294
IBM fastText 16,529 1 311 138 399
WebD dependency 15,252 0 30 0 77
WebD fastText 15,263 0 29 2 69
Essays dependency 10,393 0 173 71 237

When using the query expansion method of RM3 we tune only the parameters
of RM3 and use the default parameters of the used retrieval model, that were
assigned by the creators of PyTerrier.

4.2 Transforming Data with TARGER
To make the retrieval more precision-oriented we want to identify from ar-
guments only its premises and claims, dismissing the rest of the argument.
For this purpose, we use 6 different models deployed in TARGER, which can
identify premises and claims from arguments. Each model differs in the dataset
that was used in the training of the model and in the pre-trained set of word em-
beddings. Models we use are trained on the persuasive essays (Essays) [21], web
discourse (WebD) [26], IBM Debater [31] or dataset combined of three above-
mentioned datasets (Combined) and use fastText [42] or dependency-based
embeddings [30].

We use API provided by TARGER to use its deployed models, which expect
a raw text as input and output a list of word-level tokens with labels saved
in Inside-outside-beginning format for premises and claims, as well as the
confidence score for each label. After extracting premises and claims from each
document (cf. examples 4.1 and 4.2 of extracted premises and claims from
passage in training sample 3.3) of original args.me corpus, we create 6 different
corpora (overview in Table 4.1) that we use for further evaluation.

21

CHAPTER 4. EXPERIMENTS

Figure 4.1: Highlighted premises and claims retrieved with web-interface of TARGER
using model trained on Essays dataset and using fastText embeddings.

Figure 4.2: Highlighted premises and claims (none) retrieved with web-interface of
TARGER using model trained on WebD dataset and using dependency embeddings.

4.3 Training and Inference of DeepCT Models
We use an official implementation of the DeepCT model, which gives easy
access to training and further inference of the model.8 Implementation is
written in Python 3.0 and used an open-source framework for machine learning
TensorFlow 1.15.0 [1]. For the train we set the batch size to 16, the maximum
length of passage to 512 tokens, the learning rate to 0.00002, the number of
epochs to 3 and use the pretrained BERT-base model [52]. As the training
curves of DeepCT models on the aforementioned datasets, we created show,
they can quickly adapt to the new objective and displays that can predict the
semantic importance of words well, since the loss drops rapidly at first and then
continue to get lower over time (cf. Table 4.3). After inference (cf. distribution
of most repeated words after DeepCT inference Figure 4.3) of variations of
DeepCT models on args.me corpus, we create 9 different corpora (overview in
Table 4.2) that we use for further evaluation.

8https://github.com/AdeDZY/DeepCT

22

CHAPTER 4. EXPERIMENTS

Table 4.2: Overview of statistics on original args.me corpus and after inference of
variations of DeepCT models. St.D stays for standard deviation.

Data Reference Field Max Min Mean Median St.D

args.me - 16,751 1 317 140 406

MARCO - 1,171 0 297 294 119
With pools Conclusions 23,802 0 510 297 613
With pools Topics 22,723 0 511 296 614
With pools Topics and Conclusions 22,979 0 522 323 609
All documents Conclusions 17,656 0 529 327 621
All documents Topics 15,815 0 508 298 616
All documents Topics and Conclusions 16,764 0 534 334 611
Without pools Conclusions 22,979 0 522 323 609
Without pools Topics 23,802 0 510 297 613
Without pools Topics and Conclusions 23,742 0 541 338 621

Figure 4.3: Overview of most repeated words in passage from training’s sample 3.3
after inference of DeepCT model trained on all documents with conclusions as reference
field.

23

CHAPTER 4. EXPERIMENTS

(a) Data: With pools, Reference Field: Con-
clusions

(b) Data: With pools, Reference Field: Topics

(c) Data: With pools, Reference Field: Con-
clusions and Topics

(d) Data: All documents, Reference Field:
Conclusions

(e) Data: All documents, Reference Field: Top-
ics

(f) Data: All documents, Reference Field: Con-
clusions and Topics

(g) Data: Without pools, Reference Field:
Conclusions

(h) Data: Without pools, Reference Field:
Topics

(i) Data: Without pools, Reference Field: Con-
clusions and Topics

Table 4.3: Training curves of variations of DeepCT models.

24

Chapter 5

Evaluation

In this chapter, we evaluate the effectiveness of argument retrieval on args.me
corpus, after it was transformed via models deployed in TARGER [13] and
after inference of trained DeepCT [17] models. We describe metrics we use to
measure the effectiveness, such as Normalized Discounted Cumulative Gain
(nDCG) and Bpref, and interpret the results of our approaches.

5.1 Evaluation Metrics
To evaluate the effectiveness of retrieval models we first have to obtain a ranking
of documents and then find out if the retrieved documents are relevant to the
given query. To measure the effectiveness of retrieval models we use nDCG
metric [40, 56], because this is a precision-oriented metric and it takes into
account the annotated relevance of the documents and their positioning in
the ranking. Normalized Discounted Cumulative Gain is based on two other
metrics: Cumulative Gain (CG) and Discounted Cumulative Gain (DCG).

Cumulative Gain is a sum of annotated relevance’s rel of first p retrieved
documents in obtained ranking:

CGp =

pX

i=1

reli

However, the distribution of relevant and irrelevant documents in the ranking
is not considered by CG. This motivates an idea for the DCG metric: relevance
of a document in ranking is divided by the logarithm of its position, thus
penalizing the score of DCG if relevant documents appear low in the ranking
and motivating to create such ranking, where relevant documents will be placed
first in the ranking. A common approach is to use the natural logarithm of the

25

CHAPTER 5. EVALUATION

position:

DCGp =

pX

i=1

reli
ln(i+ 1)

Since for some queries it is easier to find relevant documents and for some
it is harder, this motivates a nDCG metric, which normalizes the DCG score
using an ideal discounted cumulative gain(iDCG):

IDCGp =

|RELp|X

i=1

reli
log2(i+ 1)

IDCG sorts all relevant documents by their relevance and hence produces the
best possible DCG score, where RELp is the sorted list of relevant documents
in the corpus up to the position p. Having iDCG- and DCG-scores, we can
compute the nDCG-score for the first p documents:

nDCGp =
DCGp

IDCGp

Since we do not have the complete judgments in the qrels files, we also use
the Bpref metric to evaluate the effectiveness of our approaches. Bpref is used
in situations when the relevance judgments are not complete: it measures the
ranking based on whether judged relevant documents are placed above judged
non-relevant documents,

Bpref =
1

R

X

r

1− | n ranked higher than r |
R

with R defined as a number of relevant documents to the query, r is a relevant
document, and n is a judged nonrelevant document in the first R retrieved
documents [10].

