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Abstract

Cluster analysis, the discovery of a sound categorization of entities based on
their pairwise differences or distances, is applied in a great variety of different
problem domains. The key to its versatility is its two-step procedure. In the
first step, an abstract model of the differences among the entities is created.
In the second step, generic clustering algorithms find categories in the abstract
model. Despite its importance for the success of the cluster analysis, model
formation is barely discussed in the literature as it depends heavily on the
particular task and can only partially be generalized.

Clusterability, the assessment of the extent to which a model is structured
in clusters, can guide model formation by model evaluation. Literature on
clusterability introduces it as a sanity check of models: if the model is not
clusterable, any categorization found by a clustering algorithm is question-
able. However, we propose the use of clusterability in the related but distinct
task of model selection: when different models of the same data are consid-
ered, clusterability analysis identifies which of them contains the most evident
clusters and is thus preferable.

We motivate the use of clusterability as a generic tool for model selection
in cluster analysis, detail different methods for assessing the clusterability of a
model and analyze these methods on both synthetic and real world data. We
lay emphasis on a theoretical justification of clusterability in the context of
cluster analysis. We categorize, explain and compare 5 clusterability indices.
We do so in a discussion of their rationales, with the use of 5 formalized index
properties and in a demonstration on small example datasets. We provide
empirical evidence that clusterability is indeed suitable for model selection but
also show its limits in this regard: fallacious models, which fail to represent
the original data, can be the most clusterable nevertheless.

In order to keep this thesis on an intuitively understandable level, we only
consider models of moderate sizes and for which all pairwise dissimilarities
are known. The application of some of the detailed methods on large-scale
datasets might require additional considerations or may not be possible at
all. Most of the clusterability indices that we detail were actually proposed
in a different context and it might be possible to optimize them for the task
of clusterability analysis. We therefore refrain from a premature efficiency
analysis of the indices.
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Chapter 1

Introduction

The validation of clustering structures is the most difficult and
frustrating part of cluster analysis. Without a strong effort in this
direction, cluster analysis will remain a black art accessible only to
those true believers who have experience and great courage.

—Jain and Dubes, Algorithms for Clustering Data, 1988

More than 25 years ago, Jain and Dubes stated the need for research directed
towards an understandable and well-founded cluster validation or, as we refer
to it, cluster evaluation: given a clustering of a dataset into subsets, do these
clusters correspond to evident groups within the dataset, or are they only based
on meaningless variations in the data? Clusterability takes this question one
step further: are there evident groups in the data at all?

The identification of groups of similar entities can be useful in many fields.
When facing data too big to analyze every entity (e.g., in biotechnology), clus-
ter analysis provides insights on a higher level. Connections between groups
can be of interest, for example in social network analysis. Detecting entities
that do not fit into groups is used for detecting outliers or malicious inputs.
Another variant is the tracking of groups over time, like in trend detection.

Cluster analysis casts categorization problems into a mathematical setting,
where the pairwise similarities of the entities (called object) represent the par-
ticular problem. In this setting, objects with high pairwise similarity among
each other and high dissimilarity to the other objects form evident groups.

However, as hinted in the first paragraph, a clustering algorithm might
also detect groups where there are none. Moreover, some popular clustering
algorithms like K-Means (MacQueen, 1967, chap. 3.6) always find the user-
specified number of groups (clusters), no matter the data. Therefore, cluster
evaluation is necessary in order to make sure not to base follow-up data analysis
on wrong assumptions. But what if evaluation suggests that the clustering
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CHAPTER 1. INTRODUCTION

Spaced Uniform Center-based

Figure 1.1: Data generated by different random processes („ 1 000 points each).
For the center-based data, the stars show the 22 uniformly sampled centers that were
used in the creation of the data.

algorithm found a set of clusters (called clustering) that does not correspond
to an evident categorization? It might be that, with respect to the data (1) the
method for cluster evaluation is unsuited to the task at hand, (2) the chosen
algorithm is, maybe due to unfortunate parameter settings, not able to find
the groups or (3) there are no evident groups at all.

Clusterability tries to identify or rule out case (3): are there evident groups
in the data? For example, consider clusters within the three datasets shown
in figure 1.1: for the spaced data, the most meaningful “clustering” separates
every object from all others; multiple clusterings of the uniform data seem
plausible, but all are somewhat arbitrary; the center-based data contain evi-
dent clusters, although a strict separation is still not trivial. The latter data
are clusterable, the others are not.

Clusterability analysis can guide a cluster analysis in different steps:

• choosing the clustering algorithm (e.g., the algorithm by Ostrovsky et al.
(2006) takes advantage of clusterable data)

• choosing the mathematical model of the data (e.g., Vinay et al., 2006)

• whether to cluster at all (e.g., for document retrieval, El-Hamdouchi and
Willett (1987) decide based on the clusterability of the data)

The focus of this thesis is the clusterability of data: can the existence of
evident groups be detected independently of clusterings? We put clusterability
into the context of cluster analysis in chapter 2. After that, chapter 3 discusses
ideas for the quantification of clusterability. These ideas are employed and
evaluated in a practical study of model selection on publicly available machine-
learning datasets in chapter 4. We then give concluding remarks in chapter 5.
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Chapter 2

Cluster Analysis

Cluster analysis is the task of discovering a sound categorization of a set of
objects in terms of the similarities between these objects. According to Jain
(2010), such a categorization can be used to (1) gain insight into the underlying
structure of the data, (2) identify a natural classification, and (3) summarize
or compress the data by representative and distinctive elements. A good in-
troduction to the topic is provided by Jain and Dubes (1988).

However, the object similarities (or dissimilarities) are only in few cases
intrinsic to the objects. Because of this, different sets of dissimilarities might
be suitable and the appropriate selection is likely to have a great influence on
the discovered categories. Despite the importance of this selection, it is less
studied in the general cluster analysis literature as it heavily depends on the
particular problem at hand (Hastie et al., 2009, chap. 14.3). Clusterability
analysis can provide guidance in this situation.

In order to allow for a mathematical treatment of cluster analysis, formal
definitions of the terms introduced so far are necessary.

Definition 2.1 (Object x, dataset X, ground-truth) Each object stands
for 1 entity, like a person, a document or a node in a computer network. A
dataset is denoted by X and contains |X| objects. If the referenced dataset is
clear from the context, we usually use n for the number of objects instead of
|X|. We use xi to denote the i-th object within X.

If there exists a natural categorization of the entities in the dataset, we re-
fer to such a categorization as the ground-truth of the dataset. For simplicity,
we assume that every dataset has exactly 1 ground-truth associated with it.

In the literature, the objects are also called inputs, features, patterns or in-
dependent variables. Cluster analysis requires the choice of a model which
represents the dataset through pairwise dissimilarities.
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CHAPTER 2. CLUSTER ANALYSIS

Definition 2.2 (Dissimilarity function ψ) A function ψ : X ˆ X ÞÑ R`

that is defined over the objects of a dataset X. The mandatory properties are
@xPX pψpx,xq “ 0q and @x,x1PX pψpx,x1q “ ψpx1,xqq (symmetry). An object x
is said to be more similar (less dissimilar) to x1 than to x2 if ψpx,x1q ă ψpx,x2q.

Note that, although it is not always the case in practice, we assume for sim-
plicity that the dissimilarities of all pairs of objects px,x1q P X ˆX are known.

Definition 2.3 (Model X) A representation X of objects of a dataset that
defines the pairwise dissimilarities of the objects in terms of some dissimilarity
function ψX. The model is said to be meaningful with respect to the dataset
if the ground-truth is reflected in the dissimilarities of ψX.

The vector model is a special case where objects are represented as vectors
in some space X and the dissimilarities are defined by a general dissimilarity
function ψ : X ˆ X ÞÑ R`. We employ vector models with X “ R2 and ψ
defined as the Euclidean distance for illustrations like in figure 1.1.

Definition 2.4 (Cluster analysis, clustering C, cluster C) A cluster C
is a non-empty subset of a dataset X. A clustering C of X is a partition of the
objects of X into a set of clusters. In this thesis, we require clusterings to be
complete (@xPXpDCPCpx P Cqq) and strict (@C‰C1PCpC XC 1 “ tuq). The number
of clusters in C is given by |C| and is referred to as k when C is clear from the
context. In the same situation, Ci denotes the i-th cluster in C. The task of
finding a suitable clustering of a dataset is called cluster analysis.

