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Abstract

Due to the rapid development, diffusion models have achieved state-of-the-art
results in the field of image generation. Among these, Stable Diffusion has
become state-of-the-art open-source model with the ability to produce high-
quality images. Despite the benefits the model offers, it still provides limited
control over the image output. This affects particularly compositionally com-
plex prompts containing multiple objects,which often result in a number of
visual issues within the generated images. Such visual problems as missing
objects, attribute leakage, incorrect number of objects, or incorrect attribute
binding induces the user experience of lower quality and user intent remains
unsatisfied. Adopted the idea of incorporating linguistic structure for im-
provement the image compositionality presented by the Structured Diffusion
Guidance approach, we present three variations of the Simplified Structured
Diffusion approach with additional pooling that addresses the problem of im-
age compositionality and user control by Stable Diffusion. We assessed our
approaches on both Stable Diffusion and Stable Diffusion XL and on two dif-
ferent datasets. The evaluation showed differences between the three approach
variations and overall better performance for Simplified Structured Diffusion
without pooling. Nevertheless, we could not achieve the results of baseline
methods. Therefore, we address the limitations of our approach by presenting
further experiments and introduce possible future research avenues.
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Chapter 1

Introduction

In the last few years, the field of generative modelling has been undergoing
rapid evolution, and diffusion models have been identified as a powerful class of
techniques for generating high-quality images. Among these, Stable Diffusion
[Rombach et al., 2022] stands out due to its robustness and capacity to produce
detailed and diverse visual content. The widespread use and open availability
of the Stable Diffusion model made it the state-of-the art open-source model
for text-to-image generation. Its ability to produce an infinite variety of high-
quality text-guided images made it popular among researchers as well as among
regular users. Despite the success that Stable Diffusion has achieved, providing
precise control over image composition remains a significant challenge [Feng
et al., 2023, Liu et al., 2022]. The model faces a difficult task to effectively
capture and reproduce the user’s vision of the image. Therefore, there are two
crucial points to consider. Firstly, the user must effectively convert their ideas
in a prompt. Then, the model must produce an image that incorporates all the
concepts and details defined by the user in order to give the user the desired
result. Thus, the alignment of text and image is of significant importance with
regard to the user experience. However, compositionally complex prompts that
combine multiple objects present a major challenge for the model, as can be
seen in Figure 1.1. In particular, the generation of an image for compositionally
complex prompts demands from the model an understanding of individual
linguistic concepts of prompts, as well as the comprehension of the entire scene
simultaneously [Feng et al., 2023].

The crucial aspect for successful composition in generated images is correct
attribute binding. In the first instance, it is essential to grasp the linguistic
structure of the prompt, which is crucial for the generation of objects with
correct attributes [Feng et al., 2023]. Therefore, implications of failed compo-
sitionality result in numerous visual problems that are shown in Figure 1.1.
Missing objects, attribute leakage, incorrect number of objects, failed text
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CHAPTER 1. INTRODUCTION

Figure 1.1: a picture of a white cat and a black cat produced by Stable
Diffusion 1.5 with different seeds

visualization, and erroneous attribute bindings are the most common compo-
sitional failures that Stable Diffusion encounters. All of these issues lead to a
lack of user control over the generated output, which can result in user frustra-
tion and loss of interest. The challenge of identifying effective textual prompts
that facilitate the appropriate text-image alignment has given rise to the field
of prompt engineering [Sun et al., 2023]. Although this development has led
to the formation of a significant online community dedicated to the sharing
of useful prompts and prompt engineering techniques, the method is not par-
ticularly user-friendly, as it often requires a considerable number of attempts
to achieve the desired results. In this context, it is important to underscore
the necessity for the development of additional approaches that address this
problem by providing users with an option that requires minimal effort while
still achieving the desired outcome.

Furthermore, it is necessary to note, that during work on this thesis, the
newer Stable Diffusion XL 0.9 [Podell et al., 2023] was released. The new
model has been released with a modified architecture, which enables it to gen-
erate high-resolution images and to exhibit enhanced performance compared
to previous versions of Stable Diffusion. Although, Podell et al. [2023] shows
what a significant overall improvement the model achieves, the Figure 1.2 illus-
trates that generating images with such a prompt as a picture of a white
cat and a black cat is still challenging for the model with regard to correct
attribute-binding. These examples demonstrate that the generation of images
with compositionally complex prompts remains a challenging task, even for
the recently released Stable Diffusion XL and remains a significant factor that
affects the user experience. Therefore, the research of this thesis encompasses
the Stable Diffusion XL as well.

Motivated by the concept of using the linguistic structure of the prompt for
embedding manipulation presented in Structured Diffusion Guidance by Feng
et al. [2023], we propose a modified method for improving the image compo-
sition. Our approach adopts the idea of manipulation of CLIP embeddings
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CHAPTER 1. INTRODUCTION

Figure 1.2: a picture of a white cat and a black cat produced by Stable
Diffusion XL with different seeds

according to the linguistic structure of the prompt from Structured Diffusion
with additional manipulation step using pooling and is therefore referred to
as Simplified Structured Diffusion. Accordingly, our approach investigates the
role of CLIP embeddings in Stable Diffusion with regard to the compositional-
ity problem. Furthermore, we seek to determine the ability of our approach to
confer the same advantage as that observed in Structured Diffusion, without
the need to manipulate cross-attention layers. The objective of this thesis is,
therefore, to address the aforementioned composition problem in images gen-
erated by Stable Diffusion and to assess the Simplified Structured Diffusion
approach.

The following content constitutes the structure of this thesis: Firstly, the
theoretical understanding of the technical principles of diffusion models, with a
particular focus on the Stable Diffusion and CLIP embeddings, is presented in
Chapter 2. Subsequently, in Chapter 3, the studies that address the same com-
positional problem of the model will be described. Afterwards, the method-
ological framework of the Simplified Structured Diffusion will be presented in
Chapter 4. In the following chapter, the undertaken experiments and results
will be presented. Finally, a summary of our approach and results will be
provided in the conclusion.
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Chapter 2

Theoretical Background

This chapter provides an overview of the theoretical background of diffusion
models, with a particular focus on the Stable Diffusion and Stable Diffusion XL
models. The understanding of the theoretical background and key concepts
is important for highlighting the possible underlying reasons of such composi-
tional problems in output images, such as attribute binding failure and object
missing. Furthermore, it is essential to grasp these concepts in order to com-
prehend the selected and proposed methods presented in this thesis.

Stable Diffusion refers to the latent diffusion models that operate in a low-
dimensional latent space, which enables to reduce computational effort during
the training process. Therefore, this chapter begins with an explanation of
what a latent diffusion model is and what the processes behind diffusion are.
Then, the underlying architecture of the models is closely examined, show-
ing the differences between the two models and the consequent influence on
the generated output and overall performance. Subsequently, the CLIP en-
coder used in the Stable Diffusion models is examined in detail. In particular,
the CLIP embedding generation process is closely observed, as it plays a cru-
cial role in the proposed Simplified Structured Diffusion approach. Then, the
image generation process within Stable Diffusion and Stable Diffusion XL is
considered. Finally, the cross-attention conditioning mechanism used in both
models and the pooling method are presented.