5.2 Retrieval Comparison
To compare the results achieved based on corpora of original args.me corpus
and after its being transformed with trained DeepCT models, we compare
retrieved documents for the topic “Should teachers get tenure?” using BM25
retrieval model with default parameters and using DeepCT model, which was
trained with conclusions as reference field and on data without pools. Further,
in text, we call the args.me corpus after it was transformed with DeepCT
model as “DeepCT corpus”, ranking based on DeepCT corpus as “DeepCT
ranking” and ranking based on original args.me corpus as ”original ranking”.

26

CHAPTER 5. EVALUATION

As we investigate the first six documents in the DeepCT ranking and the
original ranking (cf. Table 5.1), we see that the rankings do not differ much
and contain the same documents but in a slightly different order (cf. Table 5.2).
As Table 5.2 shows, the BM25 retrieval model on the DeepCT corpus ranks
3 documents higher and 3 documents lower, when compared to the original
ranking. However, the difference in positions of documents placed higher is
bigger, than the difference in positions of documents placed lower. For example,
while relevant documents in the DeepCT ranking get higher in 5, 1, and 4
positions respectively, documents that gets a lower position, compared to the
original ranking, are only placed 1 position below. For this particular example,
that means, that the BM25 retrieval model applied to the DeepCT corpus is
able to give relevant documents higher positions in ranking, which makes the
overall effectiveness of BM25 better. Nevertheless, for the first 25 documents in
the DeepCT ranking, one relevant document is missing, but since this document
is also placed in position 24 in the original ranking, this does not make a big
difference in the effectiveness of this approach. There were also no relevant
documents found in the DeepCT ranking that would not be in the original
ranking.

We investigate the reason for such re-ranking based on the first document
in the DeepCT ranking, which was placed 5 positions above, compared to the
original ranking. This document is rather big and contains 1,629 tokens in it.
In this document words, whose stem is “teacher” are repeated 47 times and
words that stem from “tenur” are repeated 35 times. After transforming this
document with the DeepCT model, words whose stem is “teacher” are repeated
941 times, and words whose stem is “tenure” are repeated 918 times. In this
case, DeepCT found words, that overlap with words from the topic, as the
most important ones and repeated them more, than any other words in the
document. Since BM25 is a frequency-based retrieval model, such repetition of
tokens in the document made this document more relevant for BM25, as it was
before in args.me corpus.

27

CHAPTER 5. EVALUATION

Table 5.1: First 6 retrieved documents using BM25 retrieval model, used on args.me
corpus after inference of DeepCT model (“DeepCT”) and on original args.me corpus
(“Original”). Each document is assigned with a unique identifier and its manually
annotated relevance (“label”). If document has no annotated relevance, its entry is
filled with “-”.

DeepCT Original

id label id label

Sc065954f-A6deb09b6 2 S51530f3f-Ae32a4a1b -
Sc065954f-Ae72bc9c6 2 Sb0680508-Aa5189771 2
Sb0680508-Aa5189771 2 Sc065954f-Ae72bc9c6 2
Sc065954f-A24a16870 2 Sc065954f-A24a16870 2
S51530f3f-A4715d76f - Sff0947ec-A46d54897 2
Sff0947ec-A46d54897 2 Sc065954f-A6deb09b6 2

Table 5.2: Relevant documents that have changed their positions in ranking based
on args.me corpus after and before inference of DeepCT model. In columns “DeepCT”
and “Original” are shown the positions of documents in corresponding rankings, in
column “∆” is shown the change of the position of a document in DeepCT ranking
compared to its position in Original ranking.

id DeepCT Original ∆

Sc065954f-A6deb09b6 0 5 +5
Sc065954f-Ae72bc9c6 1 2 +1
Sc065954f-Ac3a1cfc1 13 17 +4
Sb0680508-Aa5189771 2 1 -1
Sff0947ec-A46d54897 5 4 -1
Sc065954f-A39b0539e 8 7 -1

5.3 Results
To evaluate our approaches we use the nDCG@5, nDCG@25, and Bpref mea-
surements. We also differ between the two rankings: in the first case (“All
documents”) ranking is containing all documents, both judged and unjudged, in
the second case (“Unjudged removed”), we remove all the unjudged documents
from the ranking because that is how the participants approaches in Touché
were measured and allows us to compare them with our approaches in Table 5.3.
Bpref is presented only once since its value is the same for both of the aforemen-
tioned cases. For each retrieval model, we present 3 tables with results: the first
table is based on topics both from the years 2020 and 2021 from Touché task 1,
the second table is based only on topics from the year 2020 and the third one is
based on topics from the year 2021. Each table represents achieved results on
argument retrieval based on (1) original args.me corpus, (2) on args.me corpus
after it was transformed models deployed in TARGER—“Targers”, which differ

28

CHAPTER 5. EVALUATION

in data they trained on and used embeddings, (3) on args.me corpus after if
was transformed with pre-trained on MS-MARCO-Doc corpus DeepCT model
and models we fine-tuned on corpora that we created based on args.me corpus
and described in Section 3—“DeepCT”, which differ in data they were trained
on and used reference field (cf. Tables from Table 5.4 to Table 5.15).