The base component in cluster analysis is the clustering algorithm. A cluster-
ing algorithm searches the space of possible clusterings of the dataset for an
optimal one. This search is based on the dissimilarities defined by a model of
the dataset.

Definition 2.5 (Clustering algorithm γ) A method for choosing a clus-
tering of a dataset X based on a model of X.

In order to investigate the behaviour of cluster analysis methods in a fully
controllable environment, synthetic models drawn from model distributions are
often used in theoretical analysis. The introduction of randomness through
distributions has the advantage over directly fixed models that the gained in-
sights are less likely to depend on specific and perhaps unnoticed circumstances
in the models.
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CHAPTER 2. CLUSTER ANALYSIS

Definition 2.6 (Model distribution X ) A model distribution X allows
to randomly sample models X of some model representation (e.g, vector mod-
els), denoted by X Ð X . It either specifies fixed values or distributions for
all variables that define models of this representation. These are the number
of objects, the dissimilarities between them and maybe representation specific
variables. The distributions are not necessarily independent of each other. In
all matters, models from model distributions are treated as if they stem from
a “phantom” dataset with the corresponding number of objects.

Models and clusterings are evaluated in order to make sure that they actually
contain or correspond to meaningful structure. Not every model contains clus-
tered structure or is suited for clustering. Furthermore, a clustering algorithm
only searches for a “best” clustering, which might still not be “good.” Methods
which are able to quantify the meaningfulness of a clustering seem thus nec-
essary. This task is known as cluster evaluation, while the model evaluation
problem of distinguishing models that contain clustered structure from those
that do not is called clusterability analysis.

Definition 2.7 (Cluster evaluation) The problem of assessing the accor-
dance of a clustering with the ground-truth or models of a dataset. If the
ground-truth is not known, a model replaces it as the reference. If the model
is meaningful, one can assume that both approaches lead to similar results.

Definition 2.8 (Clusterability analysis) The problem of assessing the
(relative) extent to which groups are evident in a model.

Next, we discuss cluster evaluation (section 2.1), clustering algorithms (sec-
tion 2.2) and model evaluation and selection (section 2.3). We show how clus-
terability fits into the context of model evaluation and is related to the other
parts of cluster analysis. We choose this order as we believe that it facilitates
the understanding of model selection if the reader is already familiar with the
consecutive steps. Since the task of model creation depends on the concrete
problem at hand, a discussion of it lies outside the scope of this thesis.

The implementation of cluster analysis in the form of the consecutive steps
of model creation, model evaluation, model clustering and cluster evaluation is
common in clustering theory. However, it should be mentioned that other ap-
proaches exist, too. For example, Law et al. (2004) propose an algorithm that
iteratively clusters the data (clustering) while it evaluates for each dimension
in the object space if it contains structure (model evaluation) and removes the
dimensions if appropriate (model selection). Nevertheless, we discuss the parts
of cluster analysis as separated steps for theoretical simplicity.
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CHAPTER 2. CLUSTER ANALYSIS

Examples for cohesiveness and separation
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Figure 2.1: The two clusterings on the left hand side are cohesive and the two at
the top are separated. The assignment of objects to the different clusters is depicted
by the different symbols (circles and crosses).

2.1 Cluster Evaluation
There are two common methodologies for assessing the quality of a clustering:
internal and external cluster evaluation. Internal evaluation is based on the
accordance of the clusters in the clustering with the dissimilarities in a model of
the dataset. External evaluation compares the clustering with the ground-truth
of the dataset, which is usually also represented in the form of a clustering.
Note that internal evaluation assumes that the model represents the dataset
while external evaluation relies on the knowledge of the ground-truth. We
focus in this thesis on the practical case in which the ground-truth is unknown
and thus on internal evaluation.

The clusters of a clustering that is in accordance with the dissimilarities
in a model are cohesive and separated from objects of other clusters. Since
mathematical definitions of cohesiveness and separation differ, a variety of
evaluation indices ν for assessing the agreement of C and X exist. We only
give a vague definition of both concepts that encompasses all the different
notions we are aware of. Intuitive examples that illustrate cohesiveness and
separation are shown in figure 2.1.

Definition 2.9 (Cohesiveness and separation) A cluster C is cohesive if
all of the x P C form a consistent whole. C is separated if the addition of other
objects x P XzC to it has a significant negative impact on its cohesiveness.
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CHAPTER 2. CLUSTER ANALYSIS

A common idea of “consistent whole” is that there exists a model distribution
that is likely to have generated the objects. For example, objects in a cluster
of a vector model can be approximately normal distributed for some center
and standard deviation. However, in order to measure the likelihood under
specific model distributions a set of possible “cluster-like” distributions has to
be specified. This choice both allows and forces considerations on problem-
specific properties of a cohesive cluster. Since likeliness comparisons between
distribution families are not trivial, usually only one family is employed (e.g.,
only normal distributions but with different centers and standard deviations).

In general, the more of the objects x P XzC have a negative impact on the
cohesiveness of the cluster C and the higher the impact, the more separated
is C. When the addition of any single x has already a significant impact, C
is very separated. Common notions of separation consider either the closest
object x P XzC or all the x P C 1 for the closest cluster C 1 ‰ C.

The notions of cohesiveness and separation of clusters are also helpful for
the assessment of the clusterability of a model. A clusterable model contains
cohesive and separated clusters of objects. A more detailed look into this
topic follows in chapter 3, when we discuss how clusterable structure can be
identified.

Internal cluster evaluation employs an evaluation index ν, which quanti-
fies the agreement between a clustering C and a model X. We define internal
evaluation indices and discuss their properties in section 2.1.1. All evalua-
tion indices can be used to rank clusterings by their agreement with a model.
Section 2.1.2 discusses the special case of evaluation indices which allow for a
direct interpretation of the agreement. We discuss the use of the ground-truth
for the evaluation of clusterings and models in section 2.1.3. Although not
relevant in practice, such methods can provide a baseline for model selection
purposes and can thus be used in the evaluation of clusterability indices as in
chapter 4.

2.1.1 Internal Evaluation Indices

While studies on the theoretical properties of clusterability indices are rare,
the properties of evaluation indices are well-studied in the literature. Since
clusterability and cluster evaluation are related, properties of evaluation in-
dices can also be relevant for clusterability indices. Specific sets of properties
are discussed, for example, by Wright (1973), Puzicha et al. (2000) or Ack-
erman and Ben-David (2008). Our discussion focuses on properties that are
indeed relevant with respect to clusterability. Based on this section, we analyze
specific clusterability properties in section 3.1.

7



CHAPTER 2. CLUSTER ANALYSIS

Definition 2.10 (Internal evaluation index ν) A permutation invariant
and consistent mapping from clusterings and models of some common dataset
to real valued scores. A clustering C is said to be in better accordance with a
model X than C 1 if it achieves a higher score, that is νpC,Xq ą νpC 1,Xq.

We use definitions of permutation invariance and consistency adapted from
Puzicha et al. (2000).1 Permutation invariance is necessary as the ordering
of objects and clusters is usually seen as arbitrary in cluster analysis. If the
dataset is ordered in some respect, for example timeline data, the order is
instead used as one of the factors which determine the dissimilarities of objects.
Consistency assures that an unambiguously more cohesive and more separated
clustering does not achieve a worse score.

Definition 2.11 (Permutation invariant evaluation index) The score
of the evaluation index ν does not depend on the order of objects or clusters.

More formally, let πr be a permutation of the set t1, . . . , ru and πrpiq its
i-th element. Furthermore, let x1 be the objects of a model X1, x be those
of X, C 1 be the clusters of a clustering C 1 and C be those of C. Then ν is
permutation invariant with respect to objects if, for all X,X1 and C

Dπnp@i,jPt1,...,nupψX1px1
πnpiq,x

1
πnpjqq “ ψXpxi,xjqqq ñ νpC,X1q “ νpC,Xq

It is permutation invariant with respect to clusters if, for all X, C and C 1

Dπk
p@xPX,iPt1,...,kupx P C 1

πkpiq ô x P Ciqq ñ νpC 1,Xq “ νpC,Xq
And it is permutation invariant if it is permutation invariant with respect to
both clusters and objects.

Definition 2.12 (Consistent evaluation index) Consistency guarantees
that an unambiguously more cohesive and separated clustering achieves at least
an equal evaluation score. A clustering C 1 is at least as cohesive/separated as
another clustering C of a model X if there exists a combined permutation of
objects and clusters, @iPt1,...,nu,jPt1,...,kupxi P C 1

j ô xπnpiq P Cπkpjqq, such that all
dissimilarities within clusters in C 1 are smaller or equal to their corresponding
dissimilarities in C and all corresponding dissimilarities between clusters are
larger or equal.