2.1 Latent Diffusion Models
Diffusion probabilistic models [Sohl-Dickstein et al., 2015] are generative likeli-
hood-based models that succeed in many tasks as image synthesis, colorization,
inpainting and other [Rombach et al., 2022]. Diffusion models arose from
the principles of non-equilibrium statistical physics and are crucial for the
development of the Stable Diffusion model. The main idea of diffusion is to
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CHAPTER 2. THEORETICAL BACKGROUND

destroy the data distribution structure systematically and gradually within an
iterative process and then, to train the model how to reconstruct the data
structure during a reverse diffusion process [Sohl-Dickstein et al., 2015] (see
Figure 2.1). These two main processes within the diffusion models are realized
through the implementation of two Markov chains: forward and reverse, which
will be considered in more detail in this section.

Compared to diffusion models trained in a pixel space, which require high
computational effort, latent diffusion models are trained in a lower-resolution
latent space. This is an efficient, lower-dimensional space that is equivalent to
the data space, but excludes high-frequency, imperceptible details [Rombach
et al., 2022]. Consequently, latent diffusion models use a variational autoen-
coder [Kingma and Welling, 2014] to encode images into a latent space and then
decode them back from latent into a pixel space. The variational autoencoder
is trained separately from the diffusion process and therefore, the compressive
operations are separated from a generative learning phase (Rombach, 2022).
Another advantage of process separation is that the variational autoencoder
needs to be trained only once and can then be used to train multiple diffu-
sion models, further reducing training time [Rombach et al., 2022].Overall, the
crucial change from pixel to latent space introduced in the latent diffusion mod-
els, as well as the separation of compression and diffusion process, drastically
reduce computational complexity while still producing high-resolution images
compared to previous methods operating in pixel space [Rombach et al., 2022].

Figure 2.1: Forward process (from left to right at the top) and reverse process
(from right to left at the bottom) at time steps t = 0, t = T/2, t = T , reproduced
from Sohl-Dickstein et al. [2015]

Forward Process

The forward Markov chain features the forward diffusion process in latent
diffusion models. It iteratively adds some noise to the initial image data at
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each time step t to convert complex data distribution into a simple, controllable
distribution, a Gaussian distribution [Ho et al., 2020, Sohl-Dickstein et al.,
2015].

The input data distribution, denoted as q(x0), is then turned to q(xT ) in the
last timestep T by the diffusion process, whereby the resulting data distribution
xT contains only Gaussian noise, xT ∼ N (0, I). Applying the chain rule
of probability, the diffusion process can be represented as an approximate
posterior q(x1:T |x0) [Ho et al., 2020]. Therefore, the generation of each xt

in every timestep t is conditioned by its predecessor xt−1 and is noted as
q(xt|xt−1).

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1) (2.1)

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (2.2)

The noise added to the image within each timestep is controlled by a noise
scheduler. The noise scheduler calculates the amount of noise to be added
within each timestep t according to a variance schedule β1, ..., βT , where the
parameter β defines the diffusion rate within the forward process. This dif-
fusion rate β can be learned by reparameterization or, in some cases, can be
set to a constant value [Ho et al., 2020, Sohl-Dickstein et al., 2015]. Never-
theless, the reparameterization trick, described in Ho et al. [2020], enables to
calculate the noise for each timestep t without using all the predecessing xts
for calculation.

Reverse Process

Otherwise, the reverse Markov chain learns a finite-time denoising mechanism
to reconstruct the initial data by converting a simple Gaussian distribution
back into a complex target distribution. This process is also known as a gen-
erative diffusion process [Sohl-Dickstein et al., 2015] and is a reverse of the
forward process. Therefore, to learn the reverse process of data reconstruction,
the model pθ must be trained for obtaining conditional probabilities pθ(xt−1|xt)
for each timestep t.

The learning succeeds on estimating mean µθ(xt, t) and covariance
∑

θ(xt, t)
functions within each timestep t [Sohl-Dickstein et al., 2015]. That means, the
pθ predicts noise to be removed for particular timestep t. The predicted noise
is then subtracted from xt and the process is repeated for each timestep up to
x0.
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CHAPTER 2. THEORETICAL BACKGROUND

pθ(x0:T ) = p(xT )
T∏
t=1

pθ(xt−1|xt) (2.3)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2.4)

2.1.1 Denoising Architecture

The underlying denoising architecture for reverse process of the denoising diffu-
sion probabilistic model implemented by Ho et al. [2020] uses a U-Net architec-
ture presented by Ronneberger et al. [2015], which is illustrated in Figure 2.2.
Moreover, this architecture enables connection with an attention mechanism,
which makes realization of the conditioning mechanism possible [Rombach
et al., 2022].

Figure 2.2: U-Net architecture, reproduced from Ronneberger et al. [2015]

The U-Net architecture was firstly introduced for the ISBI challenge for seg-
mentation of neuronal structures in electronic microscopic stacks in 2015 and
this implemented approach won the challenge. Since then, U-Net architecture
is widely used for visual computation tasks.

Essentially, the U-Net architecture is based on the “fully convolutional net-
work” [Long et al., 2014]. The authors of the U-Net supplemented some pooling
layers with upsampling layers and established a U-shaped network that works
analogous to an autoencoder. In the contracting path it acts like an encoder
and downsamples the image, reducing the resolution up to a “bottleneck” at
the bottom. Whereby the expansive path of the U-Net represents a decoder
that upsamples the compressed hidden representation of the image back to its
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original dimensions. The downsampling part of the U-Net is designed as a typ-
ical convolutional network (CNN) with convolution layers including a rectified
linear unit (ReLu) and max pooling operation layers. In contrast, the upsam-
pling decoder path includes extra residual connections to the downsampling
encoder, which is not typical for an autoencoder architecture. This innovation
prevents the model from losing contextual information during downsampling
process and enables the model to create high resolution images and localize
objects within the image [Ronneberger et al., 2015].

Stable Diffusion Denoising Architecture

The neural backbone of the Stable Diffusion is a modified time-conditional
U-Net, which works as a noise predictor for the reverse diffusion process. In
order to accept noised latents at specific timestep t, the information about
current timestep should be additionally transferred. For this sake, the net-
work uses transformer sinusoidal position embedding [Vaswani et al., 2017] in
every downsampling and upsampling block [Erdem, 2023, Ho et al., 2020]. As
the U-Net predicts the noise that should be removed from the latent within
each timestep, a scheduler algorithm computes the samples with subtracted
predicted noise and controls the noise level at each timestep [Patil et al., 2022,
Wong, 2024]. The U-Net takes a created noised latent of size 64× 64 as input
and downsamples it twice in each level in the contracting path until it reaches
the “bottleneck” at the bottom. In the expansive path, the network upsamples
the latents back to the original size.

As shown in Figure 2.3, the U-Net network of Stable Diffusion model is
comprised of ResNet blocks [He et al., 2016] and transformer blocks [Patil
et al., 2022, Tian et al., 2023]. Thereby, the transformer blocks implement both
self-attention and cross-attention layers, that are crucial for the conditioned
image generation process. The self-attention layer learns attention across the
image and enables saving the spatial structure shape throughout the whole
image generation process [Liu et al., 2024, Tian et al., 2023]. Whereby the
cross-attention layer learns attention between image and text prompt enabling
image generation according to a given text prompt [Liu et al., 2024, Tian et al.,
2023].