Comparing the results achieved by various retrieval models, we can see the
following patterns: (1) retrieval based on original corpus after transforming it
with models deployed in TARGER makes the effectiveness of retrieval models
most often worse, except a few times, when it outperforms in nDCG@5 for
all documents (cf. Table 5.7) and in nDCG@25 also for all documents (cf.
Table 5.9). Models based on the WebD dataset tend to delete the whole or
most of the text documents in args.me corpus (cf. Table 4.1), since they do not
find any premises or claims in the documents and thus achieve the worst results
overall. Another 4 models do not dismiss that much of a text in documents and
hence achieve results close to the retrieval based on the original args.me corpus.
They can be used in cases when there is a need to reduce the space required to
save the corpus and the effectiveness of the model is not crucial, e.g. model
trained on Combined corpus achieves on average slightly lower scores in used
metrics but reduces the mean amount of tokens in documents from 317 to 212;
(2) after transforming args.me corpus with DeepCT models, this approaches
always achieve better results in Bpref, nDCG@5, and nDCG@25 when ranking
is based only on ranked documents. For the case, when retrieval is done using
all documents, about a half of DeepCT-based approaches outperform other
retrieval approaches, based on original args.me corpus or sometimes based on
corpus after transforming it with one of the models deployed in TARGER;
(3) all of the approaches based on fine-tuning DeepCT models outperform in all
metrics results achieved by pre-trained on MS-MARCO-Doc corpus DeepCT
model; (4) best results in nDCG@5 and in nDCG@25 based on only judged
documents are retrieved via DLM or Dirichlet-smoothed Language Model with
RM3 retrieval approaches, while best Bpref is achieved by BM25 with RM3
retrieval models (cf. Table 5.3). In Table 5.3 we choose the model with the
best performance based on the score achieved in the nDCG@5 measurement
based on only judged documents since it is how the approaches of participants
of Touché were judged. In the following tables we name MS-MARCO-Doc
corpus as “MARCO”.

29

CHAPTER 5. EVALUATION

Table 5.3: Overview of approaches that achieved best results in nDCG@5-
measurement for each retrieval model and for each year. Column “Transformed
with” shows a model which was used to transform original args.me corpus. Occasion-
ally, the best results were achieved only after transformation with DeepCT models.
For the years 2020 and 2021 for comparison, we provide the best-achieved result from
Touché participants. Column “Ref. Table” stays for Reference Table and references
to all results of the corresponding approach.

Retrieval ModelTransformed with Unjudged removed All documents Ref. Table

nDCG@5 nDCG@5Bpref

20
20

BM25 DeepCT: With pools 0.79 0.42 0.71 5.8+ Topics & Concl.

BM25 with RM3 DeepCT: With pools 0.82 0.40 0.77 5.11+ Topics & Concl.

DLM DeepCT: With pools 0.79 0.45 0.68 5.5+ Topics & Concl.

DLM with RM3 DeepCT: All documents 0.86 0.42 0.71 5.14+ Conclusions.
Best Touché - 0.80 - - -

20
21

BM25 DeepCT: Without pools 0.72 0.61 0.74 5.9+ Topics & Concl.

BM25 with RM3 DeepCT: With pools 0.71 0.53 0.74 5.12+ Topics & Concl.

DLM DeepCT: All documents 0.73 0.61 0.72 5.6+ Topics & Concl.

DLM with RM3 DeepCT: All documents 0.68 0.51 0.73 5.15+ Conclusions.
Best Touché - 0.72 - - -

20
20

+
20

21

BM25 DeepCT: All documents 0.73 0.49 0.72 5.7+ Topics & Concl.

BM25 with RM3 DeepCT: With pools 0.73 0.47 0.76 5.10+ Topics & Concl.

DLM DeepCT: With pools 0.74 0.52 0.70 5.4+ Topics & Concl.

DLM with RM3 DeepCT: Without pools 0.74 0.45 0.71 5.13+ Conclusions.

30

CHAPTER 5. EVALUATION

Table 5.4: Effectiveness of the tuned Dirichlet-smoothed Language Model approach
on topics of years 2020 and 2021, nDCG- and Bpref-scores are calculated using
all documents in the ranked lists and after removing documents without relevance
judgments.

Corpus All documents Unjudged removed

O
ri

gi
na

l

nDCG@5 nDCG@25 Bpref nDCG@5 nDCG@25

args.me 0.57 0.47 0.59 0.70 0.64

Data Embeddings

T
ar

ge
rs

WebD dependency 0.35 0.26 0.41 0.58 0.48
Combined fastText 0.54 0.42 0.58 0.69 0.62
Essays dependency 0.52 0.40 0.57 0.69 0.62
Essays fastText 0.52 0.42 0.59 0.69 0.64
IBM fastText 0.57 0.46 0.59 0.70 0.64
WebD fastText 0.33 0.24 0.40 0.59 0.47

Trained on data Reference field

D
ee

pC
T

MARCO Title 0.35 0.31 0.61 0.59 0.61
With pools Conclusions 0.53 0.44 0.70 0.72 0.70
With pools Topics 0.52 0.44 0.69 0.73 0.70
With pools Topic & Concl. 0.52 0.44 0.70 0.74 0.71
All documents Conclusions 0.54 0.45 0.70 0.74 0.71
All documents Topics 0.53 0.45 0.70 0.73 0.71
All documents Topic & Concl. 0.52 0.45 0.70 0.74 0.71
Without pools conclusions 0.52 0.44 0.70 0.72 0.70
Without pools Topics 0.50 0.43 0.69 0.71 0.70
Without pools Topic & Concl. 0.54 0.44 0.70 0.73 0.71

31

CHAPTER 5. EVALUATION

Table 5.5: Effectiveness of the tuned Dirichlet-smoothed Language Model approach
on topics of the year 2020, nDCG- and Bpref-scores are calculated using all documents
in the ranked lists and after removing documents without relevance judgments.

Corpus All documents Unjudged removed

O
ri

gi
na

l

nDCG@5 nDCG@25 Bpref nDCG@5 nDCG@25

args.me 0.50 0.38 0.57 0.77 0.68

Data Embeddings

T
ar

ge
rs

WebD dependency 0.34 0.26 0.46 0.69 0.55
Combined fastText 0.43 0.34 0.56 0.75 0.65
Essays dependency 0.43 0.33 0.55 0.77 0.66
Essays fastText 0.44 0.36 0.59 0.78 0.69
IBM fastText 0.50 0.38 0.57 0.77 0.68
WebD fastText 0.27 0.21 0.43 0.69 0.53

Trained on data Reference field

D
ee

pC
T

MARCO Title 0.25 0.25 0.60 0.61 0.63
With pools Conclusions 0.45 0.37 0.68 0.78 0.74
With pools Topics 0.45 0.36 0.66 0.78 0.73
With pools Topic & Concl. 0.45 0.37 0.68 0.79 0.74
All documents Conclusions 0.46 0.37 0.67 0.79 0.74
All documents Topics 0.45 0.37 0.68 0.79 0.74
All documents Topic & Concl. 0.43 0.36 0.67 0.79 0.74
Without pools Conclusions 0.41 0.35 0.68 0.78 0.74
Without pools Topics 0.40 0.36 0.68 0.77 0.74
Without pools Topic & Concl. 0.44 0.36 0.68 0.78 0.74

32

CHAPTER 5. EVALUATION

Table 5.6: Effectiveness of the tuned Dirichlet-smoothed Language Model approach
on topics of the year 2021, nDCG- and Bpref-scores are calculated using all documents
in the ranked lists and after removing documents without relevance judgments.

