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Zusammenfassung

Eingebettete Systeme sind spezialisierte Systeme, die vordefinierte Aufgaben mit speziellen
Anforderungen erfüllen. Da das System hauptsächlich einer Aufgabe zugeschrieben
ist, hat der Designingenieur die Möglichkeit Optimierungen basierend auf spezial-
isiertem Wissen durchzuführen, die maßgefertigte Lösungen liefern. Niedriger En-
ergieverbrauch und hohe Rechenleistung sind valide Optimierungsziele, die die Mobil-
ität eines Systems begünstigen.

Bis zu diesem Zeitpunkt werden Optimierungen eingebetteter Systeme traditionell
am Quellcode durchgeführt. Da sich der Fokus auf dynamische und komplexe Applika-
tionen verschiebt, ist dies nicht mehr ausreichend. Daher müssen diese traditionellen
Ansätze mit Techniken, die Dynamik erkennen und diese in das Design einbeziehen,
ergänzt werden.

Die vorliegende Arbeit stellt Optimierungen auf Softwaremodellebene vor, die einge-
bettete Softwaredesigns erzeugen, welche dynamische und Anwendungs-spezifische
Informationen einbeziehen. Im Besonderen wird gezeigt, wie diese Transformationen
sicher angewendet werden können und welche Kriterien dem Designer helfen, Trans-
formationsmöglichkeiten zu erkennen. Um gleich bleibendes Verhalten der Anwen-
dung zu sichern, werden Vor- und Nachbedingungen spezifiziert. Die Vorbedingungen
garantieren, dass eine Transformation sicher angewendet werden kann. Die Nachbe-
dingungen versichern, dass eine Transformation korrekt angewendet wurde. Sowohl
Vorbedingungen als auch Nachbedingungen sind in der Object Constraint Language
(OCL) ausgedrückt.

Schließlich werden mit der Umsetzung eines realistischen Beispiels Abstimmungen
zwischen Datenzugriffen und Speichergebrauch, die Einfluss auf den Energieverbrauch
des Systems haben, gezeigt. Die Ergebnisse sind viel versprechend und belegen die
Anwendbarkeit von Softwareentwicklungstechniken im Bereich eingebetteter Systeme.
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Abstract

An embedded system is a special-purpose system, which performs predefined tasks,
usually with very specific requirements. Since the system is dedicated to a specific
task, design engineers can optimize it based on very specialized knowledge, deriving an
optimally customized system. Low energy consumption and high performance are both
valid optimization targets, which increase the value and mobility of the final system.

Until now, software optimizations for embedded systems are traditionally performed
on the source code. However, as the focus shifts to dealing with highly dynamic and
complex applications, this is not sufficient anymore. Therefore, traditional optimiza-
tion approaches need to be supplemented with techniques that detect dynamism and
incorporate it into the design.

The scope of this work is to introduce optimizations at the software modeling level
that are capable of producing embedded software designs, that incorporate dynamic,
application specific knowledge. Specifically, it is shown how to express these transfor-
mations so that they can be applied safely (i.e., behavior preserving) and what criteria
can help the designer to detect transformation opportunities. To ensure preserved ap-
plication behavior, pre- and postconditions are specified. The preconditions guarantee
that a transformation can be applied legally, while the postconditions ensure that the
transformation was executed correctly. Both preconditions and postconditions are ex-
pressed in the Object Constraint Language (OCL).

Finally, with the implementation of real life case studies it is possible to show
that trade-off points, in terms of memory footprint and data accesses can be identified,
which have an impact on energy consumption. These results are promising and validate
the feasibility of implementing software engineering techniques in embedded systems.
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Chapter 1

Introduction

Introduction
Unlike general purpose computers, embedded systems are highly constrained by their
resources (i.e., battery life, processing power, memory usage). High energy consump-
tion drains the battery and is thus a key factor for the mobility of a system.

When mapping software to an embedded system, it is crucial to respect those con-
straints. In particular, modern data intensive applications with large, heavily accessed,
dynamic data structures pose a problem to the energy consumption of a system. Ac-
cesses to large memories translate directly to high energy consumption. (This is specif-
ically true for SRAM on-chip memories as used for caches and scratchpad memories.)
Therefore, memory accesses and memory footprint are valid and important cost met-
rics, which need to be decreased in order to optimize embedded software designs.

In the embedded system community both methodologies and tools are developed
to map software efficiently to embedded systems, decreasing memory accesses and
memory footprint. In the data structure optimization domain this is, among others,
done by intermediate variable removal [16], reducing size per element, reducing the
number of elements, and reducing traversal of elements [4]. All this happens at source
code level and yields local optimal solutions. To find more global solutions, however,
the complexity of mapping and analyzing larger, highly dynamic and often accessed
data structures is very high.

Thus, raising the abstraction level (i.e., from concrete data structures and data types
to abstract data types – ADTs) in order to gain a broader view of the application’s data
usage is necessary and has clear benefits.

ADTs (cf. Appendix A) are a method of abstraction of the complexity that is as-
sociated with data organization. For example, instead of reasoning about whether a
Stack is implemented with arrays or lists and how those are implemented on a certain
architecture, the Stack ADT provides a Stack as data entities, on which the operations
push and pop can be performed.

By hiding underlying complexity, it is possible to reason about dynamic, applica-
tion specific knowledge and obtain less localized solutions. This means that complex-
ity, such as memory allocation, etc., is hidden, yet embedded platform relevant cost
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Chapter 1. Introduction

metrics are used.
In this work, reasoning about ADTs is done at the modeling level. This means,

models of ADTs are analyzed and transformations to optimize those models are sug-
gested. These transformations yield solutions that can be considered as trade-off points
between the chosen cost metrics, memory footprint and data accesses. Thus, an embed-
ded system designer uses this catalogue of transformations to implement at design-time
an optimal trade-off point for a certain metric.

A clear contribution of this work is the extension of the catalogue of transforma-
tions presented in [31], [32] and [33]. These transformations are created using 2D- and
3D-Graphics applications. In this thesis, the feasibility of specific transformations for
a different problem domain, namely text processing, is shown.

Further, this work tries to formally specify model transformations according to
transformation definitions, which are composed of transformation rules (cf. Appendix
A and [15]), thus gaining more insight into the transformations, as well as demon-
strating the feasibility of future automation. Automatic model transformations enable
the integration of the transformation catalogue into a refactoring-like tool. Here the
designer can, based on his domain knowledge, choose from a list of transformations,
which will be performed on the model. Thus, the error prone and tedious work of
transforming a model by hand and keeping different diagrams consistent ([17]) is taken
away. Such a tool creates optimized models, from which code is generated that can then
be subject to further optimizations.

Finally, this work presents concrete profiling results in terms of data accesses,
memory footprint and energy consumption, that show the feasibility of the optimization
transformations in the embedded systems domain.

Related Work
This work is set between two domains. On the one hand, embedded systems constraints
are the driving force behind the proposed transformations. On the other hand, the
transformations are defined with software engineering techniques. In the following
relevant related work from both domains is presented.

In the embedded system domain UML (Unified Modeling Language) is a known
and widely used modeling language. Especially in real-time systems UML is used
to model timing critical aspects. [9] presents a UML profile for embedded real-time
systems. However, the focus is on time, performance, and quality of service, rather
than on memory usage and energy consumption.

In further usage of UML in embedded systems, the general focus is on modeling
the hardware platform with structural and behavioral models, as introduced in [19]
for SoC (System-on-Chip) platforms. For example, typical concepts in this context
are ‘channel’, ‘port’, ‘clock’. The work in this thesis is complementary, because it
considers embedded systems design at a higher level of abstraction.

Also model-based development is mentioned in the embedded system community.
[28] argues that raising the level of abstraction, i.e., to model-based development, is ap-
plicable for embedded systems. Complex development steps can be described through
both process and product models. But here again, the suggested product models focus
more on the embedded platform and not on high-level concepts.

2



Chapter 1. Introduction

Until now, optimization on data and memory usage of embedded systems is not
done at the platform-independent UML level. However, there are a many approaches
that focus their optimizations on the code level, as in [6], [8] and [35].

On the other hand, this work is influenced by the software engineering domain.
Here, especially the Refactoring and Patterns communities are relevant.

[20] introduces a wide range of patterns for small memory systems. The suggested
patterns range from patterns for memory allocation and small data structures to sec-
ondary storage and compression patterns. General concepts like compression are used
in this work as well but the focus is rather on the guided exploration of solutions with
ADT models.

Literature on refactoring is very close to the transformations applied in this work.
Existing code ([22], [26], [10]) or UML models ([29], [13]) are transformed stepwise,
while the behavior is preserved. However, the main motivation of these works is to
optimize the object-oriented design, in order to allow software evolution.

Also the model-driven engineering domain is relevant. Especially lately a lot of
approaches and concepts are explored to transform between models in different lan-
guages, as well as between models in the same language. Both [7] and [18] give clas-
sifications for various model-driven approaches and concepts.

Overview
The remainder of this thesis is structured as follows. In Chapter 2, all transformations
are introduced. A general motivation including a short description of each transforma-
tion is followed by a specific example application of the transformation on a driver ap-
plication. The description of each transformation concludes with high-level estimates
for the considered low-level cost metrics.

In Chapter 3, the theoretical background of model transformations is laid out. Here
it is shown, how a transformation is split into atomic transformation steps and how
these steps are formally described as transformation rules. Further, it is shown how be-
havior preservation is demonstrated at modeling level. This again is presented together
with an example.

In Chapter 4, the experimental results of implementing various transformations are
shown. In this chapter, concrete numbers for the cost metrics, memory footprint, data
accesses, and energy consumption are shown. Further, trade-off points between those
cost metrics are identified.

This thesis closes with Chapter 5 concluding and pointing towards future work in
the field of ADT transformations for embedded systems.

3



Chapter 2

Transformations Introduced

In this chapter the model transformations that are subject of this work are introduced.
The chapter starts with an introduction of the driver application, in order to then intro-
duce and motivate the suggested transformations. Examples show how the aforemen-
tioned application specific knowledge largely steers the transformations. Each section,
which corresponds to one transformation, is finished with a theoretical analysis of the
trade-off between memory footprint and data accesses. While in Chapter 4 the assump-
tions are verified through profiling the original and the transformed application code,
here the performance estimates use high-level estimates based on a reference architec-
ture.1

2.1 The Design Space
One objective of this work is to further explore the design space of model transfor-
mations in the embedded systems context. This should give greater insight into the
problem domain, specifically, reveal new and different solutions, which are obtainable
in a guided fashion.

Figure 2.1 shows possible And-Or-Graphs depicting decisions that lead to specific
transformations. This graph is used to showcase new transformations and to reason
about the possible transformations.

The creation of the design space is twofold. On the one hand, model elements are
determined that can be subject to transformations. These are Container, Part, Rela-
tionship, Operation and Attribute. On the other hand, basic techniques that influence
the trade-off between the cost metrics, memory footprint, and data accesses, are iden-
tified and assigned to the different model elements. This process is complicated by the
fact that the model elements are not independent of each other. Some are contained in
each other and the contained ones can not exist without its container (e.g., Container
holds Attributes, and Operations). Others are substitutable (e.g., an Attribute can be
expressed as a Part with an association to the former containing Container).

1These high-level estimates are based on the assumption that each data access corresponds to one memory
access. Further, the following sizes are assumed for data types: 1Byte - Char, 4Byte - Pointer, 4Byte - Integer.
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Chapter 2. Transformations Introduced

Figure 2.1: And-Or-Graph for the Design Space of ADT Model Transformations

The basic techniques are insertion or deletion of a model element. Insertion and
deletion can be applied to all elements, while, here again, the dependencies between
different model elements are important. Further, techniques for data handling are com-
pression and partition. Any compression decreases the memory footprint, but makes
accesses more costly (due to decompression ). Partition on the other hand ‘spreads’
data entities and groups them in different partitions or contexts. This is beneficial for
data accesses, since – intuitively – data is easily accessible (i.e., due to smaller clusters)
and grouping resembles a kind of sorting, which makes search and traverse operations
less costly. These techniques are applied to all model elements holding data entities
(i.e., Container, Part, and Attributes). Further, all model elements have element spe-
cific transformations that are explained only through the definition of each model ele-
ment. For example, changing the navigability of a relationship is Relationship specific.

The design space depicted in Figure 2.1 lacks a concrete ordering of decisions and
dependencies. This is part of the work of Marijn Temmerman, who currently pursues a
PhD at IMEC vzw., [32]. An example of the methodology, that is applied in her work,
to define the design space and derive solutions from it, can be found in [3]. In this thesis
however, sample transformations are taken from the design space and are applied on
real life examples. The transformations are theoretically investigated, implemented and
profiled to show the correctness of the assumptions made.

Figure 2.2 shows the concrete transformations ordered according to the model ele-
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Chapter 2. Transformations Introduced

Figure 2.2: Transformations ordered by Model Elements

ment that they can be applied on. Transformations in italic font are newly created for
the spell checker driver. The transformations in lighter colored font are introduced in
[32] and developed for the 2D-Graphics domain. The transformations in bold are also
introduced in [32] and developed for 2D-Graphics applications. However, they are also
used on the spell checker application.

2.2 Driver Application – The Spell Checker
The driver application used in this work is a spell checker.

The spell checker receives words as input and verifies whether they are spelled
correctly. In order to do so, it compares the input word with a internal list of words, the
dictionary. The output is a list of all unknown, therefore misspelled, words.

The internal dictionary is created upon startup of the application. Therefor, a list of
words is read and stored in a Trie ADT. The Trie is a space efficient abstract data type
(cf. Appendix A), which facilitates fast look up of a word.

Trie

Figure 2.3 shows a Trie. In the example, the dictionary consists of only four words,
‘boot’, ‘tea’, ‘the’ and ‘zoo’. Each node of the Trie has a value, which is a letter.
Additionally, two pointers and an end flag (the end flag is not shown in the picture)
are stored in each node. The pointers act as edges of a tree, which connect letters to a
word and words to the complete dictionary. The down pointer points to the next level
of possible letters (i.e., connects letters to a word) and the next pointer points to the
following letter on this level (i.e., connects the complete dictionary).

To search a word, the Trie is traversed starting at the first level, searching for the
desired letter. If it is found, the down pointer is followed to the next level. There the
desired second letter is searched. This repeats until a letter is not found (i.e., the word
is not in the dictionary) or a set end flag is encountered together with the end of the
input word (i.e., the word is found).

6



Chapter 2. Transformations Introduced

Figure 2.3: Dynamic Data Type Trie

2.3 The Initial Application Model
All proposed transformations in this work are performed on models. Models can be
early entities of a design flow or representations of already existing applications. If, in
the latter case, the creation of the model from the application is done manually and not
with the help of a Re-engineering tool, it is important to capture both functionality and
design intentions in the model.

Figure 2.4 shows the initial UML class diagram of the spell checker model that is
used in the remainder of this work. This model can be understood as an entity in the
beginning of a long design flow towards an optimized embedded software application.

The model consists of five classes. The central class, which steers all functionality,
is DictionaryEngine. It triggers the creation of a new dictionary by calling initDict() on
Dictionary. To check a word, the word is read from Textstream and sent to Dictionary,
where the check is performed.

Attributes of DictionaryEngine are WordBuffer and MisspelledList. WordBuffer
holds the currently read word from the text stream. MisspelledList is a list of all mis-
spelled words that is extended, whenever a word is not found in the dictionary.