8



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.3: Cross-attention downblock module from the time-conditional U-Net
architecture of Stable Diffusion, reproduced from Voetman et al. [2023]

Stable Diffusion XL Denoising Architecture

The U-Net architecture of the Stable Diffusion XL model slightly differs in com-
parison to the previous Stable Diffusion models. It has a three times larger
U-Net backbone with more transformer blocks and removed lowest downsam-
pled level [Podell et al., 2023]. Moreover, the model uses bigger latents of size
128× 128, which are four times as large than latents used in Stable Diffusion
[Podell et al., 2023]. Nevertheless, the number of U-Net parameters increased
from 860M for Stable Diffusion to 2.6B in Stable Diffusion XL [Podell et al.,
2023]. All these novelties enable the model to produce high-resolution images
with better fidelity and better user satisfaction in comparison to the previous
Stable Diffusion models [Podell et al., 2023].

Aside from that, the authors of Stable Diffusion XL presented additional
refinement stage that boosts performance of the model [Podell et al., 2023].

2.2 CLIP Text Encoder
In order to enable generation of images based on textual descriptions, it is
essential firstly to transform text into an appropriate embedding space. There-
fore, Stable Diffusion model uses the frozen CLIP (Contrastive Language-
Image Pretraining) [Radford et al., 2021] text encoder for this task. CLIP
is a pre-trained visual and language model that has been trained on a vast
dataset of 400 million image-text pairs. It is used for tasks such as defining
image-text similarity and zero-shot image classification [huggingface].

The CLIP text encoder architecture is based on the GPT-2 [Radford et al.,
2019] architecture and refers to a transformer [Vaswani et al., 2017]. It is a
decoder only transformer with 12 layers and 8 attention heads, which operates
on a lower-cased byte pair encoding of the text [Radford et al., 2021]. The
attention layer represents a masked multi-head self-attention layer, which uses
a causal mask to enable using of pre-trained language model as an additional
input to the model [Radford et al., 2021].
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The model is trained using a contrastive objective and learns how to predict
correct image-text pairs among others. In the pre-training phase, both image
and text encoders are trained simultaneously to maximize the cosine similarity
between image and text embeddings of correct pairs while minimizing the
cosine similarity of incorrect pairs [Radford et al., 2021]. While testing, the text
encoder generates a zero-short linear classifier by using the names of the target
dataset’s classes [Radford et al., 2021]. Thereby, CLIP learns a multimodal
embedding space, where image and text are represented by embeddings of
the same size and could be compared. For mapping both image and text
embeddings into the multimodal embedding space, both embeddings should
be firstly projected through a linear layer [Radford et al., 2021].

2.2.1 CLIP Embeddings Generation

This chapter takes a closer look at the process of CLIP embeddings generation.
Thus, the approach introduced in this thesis concentrates on the modification
of CLIP embeddings to improve image compositionality, therefore, it is crucial
to understand the process of embedding generation. The following text is
based on the work of Howard [2022].

Figure 2.4: CLIP embeddings generation process

As shown in Figure 2.4, the process of embedding generation within the
CLIP encoder starts with a tokenization step. To this end, a CLIP tokenizer
is applied to the prompt. Furthermore, throughout this process two special
tokens, start token [SOS] or [BOS] and end token [EOS], are added at the
beginning and at the end of the sequence. These special tokens serve a func-
tional purpose in the subsequent processing stages. Therefore, the start token
is a crucial and obligatory element, as it signals the beginning of the prompt
for the model. For this reason, the start token cannot be modified. This is a
pivotal consideration for approaches utilising CLIP embeddings modifications
as the approach presented in this thesis. The impact of the start token can be
observed in Figure 2.5.
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Figure 2.5: Comparison between images generated with Stable Diffusion 1.5. Left
image: applying pooling over all tokens including start token. Right image: pooling
over all tokens excluding start token

While using a tokenizer, it is possible to determine the total length of the
prompt by specifying a “padding” argument, which is set to the maximum
length of 77 tokens by default. This makes it possible to use prompts with
the length of up to 75 tokens, which is restricted to control the computational
effort [Radford et al., 2021]. In the case when the prompt contains less tokens
than 75, the empty places are filled with padding tokens. For this purpose, the
CLIP tokenizer uses the [EOS] token as a padding token. After the tokenization
step, all tokens are translated to the corresponding token ids, which are stored
in the vocabulary. Therefore, the vocabulary used by the CLIP text encoder
contains 49152 tokens, where start and end tokens feature their own token ids.

In the next step the input embedding will be generated. For this purpose,
the encoder uses token and positional layers to generate token and positional
embeddings, respectively. Therefore, for token embedding creation each to-
ken is mapped to a 768-dimensional vector. Thus, the token embeddings are
represented by a tensor of a shape [1,77,768]. Subsequently, positional embed-
dings of the same shape are added to the token embeddings, which give the
model information about the position of each token in the sequence. After
both embeddings are summarized, the generated input embedding can be fed
to a CLIP transformer to get the output embedding, which is the sequence of
hidden states of the model’s last layer output that is further used for condition-
ing within the Stable Diffusion. Due to use of causal mask in the multi-head
self-attention layer in CLIP encoder, the generated output embeddings are
cumulative. It means each token position in the embedding also includes in-
formation of the preceding tokens. Due to this fact, the information about
attributes of the preceding objects is also contains in the following objects and
could lead to the failed attribute binding in the image. This feature can be
crucial for failed composition in the generated images of Stable Diffusion [Feng
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et al., 2023].

2.3 Image Generation Process With Stable Dif-
fusion

Text-to-image generation process within Stable Diffusion contains three main
components: prompt encoding with a frozen CLIP Vit-L encoder, a diffusion
process realized by a time-conditioned U-Net and image decoding with a vari-
ational autoencoder (see Figure 2.6).

Figure 2.6: Conditioned latent diffusion model architecture, reproduced from Rom-
bach et al. [2022]

A variational autoencoder used in Stable Diffusion is an autoencoder con-
structed of an encoder E that encodes the image x ∈ RH×W×3 from pixel space
to its lower-dimensional latent representation z ∈ Rh×w×3, whereby z = E(x)
and a decoder D that reconstructs the generated image x̃ = D(z) back to the
pixel space.

Stable Diffusion enables different inputs as a conditioning element, such
as a text prompt, an image, or a semantic map [Rombach et al., 2022]. In
this case the Stable Diffusion represents a conditional latent diffusion model
(LDM) with a conditional denoising autoencoder of form ϵθ(zt, t, y) where ϵθ
is a denoising autoencoder represented by a time-conditioned U-Net, which
predicts the noise to be removed from zt. Then, zt is the latent for timestep t
and y is a conditional input such as a text prompt, which is pre-processed by
an encoder τθ. Therefore, the model training objective is defined as followed:

LLDM := EE(x),y,ϵ∼N (0,1),t

[
||ϵ− ϵθ(zt, t, τθ(y))||22

]
(2.5)

In case of the text-to-image generation process the model requires two
inputs: a text prompt and a seed. The prompt should be firstly encoded by an
encoder τθ, which is realized by a frozen CLIP ViT-L encoder that transforms
the prompt into a CLIP embedding, which was described in section 2.2. With
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a given seed the model creates a normally distributed random latent map with
a size Rh×w×c, which is 64 × 64. The U-Net denoising autoencoder takes the
created latent and uses it as a zT , which is the starting point for the diffusion
process. The network along with a scheduler begin iteratively predicting noise
within each timestep t that should be removed from the latents until t = 0 (see
section 2.1). The prediction is conditioned by a given CLIP embedding that
is used in cross-attention in both upsampling and downsampling transformer
blocks of the U-Net.