The formal relationship is actually easier to understand if differences in two
models are used and the clustering C kept constant. The result is equivalent.

1Consistency is actually called monotonicity by Puzicha et al. (2000). However, we deem
consistency—used by Ackerman and Ben-David (2008)—to be more intuitive.

8



CHAPTER 2. CLUSTER ANALYSIS

Let X be any model and let the model XΔC be defined by

ψXΔCpxi,xjq “
#
ψXpxi,xjq ` di,j if DCPCpxi P C ^ xj P Cq
ψXpxi,xjq ´ di,j else

Where @i,jPt1,...,nupdi,j “ dj,i ^ dj,i ě 0 ^ di,i “ 0q. Then ν is consistent if, for
all X, C and values di,j restricted as above,

νpC,Xq ě νpC,XΔCq

We continue with further properties that allow to reason about the behaviour
of evaluation indices and can be a criterion for choosing one. Especially when
the task at hand does not suggest a specific magnitude of within- and between-
cluster dissimilarities, scale invariant indices (Ackerman and Ben-David, 2008)
are preferable. In some cases, it can be advantageous to choose an evaluation
index that is robust with respect to outliers (Puzicha et al., 2000). For example,
measurement errors are a common cause of outliers.

Definition 2.13 (Scale invariant evaluation index) A uniform scaling
of all dissimilarities in the model has no effect on the score of an evaluation
index ν.

Formally, for all models X,X1 and all clusterings C,

DaPR

ˆ
@xi,xjPX

ˆ
ψXpxi,xjq “ ψX1pxi,xjq

a

˙˙
ñ νpC,Xq “ νpC,X1q

Note that, because of permutation invariance, the objects are actually not
required to be in the same order in X and X1.

Definition 2.14 (Strongly/weakly robust evaluation index) The effect
of single dissimilarity changes in X on the score of the evaluation index ν is
limited and tends towards 0 for sufficiently large datasets. Weak robustness
assures a limited effect when one single dissimilarity is changed, while strong
robustness assures the same for changes to dissimilarities of one object.

For any model X we define models XΔr,d by

ψXΔr,d
pxi,xjq “

$
’&
’%

ψXpxi,xjq ` dj if xi “ xr

ψXpxi,xjq ` di if xj “ xr

ψXpxi,xjq else

9



CHAPTER 2. CLUSTER ANALYSIS

Where @iPt1,...,nup|di| ď dq, dr “ 0 and additionally, in the case of only weakly
robust evaluation indices, Djp@iPt1,...,nupi ‰ j ñ di “ 0qq. Then, for all X,
clusterings C, di as restricted above and positive real values d and e,

Dn0PZ`pn ě n0 ñ p|νpC,Xq ´ νpC,XΔr,dq| ă eqq

While all internal evaluation indices can be used to decide on a “best” of a
set of clusterings, not all of them evaluate if a clustering fits the model in an
absolute manner.

Definition 2.15 (Absolute evaluation index) The score of a clustering
and a model can be interpreted independently of the number and sizes of
the clusters, the number of objects, the average dissimilarity of objects, and
additional model parameters (e.g., the dimensionality for vector models).

For some evaluation indices ν and models X0 drawn from a specific model
distribution X 0, the optimum score maxCpνpC,X0qq of a random model X0

has an analytically known expected value and variance. This allows for an
interpretation of any score with respect to the typical score of models drawn
from X 0. Usually, the model distribution chosen for X 0 is unlikely to generate
models that contain any clusters. Therefore, if a score νpC,Xq is relatively
high—as measured by the known expected value and variance—then it is likely
that the clustering C corresponds to evident groups in X. This is because such
a score is unlikely to be reachable at all for a model without any clusters. If
the complete distribution of the optimum score is known, a probability of the
score under X 0 can be calculated, which can then be used as an absolute
evaluation index (Jain and Dubes, 1988).

Definition 2.16 (Distribution normalized evaluation index) The score
can be interpreted with respect to the known expected value and variance of
the optimal score for models from some specific model distribution.

More formally, let optνpXq “ maxCpνpC,Xqq be the optimum achievable
score for clusterings of model X with respect to an evaluation index ν. Then,
ν is called distribution normalized or X 0-normalized if—for models drawn
from some fixed model distribution X 0—the expected value (eν) and standard
deviation (sν) of the optimal score are known.

eν “ EX0ÐX 0

“
optνpX0q‰

sν “
b
EX0ÐX 0

“poptνpX0q ´ eνq2‰

10



CHAPTER 2. CLUSTER ANALYSIS

However, depending on the task at hand, different model distributions X 0 may
be suitable. For example, if cluster evaluation is performed for clusterings of 2-
dimensional vector models with coordinates in the range r´1, 1s, the X 0 that
samples objects uniformly from the same 2-dimensional subspace is reasonable.
Moreover, in most cases the optimum score depends on the number of objects in
the models. Therefore, when interpreting a score of a model X, it is necessary
to make sure that eν and sν correspond to X0 Ð X 0 with the same number of
objects. Nevertheless, even if no analytically known values exist, it may still be
feasible to approximate eν and sν . This is further discussed in section 2.1.2. We
want to point out that this kind of normalization differs from being normalized
with respect to a random clustering, which is a property of some evaluation
indices for external cluster evaluation (Jain and Dubes, 1988).

The same idea of distribution normalization with respect to cluster-less
models exists for measuring the clusterability of a model X. In this line of
thought, for any distribution normalized evaluation index ν, all clusterable X
and reasonable C, we assume that νpC,Xq ą eν ` a ¨ sν for some relatively
large a. On the other hand, a value close to eν does not imply that X is not
clusterable, as a different clustering may achieve a high score.

Finally, we want to point out that all evaluation indices correspond to
some specific view of how cohesiveness and separation should be measured
and weighted. Therefore, the evaluation index should be chosen with care and
the concrete task in mind. As noted by Lange et al. (2004), some evaluation
indices are biased towards clusters of certain shapes or sizes. For example,
many evaluation indices, like the Gap-statistic (Tibshirani et al., 2001) and
the scatter separability criterion (cf. Dy and Brodley, 2000), use the notion
that all pairwise dissimilarities in a cohesive cluster should be small. In terms
of a vector model, this corresponds to spherical clusters. On the other hand,
some evaluation indices only measure either cohesiveness or separation and
are therefore unsuited for the comparison of C with different number of clus-
ters. These indices are said to have a refinement or coarsening preference
respectively (Ackerman and Ben-David, 2008). For example the compactness
index, νpC,Xq “ ř

x,x1PX ψXpx,x1q ´ řk
i“1

ř
x,x1PCi

ψXpx,x1q, increases even
when a cohesive cluster is split. Note that evaluation indices with a refine-
ment or coarsening preference are never absolute as the interpretation of the
score varies with the number of clusters.

2.1.2 Absolute Internal Evaluation

As the task of absolute internal cluster evaluation is to judge whether the
structure implied by a clustering C can be justified by the dissimilarities in a
model X, the employed evaluation index ν has to be absolute (def. 2.15). If ν

11



CHAPTER 2. CLUSTER ANALYSIS

is not, the score might not only depend on the agreement between C and X,
but also, for example, on the number of clusters, the sizes of the clusters or
the number of dimensions for a vector model. Therefore, an interpretation of
the score requires normalization—which essentially makes ν absolute. Some
methods for normalization with respect to a model distribution are introduced
below.

Absolute evaluation is especially interesting for our discussion as the nor-
malization of indices can be directly adopted for clusterability analysis. Sim-
ilar to cluster evaluation, most of the methods for the assessment of model
clusterability are suited for a comparison of different models, but not for an
absolute assessment. For some indices, the comparable models are even further
restricted, for example to contain the same number of objects. Fortunately,
the methods we detail below for interpreting evaluation index scores apply to
clusterability scores, as well. Furthermore, because clusterability does not rely
on clusterings, the application of these methods is more straightforward.

Moreover, absolute cluster evaluation is related to clusterability, as specific
results of one task imply results in the other one. If the model X is not
clusterable and therefore contains no clustered structure, νpC,Xq will be low
for all reasonable clusterings C. On the other hand, if there exists a C for which
νpC,Xq is high, X has to be clusterable. However, the implications do not hold
in the other direction. Note that the requirement of an absolute index allows
for the specification of meaningful values for “low” and “high.”