As briefly mentioned above, Textstream represents the input of words into the dic-
tionary, both for the initial creation of the dictionary and for the lookup of a word in the
dictionary. Thus, Textstream can represent an input file containing words, a wordlist or
any other kind of input imaginable.

The dictionary is represented by the remaining three classes Dictionary, Word and
Character. For the following reasoning about ADT transformations at modeling level,
it is especially important to understand, how the Trie ADT is present in the model in
Figure 2.4.
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Chapter 2. Transformations Introduced

Figure 2.4: UML Class Diagram of the Initial Model

Dictionary can be seen as representing the whole Trie ADT (as shown in Section
2.2). Here the operations for creating the dictionary and searching a word reside. Dic-
tionary is a container for words. The strong aggregation relation between Dictionary
and Word, states that Dictionary consists of words. The words are ordered within Dic-
tionary (in our case we assume alphabetical ordering) and each word exists only once.

Word is a container for characters. Here the weak aggregation between Word and
Character is used to indicate that the characters can be reused for different words, as it
is done in the Trie. This relationship also represents the down pointer found in the Trie.
Word does not have any attributes or operations. It is important nonetheless, since it
emphasizes the functionality and structure of the dictionary.

Strictly speaking Character represents a node in the Trie. The next pointer, which
exists in the Trie, is represented in the model as the Character-Character relationship.
Value is the letter represented by the node and end is a flag indicating the end of the
word.

In the following sections, the transformations are introduced ordered by the model
element they are applied to.

2.4 Container

2.4.1 Split Container
Short Description and Motivation In this transformation a Container consisting of
Parts is split into two Containers. The Parts are distributed among the two containers,
this is shown in Figure 2.5. The Parts of the two Containers are a disjoint set.

The distribution of the Parts is steered by a splitting criterion, which takes the access

8



Chapter 2. Transformations Introduced

Figure 2.5: Split Container Transformation

behavior to the Parts into account. If Parts are accessed with different frequency, the
splitting criterion assigns often accessed Parts to one Container and less often accessed
Parts to the other Container. What values are exactly associated with ‘often accessed’
and ‘less often accessed’ depends on the designer and the concrete application.

To conclude, if Parts of a Container display very different access behavior, the Split
Container transformation should be applied.

Dictionary Example In a spell checker such different access behavior, as described
above, can be found in the lookup frequency of certain words. Since some words are
more and some less commonly used in a language (E.g., in an English text the word
‘the’ is more often used than ‘xylophone’), they are more and less often checked in the
dictionary.

To make use of this information, the often accessed words are grouped into one
Container and the less often accessed words into the second Container. This results in
one relatively small, highly accessed Container of words and a larger, less frequently
accessed Container.

High-level Estimates This transformation draws its gains from new implementations
that are made possible and at the same time suggested through the new design.

The memory footprint can be decreased, if the large and less often accessed Con-
tainer is further compressed. Through the compression more accesses are needed to
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access a Part. But the trade-off between increased accesses and decreased memory
footprint is expected to be in favor of the memory footprint, since the large Container
is not accessed often. The overhead for decompression is less likely to be paid, because
of the overall low access frequency to this container.

Further, this transformation can decrease the energy consumed of the application.
This is based on the assumption that the two newly created Containers are put onto
two different memories, each according to the Container’s size. This yields one small,
heavily accessed memory to which the accesses are less costly in terms of energy and
a larger, less energy-efficient memory.

The concrete results for this transformation are presented in 4.2.3.

2.5 Part

2.5.1 Compress Part

Figure 2.6: Compress Part Transformation – Example

Short Description and Motivation The Compress Part transformation groups sev-
eral instances of one Part into one instance, thus creating a new Part. This is applicable,
if several Parts in one Container have the same value for an attribute. Figure 2.6 shows
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Figure 2.7: Compress Part Transformation

two examples motivating this transformation, one for a Trie and one for a game piece
in a 2D board game.

Attention needs to be paid, if the Parts have several attributes with different values.
In this case it needs to be assured that no information is lost through the compression.
This can, for example, be done by storing a list of those different values in the newly
created Part.

Dictionary Example Figure 2.6 illustrates under which circumstances parts can be
compressed.

In the Trie example in Figure 2.6a three unary nodes containing ‘B’, ‘O’ and ‘O’
can be compressed to one node. This is done considering that all three have nil next
pointers and thus, searching a word always takes the path through the sequence ‘boo’
(i.e., a suffix trie is created).

The example 2.6b shows a piece in a 2D board game. Here again, several pieces
have the same value for one attribute. Three pieces lie on one level (i.e., have the
same y-coordinates) and can thus be grouped together. Instead of saving each location
individually, the starting and end points of the grouped piece are stored and a new Part
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Segment is created.
Figure 2.7 shows a UML class diagram for the spell checker example. A new Part

called N-Gram is created. Here the values of the single nodes are stored plus end and
next pointer. Value is a list of all letters, end is set to true, if the last node is an end
node, and next has the same value for all nodes (cf. Figure 2.6).

High-level Estimates This transformation is expected to decrease the overall mem-
ory footprint, since several instances of one attribute are compressed to one instance.
A simple calculation shows that on the dictionary example.

Per node:
1 Byte for the value (char)
4 Byte for the end flag
4 Byte for each pointer (next and down)

= 13 Byte per node
= 39 Byte for three nodes

Instead of three nodes, only one node is stored:
13 Byte for one node
2 Byte for each of the two character values
= 17 Byte for one compressed node.

Overall data accesses are reduced, since not each value is accessed individually for
traversal2. In the dictionary example, for looking up the word ‘boot’ three accesses are
made to the node ‘boo’ (i.e., reading three character values), one following the down
pointer plus accesses for finding the letter ‘t’. For comparison, before, two accesses
were made to each node: one checking the value and one following the down pointer.
Thus, the number of accesses is also reduced.

2.6 Relationship

2.6.1 Change Ordering
Short Description and Motivation In this transformation the ordering of the Part-
Container relationship is changed. It should be applied, if Parts in a Container are not
accessed following their ordering. Thus, the new ordering should express the access
behavior of its Parts more precisely.

Figure 2.8 shows a class diagram after the transformation is performed. In UML 2.0
a constraint exists to indicate the ordering of relationships and attributes, the keyword
ordered. This, however, leaves the interpretation on what ordering this includes to
the reader of the diagram. Common sense is, to assume an ordering depending on the
element’s type (e.g., letters are ordered alphabetically). To dissolve these ambiguities,

2Note again, in the following one data access is counted as one memory access.
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Figure 2.8: Change Ordering Transformation

the ordering is further specified through OCL (Object Constraint Language) constraints
as seen in Figure 2.8. (A short introduction to OCL is given in Section 3.4.)

Dictionary Example In the dictionary example the Change Ordering transformation
can be applied both to the words in a dictionary and to the characters in a word. In the
following, changing the word order in the dictionary is applied and explained.

Words are alphabetically listed in the dictionary. In any alphabet-based language
a frequency table for each letter can be produced. This means that some letters are
more common in the language than others. According to this reasoning, words starting
with the most common letter are more commonly used than words starting with less
common letters. (This theory is without doubt arguable, but the presented results in
section 4.2.5 support the thesis.) Therefore, the ordering of the words in the dictionary
is changed from alphabetical to an ordering reflecting the letter frequency in the English
language. (Again, more information and results can be found in section 4.2.5.)

Figure 2.8 shows the class diagram of this transformation. Here, the change in or-
dering is specified through an added OCL constraint. This constraint creates an ordered
sequence of words (sortedDict) according to the first letter’s probability in English.

High-level Estimates Changing the ordering of a relationship is not expected to have
any impact on the overall memory footprint, since no data values are added or deleted.

However, the overall data accesses are decreased. A possible increase in accesses
could result from the added complexity for insertion, due to a different ordering. This
is not the case however, since in a list-structured implementation only the comparison
operator (i.e., ‘<’) is overloaded, in order to insert the words in the dictionary. The
main decrease in accesses is expected for retrieval of the words, since here the average
lookup is expected to be less costly.

Results for this transformation can be found in section 4.2.5 of Chapter 4.
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2.6.2 Limit Navigability

Figure 2.9: Limit Navigability Transformation

Short Description and Motivation The Limit Navigability transformation reduces
the navigability between two classes from two-way navigable to one-way. It should be
applied, when two classes have a two-way navigable relationship but do not make use
of it. This means that only one class is calling the other.

The reason why this transformation is beneficial, is that for each direction in which
a relationship is navigational, additional data about the target class needs to be saved.
Thus, introducing overhead for storing, accessing and checking this data.

Dictionary Example In the spell checker example, this transformation is applied to
the Character-Character relationship next. If it was two-way navigational, each charac-
ter needed to store information about its predecessor and its successor. This is avoided
by limiting the navigability explicitly to one-way. Now, through each character the
following character can be accessed (i.e., the Trie is traversed downwards) but not vice
versa, i.e., a word can not be read backwards.

High-level Estimates The overall memory footprint is decreased by limiting the nav-
igability. On the spell checker example, this means that only one pointer, instead of
two, needs to be stored.

The number of data accesses is also decreased. For example, this can be shown for
setting up the dictionary. If the characters stored both data about their successor and
data about their predecessor, then both values needed to be written at startup. Since this
is not the case for limited navigability, the accesses (i.e., write accesses) are reduced.

2.7 Operation

2.7.1 Create Specialized Operation
Short Description and Motivation In this transformation specialized operations are
created, to access Parts that are stored in different ADTs.
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Figure 2.10: Create Specialized Operation Transformation

This transformation should be applied, when the model contains a hierarchy of
Containers (as, for example, created in Section 4.2.3) and these containers store their
Parts in very different ADTs. To avoid the overhead of accessing both Containers with
a generalized method, new methods, specialized for each Container, are created.

Example In [10], this transformation is described in the ‘Push Down Method’ Refac-
toring. Although this refactoring is intended for classes in inheritance hierarchies, it is
also beneficial for the case of an aggregation or composition relationship as discussed
here.

Assuming that Dictionary1 in Figure 2.10 keeps its data in a Set ADT, while Dic-
tionary2 keeps its data in a Bag ADT, a method that inserts Parts into those Containers
can vary strongly in functionality. A Set ADT is a collection of data items, in which
every item exists only once. A Bag ADT however consists of data items that can ex-
ist more than once in the Bag. Adding an item to a Set requires a check of all items
to ensure that the item-to-add does not exist in the Set yet. Adding an item in a Bag
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is easier however, since no checks need to be performed and the item can simply be
added. A method that adds items into both Sets and Bags will at least include some
overhead checking to determine whether the item should be added in the Set or the Bag
ADT. Specialized operations however can be called directly (since it is known in which
Container to add) and thus avoid this overhead. Figure 2.10 shows an example of this
transformation.

High-level Estimates The overall number of data accesses is decreased by this trans-
formation. Instead of calling addElement(element, container) and following a condi-
tional in addElement determining what ADT a Container is, the specialized operation
addElementCont1(element) is directly called. Therefore, there are gains for each inser-
tion operation.

The overall memory footprint of the application does not increase through this
transformation, since no data entities are created or deleted.

2.8 Attribute

2.8.1 Make Attribute Temporal

Figure 2.11: Make Attribute Temporal Transformation
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Motivation and Short Description The Make Attribute Temporal transformation
removes an explicit (possibly global) variable and instead adds it as input to methods
that consume it and as output to methods that change it. If the program is executed,
this attribute is created as a local temporary variable.

This transformation should be applied, if an attribute serves as a buffer or tem-
porary variable rather than a long lasting storage and it is consumed right after its
creation. A cue to this can be many reads and writes to one attribute through different
methods.

Dictionary Example In terms of the spell checker example, such an attribute is found
in WordBuffer. WordBuffer holds the current word read from the text stream and is used
as input for the insertWord and search method. As soon as the value of WordBuffer is
read from Textstream, it is passed on to one of the methods. Afterwards, a new word is
read from the text stream and WordBuffer is written again.

Removing the attribute explicitly from the model is without side effects because
the attribute is always consumed right after it is written.

High-level Estimates The overall number of data accesses does not change for this
transformation, since the functionality of the application remains the same (i.e., the
attribute is as often written and read as before).

However, the overall memory footprint is reduced considering the lifetime of the
application. This is explained through the attribute being created on the stack now
rather than the heap. When it is not used, i.e., not written or read, is does not take up
space in memory.

2.8.2 Remove Redundant Attribute

Figure 2.12: Remove Redundant Attribute Transformation

Short Description and Motivation As the name suggest, in this transformation re-
dundant attributes are removed. It should be applied, if the model contains an attribute
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that is redundant, because it represents unused, already current or implicitly retriev-
able information. If an attribute is indeed redundant, is only deducible with close
insight into the application and its behavior.

Dictionary Example In the case of the spell checker end is the redundant attribute
to be removed, as shown in Figure 2.12.

The information whether a character is a possible word ending is necessary, since
only with this information a word can be correctly identified as misspelled. E.g., as-
sume the word part ‘appl’, without checking end this word part would return true. But
since ‘l’ is no possible word ending for ‘app’, it evaluates to false. And only ‘apple’
returns the correct results.

The end attribute is removed nonetheless. To denote the end of a word the down
pointer is used to point to the node it originates from. This makes use of this pointer,
since it is not used at the end of a word.

This algorithm has still one disadvantage however. Consider the words ‘nut’ and
‘nutmeg’. If the down pointer was set to point to its originating node at ‘t’, the word
‘nutmeg’ would never be recognized as correctly spelled. Therefore, in case of a word
ending and a longer word with that suffix, the decimal ASCII value of the letter is
divided by two. This yields symbols that are not part of the alphabet. If such a symbol
is encountered, its decimal value is multiplied by two and the letter is used as normal.
(An example: The decimal values of upper case letters range from 65 to 90, the decimal
values of lower case letters from 97 to 122. 122 divided by two is 61, which results in
‘=’.)

High-level Estimates The above explained algorithm introduces a new trade-off be-
tween storage and computation.

In the spell checker example the number of data accesses is reduced, this is due to
several reasons.

For setting up the dictionary, instead of writing end for each node, only for the
ending nodes the pointer is set or the new letter value is calculated.

For looking up a word accesses are only slightly increased. This is due to the fact
that the number of suffixes that are also valid words (e.g., ‘over’) is quite small in the
English language. Further, combined words – as in other languages – are not common
in English. Therefore, the computational overhead for adding and decrypting such a
node is limited.

The memory footprint is reduced, due to the deletion of an attribute. The attributes
that substitute for the removed attribute, would be allocated in either case and thus do
not increase the memory footprint.

Results for this transformation can be found in section 4.2.4.

2.8.3 Attribute to Class
Short Description and Motivation In this transformation an attribute is transformed
into a separate class connected to the original class with an aggregation. Using an ag-
gregation relationship is based on the characterization of aggregation with primary and
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Figure 2.13: Attribute To Class Transformation

secondary characteristics introduced in [27]. This transformation should be applied
when a possibly large, complex and often accessed attribute is encountered. In this
case, transforming the attribute into a new class is believed to be beneficial, because a
class can again be subject to various transformations.

Dictionary Example In the spell checker example, storing the list of misspelled
words as a class (depicted in Figure 2.13), gives the chance to again transform this
class. For example, the new list class can further be separated into words or characters
to suggest different data structure implementations (cf. Split Container Transforma-
tion).