Corpus All documents Unjudged removed

O
ri

gi
na

l

nDCG@5 nDCG@25 Bpref nDCG@5 nDCG@25

args.me 0.63 0.55 0.62 0.66 0.66

Data Embeddings

T
ar

ge
rs WebD dependency 0.35 0.26 0.36 0.53 0.45

Combined fastText 0.63 0.51 0.60 0.66 0.64
Essays dependency 0.60 0.47 0.58 0.65 0.63
Essays fastText 0.60 0.48 0.59 0.63 0.64
IBM fastText 0.64 0.54 0.61 0.66 0.65
WebD fastText 0.39 0.27 0.37 0.57 0.47

Trained on data Reference field

D
ee

pC
T

MARCO Title 0.45 0.37 0.62 0.60 0.64
With pools Conclusions 0.60 0.51 0.72 0.71 0.71
With pools Topics 0.60 0.52 0.71 0.72 0.72
With pools Topic & Concl. 0.60 0.52 0.72 0.72 0.73
All documents Conclusions 0.61 0.52 0.72 0.72 0.73
All documents Topics 0.61 0.53 0.72 0.72 0.73
All documents Topic & Concl. 0.61 0.53 0.72 0.73 0.74
Without pools Conclusions 0.62 0.52 0.72 0.70 0.72
Without pools Topics 0.61 0.51 0.71 0.70 0.71
Without pools Topic & Concl. 0.64 0.53 0.72 0.72 0.73

33

CHAPTER 5. EVALUATION

Table 5.7: Effectiveness of the tuned BM25 approach on topics of years 2020 and
2021, nDCG- and Bpref-scores are calculated using all documents in the ranked lists
and after removing documents without relevance judgments.

Corpus All documents Unjudged removed

O
ri

gi
na

l

nDCG@5 nDCG@25 Bpref nDCG@5 nDCG@25

args.me 0.52 0.45 0.63 0.70 0.67

Data Embeddings

T
ar

ge
rs

WebD dependency 0.31 0.25 0.42 0.61 0.51
Combined fastText 0.52 0.43 0.60 0.71 0.66
Essays dependency 0.54 0.41 0.57 0.70 0.63
Essays fastText 0.51 0.42 0.59 0.69 0.65
IBM fastText 0.52 0.44 0.63 0.70 0.67
WebD fastText 0.31 0.24 0.41 0.59 0.49

Trained on data Reference field

D
ee

pC
T

MARCO Title 0.33 0.30 0.62 0.56 0.60
With pools Conclusions 0.49 0.44 0.72 0.72 0.71
With pools Topics 0.50 0.44 0.71 0.73 0.72
With pools Topic & Concl. 0.51 0.44 0.72 0.73 0.71
All documents Conclusions 0.51 0.44 0.72 0.73 0.72
All documents Topics 0.50 0.43 0.72 0.72 0.71
All documents Topic & Concl. 0.49 0.44 0.72 0.73 0.72
Without pools Conclusions 0.49 0.43 0.72 0.72 0.71
Without pools Topics 0.50 0.44 0.72 0.72 0.71
Without pools Topic & Concl. 0.51 0.44 0.72 0.73 0.72

34

CHAPTER 5. EVALUATION

Table 5.8: Effectiveness of the tuned BM25 approach on topics of the year 2020,
nDCG- and Bpref-scores are calculated using all documents in the ranked lists and
after removing documents without relevance judgments.

Corpus All documents Unjudged removed

O
ri

gi
na

l

nDCG@5 nDCG@25 Bpref nDCG@5 nDCG@25

args.me 0.38 0.35 0.64 0.76 0.71

Data Embeddings

T
ar

ge
rs

WebD dependency 0.26 0.22 0.47 0.72 0.58
Combined fastText 0.39 0.34 0.61 0.77 0.69
Essays dependency 0.45 0.34 0.55 0.77 0.67
Essays fastText 0.40 0.34 0.59 0.77 0.70
IBM fastText 0.37 0.34 0.64 0.77 0.71
WebD fastText 0.24 0.19 0.44 0.67 0.54

Trained on data Reference field

D
ee

pC
T

MARCO Title 0.26 0.26 0.62 0.61 0.64
With pools Conclusions 0.38 0.35 0.70 0.78 0.75
With pools Topics 0.42 0.36 0.70 0.78 0.75
With pools Topic & Concl. 0.42 0.36 0.71 0.79 0.76
All documents Conclusions 0.41 0.36 0.70 0.79 0.75
All documents Topics 0.43 0.35 0.70 0.77 0.75
All documents Topic & Concl. 0.39 0.36 0.70 0.78 0.75
Without pools Conclusions 0.38 0.35 0.70 0.78 0.75
Without pools Topics 0.40 0.35 0.70 0.77 0.75
Without pools Topic & Concl. 0.40 0.35 0.70 0.78 0.75

35

CHAPTER 5. EVALUATION

Table 5.9: Effectiveness of the tuned BM25 approach on topics of the year 2021,
nDCG- and Bpref-scores are calculated using all documents in the ranked lists and
after removing documents without relevance judgments.

Corpus All documents Unjudged removed

O
ri

gi
na

l

nDCG@5 nDCG@25 Bpref nDCG@5 nDCG@25

args.me 0.66 0.55 0.62 0.67 0.66

Data Embeddings

T
ar

ge
rs

WebD dependency 0.37 0.28 0.37 0.56 0.50
Combined fastText 0.65 0.51 0.60 0.68 0.66
Essays dependency 0.62 0.48 0.58 0.67 0.65
Essays fastText 0.61 0.49 0.59 0.66 0.65
IBM fastText 0.66 0.55 0.62 0.68 0.66
WebD fastText 0.38 0.28 0.37 0.58 0.51

Trained on data Reference field

D
ee

pC
T

MARCO Title 0.40 0.35 0.62 0.53 0.61
With pools Conclusions 0.58 0.52 0.73 0.69 0.72
With pools Topics 0.58 0.51 0.73 0.71 0.73
With pools Topic & Concl. 0.60 0.51 0.73 0.71 0.73
All documents Conclusions 0.61 0.52 0.73 0.71 0.73
All documents Topics 0.58 0.50 0.73 0.70 0.72
All documents Topic & Concl. 0.59 0.52 0.73 0.71 0.73
Without pools Conclusions 0.59 0.52 0.73 0.71 0.72
Without pools Topics 0.61 0.52 0.73 0.71 0.72
Without pools Topic & Concl. 0.61 0.53 0.74 0.72 0.73

36

CHAPTER 5. EVALUATION

Table 5.10: Effectiveness of the tuned BM25 with RM3 approach on topics of years
2020 and 2021, nDCG- and Bpref-scores are calculated using all documents in the
ranked lists and after removing documents without relevance judgments.