Finally, the denoised latent z0 is then decoded by a decoder of a variational
autoencoder D back to a pixel space and given as an output.

2.3.1 Cross-Attention

The attention mechanism is a key component in neural network architectures
since the transformer architecture was introduced by Vaswani et al. [2017]. The
attention mechanism enables models to dynamically assign different weights to
different parts of the input sequence, emphasizing the most relevant informa-
tion for each step of processing. For this sake, the attention function outputs
the weighted sum of the values by using calculated weights assigned to each
value [Vaswani et al., 2017]. The input for the function is a set of query and
a key-value pairs, which are all vectors.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.6)

Figure 2.7: Cross-attention layer in Stable Diffusion, reproduced from Liu et al.
[2024]

In order to enable conditioning on the given text within the image gener-
ation process of Stable Diffusion, cross-attention layers are used in the model
(see Figure 2.7). In this case, the keys and values are derived from the CLIP
prompt embedding, whereby the query is provided by an image latent, which
is initialized with a given seed. Due to this mechanism the model is trained to
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predict the residual noise in order to get the desired image defined by a given
prompt.

2.3.2 Image Generation With Stable Diffusion XL

The image generation process within the Stable Diffusion XL model is essen-
tially identical to that of the Stable Diffusion model. The most important
difference between the two models, which is also crucial for the approach pre-
sented in this thesis, is the prompt embedding generation step. In comparison
to the Stable Diffusion model, the Stable Diffusion XL uses two pre-trained
CLIP encoders: the CLIP ViT-L text encoder, which is also used in the Stable
Diffusion model, and the CLIP ViT-bigG [Ilharco et al., 2021]. The CLIP ViT-
bigG is a more powerful text encoder, which was trained on a large dataset of
2B samples and achieved a zero-shot top-1 accuracy of 80.1% on ImageNet-1k.
Furthermore, ViT-bigG’s tokenizer encodes tokens into larger vectors that rep-
resent more features. It maps each token id to a vector of length 1280, hence
the final output embedding of the encoder has the size of [1,77,1280].

Figure 2.8: Prompt embedding generation in Stable Diffusion XL

The process of prompt embedding generation for Stable Diffusion XL begins
with the prompt encoding stage. Consequently, the prompt is encoded with
both CLIP text encoders. Another notable difference between the two models
is that, in contrast to Stable Diffusion, Stable Diffusion XL employs the outputs
of penultimate hidden states, rather than the outputs of the final hidden state.
Subsequently, the outputs of the two CLIP encoders are then concatenated
along the channel axis to construct an embedding of the shape [1, 77, 2048]
(see Figure 2.8) [Podell et al., 2023].

Furthermore, one of the outputs of the CLIP ViT-bigG encoder is used
as an additional conditioning input for Stable Diffusion XL. This embedding
is located in the multimodal embedding space of the CLIP encoder and is
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constructed through application of a projection layer to the pooler output
of CLIPTextModel. Due to the linear projection the final embedding has a
shape of [1,1280]. Finally, the described outputs of both CLIP embeddings are
used as a conditioning mechanism in the cross-attention layers of the Stable
Diffusion XL model.

2.4 Pooling
Pooling is a technique employed in the field of natural language processing
(NLP) that captures the meaning of an entire sequence rather than focusing
on individual tokens [Leys, 2022]. Consequently, the pooling operation is de-
fined as a compression of token-level representation to a single representation,
which still preserves the meaning of the entire sequence [Leys, 2022]. This
technique is used for such tasks as sentence pooling, next sentence prediction,
semantic similarity or sentiment analysis [Leys, 2022]. There are several types
of pooling techniques, each of which is defined by the aggregation function
used for compression. One of the most popular pooling techniques is mean
pooling, which involves averaging the contextual token embeddings. Mean-
square pooling is similar to mean pooling but involves additional division by
the square of the number of elements [Leys, 2022]. Additionally, there are min
and max pooling approaches, which utilize the maximal or minimal value from
the sequence.

One of the most prominent applications of the pooling technique in pre-
trained language models is BERT [Devlin et al., 2019]. It is a bidirectional
transformer that is capable of solving a multitude of NLP tasks, including
sentiment analysis, text generation, text prediction, question answering and
summarization [Muller, 2022]. In a similar manner, the application of this
technique at the token embedding level in Stable Diffusion can influence the
image output with regard to the composition problem, which was initially
investigated by Smith [2023].
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Chapter 3

Related Work

This chapter covers previous research addressing to the problem of image com-
positionality within diffusion models and particularly within Stable Diffusion.
Within the arose popularity of diffusion models, different image generation
guidance techniques were introduced.

Firstly, an overview of different approaches that address compositional
problem within image generation process with Stable Diffusion will be pre-
sented. Afterwards, the Structured Diffusion Guidance proposed by Feng et al.
[2023] is presented because it presents a base idea of our approach.

Previous approaches addressed to the compositional problems within diffu-
sion models follow different techniques. Fan et al. [2023] and Lee et al. [2023]
use human feedback and reinforcement learning for fine-tuning the pre-trained
diffusion model like Stable Diffusion. Both approaches collect human feedback
on generated images, which is then used for training a reward function. Fur-
thermore, this function is used for diffusion model optimization by maximizing
the reward-weighted likelihood. As a result, the model is trained to produce
more desirable images for users with better compositionality Lee et al. [2023].
However, this approach requires obtaining of labeled data and additional model
training, which demand time and effort.

Another approach, recently introduced by Hertz et al. [2022] presents a
text-driven image editing. A prompt-to-prompt editing framework is based on
the manipulation of cross-attention layers controlled by prompt manipulation
in user interface. The underlying process works by identifying which pixels are
associated with which tokens and allows controlled attention to the selected
tokens. Therefore, this approach enables selective editing of objects as well as
change of the image style by remaining the image composition. However, in
order to edit the image, the user should firstly use a suitable prompt, which
initially generates an image with correct objects [Hertz et al., 2022]. That
makes the approach less suitable for producing images from compositional
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challenging prompts.
An approach introduced by Gandikota et al. [2023] focuses on using Con-

cept Sliders, which are plug-and-play low-rank adaptors for better control over
image generation process and post-hoc image editing. The authors presented
sliders for different concepts as weather, age, styles, expressions as well as
composition up to 50 different sliders. The approach requires single inference
phase and focuses on enhancing overall image composition as well as on fix-
ing the problem of hand distortions, which is also known for Stable Diffusion
and Stable Diffusion XL. Although concentrating on enhancing the overall im-
age compositionality and presenting improvement of generated images, this
approach does not fully address the problem of failed attribute-binding or
missing objects directly.

Another auspicious method, which also uses fine-tuning with low-rank
adaptors as a part of the presented technique, is DreamSync, an approach
introduced by Sun et al. [2023]. This approach is based on the recent find-
ing about vision-language models that can identify discrepancies between text
prompt and generated image via using visual question answering [Hu et al.,
2023]. Therefore, the method introduced by Sun et al. [2023] firstly gener-
ates the images within the pre-trained diffusion model. Afterwards two visual
language models are applied for alignment measurement between image and
text via question answering and for anesthetics measurement. After select-
ing the best images low-rank adaptors are iteratively applied for the model
fine-tuning. This method showed enhancement in both semantic alignment
and aesthetics within Stable Diffusion 1.4 and Stable Diffusion XL [Sun et al.,
2023]. Nevertheless, the method is limited by the chosen diffusion model. For
this reason, such composition problems as correct depicting of attribute-objects
is still challenging.