High-level Estimates The mere transformation of an attribute to a class is not ex-
pected to change the number of data accesses nor decrease the memory footprint. This
transformation is however a starting point for many transformations that bring different
gains and drawbacks, as presented above.

Results for this transformation can be found in Section 4.2.6.
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Transformations – Theoretical
Background

In the this chapter, the formal basis of the aforementioned model transformations is
laid, based on concepts and definitions from the Model Driven Architecture (MDA).
Model Driven Architecture is a framework for software development defined by the
Object Management Group (OMG). (See [15] for more information.) In the following
the MDA definitions and concepts regarding model transformations and metamodeling
defined in [15] are used. Based on this, the transformations in this work are identified
as transformations between models of the same language. (I.e., both source and target
model are expressed in the same modeling language.)

To describe the transformations thoroughly and to capture all important aspects,
models at different abstraction levels are used. Figure 3.1 shows the different levels of
abstraction. The Meta Level is used to define both the ADT metamodel and the trans-
formations. At the Application Level, UML class diagrams show the static properties
of the application, while UML sequence diagrams show the behavior in snapshots. At
the Object Level, UML class diagrams and UML sequence diagrams are used to show
the concrete objects, created in specific snapshots of the application. In the following,
the term snapshot is used to describe the instances of data at a specific instance of time.

It is not in the scope of this work to examine transformations between these models,
however. For now, the models that exist at different levels of abstraction exist in par-
allel, are instances of each other and are manually synchronized. Instead the different
abstraction levels are used to capture knowledge, where it is relevant.

In the following these different abstraction levels are explained together with the
kind of information they hold. The levels correspond to the four modeling layers used
within the MDA framework. The highest layer, namely M3, is only shortly mentioned
in this work and not explained in its own section. The naming of the layers is changed
to a more suitable description within the context of this work. ‘Layer M3’ is renamed
to ‘Meta-Meta Level’, ‘Layer M2’ to ‘Meta Level’, ‘Layer M1’ to ‘Application Level’
and ‘Layer M0’ is renamed to ‘Object Level’.

The chapter is finished with a full transformation definition for the Split Container
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Transformation.

Figure 3.1: Different Levels of Abstraction

3.1 The Meta Level
The core of describing model transformations is to show, how a correct source model
is transformed into a correct target model.

In order to define which models are correct (i.e., contain legal model elements in
legal relationships), a metamodel is constructed. This metamodel defines a modeling
language that is used to construct correct models. The metamodel itself is also written
in a modeling language. For example, the UML metamodel is created in UML. The
language that describes the metamodel is found in the Meta-Meta Level of abstraction
(or M3 in the MDA context). In this work the language used to describe the metamodel
is UML.

The following example shows the usage of metamodels. The UML metamodel con-
tains the element Argument (Figure 3.2). Therefore Argument is part of the modeling
language and can be used by a modeler to construct UML models. Figure 3.2 shows a
part of the UML 1.4 metamodel1, in which Argument is shown.

In this work the ADT metamodel is used to define ATDs. Every ADT model that
is created must comply to this ADT metamodel.

The ADT metamodel was first introduced in [32]. Figure 3.3 shows a version
created in [30].

1http://www.omg.org/technology/documents/formal/uml.htm
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Figure 3.2: Excerpt of the UML 1.4 Metamodel

According to the metamodel an ADT consists of several related Concepts. Aggre-
gation ([27], [5]) is used to model the hierarchy of the concepts in the ADT. Aggre-
gation represents a whole-part relationship. In the metamodel the aggregate is called
the Container. The Part concept is used to model the atomic objects in the ADT. Also
ordinary associations between the concepts can exist. In the ADT metamodel, the as-
sociation C2C indicates that Concepts can be associated at the class level. Both Part
and Container have attributes (data) and operations.

Figure 3.3 shows how data is modeled and represented in ADT models. However,
to fully specify what modeling elements can be used in an ADT model, further concepts
need to be shown. (The extensions are partly adopted from the UML 1.4 metamodel.)
Only the concepts required to understand the queries to the metamodel in Section 3.4
are shown here. They are Association, Operation and Attribute. It is not within the
scope of this work to fully explain the ADT metamodel.

The queries in Section 3.4 to Operation and Attribute are straight forward and
thanks to their naming easily understandable.

A little more complicated are the constructs involving Associations. Figure 3.4
shows the ADT metamodel together with the specifications for associations. An Asso-
ciation is composed of two AssociationEnds, where the multiplicity is specified. Ag-
gregation in AssociationEnd defines whether Association is indeed an association, an
aggregation or a composition.

To now transform a target model into a source model, their metamodels are con-
sulted. (The distinction between source metamodel and target metamodel is made,
because transformations between models constructed with the same language are only
one specific case in the MDA framework.) A set of source model elements is related
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Figure 3.3: The ADT Metamodel expressed in UML

to a set of target model elements. Since a transformation can not always be applied
and is not always correctly applied, conditions both on the source as well as the target
model are defined. These conditions can be viewed as preconditions and postcondi-
tions that state under which circumstances a transformation can be applied and when
the transformation was applied correctly. All this is captured in a transformation rule.

Since most transformations are complex and can be split into several atomic trans-
formations, for each transformation a set of transformation rules is created. Thus, each
transformation rule maps a set of source model elements to a set of target model ele-
ments and contains conditions, as described above.

[15] supplies a list of requirements needed to define a transformation rule. This list
is given below. Further, they suggest a formal notation for writing transformation rules.
The authors did not intend it as a proposal for a standard transformation language, but
since the notation is close to OCL syntax and therefore easily understandable, it is
adopted in this work.

"Any definition of a transformation rule should contain the following information:

• The source language reference.

• The target language reference.

• Optional transformation parameters, for example, constants used in the genera-
tion of the target.

• A set of named source language model elements (called S) from the source lan-
guage metamodel.

• A set of named target language model elements (called T) from the target lan-
guage metamodel.
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Figure 3.4: The ADT Metamodel extended with Association Specification

• A bidirectional indicator: a Boolean that states whether or not a source model
may/can be (re)generated from the target.

• The source language condition: an invariant that states the conditions that must
hold in the source model for this transformation rule to apply. The invariant may
only be expressed on elements from set S.

• The target language condition: an invariant that states the conditions that must
hold in the target model for this transformation rule to apply, or that needs to be
generated when the target model is not yet present. The invariant may only be
expressed on elements from set T.

• A set of mapping rules, where each rule maps some model elements in set S to
model elements in set T."[15]

An example of a thoroughly defined transformation is provided in Section 3.4.

3.2 The Application Level
While the above explained Meta Level is used to describe the transformations, the Ap-
plication Level (or M1, as it is called in the MDA framework) contains all information
to make the transformations relevant and meaningful in the embedded systems con-
text. The models at Application Level are the most relevant for the embedded systems
designer.

The mere application of the transformations does not optimize the design of a soft-
ware application. It is the implementation steered by application specific knowledge
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that makes the transformations useful and relevant for embedded systems optimiza-
tions.

Also, transformations can not be applied on every model and on every application.
The knowledge in the models combined with the designers domain knowledge, identi-
fies and points towards transformation opportunities that lead to beneficial applications
of the transformations.

And thirdly, concrete behavior and behavioral changes are best expressed with
models that are able to capture the behavior of the application without relying too much
on concrete instances. (It is shown in the next Section, how behavior preservation is
expressed at the Object Level.)

Thus, at the Application Level all information regarding the concrete application,
i.e., application/domain specific knowledge, transformation opportunities and behav-
ioral changes, are expressed.

Since in Section 4.2.3 the application specific behavior (i.e., the splitting criterion)
and the transformation opportunities for the Split Container transformation are already
explained, in the following only the behavioral modeling is discussed.

Behavioral Modeling

Figure 3.5: Sequence Diagram – Snapshot1

25



Chapter 3. Transformations – Theoretical Background

Figure 3.6: Sequence Diagram – Snapshot2

In the context of this work, behavioral diagrams are used to show the relevant be-
havior of an application, before and after a transformation. With correct behavioral
modeling it is possible to follow changes in behavior and to later verify whether the
behavior is preserved through the transformations. (Again, how behavior preservation
is checked is shown in Section 3.3.)

Two sequence diagrams (Figure 3.5 and Figure 3.6) show the behavior of the spell
checker application for two snapshots, Snapshot1 and Snapshot2. Snapshot1 consists
of setting up the dictionary and Snapshot2 contains looking up a word in the dictionary.
(The concept of snapshots is further explained in Section 3.3.)

Figure 3.7 and Figure 3.8 present the same sequence diagrams after the Split Con-
tainer transformation was applied to the model. So Figure 3.7 shows the sequence
diagram of Snapshot1, after the Split Container transformation was applied to it and
Figure 3.8 shows the sequence diagram for Snapshot2, after the same transformation
was applied to it.

The diagrams capture the relevant behavior of each snapshot and, comparing two
diagrams for one snapshot, the concrete behavioral changes can be seen.

As an example, in Snapshot1 (Figure 3.5) a word is read from the Textstream, in-
serted into wordBuffer, insertWord is called on Dictionary and this triggers the creation

26



Chapter 3. Transformations – Theoretical Background

Figure 3.7: Sequence Diagram after Split Container Transformation – Snapshot1

of an instance of Word followed by the creation of the corresponding Character in-
stances. If both Characters and Word are created correctly, true is returned, which
triggers insertWord to also return true to DictionaryEngine.

After the Split Container transformation is applied, the insertion behavior is changed.
Now, not only a word but also its probability is read from Textstream. Also, before a
word is created, it is checked into which dictionary, Dictionary1 or Dictionary2, it
needs to be inserted.

In Snapshot2 the behavior is also changed through the Split Container transforma-
tion. In Figure 3.8 the changed part of the sequence diagram is depicted. The algorithm
is changed in such that now each word is first looked up in Dictionary1 and only if it
is not found there, looked up in Dictionary2.

In the next section, it is shown that behavior is preserved during the model trans-
formations.

3.3 The Object Level
Behavior preservation shown on the Split Container transformation

The concrete instances of the models from the Application Level exist at the Object
Level (M0, in the MDA Framework). At this level the behavior preservation is shown.
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Figure 3.8: Sequence Diagram after Split Container Transformation – Snapshot2

In the following, a definition of behavior preservation from the Refactoring domain
is presented and how a definition for this work is derived from it. Finally, this section
concludes with an example.

Definition of behavior preservation:

"The versions of a program before and after a refactoring must also pro-
duce semantically equivalent references and operations. Semantic equiv-
alence is defined here as follows: let the external interface to the program
be via the function main. If the function main is called twice (once before
and once after a refactoring) with the same set of inputs, the resulting set
of output values must be the same."[22], p. 28.

To apply the above definition in this work, it needs to be clarified what is consid-
ered to be input and output and how the execution (i.e., the run-time behavior) of the
application is modeled.

To capture the run-time behavior of an application, snapshots are used. A snapshot
consists of the run-time behavior of an application up to a specific point, i.e., it captures
an instance of data at an instance of time.

Here, snapshots are used to model the applications execution, this is, to capture
concrete objects with their specific values for a certain execution path. Figure 3.14
shows an example of a modeled snapshot.

According to the behavior preservation definition from above, it can be said that,
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Figure 3.9: Object Diagram Snapshot1, before the transformation

behavior is preserved if two versions of one snapshot, one before the transformation
and one after the transformation, produce the same output for the same input.

Thus, comparing the two versions of a snapshot (before and after the transformation
took place) preserved behavior can be shown. If the same relevant data is created and
relevant methods return the same results, the behavior is the same at modeling level.2

Here ‘relevant’ means that only a subset of data and behavior is considered. I.e.,
behavior preservation is only shown for a certain focused-on functionality. In every
transformation changes occur most likely in various parts of the application and thus
possibly change parts of the behavior. To give an insight in the meaning of ‘relevant
behavior’, consider the following example. In the Split Container transformation, two
new dictionaries are created and the words are distributed among those dictionaries.
To look up a word, it is first searched in one dictionary, then in the other. This is
a clear change in behavior. However, the focused-on behavior is searching a word.
The search method should return in both cases the same result: whether a word is
found in the dictionary or not. As long as this behavior is not changed and the same
word (i.e., relevant data) is found in the dictionary before and after the Split Container
transformation is applied, the other changes in behavior are ignored.

Thus identifying relevant data and relevant functionality is as important (and as
difficult) as identifying relevant snapshots.

In the following the application of this definition is shown on a more concrete
example, the Split Container transformation.

2This, of course, can not make any final judgment about implementations and their execution, since the
translation from model to code is not specified in this work.
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Figure 3.10: Object Diagram, Snapshot1, after the transformation

For the spell checker application two snapshots are identified.
As mentioned before, Snapshot1 describes setting up the dictionary. In the follow-

ing example the dictionary is initially empty and the word ‘new’ is inserted. The end
of the snapshot is reached, when the dictionary engine receives the feedback that the
word was successfully created. (Figure 3.5)

Snapshot2 contains the lookup of a word in the dictionary. Here the dictionary
contains the words ‘new’ and ‘now’ and the word ‘now’ is checked in the dictionary.
The snapshot ends when the lookup method returns true. (Figure 3.6)

For both snapshots two versions are considered, one, the snapshot before the trans-
formation is performed and two, after the transformation is performed. Figures 3.9,
3.10, 3.11 and 3.12 show object diagrams for Snapshot1 and Snapshot2 before and
after the transformation. In the object diagrams the changes to the application’s data
are depicted. Through the Split Container transformation, more character objects are
created, due to the use of two dictionaries instead of one. In the following, it is shown,
how the behavior is preserved in Snapshot1, despite the changes of the data values.

Figures 3.13 and 3.14 show the sequence diagrams for Snapshot1, before and after
the Split Container transformation is applied.

To verify that the behavior is preserved, the two sequence diagrams describing one
snapshot are queried.

First an input of interest needs to be defined, which is then compared.
In Snapshot1, a word is added into the dictionary. Thus, the word to be added, i.e.,

the word stored in wordBuffer, is the input. If in both versions the value of wordBuffer
is the same, both versions are assumed to have the same input. In Figure 3.13 and
Figure 3.14 the value of wordBuffer is ‘new’, thus they have the same input.

If, for this input, the output is the same in both versions, the relevant behavior is
preserved.
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Figure 3.11: Object Diagram, Snapshot2, before the transformation

Here again, the relevant output needs to be defined. Whenever objects are created
via a message call, a return message is send back to confirm whether the object was
created successfully. For Snapshot1 the main behavior is the insertion of a word in
the dictionary. Therefore the feedback on whether a word was created is considered
the main (i.e., desired) output. As shown in Figure 3.5, at the end of the message
sequence DictionaryEngine receives the Boolean return value. (This was triggered
through Dictionary indicating that the word is created, after the characters are created
or exist already.) In both Figure 3.13 and Figure 3.14 DictionaryEngine receives a
true message. Therefore the output is the same.

According to this reasoning, it is verified that the behavior is preserved during the
application of the Split Container transformation.

To verify the behavior preservation for Snapshot2 the same methodology is fol-
lowed. There the input is again the current word in the word buffer. In Scenario2 a
word is checked in the dictionary. As relevant output the return value of the search
function is chosen.