One method for interpreting the score of a clustering C is to use the prob-
ability that, for models X0 from a cluster-less model distribution X 0, there
exists no clustering of X0 that achieves a score as high as νpC,Xq. By using
this idea, it is possible to create an absolute variant νa of ν:

νapC,Xq “ PrX0ÐX 0

“
maxC1

`
ν

`
C 1,X0

˘˘ ă νpC,Xq‰
(2.1)

However, distributions of evaluation indices are rarely known, especially since
they often depend on the number of objects, the number of clusters, the sizes
of the clusters, and in some cases also model specific parameters. For ex-
ample, while there has been some work on employing the distribution of the
log-likelihood ratio, νlr, McLachlan (1987) notes that the corresponding theo-
rem by Wilks (1938) can not be applied in cluster analysis due to a violated
regularity condition. Therefore, it is in general necessary to use an empiri-
cal approximation by a sampling distribution instead (Jain and Dubes, 1988,
chap. 4.4). One idea for such an empirical method is to use a sufficiently large
number (r) of random models X0

i Ð X 0:

νâpC,Xq “ 1

r
¨

rÿ

i“1

1
`
νpγpX0

i q,X0
i q ă νpC,Xq˘

(2.2)
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Where 1peq is 1 if e is true and 0 otherwise. Since the calculation of the optimal
clustering (cf. equation 2.1) is in general not feasible, νâ uses a clustering algo-
rithm γ for further approximation. Unfortunately, due to this approximation,
νâ tends to be above the correct probability. In order to limit this effect, it
is necessary to evaluate multiple clusterings and thus to use different γ. This
increases the chances of finding an optimal or close-to-optimal clustering.

A similar approach is used in the Gap-statistic by Tibshirani et al. (2001)
in order to determine the number of clusters in a model. However, since this
task requires only the relative evaluation of clusterings with different num-
ber of clusters but on the same model, they do not need to calculate abso-
lute probabilities. Instead, they subtract the expected value from the score:
νgappC,Xq “ νpC,Xq ´ 1

r
¨ řr

i“1 νpγ|C|pX0
i q,X0

i q where γl only considers clus-
terings with l clusters. Then, Tibshirani et al. choose the number of clusters
by considering νgappγlpXq,Xq for different l and the variance of the empirical
distribution over X0

i . Note that they only consider the expected value and the
variance of the empirical distribution instead of relying on distribution per-
centiles like equation 2.2. This is advantageous, as reliable estimations of the
distribution tails usually require a much larger r.

Although the Gap-statistic is not absolute, it is similar in spirit to a second
method for creating an absolute evaluation index. This method calculates the
standard score (or z-score) of the observed value:

νzpC,Xq “ νpC,Xq ´ µ̂pνpγ pX0
1q ,X0

1q , ¨ ¨ ¨ , νpγ pX0
rq ,X0

rqq
σ̂pνpγ pX0

1q ,X0
1q , ¨ ¨ ¨ , νpγ pX0

rq ,X0
rqq (2.3)

Where µ̂ and σ̂ calculate the empirical average and standard deviation respec-
tively. Under the assumption that the νpγpX0

i q,X0
i q are normally distributed,

νz can be directly translated into a probability under the hypothesis that X is
sampled from X 0. Again, X 0 should be a cluster-less model distribution and
thus the probability should be low for a good fit of C and X. Like equation 2.2,
this evaluation index depends on the employed clustering algorithm and the
use of different γ might be necessary in order to remove some bias from it.

Experiment 2.1 (L̄σ̂
1 -distance normalization) In order to facilitate the

understanding of absolute index interpretation, we give an example related
to clusterability. Given a vector model, we want to decide whether it was
sampled from a normal distribution X 1

N (not clusterable) or a uniform mixture
of 2 normal distributions, X 2

N (clusterable, standard deviation σ “ 1).
For this experiment, the centers of the distributions in X 2

N have a distance
of 5 and lie on the x1 axis. 1 000 models X2

i with n objects in m dimensions are
sampled from X 2

N . The empirical averages and standard deviations for each
dimension (µ̂pX2q, σ̂pX2q) of the 1 000¨n objects x P X2 are used as parameters

13
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for X 1
N . In the same manner, 1 000 models X1

i with n objects are sampled
from X 1

N . One example with 64 objects in 2 dimensions is shown in figure 2.2
for each case (a,b). For the inner evaluation index (cf. ν in equation 2.2), the
average variance-weighted L1-distance2 to the center is used:

L̄σ̂
1 pXq “ 1

n

nÿ

i“1

invpσ̂pXqqT ¨ pxi ´ µ̂pXqq

Where invpvqT is the row-vector p1{v1, . . . , 1{vmq and vi is i-th coordinate of v.
Since we do not want to measure differences in variances but in structure,
we use the weighted average in order to remove the effect of the different
variances in the different dimensions. Note that no clustering is employed in
this experiment as we want to measure clusterability instead.

The absolute evaluation index is then given by the empirical complemen-
tary cumulative distribution function ccdf1pdq “ Pri

“
L̄σ̂
1 pX1

i q ě d
‰
. We show

this function together with cdf2pdq “ Pri
“
L̄σ̂
1 pX2

i q ď d
‰

for 64 objects in 2 di-
mensions in figure 2.2 (c). The figure also shows the decision threshold: if
L̄σ̂
1 pXq is smaller than this threshold we decide for X 1

N and else for X 2
N .

The misclassification risk of this decision, that is, the fraction of cases in
which a wrong decision is made, is shown in figure 2.2 (d). It can be seen
that the risk grows with dimensionality. This is not surprising, as only one of
the dimensions contains the information that allows to distinguish the cases.
Since L̄σ̂

1 calculates a sum over all dimensions, the one important dimension
has less and less impact on the result. For example, consider increasing the
distance of the Gaussian centers in the 256 objects in 64 dimensions case from 5
to 100. Although this makes the clusters extremely salient with regard to one
dimension, the misclassification risk drops still merely from 0.26 to 0.17. We
also want to point out that more objects can lessen this effect and that the risk
does not change much if n{m is kept constant. We revisit L̄σ̂

1 in section 3.2.

2.1.3 External Evaluation

In external cluster evaluation, a clustering C is compared to the ground-
truth Cgt of the dataset (def. 2.1) by means of an evaluation index νe. In
the evaluation, C achieves the highest score νepC, Cgtq if it is identical to Cgt
and a lower score the more it differs from Cgt. Note that, since knowledge of
the ground-truth eliminates the need of cluster analysis, external evaluation is
usually limited to showcases of clustering algorithms or models. Similarly, we
use external knowledge to showcase clusterability indices in chapter 4. A good
discussion of external indices is provided by Hubert and Arabie (1985).

2Also called “Manhattan distance”
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Figure 2.2: 64 objects sampled from (a) 1 Gaussian or (b) 2 Gaussians with ap-
proximately the same overall average and standard deviation. The figures also show
the centers (µ̂pXq) as cross junctions and the doubled standard deviations (2 ¨ σ̂pXq)
as cross-beam lengths. (c) Empirical (complementary) cumulative density functions
of L̄σ̂

1 for 64 objects in 2 dimensions (ccdf1, cdf2) and the decision threshold for clas-
sification as X 1

N or X 2
N as vertical line. (d) Misclassification risks by the number of

objects and dimensions.

In the same manner, the meaningfulness of a model X with respect to its
dataset can be evaluated through the use of external knowledge about a natural
clustering of the dataset, Cgt. For the moment, let us define an accordant pair
of model and clustering as one for which the value of an (absolute) evaluation
index ν is above a threshold t. Then the model is meaningful if νpCgt,Xq ą t.
This is related to clusterability, which asks if there is any evident partition of
objects into clusters for the model, « DCpνpC,Xq ą tq.3 These ideas can be
connected by the assumption that νpCgt,Xq « maxCpνpC,Xqq, which heavily
depends on the notion of a “good” cluster as defined by ν.

3We use « as we actually exclude the clusterings that contain only 1 cluster or only
clusters of size 1 from this consideration.
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In a second methodology for external model evaluation, the internal index
is replaced by an external index νe and a clustering algorithm γ. Therefore,
the model is referred to as meaningful if νepγpXq, Cgtq ą t. Since clustering
algorithms are optimization algorithms that do not necessarily converge to
the global optimum, it makes sense to lower the dependency on γ. In or-
der to achieve this, one can use a suitable set of clustering algorithms and
DγpνepγpXq, Cgtq ą tq instead. This uses the assumption that, for meaningful
models, Cgt is similar to the optimal clustering with respect to γ. We define
optimum clusterings in definition 2.17 below.