In their study, Liu et al. [2022] introduce Composable Diffusion, which
generate images by combining multiple outputs from a pre-trained diffusion
model. Each output is designed to capture distinct image elements, subse-
quently merged using compositional operators to produce a cohesive image.
However, it is noted that this technique frequently faces challenges in creating
realistic compositions of multiple objects. Moreover, the method is restricted
to using only two operators: conjunction and negation.

To provide better image compositionality in generated images by Stable
Diffusion, Chefer et al. [2023] introduced their method Attend-and-Excite,
which operates on the cross-attention layer of pre-trained the Stable Diffusion
model. The method concentrates on attending all tokens to some image patch
in the cross-attention and intensifies the appearance of the object by strengthen
the activation. This approach could show improvements in image fidelity and
compositionality.
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3.1 Structured Diffusion
In parallel with the growing popularity of diffusion models, numerous ap-
proaches have emerged for enhancing text image alignment and compositional-
ity in the generated images. One such approach is the methodology introduced
by Feng et al. [2023], called Structured Diffusion Guidance. The approach in-
corporates linguistic properties of the prompts within the diffusion guidance
process for better attribute-binding and consequently better image composi-
tionality and image-text alignment.

Figure 3.1: Design of Structured Diffusion Guidance, reproduced from Feng et al.
[2023]

The methodology contains two major steps. Firstly, the linguistic struc-
ture of the prompt is explored. For this step, the approach allows to use either
constituency trees or scene graphs. The obvious benefit of using those ap-
proaches is providing attribute-object pairs without extra computational cost
[Feng et al., 2023]. For instance, the authors use language parser for build-
ing a constituency tree, which provide all noun phrases from all hierarchical
levels C = {c1, c2, ..., ck} and their spans for further processing. After this
step, the prompt and the noun phrases are encoded separately by a CLIP en-
coder. Afterwards, all calculated embeddings Wi between <bos> and <pad>
are inserted into Wp. The modified embedding of Wp is then used to gen-
erate key Kp for cross-attention layers and to compute attention maps Mt

(see the Figure 3.1). Moreover, the encoded embeddings for each noun phrase
are used to compute values Vi, which are then used to calculate the Ot, an
output of a cross-attention layer for timestep t. The authors could achieve
5-8% advantage in comparison to state-of-the-art Stable Diffusion model in
user comparison studies.

18



Chapter 4

Methodology

This chapter is devoted to present our methodology for enhancing attribute-
binding and compositionality of images generated by Stable Diffusion and Sta-
ble Diffusion XL models. It builds on the linguistic approach of the Structured
Diffusion Guidance proposed by Feng et al. [2023], integrating an additional
mean-square pooling technique at the embedding level presented by Smith
[2023] and described in the section 2.4. The primary objective of the selected
methodology is to investigate the impact of linguistic properties applied exclu-
sively at the embedding level, without any manipulation of the cross-attention
layers. As observed by Feng et al. [2023], the most significant impact on the
compositionality failure in the generated images is attributed to the cumulative
nature of the CLIP embeddings. This outcome is the result of the implemen-
tation of causal attention masks in CLIP for prompt encoding, which in turn
results in the semantic blending of all previous tokens in the embedding. Fur-
thermore, this blending process ultimately leads to the observed deficiencies in
the compositional quality of the generated images [Feng et al., 2023]. For this
reason, our methodology focuses solely on the embedding level manipulation.

4.1 Simplified Structured Diffusion
The Structured Diffusion Guidance approach was chosen as the basis of our
methodology because it addresses the problem of failed attribute-binding and
missing objects, which are the most common composition errors in the im-
ages generated by Stable Diffusion. Our method is referred to as a Simplified
Structured Diffusion because it focuses solely on prompt embedding manipu-
lation and does not alter the cross-attention layers of the model, as it is done
in the original approach. Instead of that, we introduce a technique of CLIP
prompt embedding manipulation via separate noun phrase encoding and ad-
ditional pooling step. The focus on the CLIP embeddings is referred to the
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fact of cumulative nature of the embeddings due to usage of causal attention
mask, which could be a potential cause of failed attribute binding in the images
generated by Stable Diffusion [Feng et al., 2023].

Figure 4.1: Simplified Structured Diffusion: prompt embedding construction

We adopt the idea of separate encoding of noun phrases from Structured
Diffusion Guidance. This approach should intensify the connection between at-
tribute and object and reduce the negative outcomes caused by the cumulative
nature of CLIP embeddings. The separate encoding of noun phrases ensures
that there is no semantic blending with the previous tokens that lead to failed
attribute-binding. The application of an additional mean-square pooling of
noun phrases allows to link attribute and object even more strongly together.
Nevertheless, in contrast to the Structured Diffusion approach, where the au-
thors alter the cross-attention layers, we manipulate the prompt embedding
itself. In the first step, the linguistic structure of the prompt should be defined.
For this sake, we use stanza language parser [Qi et al., 2020] and NLTK tree
package [Bird et al., 2009], both open-source toolkits for NLP. The tools are
used for parsing and building constituency tree for each prompt. Therefore,
in the first step of the Simplified Structured Diffusion the language parser ξ
provides a set of all noun phrases in prompt from different hierarchical levels
C = [cP , c1, c2, . . . cn] and the list of corresponding spans S = [sP , s1, s2, . . . , sn].

After the noun phrase extraction, the encoding phase starts. In this phase,
the prompt cP and all extracted noun phrases ci are encoded into CLIP em-
beddings separately.

W = [WP ,W1,W2, ...,Wn] (4.1)

WP = CLIP (cP ) (4.2)
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Wi = CLIP (ci), i = 1, ..., n (4.3)

Afterwards, the encoded noun phrases Wis are added back into the main
prompt WP replacing original values (see Figure 4.1 and Algorithm 1). For
this step, the vectors from the noun phrase embedding of each noun phrase be-
tween [SOS] and [EOS] are extracted and, then, added into the corresponding
position in the main prompt using extracted spans S. In case of complex noun
phrases including sub-noun phrases, the encoding begins from the lowest level.
With this approach, we ensure that encoded noun phrases do not contain any
semantic information from the predecessing tokens. Finally, the manipulated
embedding WP is used as an input for Stable Diffusion for image generation.

Algorithm 1 Simplified Structured Diffusion
Input: Prompt P , language parser ξ, trained diffusion model ϕ
Output: image x

1: Retrieve noun phrases set C = [cP , c1, c2, ..., cn] by traversing ξ(P )
2: WP ← CLIP (cP ),Wi ← CLIP (ci);
3: for each Wi in [Wn,Wn−1, ...,W1] do
4: pool(Wi) ▷ additional pooling step
5: add Wi into WP ▷ embedding noun phrase into prompt
6: end for
7: Feed WP to ϕ to generate x

According to the different underlying processes of embedding generation for
Stable Diffusion XL, the described method is adapted. Since the model uses
two CLIP encoders, the whole procedure is also applied to both CLIP embed-
dings WP and W ′

P . After the embedding generation step and the addition of
noun phrases to both CLIP prompt embeddings, both embeddings are concate-
nated along the channel axis to produce a single embedding of the given size,
which is denoted as WP (XL) (see Algorithm 2). Furthermore, since the Stable
Diffusion XL model requires two conditioning inputs, we also investigated the
possible approach with the additional manipulation of the pooled prompt em-
bedding EP . Nevertheless, our empiric tests did not show any improvement by
additional manipulation of the pooled prompt embedding. Therefore, the final
version of the Simplified Structured Diffusion approach for Stable Diffusion XL
contains no manipulation of the pooled prompt embedding (see Algorithm 2).