Corpus All documents Unjudged removed

O
ri

gi
na

l

nDCG@5 nDCG@25 Bpref nDCG@5 nDCG@25

args.me 0.46 0.41 0.68 0.71 0.69

Data Embeddings

T
ar

ge
rs

WebD dependency 0.16 0.14 0.40 0.52 0.47
Combined fastText 0.38 0.36 0.64 0.63 0.65
Essays dependency 0.36 0.33 0.61 0.66 0.64
Essays fastText 0.41 0.36 0.64 0.67 0.66
IBM fastText 0.45 0.41 0.68 0.70 0.68
WebD fastText 0.17 0.15 0.40 0.55 0.47

Trained on data Reference field

D
ee

pC
T

MARCO Title 0.34 0.31 0.65 0.57 0.62
With pools Conclusions 0.46 0.41 0.76 0.72 0.73
With pools Topics 0.44 0.40 0.75 0.72 0.73
With pools Topic & Concl. 0.47 0.42 0.76 0.76 0.74
All documents Conclusions 0.45 0.40 0.75 0.73 0.73
All documents Topics 0.42 0.39 0.75 0.71 0.73
All documents Topic & Concl. 0.42 0.39 0.74 0.72 0.73
Without pools Conclusions 0.43 0.41 0.76 0.71 0.72
Without pools Topics 0.44 0.41 0.76 0.72 0.73
Without pools Topic & Concl. 0.42 0.40 0.76 0.71 0.73

37

CHAPTER 5. EVALUATION

Table 5.11: Effectiveness of the tuned BM25 with RM3 approach on topics of the
year 2020, nDCG- and Bpref-scores are calculated using all documents in the ranked
lists and after removing documents without relevance judgments.

Corpus All documents Unjudged removed

O
ri

gi
na

l

nDCG@5 nDCG@25 Bpref nDCG@5 nDCG@25

args.me 0.36 0.35 0.71 0.77 0.73

Data Embeddings

T
ar

ge
rs

WebD dependency 0.14 0.13 0.45 0.55 0.49
Combined fastText 0.28 0.30 0.66 0.70 0.68
Essays dependency 0.27 0.28 0.63 0.72 0.67
Essays fastText 0.32 0.31 0.66 0.74 0.70
IBM fastText 0.34 0.35 0.71 0.76 0.72

Trained on data Reference field

D
ee

pC
T

MARCO Title 0.26 0.26 0.67 0.62 0.67
With pools Conclusions 0.38 0.36 0.77 0.80 0.81
With pools Topics 0.39 0.36 0.77 0.81 0.81
With pools Topic & Concl. 0.40 0.37 0.77 0.82 0.81
All documents Conclusions 0.37 0.35 0.76 0.81 0.81
All documents Topics 0.36 0.34 0.76 0.78 0.80
All documents Topic & Concl. 0.36 0.34 0.76 0.80 0.81
Without pools Conclusions 0.38 0.36 0.77 0.80 0.81
Without pools Topics 0.37 0.35 0.76 0.79 0.81
Without pools Topic & Concl. 0.36 0.35 0.77 0.79 0.81

38

CHAPTER 5. EVALUATION

Table 5.12: Effectiveness of the tuned BM25 with RM3 approach on topics of the
year 2021, nDCG- and Bpref-scores are calculated using all documents in the ranked
lists and after removing documents without relevance judgments.

Corpus All documents Unjudged removed

O
ri

gi
na

l

nDCG@5 nDCG@25 Bpref nDCG@5 nDCG@25

args.me 0.56 0.47 0.65 0.65 0.65

Data Embeddings

T
ar

ge
rs

WebD dependency 0.19 0.15 0.35 0.51 0.47
Combined fastText 0.47 0.41 0.63 0.57 0.62
Essays dependency 0.45 0.39 0.60 0.59 0.63
Essays fastText 0.50 0.42 0.62 0.60 0.63
IBM fastText 0.55 0.47 0.65 0.64 0.65
WebD fastText 0.22 0.18 0.36 0.57 0.49

Trained on data Reference field

D
ee

pC
T

MARCO Title 0.43 0.36 0.63 0.56 0.62
With pools Conclusions 0.53 0.47 0.75 0.67 0.70
With pools Topics 0.49 0.45 0.74 0.67 0.71
With pools Topic & Concl. 0.53 0.47 0.74 0.71 0.72
All documents Conclusions 0.52 0.46 0.74 0.68 0.71
All documents Topics 0.48 0.45 0.75 0.67 0.72
All documents Topic & Concl. 0.48 0.44 0.73 0.68 0.70
Without pools Conclusions 0.49 0.46 0.74 0.67 0.71
Without pools Topics 0.51 0.46 0.75 0.70 0.72
Without pools Topic & Concl. 0.48 0.45 0.75 0.67 0.70

39

CHAPTER 5. EVALUATION

Table 5.13: Effectiveness of the Dirichlet-smoothed Language Model with RM3
approach on topics of years 2020 and 2021, nDCG- and Bpref-scores are calculated
using all documents in the ranked lists and after removing documents without
relevance judgments.