3.4 Transformation Definition – Example
In the following subsection, a transformation definition on the Split Container trans-
formation is presented. The Split Container transformation consists of several trans-
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Figure 3.12: Object Diagram, Snapshot2, after the transformation

formation steps, and only the sequence of these steps fully defines the transformation.
(Figure 2.5 show the inital and transformed model.)

Transformations Steps (or transformation rules as in [15]):

• create two new classes

• copy methods and attributes from the source class

• create composition relationship between each new class and the source class

• connect new classes with prior relationship type to part class

• remove attributes from source class

• delete relationship between old container and class

Short Introduction to OCL
Each step is defined as a transformation rule following the notation in [15]. OCL is used
to express the invariants, i.e., the source language conditions and the target language
conditions. To verify the correctness of the OCL syntax the OCLE tool is used.3

Before proceeding, the language constructs of OCL used in this work are shortly
introduced.

3OCLE 2.0 – Object Constraint Language Environment, lci.cs.ubbcluj.ro/ocle
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Figure 3.13: Detailed Sequence Diagram before Split Container Transformation –
Snapshot1

OCL ([21], [34], [24]) is a language addition to UML that allows the modeler to
express constraints and queries on models. Although OCL is an easy to read language,
in the following the very broad basics are presented.

Basic Types and Collection Types

OCL has the following basic types:

• Boolean

• Integer

• Real

• String

For collections it has the types

• Set – A Set contains a collection of valid OCL types. In a Set each element exists
only once and the elements are not ordered.
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Figure 3.14: Detailed Sequence Diagram after Split Container Transformation – Snap-
shot1

• OrderedSet – An OrderedSet contains a collection of valid OCL types. In an
OrderedSet each element only exists once and the elements are ordered.

• Bag – A Bag contains a collection of valid OCL types. In a Bag each element
can exist more than once and the elements are not ordered.

• Sequence – A Sequence contains a collection of valid OCL types. In a Sequence
each element can exist more than once and the elements are ordered.

are used.

Operations

In OCL a couple of operations that are applicable on any OCL instance, i.e., any
modeling element, are defined.

The only one used in this work is allInstances(). It returns a set of all in-
stances of the modeling element.

type::allInstances():Set(type)

A set of operations on all collection types is defined in OCL. The following can be
found in this work.

• excludes(object) – Returns true if object is not part of the collection.
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• Collection.excludesAll(collection) – Returns true if none of
the elements of collection belongs to Collection, i.e., the collection the operation
is applied on.

• includes(object) – Returns true if object is part of the collection.

• isEmpty() – Returns true if the collection is empty.

Of the predefined loop operations that iterate over collections the following are
used:

• forAll(expression) – Returns true if all elements of the collection are
true for the expression.

• exists(expression) – Returns true if at least one element of the collec-
tion is true for the expression.

Detailed Execution
Create two new containers

1. source language reference: ADT metamodel

2. target language reference: ADT metamodel

3. transformation parameters:
cont1Name : String = container1.name
cont2Name : String = container2.name
allContainers : Bag (String) = Container
.allInstances().name

4. set of named source language model elements: - - none

5. set of named target language model elements:
container1 : ADT::Container
container2 : ADT::Container

6. (bidirectional indicator): unidirectional

7. source language conditions:
names are not already taken
(allContainers->excludes(cont1Name))
and (allContainers->excludes(cont1Name))

8. target language conditions:
container1 and container2 were created
(container1 <> "") and (container2 <> "")

9. mapping rules: –
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In the notation, used in [15] and adopted from here onwards, this translates to:

Transformation CreateNewContainers(ADT, ADT) {
params

cont1Name : String = container1.name;
cont2Name : String = container2.name;
allContainers : Bag (String) = Container

.allInstances().name;
source

- - none
target

container1 : ADT::Container;
container2 : ADT::Container;

source condition
(allContainers->excludes(cont1Name))
and (allContainers->excludes(cont1Name));

target condition
(container1 <> "") and (container2 <> "");

unidirectional;
mapping

– none
}

Copy methods and attributes from source container to newly created containers

Transformation CopyAttributesAndOperations(ADT, ADT) {
params

– none
source

sourceContainer : ADT::Container;
sourceAttribute : ADT::Container.attribute;
sourceOperation : ADT::Container.operation;
sourceCont1 : ADT::Container;
sourceCont2 : ADT::Container;

target
targetContainer : ADT::Container;
targetAttribute : ADT::Container.attribute;
targetOperation : ADT::Container.operation;

targetCont1 : ADT::Container;
targetCont1Attribute : ADT::Container.attribute;
targetCont1Operation : ADT::Container.operation;

targetCont2 : ADT::Container;
targetCont2Attribute : ADT::Container.attribute;
targetCont2Operation : ADT::Container.operation;
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source condition
– none

target condition
– methods and attributes exist in both new classes
(targetCont1Operation.name = targetOperation.name)
and
(targetCont2Operation.name = targetOperation.name)
and
(targetCont1Operation.type = targetOperation.type)
and
(targetCont2Operation.type = targetOperation.type)
and
(targetCont1Operation.parameters

= targetOperation.parameters)
and
(targetCont2Operation.parameters

= targetOperation.parameters)
and
(targetCont1Operation.type = targetOperation.type)
and
(targetCont2Operation.type = targetOperation.type)
and
(targetCont1Operation.owner = targetOperation.owner)
and
(targetCont2Operation.owner = targetOperation.owner)
and
(targetCont1Attribute.type = targetAttribute.type)
and
(targetCont2Attribute.type = targetAttribute.type)
and
(targetCont1Attribute.name = targetAttribute.name)
and
(targetCont2Attribute.name = targetAttribute.name)
and
(targetCont1Attribute.owner = targetAttribute.owner)
and
(targetCont2Attribute.owner = targetAttribute.owner);

unidirectional;
mapping

sourceContainer <-> targetContainer;
sourceAttribute <-> targetAttribute;
sourceOperation <-> targetOperation;
sourceCont1 <-> targetCont1;
sourceCont2 <-> targetCont2;

}
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Create composition relationship between each new container and the source con-
tainer

Transformation CreateComposition(ADT, ADT) {
params

connectedContainerNames : Bag (String)
= Bag{targetContainer.name, targetCont1.name};

source
sourceContainer : ADT::Container;
sourceCont1 : ADT::Container;
sourceCont2 : ADT::Container;

target
targetContainer : ADT::Container;
targetCont1 : ADT::Container;
targetCont2 : ADT::Container;
composition1 : ADT::Association;
composition2 : ADT::Association;

source condition
- - none

target condition
- - between containers created
composition1.connection.participant.name

->includes(connectedContainerNames)
and
- - is composition
composition1.allConnections

->exists(aggregation = AggregationKind::composite)
composition2.allConnections

->exists(aggregation = AggregationKind::composite)
and
- - one-to-one multiplicity
composition1.allConnections

-> forAll(multiplicity = 1)
composition1.allConnections

->forAll(multiplicity = 1);
unidirectional;
mapping

sourceContainer <-> targetContainer;
sourceCont1 <-> targetCont1;
sourceCont2 <-> targetCont2;

}

connect new classes with prior relationship type to part class

Transformation connectNewClasses(ADT, ADT) {
params
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connectedContainerNames : Bag (String) =
Bag{targetContainer.name, targetCont1.name};

priorAggregateKind:AggregateKind
= AggregationKind::composite;

source
sourceContainer : ADT::Container;
sourceCont1 : ADT::Container;
sourceCont2 : ADT::Container;

target
targetContainer : ADT::Container;
targetCont1 : ADT::Container;
targetCont2 : ADT::Container;
composition1 : ADT::Association;
composition2 : ADT::Association;

source condition
- - none

target condition
- - same type as before
composition1.allConnections()

->exists(aggregation = priorAggregateKind);
- - between containers created
composition1.connection.participant.name

->includes(connectedContainerNames);
- - is composition
composition1.allConnections

->exists(aggregation = AggregationKind::composite);
composition2.allConnections

->exists(aggregation = AggregationKind::composite);
- - one-to-one multiplicity
composition1.allConnections

->forAll(multiplicity = 1);
composition1.allConnections

->forAll(multiplicity = 1);
unidirectional;
mapping

sourceContainer <-> targetContainer;
sourceCont1 <-> targetCont1;
sourceCont2 <-> targetCont2;

}

remove attributes from source container

Transformation RemoveAttribute(ADT, ADT) {
params

- - none
source
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attribute : ADT::Container.Atttribute;
attributeGetter : ADT::Container.operation;
attributeSetter : ADT::Container.operation;
sourceContainer : ADT::Container;

target
targetContainer : ADT::Container;

source condition
- - attribute is unreferenced
attributeGetter.parameter->select(kind

= ParameterDirectionKind :: return)
->excludes(attribute);

attributeSetter.parameter->select(kind
= ParameterDirectionKind :: in)
->excludes(attribute);

target condition
- - attribute was deleted
targetContainer.allAttributes->isEmpty;

unidirectional;
mapping

- - none
}

delete relationship between old container and class

Transformation DeleteRelationship(ADT, ADT) {
params

sourceNames : Bag (String) = Bag{
sourceContainer.name, sourcePart.name};

targetNames : Bag (String) = Bag{
targetContainer.name, targetPart.name};

source
sourceAggregation: ADT::Association;
sourceContainer: ADT::Container;
sourcePart: ADT::Part;

target
targetContainer : ADT::Container;
targetPart : ADT::Part;

source condition
- - Aggregation between part and container exists
(sourceAggregation <> "") and
(sourceAggregation.connection.participant.name

->includes(sourceNames));
target condition

- - Aggregation was deleted
ADT::Association.allInstances()

->select(connection.participant.name
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->excludesAll(targetNames));
unidirectional;
mapping

sourceContainer <-> targetContainer;
sourcePart <-> targetPart;

}
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Profiling Results

In this chapter the results of implementing and profiling various UML model transfor-
mations are presented. The results show reduction of memory footprint, data accesses
and overall energy consumption. In the first section, implementation details concerning
the application, its various dynamic inputs, the chosen data structures and the C code
implementation are shown. In the remaining chapter, the results are presented in data
tables with explanatory notes, highlighting the specific results for each transformation.

4.1 Implementation Details

4.1.1 Application
The driver application, used to show the impact of the proposed transformations, is the
spell checker discussed earlier in this work. The spell checker has the following basic
functionality: To spell-check a text, each word is looked up in the internal dictionary.
If the word is not found in this dictionary, it is added to a list of misspelled words. The
dictionary is set up in the beginning by adding words to it.

4.1.1.1 Trie ADT

The spell checker’s dictionary is implemented with a Trie ADT [11]. There are several
concrete data structure implementations (cf. [4]) for the Trie ADT. The goal is to use
two widely known implementations that each represent one extreme in the concrete
data structure design space, i.e., the extremes that are Pareto-optimal in terms of mem-
ory footprint and data accesses. A Pareto-optimal point represents an optimal solution
in one trade-off direction when the other direction is fixed. ([12]) Thus, an array based
version, as well as a linked-list based version are chosen, namely an array-structured
Trie and a list-structured Trie are implemented. (Both are explained in [2].)

The implementation that has little data accesses and a large memory footprint is the
array-structured Trie. (Depicted in Figure 4.1.) The array-structured Trie uses static
arrays. That means that each array contains 26 cells, one for each letter of the alphabet.
The advantage is, that this allows direct access to the values in the array. On the other
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Figure 4.1: Array-Structured Trie for the words ‘and’, ‘tree’, ‘trie’, ‘trip’

Figure 4.2: List-Structured Trie for the words ‘and’, ‘tree’, ‘trie’, ‘trip’

hand however, this increases the memory footprint a lot. Especially for long words or
small dictionaries, the arrays exhibit a lot of sparseness.

The implementation that has a smaller memory footprint but uses more data ac-
cesses is the list-structured Trie (Figure 4.2). The large number of accesses is due to
the fact that here linked lists are created. These lists need to be traversed to lookup
a word in the dictionary, which results in additional accesses. On the other hand, the
list-structured Trie is space efficient compared to the array-structured Trie, each node
only contains its value, the end flag and two pointers. Further, nodes are only created
if the character exists in the dictionary. This avoids the sparseness found in the arrays
of the array-structured Trie.
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4.1.2 Input Characterization
4.1.2.1 Dictionary

The dictionary of the spell checker is set up with a word list (provided by [14]) consist-
ing of 57 046 English words.1 The list also provides the relative occurrence frequency
of each word in the English language. The frequency information is ignored in the
initial implementation, but is used for later transformations. It is indicated where this
is the case.

[Since the original large dictionary of approximately 57 000 words allocates a large
amount of memory (i.e., about 32MB) for the array-structured Trie implementation, all
transformations are also profiled with a reduced dictionary of 20 833 words. Where it
is used, it is referred to as small or reduced dictionary.]

4.1.2.2 Text

Text spiegel independent theindependent spiegelLong
Length 1 107 406 753 7 764

Erroneous words 132 26 34 1 072
Error rate [%] 11,92 6,4 4,52 13,81

Duplicate words 55 0 6 577
Duplication Rate [%] 41.6 0 17.6 53.5

economist economistShort economistLong bbc
1 078 591 3 001 303
172 41 256 36

15,95 6,94 8,53 11,88
75 2 57 12

43.6 4.9 22.3 3 001

Table 4.1: Characterization of the input texts

The application is profiled with eight different texts taken from various newspapers
and news magazines as input. Thus the texts have one genre in common. This yields
texts with similar length and a similar vocabulary. Further, those texts commonly do
not contain wrongly spelled words, words detected as misspelled are mostly names of
persons and places. This yields similar behavior patterns, i.e., for eight different texts

1excerpt from the READ ME: “The word list is primarily intended to be useful for checking spelling. [..]
Principal omissions:
- words requiring a capital letter
- abbreviations
- slang
Colloquialisms and archaisms are generally excluded. Contractions are excluded. A rare word similar to a
common word may be excluded. Both -ise and -ize spellings are included. The character set is: lowercase
letters, hyphen, apostrophe. Words which can be spelled with accents occur here in their plain form.“
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Text spiegel independent theindependent spiegelLong
Length 1 107 406 753 7 764

Erroneous words 152 34 40 1 239
Error rate [%] 13.7 8.4 5.3 15.92

Duplicate words 59 1 6 610
Duplication Rate [%] 38.8 2.9 15 49.2

economist economistShort economistLong bbc
1 078 591 3 001 303
209 58 333 41
19.4 9.8 11 13.5
78 3 73 12

37.3 5.2 21.9 29.3

Table 4.2: Characterization of input text behavior with the small dictionary

an error rate between 4,92% and 15,95% and an error re-occurrence rate up to 53,5%
is noted for the original dictionary. The error re-occurrence of 53,5% describes that up
to every second misspelled word is a duplicate. Table 4.1 shows the concrete values
for the eight input texts looked up in the original large dictionary. Table 4.2 shows the
results for the same texts looked up in the reduced dictionary.

4.1.3 Implementation in C
Initially, the spell checker application exists only in a UML model. (Figure 4.3 shows
again the initial UML model of the spell checker application.) To profile the appli-
cation, these models are manually transformed into C code. Since UML models the
application at a higher level of abstraction, some specific decisions are made to map
the model to C code.

A class consists of attributes and behavior (methods). The general methodology is
to translate all attributes of one class into one type, while the behavior of the class is
encapsulated into header files.

Specifically this means, the class Character forms a type consisting of Character’s
attributes. Note that the association relationship next is translated into a next pointer
and the down pointer is generated by consulting the weak aggregation relationship with
Word.