21



CHAPTER 4. METHODOLOGY

Algorithm 2 Simplified Structured Diffusion for Stable Diffusion XL
Input: Prompt P , language parser ξ, trained diffusion model ϕ
Output: image x

1: Retrieve noun phrases set C = [cP , c1, c2, ..., cn] by traversing ξ(P )
2: WP ← CLIP (cP ),Wi ← CLIP (ci);
3: for each Wi in [Wn,Wn−1, ...,W1] do
4: pool(Wi) ▷ additional pooling step
5: add Wi into WP ▷ adding noun phrase into prompt
6: end for

7: W ′
P ← CLIP2(cP ),W

′
i ← CLIP2(ci);

8: EP ← CLIP2(cP ) ▷ generate pooled prompt embedding
9: for each W ′

i in [W ′
n,W

′
n−1, ...,W

′
1] do

10: pool(W ′
i ) ▷ additional pooling step

11: add W ′
i into W ′

P ▷ adding noun phrase into prompt
12: end for

13: Concatenate WP and W ′
P to WP (XL)

14: Feed WP (XL) and EP to ϕ to generate x

4.2 Pooling
The following step engages an additional embedding manipulation via pooling.
As there are few different pooling techniques, we chose one of the most fre-
quently used, the mean-square pooling. The pooling technique is applied again
over the extracted noun phrases aiming the amplification of attribute-binding.
Furthermore,as shown in Figure 4.2, we explored two different implementation
types of pooling. Firstly, the pooling of noun phrases is implemented as a sin-
gle vector on the first position of the noun phrase in the prompt embedding.
The remaining positions of the noun phrase in the prompt embedding are set
to zero. This technique is adopted from Smith [2023]. The second type of
implementation is realized by embedding the pooled vector over each position
of the noun phrase in the CLIP embedding of the main prompt. This tech-
nique, assigned as “poolnz” for no-zero-pooling, was additionally chosen as the
alternative without setting vectors to zero and avoiding possible implications
from it.
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Figure 4.2: Two pooling techniques applied in the method
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Chapter 5

Experiments and Results

The principal objective of this chapter is to present a comprehensive analysis of
the experiments conducted to evaluate the performance of the three proposed
variants of the Simplified Structured Diffusion approach. These methods are
subjected to a detailed comparison with both Stable Diffusion models, namely
Stable Diffusion 1.5 and Stable Diffusion XL 0.9. The objective of the evalua-
tion is to test the thesis hypothesis. Specifically, we aim to ascertain whether
embedding level manipulation based on the linguistic structure of the prompt
can yield results that are as effective as those achieved by the baseline method-
ology, Structured Diffusion as presented by Feng et al. [2023]. Moreover, the
analysis of the experiments is designed to identify the relative strengths and
weaknesses of each approach, as well as to provide a potential for improvement.

This chapter begins with an outline of the experimental setup, including a
description of the datasets and the evaluation metrics employed. Subsequently,
a comprehensive account and assessment of the findings will be provided. In
conclusion, an additional study will be presented with the intention of identi-
fying potential avenues for future research and optimization.

5.1 Experimental Setup
For our experimental setup, we generate images using both Stable Diffusion
and Stable Diffusion XL as baseline methods. To test our approach, we firstly
generate images with Simplified Structured Diffusion without pooling tech-
nique and afterwards, the method is augmented by an additional pooling step
with both pooling methods described in the chapter 4. Those three approach
variations are applied to both Stable Diffusion and Stale Diffusion XL models,
as they both address the problem of failed composition. To ensure the repli-
cability and comparability of the methods, all image generation processes for
a given prompt are initialized with a generated pseudo-random seed.
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5.2 Dataset
In order to conduct an effective evaluation of our approach, it is essential that
the chosen dataset meets specific criteria. In order to highlight the composi-
tional problem the prompts must be challenging for Stable Diffusion. There-
fore, we chose two existing datasets to evaluate our methodology. Firstly, we
use ABC-6K dataset presented by Feng et al. [2023]. This dataset contains
3.2K prompts from the MSCOCO [Lin et al., 2014] dataset, which was created
for object detection, segmentation, key-point detection, and captioning. The
selected prompts contain multiple objects with at least two different colors
and therefore are challenging for compositional depiction. For better contrast
caption, the authors Feng et al. [2023] added contrastive prompt with replaced
colors for each prompt expanding the dataset up to 6.4K prompts or 3.2K
prompt pairs. Nevertheless, upon a detailed analysis of the dataset, it became
evident that the dataset contained duplicates. Therefore, after removing the
duplicates the total number of prompts was reduced to 6321.

Alongside, we use a second dataset CC-500 [Feng et al., 2023], which con-
tains 588 prompts with exact two objects and two different colors of form ‘a
red bench and a green car”. Although this prompt pattern seems simple, as
shown by Feng et al. [2023], they are actually challenging for Stable Diffusion.
As both datasets are also used by authors Feng et al. [2023] for evaluation of
the Structured Diffusion Guidance, we chose them to be able to make a better
comparison between the two approaches. Furthermore, the disparate structure
of the prompts in both datasets provides a more comprehensive understanding
of the potential and limitations of the implemented approaches.

5.3 Evaluation Metrics
With the growth and proliferation of different approaches to improve image
generation through diffusion models, the number of evaluation metrics has
also increased. For evaluation we choose two techniques. Firstly, we use eval-
uation method called Decompositional-Alignment-Score (DA-Score) presented
by Singh and Zheng [2023]. This evaluation approach is based on a visual
question answering model [Hu et al., 2023] [Singh and Zheng, 2023]. The
DA-Score method initially identifies subprompts, which are then used to con-
struct a disjoint assertion set. For instance, for the prompt a monkey eats a
blue apple the following subprompts would be extracted: a monkey, eats an
apple and a blue apple. Those subprompts are then transformed into as-
sertions: The image shows a monkey, The monkey eats an apple and The
apple is blue. Subsequently, the assertions are transformed into questions,
which are then answered by a visual question answering model: Does the
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image show a monkey?, Does the monkey eat an apple? and Is the apple
blue? According to the given answer the model assigns a score between 0.0
and 1.0 for each question. Finally, the scores are combined to give the final
evaluation score for text-image alignment.

Although the DA-Score demonstrates a higher correlation with human rat-
ings in comparison to the state-of-the-art alignment metric [Singh and Zheng,
2023], we elected to corroborate the alignment through the use of human rat-
ings as well. In order to ascertain the efficacy of this approach, 100 randomly
selected prompts from both datasets were evaluated for both models. The eval-
uation metrics are based on those used for evaluation of Structured Diffusion
[Feng et al., 2023]. With regard to the image-text alignment, the annotator
is required to respond to the following question: “Which image demonstrates
better image-text alignment?” In the case of the evaluation of image fidelity,
the following question was posed: “Regardless of the accompanying text, which
image is more realistic and natural?” As we explored three distinct variations
of the Simplified Structured Diffusion, the user should compare each method
variance with the baseline method separately.