2.2 Clustering Algorithms
A clustering algorithm γ maps a model X of a dataset X to a clustering C
of X (cf. def. 2.5). Most cluster algorithms can be adjusted to specific tasks
through algorithm parameters. Some algorithms also depend on randomness.
In our notation, γ includes a specific parameter setting and, if required, a
source of random but fixed inputs. Thus, the mapping of γ is deterministic
even if the “base” algorithm contains randomness. In accordance with Jain
and Dubes (1988, chap. 3.3), the number of possible clusterings for a dataset
with n objects is:

number of clusteringspnq “
nÿ

k“1

1

k!
¨

kÿ

i“1

p´1qk´i ¨
ˆ
k

i

˙
¨ in

For as few as 15 objects, this already gives more than 109 possible clusterings.
Since the number of clusterings increases exponentially with n, an exhaus-

tive scan of all clusterings for the optimal Copt is infeasible even for small
datasets. Therefore, all clustering algorithms are search algorithms that use
certain assumptions to make the search feasible. Most clustering algorithms
search by iteratively improving a clustering (its “state”) until a local optimum
is found. If the algorithm considers changing its state from one clustering to
another one, these 2 clusterings are called neighbors. The preference of the
algorithm when selecting a clustering from the neighbors of the current state
can be described as a partial order relation.

Definition 2.17 (Clustering relation ďγ, (local) optimum clustering)
The clustering relation is a partial order on clusterings C. Therefore, for all C, C 1

and C2: C ďγ C (reflexivity), pC ďγ C 1 ^ C 1 ďγ Cq ñ pC “ C 1q (antisymmetry)
and pC ďγ C 1 ^ C 1 ďγ C2q ñ pC ďγ C2q (transitivity). If C ďγ C 1, then the
clustering algorithm prefers C 1 over C.
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An optimum clustering Copt is defined by @CpC ďγ Copt _ �pCopt ďγ Cqq.
That is, it is either preferred over any other clustering or incomparable to it.

A local optimum clustering Ĉopt is defined in terms of neighboring cluster-
ings: @CpC ďγ Ĉopt _ �pneighborγpĈopt, Cqqq,

While some clustering relations can be interpreted as maximizing the likelihood
of the model under assumptions of model distributions (Kamvar et al., 2002),
others rely on a “variety of ad hoc rules and tricks” (Jain et al., 2004) and lack
a statistical justification. A discussion of clustering algorithm taxonomies is
provided by Jain et al. (2004).

Some of the clustering relations ďγ that clustering algorithms γ use to
choose a clustering can be defined by means of evaluation indices ν. With the
use of ν, ďν can be defined as pC ďν C 1q « pνpC,Xq ď νpC 1,Xqq.4 However,
because clustering algorithms restrict the search for an optimum clustering,
the clustering relation does not have to be total. For example, since K-Means
(MacQueen, 1967, chap. 3.6) only considers C with some fixed number of clus-
ters, ďK-Means does not need to be able to compare C with different number of
clusters. In fact, while the employed clustering relation would theoretically be
able to do so, it has a strong preference for C that contain a higher number of
clusters and would therefore be unsuited for this task.

Since a variety of clustering algorithms without statistical justification ex-
ist, it is difficult to relate clustering algorithms in general to the concept of
clusterability. Although there are already few results in this regard, it is still
an open field for future work. Special clustering algorithms γ can be designed
to rely on the result that a model X contains a highly clustered structure.
For example, knowledge on the clusterability of a model can allow to find a
clustering close to the global optimum clustering Copt with high probability in
a feasible amount of time. Furthermore, it can be possible to provide error
bounds in the form of Pr rνpγpXq,Xq ă e ¨ νpCopt,Xqs ă b with e, b P r0, 1s
depending on the clusterability of X (Ostrovsky et al., 2006). Unfortunately,
the time required to check if X is clusterable with respect to the definition by
Ostrovsky et al. grows exponentially with the number of objects. It is therefore
infeasible to employ it in practice.

A possible implication of a clusterable model to a clustering algorithm
might be an increased stability. Consider the case that the objects or their
dissimilarities are drawn identically and independently from some distribu-
tion with multiple clusters to form the model X. We now consider randomly
sampled subsets of X, yielding the sub-models X1, . . . ,Xr. A clustering algo-
rithm γ is said to be stable with respect to X if the clusterings γpX1q, . . . , γpXrq

4This is not exactly equal since some additional method is required to fulfill antisymmetry
(cf. def. 2.17) when νpC,Xq “ νpC 1,Xq and C ‰ C1
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are similar (Lange et al., 2004). Note that the clusterings can not be compared
directly, since the models contain different objects. Lange et al. propose the
use of classification methods for an indirect comparison. They show that sta-
bility can be useful in the selection of clustering algorithm parameters,5 as
parameters that are suitable for a model are assumed to lead to more stable
results. A statistical justification for this assumption is provided by Shamir
and Tishby (2007). By using this line of argument, we assume that a cluster-
able model has a high difference in stability between suitable and unsuitable
parameter settings. However, in order to limit the scope of our discussion, we
leave an analysis of this conjecture to future publications.

2.3 Model Evaluation
Cluster analysis is performed in two steps: modeling and clustering. In the last
sections we have discussed clustering, which is a general method of identifying
cohesive and separated clusters in a model that defines pairwise dissimilari-
ties between single objects. Modeling, also called the measurement problem
(Wright, 1973), is the task of assigning a dissimilarity to each pair of objects
such that clustering can take place. Although the modeling of a dataset is
more important for the success of a cluster analysis than the clustering, less
literature exists on this topic since it relies to a large extent on the problem
at hand and can thus only scarcely be examined in a general setting (Hastie
et al., 2009, chap. 14.3).

The model can be defined using various different mathematical structures.
The structure should be chosen depending on the problem at hand. Examples
are (1) graphs where the vertices represent objects x and the edges are weighted
by their dissimilarities;6 (2) matrices where an entry in the i-th row and j-th
column is the dissimilarity between xi and xj; or (3) a vector space X in which
the x are represented by vectors and their dissimilarity is calculated by means
of a function ψ : X ˆ X ÞÑ R`. In practice, such vector models are often
defined by measurements of certain attributes on the objects. Each attribute
corresponds to one dimensions of X and the coordinate of each x is determined
by the measured value therein. Most publications that consider the vector
model require that all attributes have a ratio domain, that is X “ Rm for some
m P N and a semantical scaling is performed by multiplying attribute values
with a scalar.7 We also assume ratio attributes in this thesis. This simplifies

5Their discussion is actually limited to the target number of clusters but can be expanded
to other parameters, as well

6The graph model is usually employed when not all pairwise dissimilarities are known,
which we excluded from our discussion for simplicity.

7For example, there is a “twice as hot” on the Kelvin scale, but not on the Celsius scale.
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our considerations as identical object vectors and therefore dissimilarities of 0
are unlikely for measured ratio attributes. As can be seen in section 3.2, some
measures of clusterability are undefined when dissimilarities of 0 are possible.

An alternative to the use of a dissimilarity function is the similarity func-
tion, which—although quite common—will not be considered in this thesis.
Opposite to dissimilarity functions, similarity functions use 0 for lowest and
`8 for maximum similarity. Although conversions are easily possible, they
should be chosen carefully and with the concrete situation in mind.

This thesis continues with an analysis on desired model properties and
how a model can be changed in order to improve it. Section 2.3.1 addresses
diverse aspects of model quality, which includes clusterability. After that, sec-
tion 2.3.2 discusses methods that modify models in different ways. The gen-
erality of these methods allows for a domain-independent discussion of them.
Nevertheless, it is the problem at hand that has to justify their application.

2.3.1 Aspects of Model Quality

When given the choice between multiple models of a dataset, which one should
be chosen? The model should be meaningful with respect to the dataset and
contain as little noise and outlier objects as possible. Models with a low com-
plexity are preferable. In order to receive a cohesive and separated clustering,
the model should be clusterable.