Corpus All documents Unjudged removed

O
ri

gi
na

l

nDCG@5 nDCG@25 Bpref nDCG@5 nDCG@25

args.me 0.50 0.36 0.57 0.67 0.60

Data Embeddings

T
ar

ge
rs

WebD dependency 0.32 0.23 0.42 0.55 0.45
Combined fastText 0.47 0.35 0.56 0.65 0.59
Essays dependency 0.42 0.31 0.53 0.63 0.55
Essays fastText 0.48 0.37 0.56 0.66 0.60
IBM fastText 0.50 0.38 0.58 0.68 0.61
WebD fastText 0.29 0.22 0.39 0.54 0.43

Trained on data Reference field

D
ee

pC
T

MARCO Title 0.32 0.28 0.63 0.63 0.63
With pools Conclusions 0.44 0.36 0.71 0.67 0.60
With pools Topics 0.48 0.39 0.72 0.72 0.71
With pools Topic & Concl. 0.42 0.36 0.70 0.71 0.70
All documents Conclusions 0.44 0.37 0.70 0.72 0.69
All documents Topics 0.46 0.37 0.72 0.72 0.71
All documents Topic & Concl. 0.50 0.40 0.74 0.71 0.68
Without pools Conclusions 0.45 0.38 0.71 0.74 0.69
Without pools Topics 0.46 0.39 0.72 0.73 0.68
Without pools Topic & Concl. 0.46 0.38 0.71 0.72 0.70

40

CHAPTER 5. EVALUATION

Table 5.14: Effectiveness of the Dirichlet-smoothed Language Model with RM3
approach on topics of the year 2020, nDCG- and Bpref-scores are calculated using
all documents in the ranked lists and after removing documents without relevance
judgments.

Corpus All documents Unjudged removed

O
ri

gi
na

l

nDCG@5 nDCG@25 Bpref nDCG@5 nDCG@25

args.me 0.45 0.35 0.58 0.78 0.69

Data Embeddings

T
ar

ge
rs

WebD dependency 0.35 0.25 0.48 0.68 0.55
Combined fastText 0.41 0.30 0.54 0.75 0.65
Essays dependency 0.37 0.29 0.53 0.73 0.62
Essays fastText 0.45 0.35 0.58 0.79 0.69
IBM fastText 0.45 0.35 0.58 0.78 0.69
WebD fastText 0.27 0.21 0.44 0.66 0.50

Trained on data Reference field

D
ee

pC
T

MARCO Title 0.25 0.25 0.64 0.66 0.67
With pools Conclusions 0.39 0.35 0.72 0.84 0.77
With pools Topics 0.45 0.37 0.74 0.83 0.79
With pools Topic & Concl. 0.41 0.34 0.69 0.84 0.76
All documents Conclusions 0.42 0.35 0.71 0.86 0.77
All documents Topics 0.46 0.38 0.75 0.84 0.80
All documents Topic & Concl. 0.49 0.38 0.75 0.85 0.81
Without pools Conclusions 0.39 0.35 0.70 0.82 0.76
Without pools Topics 0.41 0.36 0.74 0.85 0.81
Without pools Topic & Concl. 0.38 0.34 0.71 0.85 0.78

41

CHAPTER 5. EVALUATION

Table 5.15: Effectiveness of the Dirichlet-smoothed Language Model with RM3
approach on topics of the year 2021, nDCG- and Bpref-scores are calculated using
all documents in the ranked lists and after removing documents without relevance
judgments.

Corpus All documents Unjudged removed

O
ri

gi
na

l

nDCG@5 nDCG@25 Bpref nDCG@5 nDCG@25

args.me 0.54 0.38 0.56 0.62 0.59

Data Embeddings

T
ar

ge
rs

WebD dependency 0.29 0.21 0.35 0.51 0.44
Combined fastText 0.53 0.40 0.57 0.63 0.61
Essays dependency 0.46 0.34 0.53 0.59 0.58
Essays fastText 0.51 0.37 0.55 0.61 0.59
IBM fastText 0.54 0.41 0.57 0.63 0.61
WebD fastText 0.31 0.22 0.35 0.56 0.47

Trained on data Reference field

D
ee

pC
T

MARCO Title 0.39 0.32 0.62 0.63 0.64
With pools Conclusions 0.49 0.38 0.71 0.68 0.68
With pools Topics 0.51 0.42 0.71 0.66 0.68
With pools Topic & Concl. 0.43 0.37 0.71 0.66 0.68
All documents Conclusions 0.47 0.38 0.69 0.68 0.68
All documents Topics 0.45 0.37 0.70 0.67 0.68
All documents Topic & Concl. 0.51 0.41 0.73 0.68 0.68
Without pools Conclusions 0.50 0.42 0.72 0.66 0.68
Without pools Topics 0.52 0.42 0.70 0.66 0.67
Without pools Topic & Concl. 0.53 0.42 0.71 0.66 0.68

42

Chapter 6

Conclusions

In this thesis, we contribute various approaches to the task of argument retrieval,
while we aim to increase the precision of retrieved documents, by taking into
account the semantic importance of the words in documents. For this purpose,
we used a pre-trained on MS-MARCO-Doc corpus DeepCT model, as well as
fine-tuned DeepCT model on nine different corpora, that we created based on
args.me corpus and we also extracted premises and claims via models deployed
in TARGER, which we further used for experiments and evaluation.

Using fine-tuned DeepCT models we achieved better results in the nDCG@5
metric on ranking based only on judged documents, compared to the most
effective participants approach in Touché task 1 in the year 2020 by 0.04,
achieving an nDCG@5-score of 0.86 and outperforming the most effective
participants approach in the year 2021 by 0.01, achieving the nDCG@5-score
of 0.73. Fine-tuning of DeepCT model on args.me corpus has also shown a
high influence on the effectiveness of retrieval in Touché, since our fine-tuned
models achieved much better results, compared to the pre-trained model on
MS-MARCO-Doc corpus. Approaches based on models deployed in TARGER
have shown little to no improvements compared to the results of according
retrieval models used on original args.me corpus, but we believe they might
be used for the reduction of required space to save the corpora when the
effectiveness is not crucial.

43

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manju-
nath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015. URL
https://www.tensorflow.org/. Software available from tensorflow.org.

[2] Yamen Ajjour, Henning Wachsmuth, Johannes Kiesel, Martin Potthast,
Matthias Hagen, and Benno Stein. Data acquisition for argument search:
The args. me corpus. In Joint German/Austrian Conference on Artificial
Intelligence (Künstliche Intelligenz), pages 48–59. Springer, 2019.

[3] Giambattista Amati. Frequentist and bayesian approach to information
retrieval. In European Conference on Information Retrieval, pages 13–24.
Springer, 2006.

[4] Jesse Anderton. Lecture notes in cs6200: Information retrieval,
2020. URL https://www.ccs.neu.edu/home/vip/teach/IRcourse/1_
retrieval_models/slides/language_models.pdf.