The weak aggregation relationship between Word and Character expresses the no-
tion of letters (or characters) in a word. A Word is a container holding several Charac-
ters. Further, the weak aggregation, as opposed to a strong aggregation or composition,
expresses that Characters can be shared among instances of Word – plainly, characters
are re-used for different words (see Figure 4.2). The down pointer is used to express
this relationship. Type for Character:
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Figure 4.3: UML Class Diagram of the Spell Checker

struct character {
char value;
int end;
character * next;
character * down;
};

Word is a purely conceptual class in the sense that it describes the notion of a word
consisting of a sequence of characters. It holds neither methods nor data and does not
need to be instantiated.

The class Dictionary contains the methods that operate on the dictionary’s data,
search and setup. The strong aggregation relationship from Dictionary to Word de-
scribes that a dictionary consists of words. Search and setup are declared in a header
file and are called by DictionaryEngine.

The class DictionaryEngine holds the main functionality of the application. From
here the methods setup and search are called. It also contains the misspelledWords list
and the wordBuffer. DictionaryEngine is represented by the main function. Also a type
DictionaryEngine exists that holds the two arrays wordBuffer and misspelledList.

4.2 Profiling

4.2.1 Experimental Setup
The profiling is done with the profiling libraries described in [25]. Each read or write
to a variable is counted as one data access. In this work data accesses are used instead
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of memory accesses. This conveys that here only the algorithmic accesses to the data
are counted. Dynamic allocation (malloc) overhead, and such, is not considered in
this. The memory footprint of the data structures is determined using the allocation
information provided by the profiling library. Energy is calculated based on the energy
model provided by [23] for embedded SRAMs. Energy calculations are considered for
an SRAM size of up to 16 MB, because the model in [23] does not provide energy
figures for larger SRAM sizes. Therefore, where the memory footprint exceeds 16 MB
no energy values are given and the energy values for the reduced dictionary are pointed
out instead.

The application’s execution is decomposed into two scenarios. Scenario1 consists
of setting up the dictionary. This means that each word of the word list is inserted in the
Trie. Scenario2 describes the lookup of the input text in the dictionary. Later, accesses,
memory footprint and energy figures are given for the different scenarios in addition to
the total numbers.

Results for the total memory footprint of the application, as well as the memory
footprint of the Trie and the memory footprint of the used buffers are given. Buffers in
this case are the dynamically allocated misspelledList and the wordBuffer. The memory
footprint of misspelledList represents the memory footprint at the end of the applica-
tion’s execution with all the misspelled words. For the memory footprint of wordBuffer
the maximum size of a wordBuffer, occurring during the execution is taken.

In the following, tables with the results of profiling different transformations are
provided for data accesses, memory footprint and energy consumption.

4.2.2 Initial Implementation
Table 4.3 and Table 4.5 show the results for the initial list-structured Trie implementa-
tion. The first table shows the results for the original dictionary while the second table
shows the results for the reduced dictionary. Table 4.4 and Table 4.6 hold the results
for the initial array-structured Trie implementation.

Here it is interesting to compare the array-structured with the list-structured solu-
tion. In Section 4.1.1 it is predicted that an array-structured implementation allocates
more memory but uses less accesses than a list-structured implementation. This as-
sumption is validated here.

Indeed, the list-structured implementation needs noticeably more data accesses
than the array-structured implementation (approximately factor of two). The array-
structured solution on the other hand allocates memory by a factor of 10 more. Energy
is not compared for the solutions based on the large original dictionary, since the en-
ergy model does not consider SRAMs larger than 16 MB and the 35 MB of memory
that the array-structured implementation allocates (Table 4.4) clearly exceed this. How-
ever, with a reduced dictionary, energy comparisons show that a list-structured solution
is more energy efficient. This is due to the data access and storage pattern described
above. Figure 4.4 shows the trade-off points between memory footprint and data ac-
cesses for the list-structured, as well as the array-structured Trie implementation. For
this, the example of the text spiegel being looked up in the small dictionary is used.
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Text spiegel independent theindependent spiegelLong
Accesses – total 8 094 697 8 021 345 8 054 768 8 793 615
Scen1 (setup) 7 979 343 <– <– <–
Scen2 (search) 115 354 42 002 75 425 814 272
Alloc. Memory

– total[B] 2 379 320 2 376 776 2 376 968 2 401 880
Buffers [B] 3 192 648 840 25 752

Trie [B] 2 376 128 <– <– <–
Energy – total [nJ] 38 409 337 38 061 282 38 219 874 41 725 703
Energy-Scen1 [nJ] 37 861 982 <– <– <–
Energy-Scen2 [nJ] 547 355 199 299 357 892 3 863 721

Text economist economistShort economistLong bbc
Accesses - total 8 088 474 8 039 767 8 290 316 8 010 836
Scen1 (setup) 7 979 343 <– <– <–
Scen2 (search) 109 131 60 424 310 972 31 493
Alloc. Memory

– total[B] 2 380 280 2 377 136 2 382 296 2 377 016
Buffers [B] 4 152 1 008 6 168 888

Trie [B] 2 376 128 <– <– <–
Energy – total [nJ] 38 379 809 38 148 694 39 337 549 38 011 417
Energy-Scen1 [nJ] 37 861 982 <– <– <–
Energy-Scen2 [nJ] 517 826 286 712 1 475 562 149 434

Table 4.3: Initial List-structured Trie Implementation – Original Dictionary
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Text spiegel independent theindependent spiegelLong
Accesses – total 3 106 426 3 088 964 3 097 495 3 279 238

Scenario1 3 078 910 <– <– <–
Scenario2 27 516 10 054 18 585 200 328

Alloc. Memory
total [B] 34 647 048 34 644 504 34 644 696 34 669 608
Trie [B] 34 643 856 <– <– <–

Buffers [B] 3 192 648 840 25 752
Energy – total [nJ] — — — —

Text economist economistShort economistLong bbc
Accesses – total 3 106 380 3 093 829 3 156 237 3 086 385

Scenario1 3 078 910 <– <– <–
Scenario2 27 470 14 919 77 327 7 475

Alloc. Memory
total [B] 34 648 008 34 644 864 34 650 024 34 644 744
Trie [B] 34 643 856 <– <– <–

Buffers [B] 4 152 1 008 6 168 888
Energy – total [nJ] — — — —

Table 4.4: Initial Array-structured Trie Implementation – Original Dictionary
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Text spiegel independent theIndependent spiegelLong
Accesses – total 2 712 209 2 643 649 2 675 248 3 364 289

Acc – Scen1 2 604 432 <– <– 2 604 432
Acc – Scen2 107 774 39 214 70 813 759 854

Alloc Mem – total [B] 862 408 859 576 859 720 888 496
Alloc Mem – Trie [B] 858 736 <– <– <–

Alloc Mem – Buffers [B] 3 672 840 984 29 760
Energy – total [nJ] 5 136 924 5 007 071 5 066 920 6 371 963

Text economist economistShort economistLong bbc
Accesses – total 2 705 646 2 660 865 2 894 628 2 633 928

Acc – Scen1 2 604 432 2 604 432 2 604 432 2 604 432
Acc – Scen2 101 211 56 430 290 193 29 493

Alloc Mem – total [B] 863 776 860 152 866 752 859 744
Alloc Mem – Trie [B] 858 736 <– <– 858 736

Alloc Mem – Buffer [B] 5 040 1 416 8 016 1 008
Energy – total [nJ] 5 124 493 5 039 678 5 482 425 4 988 660

Table 4.5: Initial List-structured Trie Implementation – Small Dictionary

Text spiegel independent theIndependent spiegelLong
Accesses – total 1 052 164 1 034 721 1 043 183 1 224 932

Acc – Scen1 1 024 608 <– <– <–
Acc – Scen2 27 556 10 113 18 575 200 324

Alloc Mem – total [B] 12 670 028 12 667 196 12 667 340 12 696 116
Alloc Mem – Trie [B] 12 666 356 <– <– <–

Alloc Mem – Buffers [B] 3 672 840 984 29 760
Energy – total [nJ] 13 977 999 13 746 268 13 858 686 16 273 222

Text economist economistShort economistLong bbc
Accesses – total 1 051 830 1 039 609 1 102 110 1 032 096

Acc – Scen1 1 024 608 <– <– 1 024 608
Acc – Scen2 27 222 15 001 77 502 7 488

Alloc Mem – total [B] 12 671 396 12 667 772 12 674 372 12 667 364
Alloc Mem – Trie [B] 12 666 356 <– <– 12 666 356

Alloc Mem – Buffers [B] 5 040 1 416 8 016 1 008
Energy – total [nJ] 13 973 561 13 811 205 14 641 531 13 711 395

Table 4.6: Initial Array-structured Trie Implementation – Small Dictionary
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Figure 4.4: Initial Implementation – Array-, List-structured Implementation Compared

4.2.3 Transformation 1 – Split Container
The Split Container Transformation splits the dictionary into two parts according to
a splitting rule. In this case, the splitting is driven by the occurrence frequency of a
word in the English language. The dictionary is split into one small dictionary (Cont1)
holding the most common words and a larger dictionary (Cont2) containing the rest of
the original dictionary. The assignment of one word to one of the dictionaries is based
on the frequency labels provided in the word list by [14].

In implementation terms, this means that two separate Tries are created. The first
Trie (in the following referred to as Cont1 or Container1) consists of 3 219 popular
words and the second Trie (referred to as Cont2 or Container2) holds the rest of the
words (i.e., 53 827). For the small dictionary the first Trie consists again of 3 219
words and the second Trie consists of 17 614 words.

Table 4.7 and Table 4.8 contain the results for the large original dictionary. Table
4.9 and Table 4.10 present the results for the reduced dictionary.

In the following, the results for the list-structured Trie implementation are ex-
plained, followed by an explanation of the array-structured Trie implementation re-
sults.

Results for the List-structured Trie

Comparing the overall number of data accesses, after the Split Container transforma-
tion is applied, to the initial implementation, there is a slight global decrease in accesses
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noticeable. There are various factors influencing this outcome.
First, there is an local increase in accesses due to the creation of two Tries. And

while in a single Trie each word is only checked once, in the two Trie implementation
a word is checked twice in the worst case.

Secondly however, large reductions in data accesses result from the fact that most
of the accesses in Scenario2 (search) are to the Cont1. This is easily explained by the
fact that texts indeed mainly consist of a large number of common words. So (for the
spiegel example) only 294 out of 1107 words (i.e., 26,5% of the whole text) are not
found in the small dictionary. This means that only 26,5% of the text have to be looked
up in a very large dictionary instead of the whole text (i.e., 1107 words). Therefore, the
majority of the lookup operations are performed on Cont1, which is a smaller Trie, in
which less accesses are needed to find a word.

To summarize, the global reduction in accesses from distributing most of the weight
to the small dictionary, outnumber the additional local costs of setting up two dictio-
naries, instead of one.

In terms of memory footprint however there is only an increase to note. This is
owed to less sharing of characters, since the dictionary is split among two Tries. While
in one Trie many characters are reused, in two Tries this structure is taken apart and
characters that were shared before now need to be created in both Tries. For example,
the two words ‘nut’ and ‘nutmeg’ are stored in six nodes in one Trie, since the word
‘nut’ is contained in both words. If this is split and ‘nut’ is stored in one Trie, while
‘nutmeg’ is stored in a second Trie, this sharing is lost. Now, ‘nut’ needs three nodes
in the first Trie and ‘nutmeg’ allocates six additional nodes.

Although data accesses are only decreased slightly (2,5% for the spiegel text and
the small dictionary) and memory footprint is increased 10,5% (Text: spiegel, small
dictionary), energy consumption is largely decreased (42% for the spiegel text looked
up in the small dictionary) compared to the initial list-structured Trie implementation.
The results are depicted in Figure 4.5. For Scenario2 (search) the energy gains are
between 67% and 81%.

This is only possible because the two Tries are assigned to two different memories.
The first Trie (Cont1) resides on a small, energy efficient memory, while the second
Trie (Cont2) is assigned to a larger, less energy efficient memory.

While Cont1 of the original dictionary can fit on a 256 kB SRAM, Cont2 of the
original dictionary requires a 4MB SRAM. Overall energy consumption is calculated
by adding the energy consumed by the small SRAM and the big SRAM. The energy
of each SRAM is calculated by multiplying the total accesses to the container in each
SRAM by the energy per access figure, which corresponds to the size of the SRAM
[23].

Results for the Array-structured Trie

The above made observations are only partly valid for the array-structured Trie imple-
mentation.

Here, it is to note that the number of accesses increases for Scenario1, as well as
Scenario2, which results into an overall increase in accesses. For example, looking
up the text spiegel in the small dictionary, implemented with array-structured Tries,
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increases the number of overall accesses by 0,9% compared to the accesses it takes to
lookup the same text in the initial implementation. This is explained by the fact that
an array-structured Trie implementation is already very efficient in accesses, due to the
direct access in the arrays. Therefore, only the increase in accesses (as explained above
on the list-structured Trie implementation) takes effect.

The overall memory footprint is increased due to less character reuse in the dictio-
naries. Here the overall memory footprint of the application increases by 10,5% for the
small dictionary, comparing it to the initial implementation.

Energy results can not be provided for the implementation using the original dic-
tionary. Here Cont2 exceeds the possible SRAM size of 16 MB.

For a reduced dictionary, it is however interesting to note, that there is a large gain
in energy compared to the initial array-structured Trie implementation. Looking up the
spiegel text is 44,2% more energy efficient than it is in the initial implementation.