5.4 Experimental Results For Simplified Struc-
tured Diffusion

Three variations of Simplified Structured Diffusion were applied. To assess our
methodology we chose two different datasets with compositional challenging
prompts described in section 5.2. In order to gain a comprehensive overview
and analysis of our methodology, we applied all three variations of the Simpli-
fied Structured Diffusion on both datasets within both Stable Diffusion mod-
els. The first variation of the Simplified Structured Diffusion, labeled as “SSD”,
does not include a pooling step, while the other two include different versions
of additional mean square pooling and labeled as “pool” for pooling technique
assigning zero values and “poolnz” for no-zero pooling that were described in
section 4.2.
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(a) baseline (b) SSD (c) SSD+pool (d) SSD+poolnz

Figure 5.1: Selected results for the prompt a brown bird and a red cow gener-
ated by SDXL using the SSD variants

(a) baseline (b) SSD (c) SSD+pool (d) SSD+poolnz

Figure 5.2: Selected results for the prompt a blue backpack and a red car gen-
erated by SD1.5 using the SSD variants

(a) baseline (b) SSD (c) SSD+pool (d) SSD+poolnz

Figure 5.3: Selected results for the prompt a bearded man wearing a yellow
dress shirt and white tie generated by SDXL using the SSD variants

(a) baseline (b) SSD (c) SSD+pool (d) SSD+poolnz

Figure 5.4: Selected results for the prompt a beautiful green horse pulling
a white carriage generated by SDXL using the SSD variants
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In order to evaluate the efficacy of our methodologies, we present a sum-
mary of the obtained scores in the Figure 5.5. The figure depicts four plots
with calculated DA-Scores, wherein each plot illustrates the data distribution
for each baseline method and all three approaches of Simplified Structured
Diffusion within a single plot. Accordingly, four plots provide an overview of
the scores for each Stable Diffusion model, calculated for both datasets.

Figure 5.5: DA-Score distribution for both SD1.5 and SDXL models on ABC-6K
and CC500 datasets

Firstly, we take a closer look at the differences between both baseline mod-
els. As illustrated in Figure 5.5, the score distributions of the two models
exhibit significant discrepancies. The initial observations show that Stable
Diffusion XL model performs higher scores and better overall score distribu-
tion for both datasets as the Stable Diffusion 1.5. This can be attributed to
the fact that the model’s innovative architectural design incorporates the use
of two distinct CLIP encoders, which already enables the model to generate
images with a higher degree of text-image alignment.

It should be noted, however, that the discrepancies between the two base-
line methods on the two datasets are not identical. While, the median values
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of Stable Diffusion XL have slightly equal value for both datasets, the re-
sults for Stable Diffusion 1.5 show a larger difference between the datasets.
Consequently, the discrepancies between the models on a single dataset are
proportionally different. While the median value difference between Stable
Diffusion 1.5 and Stable Diffusion XL for for the CC500 dataset is approxi-
mately 0.3 points, the ABC-6K dataset shows a much smaller discrepancy of
only 0.1 points. Furthermore, the overall data distribution for Stable Diffusion
XL differs between the two datasets, with the CC500 dataset showing a wider
range of values than the ABC-6K dataset. It is clearly seen by the value of
minimum score and by the interquartile range. While, the minimum score on
the ABC-6K lies between 0.2 and 0.3, the minimum for the CC500 is under
0.2. These observations illustrate the significant influence of prompt structure
on the resulting output, indicating that the CC500 dataset comprises prompts
that are compositionally more challenging than those in the ABC-6K. It is also
essential to consider the size of the dataset, which may have contributed to
these outcomes.

Another point to emphasize is that not only the baseline scores vary be-
tween the models but that also all forms of Simplified Structured Diffusion
produce superior scores when applied to Stable Diffusion XL. Nevertheless,
the most significant discrepancy can be observed among SSD methods imple-
menting two pooling techniques. Once more, the results obtained from the
CC500 dataset demonstrate the most pronounced discrepancy among both
the median value and the interquartile range, when comparing the two pool-
ing techniques applied on Stable Diffusion XL and Stable Diffusion 1.5. This is
in a manner similar to that observed with the baseline method. As this trend
is observable for both datasets, we can conclude that all three approaches of
SSD are dependent on the data model.

The following section of the evaluation will focus on comparing of the three
SSD approaches in order to provide an assessment of their relative efficacy. The
results depicted on Figure 5.5 show that the baseline method consistently out-
performed all of the SSD methods. The sole exception is the scores achieved
by the SSD approach applied on the CC500 dataset. The results demon-
strate a slight increase in the median value, reaching 0.55 compared to the
0.52 observed in the baseline model. Additionally, the interquartile range ex-
hibits a higher upper border as the baseline method. This assessment was also
corroborated by the manual evaluation of the 100 prompts for the image-text
alignment parameter on the CC500 dataset, as illustrated in the Figure 5.6 (see
Appendix A for complete visualization of manual evaluation). Furthermore,
the SSD method without pooling demonstrates the overall better performance
compared to the other two approaches with applied additional pooling tech-
niques. In contrast, the two pooling approaches exhibited the lowest score
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Figure 5.6: Manual evaluation of SSD on SD1.5 compared to baseline method on
CC500

results with regard to both median value and data distribution. Neverthe-
less, the score discrepancies with the SSD and the baseline method are least
when applied on Stable Diffusion XL model. Furthermore, among the both
SSD with additional pooling steps, the approach with no-zero pooling shows
slightly better results as the variance that assigns zero values.

Based on the observations we made within our experiments and by ana-
lyzing the score results, we conclude that the effectiveness of our methods is
not uniform. Thus, the SSD approach without additional pooling step showed
the overall better results among the three variations of the approach. Con-
sequently, our findings did not substantiate the hypothesis that the supple-
mentary pooling step enhances the SSD methodology, particularly with regard
to the attribute-binding parameter of the images. Moreover, despite the fact
that in some cases our approach achieves better text alignment and attribute-
binding, as it can be seen in the Figure 5.1 and Figure 5.4, none of our methods
have been able to surpass the performance of the baseline method and achieve
the same results as the Structured Diffusion.

The observed results may be attributed to the cumulative nature of the
CLIP embeddings, which was not sufficiently addressed by our approach. As
demonstrated in Smith [2023], not only the prompt tokens but also the padding
tokens have a great impact on the generated image. One potential avenue for
further investigation would be the amplification of the SSD approach on the
padding tokens as well.
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5.5 Further Embedding Manipulations

5.5.1 Interactive Manipulation Approach

In addition to the primary study, an alternative approach was also investigated.
The objective of this supplementary study is to address the attribute-binding
problem by once more using the linguistic structure of the prompt in con-
junction with the iterative user interaction approach. The principle concept
is based on the features of word vectors investigated by Mikolov et al. [2013].
More exact, the possibility to sum and subtract word vectors relying on the
semantic relationships between them. For instance, the following vector cal-
culations “king” - “man” + “woman” will result in “queen”. The same approach
is applied to CLIP embeddings as a preprocessing step within the image gen-
eration process on Stable Diffusion.