A model of a dataset has to be motivated by the dataset and the problem
at hand. What is a meaningful measure of dissimilarity? In case of a vector
model, what are reasonable attributes? How should they be weighted? Which
measurements on the objects are important and which might mislead clustering
algorithms? Formalizing answers to these questions and choosing the model
appropriately is crucial for a successful cluster analysis. After all, a clustering
has only a meaning when the model is also meaningful to the dataset.

In practice, models X often contain noise and outlier objects that can have
a negative impact on the search for clusterings. Although the removal of noise
and outliers is a classical pre-processing task in statistics and thus part of
model selection, there are also some clustering algorithms that cover it.

Definition 2.18 (Outlier) An object that has, likely due to some error, a
high dissimilarity to practically every other object in the dataset. A typical
origin of outliers are measurements errors.

If X contains outliers, the clustering algorithm might be misled in its local
search when attempting to group the outliers with other objects. An example
of an algorithm that identifies outliers is the possibilistic clustering algorithm
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by Krishnapuram and Keller (1993). The function assigns each object a prob-
ability that it belongs to a certain cluster. If this probability is near zero for
all clusters,8 the object is seen as an outlier.

Definition 2.19 (Noise object) Although it might be relatively close to
even multiple clusters, adding the object to any of them would reduce their
cohesiveness significantly.

The term “noise” stems from statistics where it refers to variation in the data
that is not explained by a mathematical formalization. When clusters are seen
as objects that are sampled from a common distribution, noise objects are thus
unlikely with respect to each of the distributions in the clustering.

The declaration of some objects as noise, which then demands a separate
treatment, is often accepted in order to keep the clustering cohesive. In de-
tail, clustering algorithms might be misled by noise objects to merge actually
cohesive clusters in order to incorporate the noise objects. Different strate-
gies for a treatment of noise objects are listed in section 2.3.2. An example
of a clustering algorithm that identifies noise objects and ignores them in the
determination of the clusters is DBScan (Ester et al., 1996).

Experiment 2.2 (Minimum spanning forests and noise) We want to
illustrate one of the effects of noise objects: clusters that are separated can
lose their separation under noise.

A model X that contains 200 objects from R2 is sampled from a mixture of
two multivariate normal distributions. The centers of the distributions have a
distance of 5 standard deviations (fig. 2.3, left). In order to demonstrate the
separation of the two clusters, we add the shortest edges of the minimum span-
ning tree of X such that the clusters are still not linked (center). Since these
are nearly all edges, the clusters have a good though not perfect separation.

We then add 200 “noise objects” uniformly over the window spanned by
the objects in X. The use of uniformly distributed noise is common in the
literature (e.g., Aggarwal, 2001b or Houle et al., 2010). After this step, the
clusters have lost with respect to their separation (fig. 2.3, right).

This experiment demonstrates the “chaining” effect, which occurs especially
for clustering algorithms that define clusters by trees over the edge graph (as in
fig. 2.3). Because of this effect, noise objects can have a large influence on such
clustering algorithms. Therefore, these algorithms often include a method for
noise reduction (like DBScan, Ester et al., 1996).

8The authors use an extended definition of a clustering that allows violation of strictness
(objects can be part of multiple clusters) and completeness (objects can be part of no cluster).
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2 Gaussians Minimum Spanning Forest Additional Noise

Figure 2.3: (Left) 200 objects generated from two Gaussians. (Center) 195 shortest
edges of the minimum spanning tree. (Right) Additional 200 uniformly distributed
“noise objects” marked as “x” and 365 shortest edges. The formerly separated clusters
are now linked by noise.

Simple models are preferable in order to minimize uninformative statistical
variation and reduce runtime and storage requirements of clustering algorithms
and models. In the case of vector models, we say that a model becomes more
complex with a higher number of attributes, as this weakens the constraints
on the dissimilarities between objects. This corresponds to an increase in the
degrees of freedom of the objects. However, sometimes it is possible to project
the objects into spaces of lower dimensionality without much change in the
dissimilarities due to dependencies among the attributes. For example, if both
attributes of a 2-dimensional model are directly linearly related, all objects
lie on a (1-dimensional) straight line. This refers to the concept of intrinsic
dimensionality (e.g., cf. Levina and Bickel, 2004).

Some definitions of intrinsic dimensionality require only the dissimilarities
of object pairs, which allows to apply the discussion of vector model complexity
to models in general. Although it is unclear how to interpret this complexity,
there is some evidence that it can be seen as a measure of the clusterability of
a model (cf. section 3.2.3). An explanation of this evidence is that clusterable
models also contain dependencies among the attributes. We show that, for
some measures of intrinsic dimensionality, a low dimensionality is estimated
because more objects lie at a “border” in clusterable models.

High-dimensional models bear the risk that the clustered structure that
exists in some attributes is overshadowed by the statistical variation in un-
informative ones (cf. experiment 2.1 or Houle et al., 2010). Sometimes, this
effect can be diminished by an appropriate choice of the dissimilarity mea-
sure (Aggarwal, 2001a; Aggarwal et al., 2001). However, Francois et al. (2007)
show that such a choice is not trivial and the optimal selection depends on the
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model. We want to note that, although there are proofs of the inexpressive-
ness of dissimilarities for certain high-dimensional object distributions (Beyer
et al., 1999), these do not apply to clustered data (Bennett et al., 1999).

The selection of a more clusterable model facilitates the detection of evident
groups by the clustering algorithm. The corresponding assessment of models
is called clusterability (cf. def. 2.8). According to Jain and Dubes (1988),
clusterability9 is “the problem of deciding whether data exhibit a predisposi-
tion to cluster into natural groups without identifying the groups themselves.”
Ackerman and Ben-David (2009) define it simply as “a measure of clustered
structure.” Opposite to Jain and Dubes, we follow Ackerman and Ben-David
to allow the identification of groups during clusterability analysis. Other pub-
lications relate the question if there are clusters to how many there are (e.g.,
Havens et al., 2009). In this sense, if one has determined that a model contains
multiple clusters (only 1 or n clusters), one might also reason that it is (not)
clusterable. As we detail in chapter 3, not every proposed measure of cluster-
ability follows this reasoning. Moreover, the question if a model that contains
n ´ 1 clusters should still be seen as clusterable remains open. In our terms,
a model is clusterable if it has a structure of mutually separated and cohesive
parts (cf. def. 3.1, page 26). Clusterability is the focus of chapter 3, where it
is discussed in more detail. With regard to model quality, we want to point
out that noise—either in the form of noise objects or irrelevant attributes—is
intuitively also likely to have a negative impact on the clusterability of models.

2.3.2 Model Transformations

In order to improve a model, several general methods exist that change the
dissimilarities of object pairs or remove objects from the model. One well-
studied subtopic is the embedding of a model into a low-dimensional vector
space. The following list of model transformations is incomplete and is also
missing transformations that are relevant to specific problems only.

The embedding of a model in a vector space can be useful to gain further
insight on the data, reduce model complexity or visualize it. Several methods
for embedding have been proposed in the literature. Some minimize the dif-
ferences in all pairwise dissimilarities (e.g, Sammon, 1969) while others focus
on the preservation of the dissimilarities between close objects (e.g, Roweis
and Saul, 2000). Some of these methods, however, require also a vector model
as input and can thus only be used for dimensionality and complexity reduc-
tion. The transformation of a general model into a vector model, on the other
hand, can provide insight with regard to model complexity. Such a transfor-
mation corresponds to modeling the data via a set of “latent” attributes, which

9Clusterability is called “clustering tendency” by Jain and Dubes.
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have to be motivated with regard to the problem at hand. For example, topic
models try to identify latent topics in text document collections and model
each document as a mixture of these (e.g., Blei et al., 2003). As can be seen,
this approach requires a careful distinction between the meaning of latent at-
tributes (here topics) and clusters (e.g., categories of news articles). Finally,
an embedding into low-dimensional spaces can be helpful for the visualization
of the data if the embedding error is still acceptable.

A special form of dimensionality reduction is the orthogonal projection,
which simply removes some attributes from the model. Such methods usually
score either (1) single dimensions or (2) sets of dimensions by their usefulness
for the problem at hand. We also want to note that clustering algorithms exist
that score attributes (e.g., Law et al., 2004) or find a separate subspace of
relevant attributes for each cluster (e.g., Agrawal et al., 1998 or Aggarwal and
Yu, 2000).