This again is due to the fact that the two Tries are assigned to two differently sized
memories, where the smaller memory is more energy efficient. For the reduced dictio-
nary Cont1 requires a 4MB SRAM while Cont2 is assigned to a 16MB SRAM. The
overall energy consumption is calculated as described above for the list-structured Trie.
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Text spiegel independent theindependent spiegelLong
SplitCont (294: 132) (90:26) (155:34) (3269:1072)

Accesses – total 8 001 065 7 921 568 7 954 908 8 777 946
Scenario1 – total 7 878 609 <– <– <–
Cont1 – Scen1 205 077 <– <– <–
Cont2 – Scen1 4 767 908 <– <– <–
Buffers-Scen1 2 905 624 <– <– <–

Scenario2 – total 122 456 42 959 76 299 899 337
Cont1 – Scen2 54 058 23 517 36 266 376 637
Cont2 – Scen2 20 963 2 938 10 710 174 224
Buffers-Scen2 47 435 16 504 29 323 348 476
Alloc. Memory

– total[B] 2 481 784 2 479 240 2 479 432 2 504 344
Container1 [B] 139 056 <– <– <–
Container2 [B] 2 339 536 <– <– <–

Buffers [B] 3 192 648 840 25 752
Energy – total [nJ] 23 005 640 22 929 396 22 692 212 24 709 075

En. Gain-total 40.1% 39.75% 40.6% 40.78%
Energy – Scen1 [nJ] 22 951 555 22 890 537 22890537 23445512
Energy – Scen2 [nJ] 153 554 36 937 86 374 1 263 563

Energy Gain
– Scenario2 72% 81% 76% 67%

Text economist economistShort economistLong bbc
SplitCont (344:172) (154:41) (786:256) (90:36)

Accesses – total 7 998 926 7 943 079 8 206 843 7 912 756
Scenario1 – total 7 878 609 <– <– <–
Cont1 – Scen1 205 077 <– <– <–
Cont2 – Scen1 4 767 908 <– <– <–
Buffers-Scen1 2 905 624 <– <– <–

Scenario2 – total 120 317 64 470 328 234 34 147
Cont1 – Scen2 50 744 29 263 145 414 18 212
Cont2 – Scen2 22 561 11 008 55 676 2 789
Buffers-Scen2 47 012 24 199 127 144 13 146
Alloc. Memory

– total[B] 2 648 696 <– <– <–
Container1 [B] 139 056 <– <– <–
Container2 [B] 2 339 536 <– <– <–

Buffers [B] 4 152 1 008 6 168 888
Energy – total [nJ] 23 177 399 22 971 473 23 430 956 22 921 588

En. Gain-total 39.61% 39.78% 40.44% 39.69%
Energy – Scen1 [nJ] 23 018 385 22 890 537 23 018 385 22 890 537
Energy – Scen2 [nJ] 159 014 80 935 412 571 46 365

Energy Gain
– Scenario2 69% 72% 72% 69%

Table 4.7: List-structured Trie Implementation – Split Container Transformation –
Original Dictionary
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Text spiegel independent theindependent spiegelLong
Accesses – total 3 117 663 3 096 906 3 106 563 3 324 163

Scen1 total 3 085 336 3 085 336 <– <–
Scen1. Cont1 395 545 395 545 <– <–
Scen1. Cont2 1 222 414 1 222 414 <– <–

Scen1. Buffers 1 467 377 <– <– <–
Scen2. total 32 327 11 570 21 227 238 827

Scen2. Cont1 8 921 3 444 6 512 62 415
Scen2. Cont2 3 424 1 161 1 963 28 840

Scen2. Buffers 19 982 6 965 12 752 147 572
Alloc. Mem

– total 36 163 820 36 161 276 36 161 468 36 186 380
Cont1 2 051 076 <– <– <–
Cont2 34 109 552 <– <– <–

Buffers 3 192 648 840 25 752
Energy – total [nJ] — — — —

Text economist economistShort economistLong bbc
Accesses – total 3 118 214 3 102 909 3 176 650 3 094 207

Scen1 total 3 085 336 <– <– <–
Scen1. Cont1 395 545 <– <– <–
Scen1. Cont2 1 222 414 <– <– <–

Scen1. Buffers 1 467 377 <– <– <–
Scen2. total 32 878 17 573 91 314 8 871

Scen2. Cont1 8 180 4 842 25 101 2 422
Scen2. Cont2 4 189 2 067 10 615 1 000

Scen2. Buffers 20 509 10 664 55 598 5 449
Alloc. Mem

– total 36 164 780 36 161 636 36 166 796 36 161 516
Cont1 2 051 076 <– <– <–
Cont2 34 109 552 <– <– <–

Buffers 4 152 1 008 6 168 888
Energy – total [nJ] — — — —

Table 4.8: Array-structured Trie Implementation – Split Container Transformation –
Original Dictionary
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Text spiegel independent theIndependent spiegelLong
Accesses – total 2 646 210 2 568 879 2 601 732 3 400 178

Acc – Scen1 total 2 526 942 <– <– <–
Scen1 – Cont1 205 077 <– <– <–
Scen1 – Cont2 1 397 901 <– <– <–

Scen2 – Buffers 923 964 <– <– <–
Acc – Scen2 total 119 268 41 937 74 790 873 236

Scen2 – Cont1 54 058 20 050 39 591 376 637
Scen2 – Cont2 18 649 5 634 6 332 154 904

Scen2 – Buffers 46 561 16 253 28 867 341 695
Alloc Mem – total [B] 953 144 950 312 950 456 979 232

Alloc Mem – Cont1 [B] 139 056 <– <– <–
Alloc Mem – Cont2 [B] 810 416 <– <– <–

Alloc Mem – Buffers [B] 3 672 840 984 29 760
Energy – total [nJ] 2 975 648 2 929 889 2 917 611 3 527 252
Energy Gain [%] 42 41,5 42,4 44,6

Text economist economistShort economistLong bbc
Accesses – total 2 643 058 2 589 835 2 846 597 2 560 338

Acc – Scen1 total 2 526 942 <– <– <–
Scen1 – Cont1 205 077 <– <– <–
Scen1 – Cont2 1 397 901 <– <– <–

Scen1 – Buffers 923 964 <– <– <–
Acc – Scen2 total 116 116 62 893 319 655 33 396

Scen2 – Cont1 50 744 32 005 145 414 14 964
Scen2 – Cont2 19 416 6 395 49 131 5 484

Scen2 – Buffers 45 956 24 493 125 110 12 948
Alloc Mem – total [B] 954 512 950 888 957 488 950 480

Alloc Mem – Cont1 [B] 139 056 <– <– <–
Alloc Mem – Cont2 [B] 810 416 <– <– <–

Alloc Mem – Buffers [B] 5 040 1 416 8 016 1 008
Energy – total [nJ] 2 996 197 2 917 923 3 148 837 2 891 956
Energy Gain [%] 41,5 42,1 42,6 42

Table 4.9: List-structured Trie Implementation – Transformation Split Container –
Small Dictionary
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Text spiegel independent theIndependent spiegelLong
Accesses – total 1 062 633 1 041 903 1 051 487 1 268 965

Acc – Scen1 total 1 030 278 <– <– <–
Scen1 – Cont1 397 046 <– <– <–
Scen1 – Cont2 471 409 <– <– <–

Scen2 – Buffers 161 823 <– <– <–
Acc – Scen2 total 32 355 11 625 21 209 238 687

Scen2 – Cont1 8 921 3 444 6 512 62 415
Scen2 – Cont2 3 256 1 110 1 911 26 988

Scen2 – Buffers 20 178 7 071 12 786 149 284
Alloc Mem – total [B] 14 008 384 14 005 552 14 005 696 14 034 472

Alloc Mem – Cont1 [B] 2 051 076 <– <– <–
Alloc Mem – Cont2 [B] 11 953 636 <– <– <–

Alloc Mem – Buffers [B] 3 672 840 984 29 760
Energy – total [nJ] 7 794 270 7 741 655 7 763 619 8 363 287
Energy Gain [%] 44,2 43,7 44 48,6

Text economist economistShort economistLong bbc
Accesses – total 1 062 900 1 047 933 1 121 691 1 039 158

Acc – Scen1 total 1 030 278 <– <– <–
Scen1 – Cont1 397 046 <– <– <–
Scen1 – Cont2 471 409 <– <– <–

Scen1 – Buffers 161 823 <– <– <–
Acc – Scen2 total 32 622 17 655 91 413 8 880

Scen2 – Cont1 8 180 4 842 25 101 2 422
Scen2 – Cont2 3 727 1 939 9 868 959

Scen2 – Buffers 20 715 10 874 56 444 5 499
Alloc Mem – total [B] 14 009 752 14 006 128 14 012 728 14 005 720

Alloc Mem – Cont1 [B] 2 051 076 <– <– <–
Alloc Mem – Cont2 [B] 11 953 636 <– <– <–

Alloc Mem – Buffers [B] 5 040 1 416 8 016 1 008
Energy – total [nJ] 7 828 881 7 774 781 8 000 794 7 743 247
Energy Gain [%] 44 43,7 45,3 43,5

Table 4.10: Array-structured Trie Implementation – Transformation Split Container –
Small Dictionary

4.2.4 Transformation 2 – Remove Redundant Attribute
The Remove Redundant Attribute Transformation suggests the removal of a substi-
tutable attribute. The end attribute is such an attribute. It is stored in each node of the
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Figure 4.5: Split Container – Array-, List-structured Trie Compared, Text: spiegel,
Small Dictionary

Trie to check whether the end of a word is reached or not. Removing end accounts
to removing a 4 Byte integer from each node in the list-structured implementation.
In the array-structured implementation it results in removing a 26 cell integer array
(104 Byte). The concrete algorithmic changes, that this transformation imposes, are
explained in detail in Section 2.8.2.

Table 4.11 and Table 4.12 hold the results for the original large dictionary, while
Table 4.13 and Table 4.14 show the results for the reduced dictionary.

For both implementations the number of accesses is reduced. Less accesses are
needed to setup the dictionary, since the end attribute does not need to be written. The
overall number of accesses is reduced by 15,4% for looking up the spiegel text in the
reduced dictionary implemented with an array-structured Trie. Figure 4.7 depicts the
results for data accesses, memory footprint and energy consumption for the spiegel text
looked up in the small dictionary implemented with a array-structured Trie. (Figure 4.6
shows the corresponding results for the list-structured Trie implementation.)

Also the memory footprint is reduced. As mentioned above, for the list-structured
Trie 4 Bytes and for the array-structured Trie 104 Bytes are saved per node. For looking
up the spiegel text in the small dictionary, implemented with an array-structured Trie,
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this accounts to a reduction of 44%.
The energy gains for the list-structured implementation vary from 24,6% for the

original large dictionary to an average of 2% for the reduced dictionary. For the array-
structured Trie no energy calculations are made for the original dictionary implemen-
tation, since here again the 16 MB SRAM size is exceeded. For a reduced dictionary,
however, the gains amount to an average of 46,6%.

Text spiegel independent theindependent spiegelLong
Accesses-total 7 946 789 7 872 837 7 906 260 8 645 107

Scenario1 7 830 836 <– <– <–
Scenario2 115 353 42 001 75 424 814 271

Alloc. Memory
- total 1 785 288 1 782 744 1 782 936 1 807 848
Trie 1 782 096 <– <– <–

Buffers 3 192 648 840 25 752
Energy-total [nJ] 28 973 993 28 704 364 28 826 224 31 520 060

Gain 24.6% 24.6% 24.6% 24.6%
Scen2-Energy [nJ] 420 577 153 136 274 996 2 968 832

Scen2-Gain 23.2% 23.2% 23.2% 23.2%

Text economist economistShort economistLong bbc
Accesses-total 7 939 966 7 891 259 8 141 808 7 862 328

Scenario1 7 830 836 <– <– <–
Scenario2 109 130 60 423 310 972 31 492

Alloc. Memory
- total 1 786 248 1 783 104 1 788 264 1 782 984
Trie 1 782 096 <– <– <–

Buffers 4 152 1 008 6 168 888
Energy-total [nJ] 28 949 116 28 771 530 29 685 032 28 666 048

Gain 24.6% 24.6% 24.6% 24.6%
Scen2-Energy [nJ] 397 888 220 302 1 133 804 114 820

Scen2-Gain 23.2% 23.2% 23.2% 23.2%

Table 4.11: List-structured Trie Implementation – Remove Redundant Attribute Trans-
formation – Original Dictionary
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Text spiegel independent theindependent spiegelLong
Accesses – total 2 618 180 2 600 718 2 609 249 2 790 992

Scenario1 2 590 664 2 590 664 <– <–
Scenario2 27 516 10 054 18 585 200 328

Alloc. Mem
– total [B] 19 380 264 19 377 720 19 377 912 19 402 824
Trie [B] 19 377 072 <– <– <–

Buffers [B] 3 192 648 840 25 752
Energy - total [nJ] — — — —

Text economist economistShort economistLong bbc
Accesses - total 2 618 134 2 605 583 2 667 991 2 598 139

Scenario1 2 590 664 <– <– <–
Scenario2 27 470 14 919 77 327 7 475

Alloc. Mem
– total [B] 19 381 224 19 378 080 19 383 240 19 377 960
Trie [B] 19 377 072 <– <– <–

Buffers [B] 4 152 1 008 6 168 888
Energy – total [nJ] — — — —

Table 4.12: Array-structured Trie Implementation – Remove Redundant Attribute
Transformation – Original Dictionary
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Text spiegel independent theIndependent spiegelLong
Accesses – total 2 658 538 2 589 978 2 621 577 3 310 618

Acc – Scen1 2 550 762 <– <– <–
Acc – Scen2 107 774 39 214 70 813 759 854

Alloc Mem – total [B] 647 724 644 862 645 036 673 812
Alloc Mem – Trie [B] 644 052 <– <– <–

Alloc Mem – Buffers [B] 3 672 840 984 29 760
Energy – total [nJ] 5 035 271 4 905 418 4 965 267 6 270 310
Energy Gain [%] 2 2.1 2.1 1,6

Text economist economistShort economistLong bbc
Accesses – total 2 651 975 2 607 194 2 840 957 2 580 257

Acc – Scen1 2 550 762 <– <– 2 550 762
Acc – Scen2 101 211 56 430 290 193 29 493

Alloc Mem – total [B] 649 092 645 468 652 068 645 060
Alloc Mem – Trie [B] 644 052 <– <– <–

Alloc Mem – Buffers [B] 5 040 1 416 8 016 1 008
Energy – total [nJ] 5 022 841 4 938 025 5 380 772 4 887 007
Energy Gain [%] 2 2.1 1.9 2.1

Table 4.13: List-structured Trie Implementation – Transformation Remove Redundant
– Small Dictionary
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Text spiegel independent theIndependent spiegelLong
Accesses – total 890 341 872 898 881 360 1 063 109

Acc – Scen1 862 785 <– <– <–
Acc – Scen2 27 556 10 113 18 575 200 324

Alloc Mem – total [B] 7 088 244 7 085 412 7 085 556 7 114 332
Alloc Mem – Trie [B] 7 084 572 <– <– <–

Alloc Mem – Buffers [B] 3 672 840 984 29 760
Energy – total [nJ] 7 447 702 7 301 792 7 372 576 8 892 907
Energy Gain [%] 46.7 46.9 46.9 45.4

Text economist economistShort economistLong bbc
Accesses – total 890 007 877 786 940 287 870 273

Acc – Scen1 862 785 <– <– 862 785
Acc – Scen2 27 222 15 001 77 502 7 488

Alloc Mem – total [B] 7 089 612 7 085 988 7 092 588 7 085 580
Alloc Mem – Trie [B] 7 084 572 <– <– <–

Alloc Mem – Buffers [B] 5 040 1 416 8 016 1 008
Energy – total [nJ] 7 444 908 7 342 680 7 865 501 7 279 834
Energy Gain [%] 46.8 46.9 46.3 47

Table 4.14: Array-structured Trie Implementation – Transformation Remove Redun-
dant – Small Dictionary

Figure 4.6: Remove Redundant Attribute – List-structured Trie Compared, Text:
spiegel, Small Dictionary
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Figure 4.7: Remove Redundant Attribute – Array-structured Trie Compared, Text:
spiegel, Small Dictionary

4.2.5 Transformation 3 – Change Relationship Ordering
The transformation Change Relationship Ordering changes the ordering of the relation-
ship between Dictionary and Word from alphabetically ordered [a..z] to an ordering ac-
cording to letter probability2. This means that in the list-structured Trie the characters
in horizontal alignment are not ordered alphabetically as shown in Figure 4.2. Instead
the overall letter probability in the English language is used. For example, the first four
letters now are {e, t, a, o} instead of {a, b, c, d} before.

This transformation is only implemented for the list-structured Trie , since no gains
are expected for an array implementation. The reason is that the array implementation
has direct access to its components in both cases and is thus not expected to profit
from faster sequential search. Table 4.15 and Table 4.16 present the results of this
transformation. Figure 4.8 shows accesses, memory footprint and energy results for
the Change Ordering transformation compared to the initial implementation.