[5] Negar Arabzadeh, Xinyi Yan, and Charles LA Clarke. Predicting efficien-
cy/effectiveness trade-offs for dense vs. sparse retrieval strategy selection.
In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, pages 2862–2866, 2021.

[6] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing
with Python: analyzing text with the natural language toolkit. " O’Reilly
Media, Inc.", 2009.

44

BIBLIOGRAPHY

[7] Alexander Bondarenko, Maik Fröbe, Meriem Beloucif, Lukas Gienapp,
Yamen Ajjour, Alexander Panchenko, Chris Biemann, Benno Stein, Hen-
ning Wachsmuth, Martin Potthast, and Matthias Hagen. Overview
of Touché 2020: Argument Retrieval. In Avi Arampatzis, Evangelos
Kanoulas, Theodora Tsikrika, Stefanos Vrochidis, Hideo Joho, Christina
Lioma, Carsten Eickhoff, Aurélie Névéol, Linda Cappellato, and Nicola
Ferro, editors, Experimental IR Meets Multilinguality, Multimodality,
and Interaction. 11th International Conference of the CLEF Associa-
tion (CLEF 2020), volume 12260 of Lecture Notes in Computer Science,
pages 384–395, Berlin Heidelberg New York, September 2020. Springer.
doi: 10.1007/978-3-030-58219-7_26. URL https://link.springer.
com/chapter/10.1007/978-3-030-58219-7_26.

[8] Alexander Bondarenko, Lukas Gienapp, Maik Fröbe, Meriem Beloucif, Ya-
men Ajjour, Alexander Panchenko, Chris Biemann, Benno Stein, Henning
Wachsmuth, Martin Potthast, and Matthias Hagen. Overview of Touché
2021: Argument Retrieval. In K. Selçuk Candan, Bogdan Ionescu, Lor-
raine Goeuriot, Henning Müller, Alexis Joly, Maria Maistro, Florina Piroi,
Guglielmo Faggioli, and Nicola Ferro, editors, Experimental IR Meets Mul-
tilinguality, Multimodality, and Interaction. 12th International Conference
of the CLEF Association (CLEF 2021), volume 12880 of Lecture Notes in
Computer Science, pages 450–467, Berlin Heidelberg New York, Septem-
ber 2021. Springer. doi: 10.1007/978-3-030-85251-1_28. URL https:
//link.springer.com/chapter/10.1007/978-3-030-85251-1_28.

[9] Alexander Bondarenko, Maik Fröbe, Johannes Kiesel, Shahbaz Syed, Ti-
mon Gurcke, Meriem Beloucif, Alexander Panchenko, Chris Biemann,
Benno Stein, Henning Wachsmuth, Martin Potthast, and Matthias Ha-
gen. Overview of Touché 2022: Argument Retrieval. In Matthias Hagen,
Suzan Verberne, Craig Macdonald, Christin Seifert, Krisztian Balog, Kjetil
Nørvåg, and Vinay Setty, editors, Advances in Information Retrieval. 44th
European Conference on IR Research (ECIR 2022), Lecture Notes in
Computer Science, Berlin Heidelberg New York, April 2022. Springer.

[10] Chris Buckley and Ellen M. Voorhees. Retrieval evaluation with incomplete
information. In SIGIR, 2004.

[11] Maximilian Bundesmann, Lukas Christ, and Matthias Richter. Creating
an argument search engine for online debates. In CLEF (Working Notes),
2020.

45

BIBLIOGRAPHY

[12] Claudio Carpineto and Giovanni Romano. A survey of automatic query
expansion in information retrieval. Acm Computing Surveys (CSUR), 44
(1):1–50, 2012.

[13] Artem Chernodub, Oleksiy Oliynyk, Philipp Heidenreich, Alexander Bon-
darenko, Matthias Hagen, Chris Biemann, and Alexander Panchenko.
Targer: Neural argument mining at your fingertips. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics:
System Demonstrations, pages 195–200, 2019.

[14] Francois Chollet. Deep learning with Python. Simon and Schuster, 2021.

[15] Hinrich Schütze Christopher D. Manning, Prabhakar Raghavan. In-
troduction to information retrieval. URL https://nlp.stanford.edu/
IR-book/. [Online; Accessed on December 8, 2021].

[16] W Bruce Croft, Donald Metzler, and Trevor Strohman. Search engines:
Information retrieval in practice, volume 520. Addison-Wesley Reading,
2010.

[17] Zhuyun Dai and Jamie Callan. Context-aware document term weighting
for ad-hoc search. In Proceedings of The Web Conference 2020, pages
1897–1907, 2020.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[19] Lorik Dumani and Ralf Schenkel. A systematic comparison of methods for
finding good premises for claims. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 957–960, 2019.

[20] Lorik Dumani and Ralf Schenkel. Ranking arguments by combining claim
similarity and argument quality dimensions. In CLEF (Working Notes),
2020.

[21] Steffen Eger, Johannes Daxenberger, and Iryna Gurevych. Neural end-to-
end learning for computational argumentation mining. In Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 11–22, Vancouver, Canada, July 2017.
Association for Computational Linguistics. doi: 10.18653/v1/P17-1002.
URL https://aclanthology.org/P17-1002.

46

BIBLIOGRAPHY

[22] Saeed Entezari and Michael Völske. Argument retrieval using deep neural
ranking models. In CLEF (Working Notes), 2020.

[23] Allyson Ettinger. What bert is not: Lessons from a new suite of psycholin-
guistic diagnostics for language models. Transactions of the Association
for Computational Linguistics, 8:34–48, 2020.

[24] Maik Fröbe, Sebastian Günther, Alexander Bondarenko, Johannes Huck,
and Matthias Hagen. Using keyqueries to reduce misinformation in health-
related search results. 2022.

[25] Tommaso Green, Luca Moroldo, and Alberto Valente. Exploring bert
synonyms and quality prediction for argument retrieval. 2021.

[26] Ivan Habernal and Iryna Gurevych. Argumentation mining in user-
generated web discourse. Computational Linguistics, 43(1):125–179, April
2017. doi: 10.1162/COLI_a_00276. URL https://aclanthology.org/
J17-1004.

[27] Suzana Ilić, Edison Marrese-Taylor, Jorge A Balazs, and Yutaka Matsuo.
Deep contextualized word representations for detecting sarcasm and irony.
arXiv preprint arXiv:1809.09795, 2018.