If a score has been calculated for each dimension, dimensions are removed
that achieve only a small score. Sometimes the eigenvectors of the model are
used instead of the original attributes (Aggarwal, 2001b). Aggarwal notes that
the eigenvalues corresponding to the eigenvectors are not a good measure for
usefulness in the general case. The eigenvalues correlate with the amount of
variation along the eigenvectors. However, also data distributed uniformly
along the eigenvector can have a high variance. He therefore suggests to use
instead the so-called coherence probability, a measure of correlation between
the dimension and the object coordinates. This is similar to a clusterability
analysis with respect to each dimension and choosing the most clusterable
attributes.

If the measure of attribute usefulness, on the other hand, evaluates sets of
attributes, then different sets are evaluated and the one with the highest score
is chosen. As the cost of an exhaustive search grows exponentially with the
number of dimensions, search algorithms are employed in order to find locally
optimal sets. For example, Dash et al. (1997) propose to select dimensions
such that the spread of the object dissimilarities is high. They argue that in
the clustered case dissimilarities are either low (same cluster) or high (different
clusters) but rarely in between.

Another type of model transformations adapts the dissimilarities to addi-
tional knowledge. We especially want to point out the method of pairwise
instance-based constraints proposed by Wagstaff and Cardie (2000). This
method allows the incorporation of constraints in the form of “these two objects
must be in the same cluster” and “these two can not be in the same cluster.”
It is believed in the cluster analysis community that these constraints pro-
vide a promising approach to represent domain knowledge and user input in a
human-understandable and general way (Jain, 2010). In the last years, several
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Model Number of neighbors At least 20 neighbors

Figure 2.4: (Left) The noisy model of experiment 2.2. Also shows the neighborhood
for one object as a circle. (Center) Objects with radii proportional to the number
of neighbors. (Right) The 247 objects with at least 20 neighbors. Among these are
166 of the 200 original objects. Thus, a good part of the unwanted noise has been
removed without removing too many non-noise objects.

methods have been developed to adapt clustering algorithms and models to
such constraints. Some of the model adaption techniques work on general mod-
els (e.g., Klein et al., 2002), while others require vector models (e.g., Bar-Hillel
et al., 2005). Some methods do not enforce the constraints, but instead ad-
just the dissimilarities to them. However, it should be noted that even correct
constraints with respect to the ground-truth can lead to a decreased cluster-
ing performance when they are incoherent within the metric space (Davidson
et al., 2006). The effect of such misleading constraints on the clusterability of
the model remains an interesting open question for future work.

A kind of model transformation which is not directly related to object
dissimilarities is the removal of outliers and noise objects before the use of the
clustering algorithm. Depending on the concrete problem, the removed objects
can then after the clustering either be added to the nearest cluster, be assigned
to a cluster on their own or simply be ignored in subsequent analysis. A well-
known approach for the removal of noise objects is the one incorporated into
the DBScan algorithm (Ester et al., 1996): ignore objects that have less than
a certain number of “neighbors,” which are other objects with a dissimilarity
below a specific threshold. The successful application of this approach to
the noisy data of experiment 2.2 is shown in figure 2.4. A similar approach
by Steinbach et al. (2003) uses the number of common objects in the two
lists of the r nearest neighbors of two objects as a meta-similarity function.
With regard to this similarity, noise objects become outliers as they tend to
share only few neighbors with other objects. While this method automatically
adjusts itself to the dissimilarities in the model, the choice of r remains.
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Uniform model At least 35 neighbors At least 40 neighbors

Figure 2.5: (Left) 400 objects from a uniform distribution and size of neighborhoods
(circle). (Center) The 105 objects with at least 35 neighbors. (Right) The 50 objects
with at least 40 neighbors. The central and right plots show evident clusters that
are not present in the original data.

However, we want to point out that, with respect to clusterability, a not
carefully motivated model transformation can lead to seemingly good but in-
correct results. Figure 2.5 shows the removal of “noise objects” in the case of
uniform data (compare to fig. 2.4). As shown, “clustered structure” that ran-
domly exists in the model is highlighted by the removal and forms separated
and cohesive clusters. Although the “cleaned” model is indeed clusterable, it
is meaningless with respect to the original (uniform) data. This shows the im-
portance of a mindful restriction of model transformations in model selection.

Summary Cluster analysis can be divided into 2 steps: modeling and clus-
tering. For both steps, a unique best solution is not known in general. Instead,
it is often recommended to consider multiple suitable models/clusterings, then
evaluate which is “best,” and proceed with this. Clusterability can be used
to decide on a “best” model, as a more clusterable model facilitates the suc-
cessive clustering. Clusterability is also related to the well-established cluster
evaluation and measures from the latter can be adapted for the former. We
continue with a discussion of such clusterability indices. Some are based on
evaluation indices, some on other ideas. The relation of the clusterability and
the meaningfulness of models is empirically explored in chapter 4 with the use
of external knowledge (cf. section 2.1.3).
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Chapter 3

Measuring Clusterability

How can the clusterability of a model be measured? The question of cluster-
ability is a question of model structure: is the model structured as separated
object clusters and how evident is this structure?

Definition 3.1 (Clusterable model) A model which has a dominant struc-
ture of mutually separated parts that are cohesive groups of objects.

For Stein and Niggemann (1999), “structure defines the organization of parts
as dominated by the general character of the whole.” The general character
of a clusterable model is that of separated object clusters. For illustration,
consider again the introductory examples in figure 1.1. The uniform model
contains no structure: the objects are independent of each other. The spaced
model contains no clustered structure: the parts, although separated, are the
single objects and not clusters. Indeed, Jain and Dubes (1988) pose the task
of clusterability analysis as the classification of a model as either random, reg-
ularly spaced or clustered. We want to point out that this is not the way
structure is intuitively perceived by humans. Instead, we see the “random
structure” in the uniform model and the lack of distinguishing features in the
spaced model (Köppen, 2000).

The notion of an overall separated structure of cohesive parts is also found
in many internal evaluation indices. The well-known index by Dunn (1974)
is the quotient of the minimum dissimilarity between clusters divided by the
maximum dissimilarity within any cluster (cf. section 3.2.1). Thus, models in
which the separation within clusters is dominated by the separation between
clusters achieve a high score. Similarly, the expected density index (Stein
et al., 2003) compares the dissimilarities within the clusters with an expecta-
tion based on the overall dissimilarities of the model. In a good clustering, the
cohesiveness of the parts dominates the cohesiveness of the whole.
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We continue with an experiment that further illustrates how cohesiveness
and separation are related to clusterability. After that, section 3.1 discusses
clusterability indices on a general level and introduces properties that char-
acterize them. Then, various different approaches to the identification and
quantification of clustered structure are the topic of section 3.2. The analysis
of some representative clusterability indices uses the properties defined in sec-
tion 3.1. For a comparison of these indices, we then also apply them to the
models of the following experiment.

Experiment 3.1 (Cohesiveness and separation in clusterability) For
this experiment, we use models of 180 objects sampled from a uniform distribu-
tion over an R2 square with an area of 1. This model distribution is denoted by
X 0

‘ . Apart from such models X0
i , we also generate models X1,s

i , X4,s
i , X9,s

i and
Xn,s

i from the distributions X 1,s
‘ , X 4,s

‘ , X 9,s
‘ and X n,s

‘ with distribution pa-
rameter s. Examples from each distribution and the corresponding constraints
are shown in figure 3.1. The parameter s controls the size of the squares from
which objects are sampled for X 1,s

‘ , X 4,s
‘ and X 9,s

‘ and a sequential inhibi-
tion algorithm prevents the sampling of “close” objects for models from X n,s

‘ .
For X n,s

‘ , we sample 2 000 objects uniformly. Then we iteratively select one
of the objects with the fewest other objects within a distance ds “ 2 ¨ rs and
remove these other objects. This assures that the disks of radius rs centered at
the objects do not overlap (cf. fig. 3.1 bottom right). Additionally, we assure
that all such disks lie within the sampling region of X 0

‘ . When only selected
objects remain, we randomly select 180 of these. If fewer than 180 remain, we
restart the process. The choice of rs “ ap2 ¨ s ´ s2q{p180 ¨ πq is such that the
“constrained area”—the combined area of the disks in the case of X n,s

‘ —has
an equal size for the 4 parametric distributions.

The parameter s controls the deviation from the purley uniform model
distribution. If s “ 0, all distributions are identical to X 0

‘ . For higher values
of s, the sampled models tend to get more cohesive (X 1,s

‘ ), more separated
(X n,s

‘ ) or both (X 4,s
‘ , X 9,s

‘ ).
For an assessment of model structure we use |mstt|, which denotes the

number of edges in the minimum spanning tree of the model that are smaller
or equal to a threshold t. Intuitively, cohesive clusters result in a large |mstt|
for small t (“small scale structure”) while separated clusters lead to a lower
value for relatively large t (“overall structure”).