- + =

red cube red car red car

Figure 5.7: Generated with SD1.5

Firstly, the calculations over entire CLIP embeddings excluding start token
were explored. Figure 5.7 shows that this approach is applicable for CLIP em-
beddings that encode a single object. The sum and subtraction operations over
entire embedding, excluding the start token, allow attribute assignment and
object replacement. These features can be used to correct attribute-binding
failures and object loss in generated images. Moreover, we explored normal-
ized and non-normalized variants of calculations and can observe differences
between both approaches. However, although some images show improvements
through the application of normalized operations, no consistent improvement
was found overall in relation to normalized version of embedding operations,
which can be observed on the Figure 5.8 and Figure 5.9.
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Figure 5.8: the red car - the red + the blue; left picture: not normalized
calculation; right picture: normalized calculation; generated with SD1.5

Figure 5.9: red cube - red + pink, left image: not normalized approach; right
image: normalized approach; generated with SD1.5

Though, the calculations over complete embedding give promising results,
they do not provide sufficient control over the output and do not allow ma-
nipulation of embeddings with more than one object. Therefore, we explored
another variation of this method. The main difference to aforementioned over-
all embedding manipulation is applying calculations targeted at the selected
vectors within the embedding. The main objective of this methodology is to
enhance or diminish the appearance of particular attributes and objects and
therefore, to enable the user to have more control over the output. How-
ever, this approach requires more precise instructions to identify which object-
attribute pair requires correction. Thus, we devised a potential solution by
utilizing the iterative user feedback. We model the prototype of possible solu-
tion via user interface, which is demonstrated in Figure 5.10.

As the first step of the method, the user is asked to enter two values, a
prompt and optionally a seed (see step 1 in Figure 5.10). These inputs are
then used for generating an image via Stable Diffusion. In case, the user does
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Figure 5.10: Illustration of the prototype of user interface for targeted embedding
manipulation approach; images generated with Stable Diffusion XL

not enter a seed value, a pseudo-random seed will be generated and saved.
In accordance with the given prompt, a CLIP embedding is generated. This
step follows with the processing of the linguistic structure of the prompt for
extracting object-attribute pairs. It is the same approach, which was used in
Structured Stable Diffusion and described in chapter 4. Subsequently, the gen-
erated CLIP embedding and the seed are used for image generation, which is
then presented to the user. According to the user’s evaluation, the user decides
whether the image requires corrected considering the attribute-binding feature.
In the provided example in Figure 5.10 the user has identified a discrepancy
between the generated image and the given prompt a white cat with black
ears and markings because the cat in the generated image has ears of wrong
color. Therefore, the generated image shows attribute-binding issues and fails
to meet user expectations. After the user evaluation, which is step 4 in the
illustration, the user can determine which attributes should be adjusted. In
order to facilitate this process, the user is provided with an overview of the
extracted object-attribute pairs from the prompt and is afforded to determine
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whether the attribute should be intensified or weakened. According to the
given answers of the user, the initial CLIP embedding is modified and the new
image is generated. Then the process of evaluation and adjustment can be
repeated until the user gets the desired output. Nevertheless, the user has also
the opportunity to change the seed and start the process from the beginning.

The presumably advantages of this approach include the ability to exert
greater control over the image generation process, which can enhance user
satisfaction and reduce the time required for user-model interaction until the
desired result is achieved. However, it is crucial to note, that the presented
approach is still in the prototype phase, which has not be implemented now.
Therefore, it is an auspicious method, which can be closer investigated in the
future works.
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Conclusion

The advancement of diffusion models has reached a significant level of sophis-
tication, resulting in the generation of high-quality outputs. Stable Diffusion
is one of the most popular models for text-to-image generation, which enables
user to unfold the creativity and to generate high-quality images. Neverthe-
less, even the latest version of Stable Diffusion XL still exhibits deficiencies
when processing compositionally complex prompts, which has a direct impact
on the user experience. Consequently, a multitude of methodologies address
this issue and propose disparate approaches for its improvement. In this the-
sis, we investigated three variations of a novel approach, Simplified Structured
Diffusion with additional pooling, which is based on the method introduced
by Feng et al. [2023]. The objective of this thesis was to assess this approach
and to investigate whether a modification at the embedding level only could
yield results comparable to those of Structured Diffusion without modifying
the cross-attention layers of the model.

In order to evaluate the proposed methodology and to test the underly-
ing hypothesis, we conducted a comparative analysis of the scores obtained
through the application of our method to the Stable Diffusion 1.5 and Sta-
ble Diffusion XL models and evaluated with DA-Score evaluation metrics. To
facilitate a comprehensive overview and analysis, three variations of the pro-
posed approach were applied to two distinct datasets on both models. The
findings revealed that the three approaches exhibited disparities in their per-
formance. Accordingly, the SSD approach without an additional pooling step
demonstrated superior outcomes among the alternative approach variations
on both models and both datasets. Nevertheless, it has not yet achieved a
comprehensive enhancement in text-image alignment and image composition
in comparison to the Stable Diffusion models. Consequently, the desired ad-
vancement of the introduced approach was not achieved and the results have
not yield results shown by Structured Diffusion Guideline. As a result, the
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anticipated advancement of the introduced approach was not achieved, and
the outcomes did not reach the level of those demonstrated by Structured Dif-
fusion. One potential explanation for these findings is the accumulative nature
of CLIP embeddings. To address this issue, we propose an extension of our
SSD method on the pooling tokens as a potential avenue for future research.

Furthermore, we presented an additional approach addressing the afore-
mentioned image composition issue. This approach leverages the linguistic
structure of the prompt for targeted embedding manipulation via vector arith-
metic and incorporates iterative user feedback for embedding adjustment. We
proposed a prototype of a user interface and presented advantages of the
method. Subsequent steps would entail the implementation of the interface
and a user study for evaluation purposes. This could represent a further av-
enue for research to cover further needs in user-friendly interaction for image
generation process. Since the CLIP encoder remains one of the most popular
and widely used language models for text encoding, this research direction can
maintain the research field not only within Stable Diffusion models, but also
in other models that use CLIP encoder.

In this thesis we addressed the problem of failed image compositionality
whithin images generated by Stable Diffusion and its impact on the user expe-
rience. Our study showed that it is not a trivial problem which still requires
more research and deeper investigation. One of the most significant research
points is the exploration of the root cause of the problem, which is the cumu-
lative nature of CLIP embeddings used for text encoding in Stable Diffusion
models. Furthermore, the necessity for the development of further approaches
addressing this issue and providing users with an option that requires min-
imal effort while still achieving the desired outcome and impact the overall
model-user experience is evident.
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Appendix A

Evaluation

(a) SDXL vs. SSD (b) SDXL vs. SSD+pool (c) SDXL vs. SSD+poolnz

Figure A.1: Manual evaluation of SDXL on ABC-6K

(a) SDXL vs. SSD (b) SDXL vs. SSD+pool (c) SDXL vs. SSD+poolnz

Figure A.2: Manual evaluation of SDXL on CC500
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(a) SD1.5 vs. SSD (b) SD1.5 vs. SSD+pool (c) SD1.5 vs. SSD+poolnz

Figure A.3: Manual evaluation of SD1.5 on ABC-6K

(a) SD1.5 vs. SSD (b) SD1.5 vs. SSD+pool (c) SD1.5 vs. SSD+poolnz

Figure A.4: Manual evaluation of SD1.5 on CC500
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Figure A.5: DA-Score data distribution for SD1.5 on ABC-6K

Figure A.6: DA-Score data distribution for SDXL on ABC-6K
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