The total number of data accesses is reduced by 29,2% comparing the small dic-
tionary to the initial small dictionary implementation. For the setup of the dictionary
(Scenario1) less accesses are used, since in average the position to insert a word is
found faster. This amounts to a decrease of 29,8% of data accesses in Scenario1. Also
the number of accesses for a search (Scenario2) is reduced because, here again, the re-
quested word is found faster and less nodes need to traversed. This results in a decrease
of 15,6% in memory accesses.

The memory footprint does not change, since the number of elements stored is not
changed in this transformation.

In terms of energy the average gain for the original dictionary is 30%.

2{e, t, a, o, i, n, s, h, r, d, l, c, u, m, w, f, g, y, p, b, v, k, j, x, q, z}
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Text spiegel independent theindependent spiegelLong
Accesses – total 5 631 141 5 570 361 5 599 783 6 211 841

Scen1 5 535 052 <– <– <–
Scen2 96 089 35 309 64 731 676 789

Alloc. memory
total [B] 2 379 320 2 376 776 2 376 968 2 401 880
Trie [B] 2 376 128 <– <– <–

Buffers [B] 3 192 648 840 25 752
Energy total [nJ] 26 719 764 26 431 363 26 570 970 29 475 185
Energy Gain [%] 30.4 30.6 30.5 29.4

Scen1 [nJ] 26 263 822 <– <– <–
Gain Scen1 [%] 30.6 <– <– <–

Text economist economistShort economistLong bbc
Accesses – total 5 628 371 5 586 484 5 798 954 5 561 234

Scen1 5 535 052 <– <– <–
Scen2 93 319 51 432 263 902 26 182

Alloc. memory
total [B] 2 380 280 2 377 136 2 382 296 2 377 016
Trie [B] 2 376 128 <– <– <–

Buffers [B] 4 152 1 008 6 168 888
Energy total [nJ] 26 706 620 26 507 866 27 516 037 26 388 055
Energy Gain [%] 30.4 30.5 30.1 30.6

Scen1 [nJ] 26 263 822 <– <– <–
Gain Scen1 [%] 30.6 <– <– <–

Table 4.15: List-structured Trie Implementation – Change Ordering Transformation –
Original Dictionary

64



Chapter 4. Profiling Results

Text spiegel independent theIndependent spiegelLong
Accesses – total 1 918 830 1 861 321 1 889 568 2 470 712

Acc – Scen1 total 1 827 838 <– <– <–
Acc – Scen2 total 90 989 33 480 61 727 642 871

Alloc Mem – total [B] 862 408 859 576 859 720 888 496
Alloc Mem – Trie [B] 858 736 <– <– <–

Alloc Mem – Buffers [B] 3 672 840 984 29 760
Energy – total [nJ] 3 634 264 3 525 342 3 578 842 4 679 528
Energy Gain [%] 29.3 29.6 29.4 26.6

Text economist economistShort economistLong bbc
Accesses – total 1 915 516 1 876 777 2 078 199 1 852 799

Acc – Scen1 total 1 827 838 <– <– <–
Acc – Scen2 total 87 675 48 936 250 358 24 958

Alloc Mem – total [B] 863 776 860 152 866 752 859 744
Alloc Mem – Trie [B] 858 736 <– <– <–

Alloc Mem – Buffers [B] 5 040 1 416 8 016 1 008
Energy – total [nJ] 3 627 987 3 554 616 3 936 109 3 509 201
Energy Gain [%] 29.3 29.5 28.3 29.7

Table 4.16: List-structured Trie Implementation – Transformation Change Ordering –
Small Dictionary

Figure 4.8: Change Relationship Ordering – List-structured Trie Compared, Text:
spiegel, Small Dictionary
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4.2.6 Transformation 4 – Attribute to Class
According to the Attribute to Class transformation, an attribute is transformed into a
class. For several reasons this is beneficial. On the one hand, this class can be subject
to new transformations that can not be applied to its former attributes. The gains of
this are not shown here, however. On the other hand, the newly created object can be
suggested to reside on a different memory. The gains for this are presented here. The
third reason is based on the input texts. As part of Section 4.1.2 ‘Input Characterization’
it is shown that errors have re-occurrence rates up to 50%. This means a word, which is
misspelled once is likely to be misspelled again. In the context of this, it is beneficial to
consult first the list of misspelled words before the whole dictionary is searched. The
results for this transformation are also presented here.

In this implementation the misspelledList attribute in DictionaryEngine is trans-
formed into the class MisspelledList. The list of misspelled words that was before
the value of misspelledList, is now the attribute of the class MisspelledList. Now Mis-
spelledList is not only filled with erroneous words, it is also consulted before the dictio-
nary is consulted. In implementation terms this means that a new type MisspelledList
is created.

Table 4.17 and Table 4.19 present the results for the list-structured Trie implemen-
tation, while Table 4.18 and Table 4.20 show the results for the array-structured Trie.

The total number of data accesses is increased. This is due to the increase of ac-
cesses in Scenario2, here checking every word first in the misspelled list creates over-
head. This suggests that looking up each word first in the misspelled list, does not
create any gains. For larger input texts and ongoing storage of misspelled words there
are still gains in data accesses expected however. The number of data accesses for Sce-
nario1 remain constant, since words are added to the MisspelledList, only after search
and nothing is changed in the setup.

The overall memory footprint remains also constant. This is true, because the mem-
ory footprint considers the filled misspelled list at the end of the application’s execu-
tion.

For energy calculations two version are considered. Version one calculates the
energy for all data types assigned to one memory. The second version (depicted with
‘Trie vs. Buffers’) assigns the newly created type to one memory and the full Trie to
a second. The shown gains arise comparing the results of the latter energy calculation
(‘Trie vs. Buffers’) to the results of the original implementation in Table 4.3.

For the list-structured Trie implementation, the average energy gain is 35,7% for
the original dictionary. Figure 4.9 shows the results for accesses, memory footprint
and energy consumption (‘Trie vs. Buffers’) of looking up the spiegel text in the small
dictionary implemented with a list-structured Trie.
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Text spiegel independent theindependent spiegelLong
Accesses

– total 8 192 125 8 033 982 8 082 217 12 756 288
Scen1 – total 7 979 343 <– <– <–

Scen1 MisspList 0 <– <– <–
Scen1 Trie 5 033 733 <– <– <–

Scen1 Buffer 2 945 610 <– <– <–
Scen2 – total 212 779 54 636 102 871 4 776 942

Scen2 MisspList 52 350 6 562 14 142 2 023 756
Scen2 Trie 67 638 25 932 46 424 457 078

Scen2 Buffer 92 791 22 142 42 305 2 296 108
Alloc Mem [B]

– total [B] 2 379 320 2 376 776 2 376 968 2 401 880
Trie [B] 2 376 128 <– <– <–

Buffers [B] 3192 648 840 25 752
Energy – total [nJ] 38 871 633 38 121 244 38 350 120 60 528 586

– Trie vs. Buffers [nJ] 24 345 089 24 079 494 24 177 394 27 615 975
Gain Trie vs. Buffers[%] 36,6 36,7 36,7 33,8

Text economist economistShort economistLong bbc
Accesses

- total 8 203 611 8 062 681 8 962 886 8 020 509
Scen1 - total 7 979 343 <– <– <–

Scen1 MisspList 0 <– <– <–
Scen1 Trie 5 033 733 <– <– <–

Scen1 Buffer 2 945 610 <– <– <–
Scen2 - total 224 265 83 335 983 540 41 163

Scen2 MisspList 62 459 12 058 341 407 5 593
Scen2 Trie 95 052 36 973 525 643 18 735

Scen2 Buffer 66 754 34 304 116 490 16 835
Alloc Mem [B]

– total [B] 2 380 280 2 377 136 2 382 296 <–
Trie [B] 2 376 128 <– <– <–

Buffers [B] 4 152 1 008 6 168 888
Energy - total [nJ] 38 926 134 38 257 421 42 528 894 38 057 315

– Trie vs. Buffers [nJ] 24 545 173 24 132 307 26 610 678 24 045 194
Gain [%] 36 36,7 32,2 36,7

Table 4.17: List-structured Trie Implementation – Attribute to Class Transformation –
Original Dictionary
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Text spiegel independent theindependent spiegelLong
Accesses – total 3 198 377 3 099 628 3 123 734 6 940 614

Scen1 – total 3 078 910 <– <– <–
Scen1 MisspList 0 <– <– <–

Scen1 Trie 1 611 533 <– <– <–
Scen1 Buffer 1 467 377 <– <– <–
Scen2 – total 119 467 20 718 44 824 3 861 704

Scen2 MisspList 47 650 5 526 13 447 1 845 983
Scen2 Trie 9 669 3 891 7 193 72 493

Scen2 Buffer 62 148 1 1301 24 184 1 943 228
Alloc Mem
– total [B] 34 647 048 34 644 504 34 644 696 34 669 608
Trie [B] 34 643 856 <– <– <–

Buffers [B] 3 192 648 840 25 752

Text economist economistShort economistLong bbc
Accesses – total 3 216 394 3 115 611 3 787 108 3 096 269

Scen1 – total 3 078 910 <– <– <–
Scen1 MisspList 0 <– <– <–

Scen1 Trie 1 611 533 <– <– <–
Scen1 Buffer 1 467 377 <– <– <–
Scen2 – total 137 484 36 701 708 198 17 359

Scen2 MisspList 57 362 11 375 318 648 5 313
Scen2 Trie 9 156 5 633 28 621 2 682

Scen2 Buffer 70 966 19 693 360 929 9 364
Alloc Mem
– total [B] 34 648 008 34 644 864 34 650 024 34 644 744
Trie [B] 34 643 856 <– <– <–

Buffers [B] 4 152 1 008 6 168 888

Table 4.18: Array-structured Trie Implementation – Array MisspelledList as Class –
Original Dictionary
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Text spiegel independent theIndependent spiegelLong
Accesses – total 2 833 804 2 659 370 2 706 839 8 471 827

Acc – Scen1 total 2 604 432 <– <– <–
Acc – Scen2 total 229 369 54 935 102 404 5 867 392

Alloc Mem – total [B] 862 408 859 576 859 720 888 496
Alloc Mem – Trie [B] 858 736 <– <– <–

Alloc Mem – Buffers [B] 3 672 840 984 29 760
Energy – total [nJ] 5 367 225 5 036 847 5 126 753 16 045 640

– Trie vs. Buffers [nJ] 4 351 034 4 116 424 4 180 176 10 072 739
Energy Gain [%] 15.3 17.8 17.6 -58

Text economist economistShort economistLong bbc
Accesses – total 2 855 140 2 694 088 3 799 408 2 645 484

Acc – Scen1 total 2 604 432 <– <– <–
Acc – Scen2 total 250 705 89 653 1 194 973 41 049

Alloc Mem – total [B] 863 776 860 152 866 752 859 744
Alloc Mem – Trie [B] 858 736 <– <– <–

Alloc Mem – Buffers [B] 170 100 <– <– <–
Energy – total [nJ] 5 407 635 5 102 603 7 196 079 5 010 547

– Trie vs. Buffers [nJ] 4 336 146 4 159 324 5 350 630 4 097 056
Energy Gain [%] 15.4 17.5 2.5 17.9

Table 4.19: List-structured Trie Implementation – Transformation Attribute To Class
– Small Dictionary
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Text spiegel independent theIndependent spiegelLong
Accesses – total 1 169 193 1 049 401 1 073 539 6 138 518

Acc – Scen1 total 1 024 608 <– <– <–
Acc – Scen2 total 144 585 24 793 48 931 5 113 910

Alloc Mem – total [B] 12 670 028 12 667 196 12 667 340 12 696 116
Alloc Mem – Trie [B] 12 666 356 <– <– <–

Alloc Mem – Buffers [B] 3 672 840 984 29 760
Energy – total [nJ] 15 532 729 13 941 292 14 261 966 81 550 212

– Trie vs. Buffers [nJ] 11 873 721 11 688 527 11 752 688 17 363 295
Energy Gain [%] 15.1 15 15.2 - 6.3

Text economist economistShort economistLong bbc
Accesses – total 1 196 134 1 072 379 1 979 028 1 043 761

Acc – Scen1 total 1 024 608 <– <– <–
Acc – Scen2 total 171 526 47 771 954 420 19 153

Alloc Mem – total [B] 12 671 396 12 667 772 12 674 372 12 667 364
Alloc Mem – Trie [B] 12 666 356 <– <– <–

Alloc Mem – Buffers [B] 5 040 1 416 8 016 1 008
Energy – total [nJ] 15 890 640 14 246 555 26 291 387 13 866 365

– Trie vs. Buffers [nJ] 11 891 182 11 731 276 12 877 243 11 668 663
Energy Gain [%] 15 15.1 12.1 14.9

Table 4.20: Array-structured Trie Implementation – Transformation Attribute To Class
– Small Dictionary
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Figure 4.9: Attribute to Class – List-structured Trie Compared, Text: spiegel, Small
Dictionary

4.2.7 Transformations – Split Container, Remove Redundant, Change
Ordering – combined

In this implementation the transformations Split Container, Remove Redundant At-
tribute and Change Ordering are combined. Table 4.21 and Table 4.22 present the
results for this combined transformation for the reduced dictionary.

The overall number of data accesses is reduced, as well as the memory footprint.
For checking the spiegel text in the small dictionary, implemented with a list-structured
Trie, the data accesses are reduced by 32,2% compared to the corresponding initial
implementation. The memory footprint is decreased by 17% compared to the initial
implementation.