[28] Karen Sparck Jones. A statistical interpretation of term specificity and its
application in retrieval. Journal of documentation, 1972.

[29] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu,
Sergey Edunov, Danqi Chen, and Wen-tau Yih. Dense passage retrieval
for open-domain question answering. arXiv preprint arXiv:2004.04906,
2020.

[30] Omer Levy and Yoav Goldberg. Dependency-based word embeddings. In
Proceedings of the 52nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages 302–308, Baltimore,
Maryland, June 2014. Association for Computational Linguistics. doi:
10.3115/v1/P14-2050. URL https://aclanthology.org/P14-2050.

[31] Ran Levy, Ben Bogin, Shai Gretz, Ranit Aharonov, and Noam Slonim.
Towards an argumentative content search engine using weak supervision.
In Proceedings of the 27th International Conference on Computational
Linguistics, pages 2066–2081, 2018.

[32] Dan Li and Evangelos Kanoulas. Bayesian optimization for optimizing
retrieval systems. In Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, pages 360–368, 2018.

47

BIBLIOGRAPHY

[33] Jimmy Lin. The neural hype and comparisons against weak baselines. In
ACM SIGIR Forum, volume 52, pages 40–51. ACM New York, NY, USA,
2019.

[34] Marco Lippi and Paolo Torroni. Argumentation mining: State of the art
and emerging trends. ACM Transactions on Internet Technology (TOIT),
16(2):1–25, 2016.

[35] Marco Lippi and Paolo Torroni. Margot: A web server for argumentation
mining. Expert Systems with Applications, 65:292–303, 2016.

[36] Thi Kim Hanh Luu and Jan-Niklas Weder. Argument retrieval for com-
parative questions based on independent features. 2021.

[37] Sean MacAvaney, Andrew Yates, Sergey Feldman, Doug Downey, Arman
Cohan, and Nazli Goharian. Simplified data wrangling with ir_datasets.
In SIGIR, 2021.

[38] Craig Macdonald and Nicola Tonellotto. Declarative experimentation
ininformation retrieval using pyterrier. In Proceedings of ICTIR 2020,
2020.

[39] Alina Mailach, Denise Arnold, Stefan Eysoldt, and Simon Kleine. Exploring
document expansion for argument retrieval. Working Notes of CLEF, 2021.

[40] Vijay Mhaskar. Measuring search relevance using ndcg. https://blog.
thedigitalgroup.com/measuring-search-relevance-using-ndcg,
2015. [Online; accessed 25-April-2022].

[41] Timothee Mickus, Denis Paperno, Mathieu Constant, and Kees
Van Deemter. What do you mean, bert? assessing bert as a distributional
semantics model. arXiv preprint arXiv:1911.05758, 2019.

[42] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and
Armand Joulin. Advances in pre-training distributed word representations.
arXiv preprint arXiv:1712.09405, 2017.

[43] Martin F Porter. An algorithm for suffix stripping. Program, 1980.

[44] Martin Potthast, Lukas Gienapp, Florian Euchner, Nick Heilenkötter,
Nico Weidmann, Henning Wachsmuth, Benno Stein, and Matthias Hagen.
Argument search: assessing argument relevance. In Proceedings of the
42nd International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 1117–1120, 2019.

48

BIBLIOGRAPHY

[45] I Qunis, G Amati, V Plachouras, B He, C Macdonald, and C Lioma. A
high performance and scalable information retrieval plateform. In SIGR
workshop on open source information retrieval, 2006.

[46] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2019.

[47] Stephen Robertson and Hugo Zaragoza. The probabilistic relevance frame-
work: BM25 and beyond. Now Publishers Inc, 2009.

[48] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology:
What we know about how bert works. Transactions of the Association for
Computational Linguistics, 8:842–866, 2020.

[49] Amit Singhal et al. Modern information retrieval: A brief overview. IEEE
Data Eng. Bull., 24(4):35–43, 2001.

[50] Christian Stab, Johannes Daxenberger, Chris Stahlhut, Tristan Miller, Ben-
jamin Schiller, Christopher Tauchmann, Steffen Eger, and Iryna Gurevych.
Argumentext: Searching for arguments in heterogeneous sources. In Pro-
ceedings of the 2018 conference of the North American chapter of the
association for computational linguistics: demonstrations, pages 21–25,
2018.

[51] Chris Stahlhut. Searching arguments in german with argumentext. In
DESIRES, page 104, 2018.

[52] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-
read students learn better: On the importance of pre-training compact
models. arXiv preprint arXiv:1908.08962v2, 2019.

[53] Rekha Vaidyanathan, Sujoy Das, and Namita Srivastava. A study on
retrieval models and query expansion using prf. International Journal of
Scientific & Engineering Research, 6(2):13–18, 2015.

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems, 30, 2017.

[55] Henning Wachsmuth, Martin Potthast, Khalid Al Khatib, Yamen Ajjour,
Jana Puschmann, Jiani Qu, Jonas Dorsch, Viorel Morari, Janek Bevendorff,
and Benno Stein. Building an argument search engine for the web. In
Proceedings of the 4th Workshop on Argument Mining, pages 49–59, 2017.

49

BIBLIOGRAPHY

[56] Wikipedia. Discounted cumulative gain — Wikipedia, the free encyclo-
pedia. http://en.wikipedia.org/w/index.php?title=Discounted%
20cumulative%20gain&oldid=1069780045, 2022. [Online; accessed 25-
April-2022].

[57] Wikipedia. Word embedding — Wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=Word%20embedding&
oldid=1084612624, 2022. [Online; accessed 01-May-2022].

[58] Chengxiang Zhai and John Lafferty. A study of smoothing methods for
language models applied to ad hoc information retrieval. In ACM SIGIR
Forum, volume 51, pages 268–276. ACM New York, NY, USA, 2017.

50

	Introduction
	Background and Related Work
	Information Retrieval
	Argument Search
	Argument Mining
	Argument Retrieval
	Retrieval Models and Query Expansion
	BM25 Retrieval Model
	Dirichlet-smoothed Language Model
	RM3 Query Expansion

	Deep Learning
	BERT

	Data and Data Preprocessing
	Data and Data Access
	Data Preprocessing

	Experiments
	Parameter Tuning
	Transforming Data with TARGER
	Training and Inference of DeepCT Models

	Evaluation
	Evaluation Metrics
	Retrieval Comparison
	Results

	Conclusions
	Bibliography