Energy gains account to an average 63,1% for the list-structured implementation
and an average 70% for the array-structured Trie implementation. Explanations for
this behavior can be found in the aforementioned sections. Figure 4.10 shows the
results for comparing accesses, memory footprint and energy consumption between
the combined transformations (list-structured Trie, text: spiegel, small dictionary) and
the initial implementation.
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Text spiegel independent theIndependent spiegelLong
Accesses – total 1 838 823 1 771 151 1 801 859 2 499 200

Acc – Scen1 total 1 733 497 <– <– <–
Scen1 – Cont1 135 437 <– <– <–
Scen1 – Cont2 913 155 <– <– <–

Scen1 – Buffers 684 905 <– <– <–
Acc – Scen2 total 105 326 37 654 68 362 765 703

Scen2 – Cont1 79 795 20 058 31 278 313 805
Scen2 – Cont2 17 869 2 790 10 385 146 312

Scen2 – Buffers 7 662 14 806 26 699 305 586
Alloc Mem – total [B] 715 776 712 944 713 088 <–

Alloc Mem – Cont1 [B] 104 292 <– <– <–
Alloc Mem – Cont2 [B] 607 812 <– <– <–

Alloc Mem – Buffers [B] 3 672 840 984 29 760
Energy – total [nJ] 1 896 330 1 825 142 1 845 119 2 432 077
Energy Gain [%] 63 63,5 63,6 61,8

Text economist economistShort economistLong bbc
Accesses – total 1 839 730 1 789 817 2 021 160 1 763 030

Acc – Scen1 total 1 733 497 <– <– <–
Scen1 – Cont1 135 437 <– <– <–
Scen1 – Cont2 913 155 <– <– <–

Scen1 – Buffers 684 905 <– <– <–
Acc – Scen2 total 106 233 56 320 287 663 29 533

Scen2 – Cont1 77 732 27 745 123 124 12 516
Scen2 – Cont2 20 090 6 309 50 221 5 376

Scen2 – Buffers 8 411 28 575 114 318 11 641
Alloc Mem – total [B] 717 144 713 520 720 120 713 112

Alloc Mem – Cont1 [B] 104 292 <– <– <–
Alloc Mem – Cont2 [B] 607 812 <– <– <–

Alloc Mem – Buffers [B] 5 040 1 416 8 016 1 008
Energy – total [nJ] 1 915 540 1 841 481 2 001 281 1 826 397
Energy Gain [%] 62,6 63,5 63,5 63,4

Table 4.21: List-structured Trie Implementation – Transformation Combination –
Small Dictionary
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Text spiegel independent theIndependent spiegelLong
Accesses – total 900 810 880 080 889 664 1 107 142

Acc – Scen1 total 868 455 <– <– <–
Scen1 – Cont1 375 476 <– <– <–
Scen1 – Cont2 331 156 <– <– <–

Scen1 – Buffers 161 823 <– <– <–
Acc – Scen2 total 32 355 11 625 21 209 238 687

Scen2 – Cont1 8 921 3 444 6 512 62 415
Scen2 – Cont2 3 256 1 110 1 911 26 988

Scen2 – Buffers 20 178 7 071 12 786 149 284
Alloc Mem – total [B] 7 836 816 7 833 984 7 834 128 7 862 904

Alloc Mem – Cont1 [B] 1 147 212 <– <– <–
Alloc Mem – Cont2 [B] 6 685 932 <– <– <–

Alloc Mem – Buffers [B] 3 672 840 984 29 760
Energy – total [nJ] 4 207 058 4 165 001 4 183 041 4 659 313
Energy Gain [%] 70 69,7 69,8 71,4

Text economist economistShort economistLong bbc
Accesses – total 901 077 886 110 959 868 877 335

Acc – Scen1 total 868 455 <– <– <–
Scen1 – Cont1 375 476 <– <– <–
Scen1 – Cont2 331 156 <– <– <–

Scen1 – Buffers 161 823 <– <– <–
Acc – Scen2 total 32 622 17 655 91 413 8 880

Scen2 – Cont1 8 180 4 842 25 101 2 422
Scen2 – Cont2 3 727 1 939 9 868 959

Scen2 – Buffers 20 715 10 874 56 444 5 499
Alloc Mem – total [B] 7 838 184 7 834 560 7 841 160 7 834 152

Alloc Mem – Cont1 [B] 1 147 212 <– <– <–
Alloc Mem – Cont2 [B] 6 685 932 <– <– <–

Alloc Mem – Buffers [B] 5 040 1 416 8 016 1 008
Energy – total [nJ] 4 212 519 4 178 505 4 328 012 4 159 965
Energy Gain [%] 70 69,7 70,4 69,6

Table 4.22: Array-structured Trie Implementation – Transformation Combination –
Small Dictionary
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Figure 4.10: Transformations combined – List-structured Trie Compared, Text:
spiegel, Small Dictionary
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Conclusions and Future Work

This work shows the feasibility of ADT model transformations steered by semantic
(i.e., application specific) and dynamic information in the embedded systems context.
By profiling selected transformations, it is shown that the energy consumption is de-
creased by 70% (Chapter 4). Further, trade-off points between the two cost metrics,
data accesses and memory footprint, are presented. Insight into a wide range of trade-
offs is specifically valuable for embedded system designers, since this allows then to
choose an optimal solution for a specific metric according to the restrictions of their
hardware platform.

In this work, the catalogue of transformations introduced in [32] is extended. On the
one hand, new transformations are suggested and motivated, on the other hand, known
transformations are shown feasible for a different problem domain, i.e., for the spell
checker application instead of a 2D-graphics game application. Both the finding of
new transformations, as well as validating established transformations, points towards
a significant theory of ADT model transformations.

Defining a transformation through transformation rules (Chapter 3), points towards
the possibility of future automation. Automation eases the error prone tasks of manual
model transformations and reduces the time-to-market of the embedded system.

Due to the character of the transformations, automatic detection is not achieved in
the context of this work. As shown in Chapter 2, transformations should be motivated
through application and domain specific knowledge, thus making automatic detection
difficult and requiring the help of the designer.

Additionally to the definition of transformation rules with invariants that ensure
the correct execution of a transformation, it is shown how behavior preservation can
be modeled, following a snapshot-based approach. By modeling the behavior of an
application in different snapshots, it is possible to examine various relevant behavior
patterns, and thus show behavior preservation at the modeling level.

Future Work

The immediate future work should include the further extension of the transformation
catalogue and formalization of the transformations, in order to gain more insight. Also
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a thorough definition of the ADT metamodel is needed, since this is the basis for a
concrete automated solution.

Long term future work should deal with the automation of the transformations.
Transformations can be supported by an application, e.g., a Transformation Browser,
that stores models in a repository. The browser should be able to display those models
in different kinds of diagrams. The designer can choose a transformation to apply out
of the set of transformations in the repository.

A useful and necessary expansion of the Transformation Browser is a code genera-
tion engine that produces code already suited for further embedded systems optimiza-
tions.

A different branch of future work should involve the formalization of application
specific knowledge. Here, a possibility is to use profiling information as application
specific knowledge that augments the models and helps the designer detect transforma-
tion opportunities. For this to be applicable, the current profiling tools need to be cali-
brated to the informational needs of this domain. With good visualization, the profiling
information can be a useful addition to the Transformation Browser’s functionality.
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Appendix A

Definitions and Acronyms

• ADT – Abstract Data Type

‘A data type for which only the properties of the data and the operations to be
performed on the data are specified, without concern for how the data will be
represented or how the operations will be implemented.’ [1]

• CDS – Concrete Data Structure
‘A concrete data structure (CDS) specifies a specific way of storing a collection
of objects in memory. Examples are: Array, List, Tree.’[30]

• Dynamic Application
‘An application whose behavior is unpredictable at design time and depends on
the input at run-time (in time and value).’ [30]

• Static Application
‘An application whose behavior is independent of the run-time context.’ [30]

• Use Case
‘Use cases are a way to capture system functionality and requirements in UML.
[..] Use cases represent distinct pieces of functionality for a system, a compo-
nent, or even a class.’ [24]

• Model
‘A model is a description of (part of) a system written in a well-defined language.’
[15]

• Well-defined language
‘A well-defined language is a language with well-defined form (syntax), and
meaning (semantics), which is suitable for automated interpretation by a com-
puter.’ [15]

• Transformation Definition
‘A transformation definition is a set of transformation rules that together de-
scribe how a model in the source language can be transformed into a model in
the target language.’[15]
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• Transformation Rule
‘A transformation rule is a description of how one or more constructs in the
source language can be transformed into one ore more constructs in the target
language.’ [15]

78



Bibliography

[1] Alain Abran, Pierre Bourque, Robert Dupuis, and James W. Moore, editors.
Guide to the Software Engineering Body of Knowledge - SWEBOK. IEEE Press,
Piscataway, NJ, USA, 2001.

[2] Jun-Ichi Aoe, Katsushi Morimoto, and Takashi Sato. An Efficient Implementation
of Trie Structures. Software — Practice and Experience, 22(9):695–721, 1992.

[3] David Atienza, Jose M. Mendias, Stylianos Mamagkakis, Dimitrios Soudris, and
Francky Catthoor. Systematic dynamic memory management design method-
ology for reduced memory footprint. ACM Trans. Des. Autom. Electron. Syst.,
11(2):465–489, 2006.

[4] Alexandros Bartzas, Stylianos Mamagkakis, Georgios Pouiklis, David Atienza,
Francky Catthoor, Dimitrios Soudris, and Antonios Thanailakis. Dynamic data
type refinement methodology for systematic performance-energy design explo-
ration of network applications. In DATE ’06: Proceedings of the conference on
Design, automation and test in Europe, pages 740–745. European Design and
Automation Association, 2006.

[5] Jean-Michel Bruel, Brian Henderson-Sellers, Franck Barbier, Annig Le Parc, and
Robert B. France. Improving the UML Metamodel to Rigorously Specify Aggre-
gation and Composition. In OOIS, pages 5–14, 2001.

[6] Francky Catthoor, Eddy de Greef, and Sven Suytack. Custom Memory Manage-
ment Methodology: Exploration of Memory Organisation for Embedded Multi-
media System Design. Kluwer Academic Publishers, Norwell, MA, USA, 1998.

[7] Krzysztof Czarnecki and Simon Helsen. Classification of Model Transformation
Approaches. In OOPSLA 2003 Workshop on Generative Techniques in the context
of Model Driven Architecture, October 2003.

[8] Edgar G. Daylight, David Atienza, Arnout Vandecappelle, Francky Catthoor, and
Jose M. Mendias. Memory-access-aware data structure transformations for em-
bedded software with dynamic data accesses. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 12(3):269– 280, March 2004.

79



BIBLIOGRAPHY

[9] Bruce Powel Douglass. Real Time UML: Advances in the UML for Real-Time
Systems (3rd Edition). Addison Wesley Longman Publishing Co., Inc., Redwood
City, CA, USA, 2004.

[10] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refac-
toring: Improving the Design of Existing Code. Addison-Wesley Professional,
June 1999.

[11] E. Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, 1960.

[12] Tony Givargis, Frank Vahid, and Jorg Henkel. System-level exploration for
pareto-optimal configurations in parameterized systems-on-a-chip. In ICCAD
’01: Proceedings of the 2001 IEEE/ACM international conference on Computer-
aided design, pages 25–30, Piscataway, NJ, USA, 2001. IEEE Press.

[13] Pieter Van Gorp, Hans Stenten, Tom Mens, and Serge Demeyer. Enabling and
Using the UML for Model-Driven Refactoring. In Stphane Ducasse Serge De-
meyer and Kim Mens, editors, Proceedings WOOR’03 (ECOOP’03 Workshop
on Object-Oriented Re-engineering), pages 37–40. Universiteit Antwerpen, July
2003.

[14] Brian Kelk. Uk english wordlist with frequency classification, version 1.01, 2003.
http://www.bckelk.uklinux.net/words/wlist.zip.

[15] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2003.

[16] Marc Leeman and David Atienza Alonso. Intermediate variable elimination in a
global context for a 3D multimedia application. In Multimedia and Expo, 2003.
ICME ’03. Proceedings. 2003 International Conference on, 2003.

[17] Quan Long, Zhiming Liu, Xiaoshan Li, and He Jifeng. Consistent Code Gener-
ation from UML Models. In ASWEC ’05: Proceedings of the 2005 Australian
conference on Software Engineering, pages 23–30, Washington, DC, USA, 2005.
IEEE Computer Society.

[18] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. In Proc.
Int’l Workshop on Graph and Model Transformation, 2005.

[19] Wolfgang Mueller, Yves Vanderperren, and Wim Dehaene. UML and Model-
Driven Development for SoC. In DATE 06 Tutorial Notes, 2006.

[20] James Noble and Charles Weir. Small memory software: patterns for systems
with limited memory. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2001.

[21] OMG Object Management Group. Ocl 2 specification, version 2.0, June 2005.

[22] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Uni-
versity of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA, 1992.

80

http://www.bckelk.uklinux.net/words/wlist.zip


BIBLIOGRAPHY

[23] A. Papanikolaou, M. Miranda, F. Catthoor, H. Corporaal, H. De Man, D. De
Roest, M. Stucchi, and K. Maex. Global interconnect trade-off for technology
over memory modules to application level: case study. In SLIP ’03: Proceedings
of the 2003 international workshop on System-level interconnect prediction, ACM
press, 2003.

[24] Dan Pilone and Neil Pitman. UML 2.0 in a Nutshell. O’Reilly Media, Inc., first
edition edition, 2005.

[25] Christophe Poucet, David Atienza, and Francky Catthoor. Template-Based Semi-
Automatic Profiling of Multimedia Applications. In Proceedings of the Interna-
tional Conference on Multimedia and Expo (ICME 2006), Toronto, Canada, July
2006. IEEE Computer, IEEE Signal Processing, IEEE System and IEEE Com-
munications Society.

[26] Donald Bradley Roberts. Practical Analysis for Refactoring. PhD thesis, Univer-
sity of Illinois, 1999.

[27] M. Saksena, R. B. France, and M. M. Larrondo-Petrie. A characterization of ag-
gregation. International Journal of Computer Systems Science and Engineering,
14(6):363–372, 1999.

[28] Bernhard Schaetz, Alexander Pretschner, Franz Huber, and Jan Philipps. Model-
Based Development of Embedded Systems. In OOIS ’02: Proceedings of the
Workshops on Advances in Object-Oriented Information Systems, pages 298–312,
London, UK, 2002. Springer-Verlag.

[29] Gerson Sunye, Damien Pollet, Yves Le Traon, and Jean-Marc Jezequel. Refactor-
ing UML Models. In UML ’01: Proceedings of the 4th International Conference
on The Unified Modeling Language, Modeling Languages, Concepts, and Tools,
pages 134–148, London, UK, 2001. Springer-Verlag.

[30] Marijn Temmerman. The ADT Design Space. Internal technical report, IMEC
vzw., November 2006.

[31] Marijn Temmerman. Towards Desing-Space Exploration of Data Structures from
the ADT-Modeling Level. Submitted to IJES journal, 2006.

[32] Marijn Temmerman, Edgar Daylight, Franky Catthoor, Serge Demeyer, and Tom
Dhaene. Moving up to the modeling level for the transformation of data structures
in embedded multimedia applications. In Proceedings SAMOS’05 (Fifth meeting
of the Embedded Computer Systems: Architectures, MOdeling, and Simulation ),
Lecture Notes on Computer Science. Springer-Verlag, 2005.

[33] Marijn Temmerman, Edgar Daylight, Franky Catthoor, Serge Demeyer, and Tom
Dhaene. Moving Up to the Modeling Level for the Transformation of Data Struc-
tures in Embedded Multimedia Applications. Submitted to Journal of Systems
Architecture, 2006.

81



BIBLIOGRAPHY

[34] J. Warmer and Anneke Kleppe. The Object Constraint Language: Getting Your
Models Ready for MDA. Addison Wesley, second edition edition, 2003.

[35] Sven Wuytack, Francky Catthoor, and Hugo De Man. Transforming set data
types to power optimal data structures. In ISLPED ’95: Proceedings of the 1995
international symposium on Low power design, pages 51–56, New York, NY,
USA, 1995. ACM Press.

82


	Introduction
	Transformations Introduced
	The Design Space
	Driver Application -- The Spell Checker
	The Initial Application Model
	Container
	Split Container

	Part
	Compress Part

	Relationship
	Change Ordering
	Limit Navigability

	Operation
	Create Specialized Operation

	Attribute
	Make Attribute Temporal
	Remove Redundant Attribute
	Attribute to Class


	Transformations -- Theoretical Background
	The Meta Level
	The Application Level
	The Object Level
	Transformation Definition -- Example

	Profiling Results
	Implementation Details
	Application
	Trie ADT

	Input Characterization
	Dictionary
	Text

	Implementation in C

	Profiling
	Experimental Setup
	Initial Implementation
	Transformation 1 -- Split Container
	Transformation 2 -- Remove Redundant Attribute
	Transformation 3 -- Change Relationship Ordering
	Transformation 4 -- Attribute to Class
	Transformations -- Split Container, Remove Redundant, Change Ordering -- combined


	Conclusions and Future Work
	Definitions and Acronyms