The cohesiveness or separation of structures at different t can be compared
in terms of the cumulative distribution functions of |mstt|. We sampled 100 000
models X0

i and 1 000 models Xk,s for each combination of the two parameters
k P t1, 4, 9, nu and s P t0.1, 0.2, 0.3u. The minimum distance of two objects
in the spaced models X n,s

‘ is therefore about 0.037, 0.050 and 0.060 respec-
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Uniform (X0) Subregion (X1,s)
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s

s
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2
¨s

{3
s{3

2 ¨ s{3s{3
Figure 3.1: Examples from the 5 distributions of experiment 3.1 (s “ 0.2). The
constrained regions are shown as enclosed by thin lines.

tively. The two empirical (complementary) cumulative distribution functions
cdftpvq “ Pri r|msttpX0

i q| ď vs and ccdftpvq “ Pri r|msttpX0
i q| ě vs give the

cumulative empirical probability of observing a |mstt| as small/large as v in
models drawn from X 0

‘ . Then we define the average separation and cohesive-
ness indices, sik,sptq and cik,sptq as the empirical probability of observing a less
separated/cohesive model X0

i , averaged over the models Xk,s
i :

sik,sptq“1´
1 000ÿ

i“1

cdft

´ˇ̌
ˇmstt

´
Xk,s

i

¯ˇ̌
ˇ
¯

1 000
cik,sptq“1´

1 000ÿ

i“1

ccdft

´ˇ̌
ˇmstt

´
Xk,s

i

¯ˇ̌
ˇ
¯

1 000

In order to provide a line for comparison, we use si0 and ci0, which are de-
fined in the same manner as above but with respect to X0

i . The uniform X 0
‘

corresponds to a balanced case, where cohesiveness and separation are in an
equilibrium for all relevant values of t. Then, if sik,sptq is greater than si0ptq, we
say that the separation in the Xk,s

i dominates its cohesiveness at t. It should be
noted that |msttpXq| P t0, . . . , 179u. Due to this finite and rather small range,
it is usually not the case that sik,sptq ` cik,sptq “ 1. For the same reason, si0
and ci0 are generally below 0.5 and tend towards 0 the more the probability
mass of |mstt| concentrates on its mode. This is the case for either very small
(|msttpXq| Ñ 0) and large values of t (|msttpXq| Ñ 179).
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Figure 3.2: Average cohesiveness and separation index of the subregion and spaced
(ci{si1,s, ci{sin,s; top) as well as the clustered models (ci{si4,s, ci{si9,s; bottom) com-
pared for different values of s and t. Values above the uniform case (si0{ci0) corre-
spond to a more cohesive (ci)/separated (si) structure at t.

Figure 3.2 shows the score for the models from the different model distri-
butions with respect to the average separation and cohesiveness indices.

The subregion and spaced models represent the not clusterable case (fig. 3.2,
top). Unsurprisingly, the subregion models are on average at least as and typ-
ically more cohesive than the uniform baseline. The spaced models, on the
other hand, have an unusually separated small scale structure and turn cohe-
sive for t somewhat above 2rs. This is because the objects fill the space more
evenly and it is thus less likely that separated clusters occur.

In contrast, we expect a clusterable model to be relatively separated for
large t (“dominant structure of mutually separated parts”) and relatively co-
hesive for small t (“parts of cohesive subsets”). This complies with the results
shown for models from X 4,s

‘ and X 9,s
‘ (fig. 3.2, bottom). However, there is

also a visible difference in the graphs for the 4-cluster and 9-cluster models.
Especially for s “ 0.1, the 9-cluster models are relatively separated already on
a smaller scale but overall to a lesser extent. We attribute this to the facts that
more objects lie at the boundary of a cluster in the case of 9-cluster models
and the constrained areas that separate the clusters are thinner.
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3.1 Properties of Clusterability Indices
Clusterability indices quantify the clusterability of models. Most of the defini-
tions related to internal evaluation indices that are introduced in section 2.1.1
can be directly adapted to clusterability indices. Furthermore, clusterability
indices have to be permutation invariant for the same reason that applies to
evaluation indices: the ordering of the dataset is assumed to be arbitrary in
general cluster analysis. All clusterability indices we introduce in section 3.2
are indeed permutation invariant.

Definition 3.2 (Clusterability index η) A permutation invariant map-
ping from the space of models to real valued scores. A higher score corresponds
to a more clusterable model.

Definition 3.3 (Permutation invariant clusterability index) The order
of the objects within a model has no effect on its score.

Formally, let πr be a permutation of the set t1, . . . , ru and πrpiq its i-th
element. Furthermore, let x1 be the objects of a model X1, x be those of X.
Then η is permutation invariant if, for all models X and X1

Dπnp@i,jPt1,...,nupψX1px1
πnpiq,x

1
πnpjqq “ ψXpxi,xjqqq ñ ηpX1q “ ηpXq

Consistency is defined for evaluation indices in terms of the effects of straight-
forward changes in the model, which can not be directly adapted to cluster-
ability. In detail, for evaluation indices, the sole decrease of a dissimilarity
within a cluster or the sole increase of a dissimilarity between clusters must
not decrease the evaluation score (cf. def. 2.12). Since there are no fixed clus-
ters in clusterability evaluation, the formalization of a straightforward change
is difficult. For instance, consider the models shown in figure 3.3. Any rank-
ing of the 4 models from least to most clusterable is debatable. In fact, each
of the 5 different clusterability indices we analyze in section 3.2 produces a
different ranking. The detailed scores are shown in figure 3.4. On the other
hand, a ranking with respect to a 4-cluster clustering that corresponds to the
4 multivariate normal distributions from which the objects were sampled1 is
much more straightforward.

Although, due to the scope of it, we have to leave the formalization of
consistency to future work, we want to stress its importance for further research
on and with clusterability. Consistency can be a guideline in the design of

1In the model with dv “ 0, there are actually 2 pairs of 2 identical distributions each.
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Figure 3.3: Which model is the most clusterable? Models with 180 objects sampled
from multiple multivariate normal distributions. The distances between the distri-
bution centers (stars) are specified in terms of σ, the shared standard deviation of
the distributions.

new indices. Moreover, all of the clusterability indices we detail in this thesis
are based on different assumptions of how clusterability can be measured. A
formalized consistency property could help justify or falsify these assumptions.
It might be especially interesting with respect to a ranking of models with
1 or n evident clusters. The examples of clusterability indices we detail in
section 3.2 score cohesive 1-cluster models as about as clusterable as a uniform
model—at least, if no additional knowledge about the generation process is
provided. On the other hand, spaced models are most times ranked even
below a uniform model. The details are provided in section 3.2. Nevertheless,
this evidence for a ranking can only support a sound formalization based on
theory, but it can not replace it.

Identically to definition 2.13, scale invariance assures that the overall dis-
similarities between the objects are of no importance for the clusterability score
of the model. Scale invariance allows the application and interpretation of a
clusterability index without knowledge about the scale of the dissimilarities
in the model. For example, for scale invariant indices the score is the same
whether dissimilarities are measured in meters or centimeters. Note that this
only applies to the scale of the dissimilarities and not to the scale of the single
attributes of a vector model. Nevertheless, when the actual scale is known
and thus appropriate dissimilarity thresholds for “cohesive” and “separated”
are known, scale invariance might not be desired.

Definition 3.4 (Scale invariant clusterability index) A uniform scaling
of all dissimilarities in the model has no effect on the score of the clusterability
index η.

Formally, η is said to be scale invariant if, for all models X and X1,

DaPR

ˆ
@xi,xj

ˆ
ψXpxi,xjq “ ψX1pxi,xjq

a

˙˙
ñ ηpXq “ ηpX1q
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Figure 3.4: Average scores of the 5 different clusterability indices which are analyzed
in section 3.2 on different normal mixture distributions (setup as in fig. 3.3; average
over 1 000 models for each value dv P t0, 2σ, 4σ, . . . , 20σu). Scores are linearly scaled
such that the average score on both models from 1 normal distribution (ηN , not shown
in fig. 3.3) and on models from 2 distributions (η0σ) are on the same level.

Robustness essentially guards against outliers (cf. def. 2.18), which can have
a large unwanted effect on the score for not robust η. However, if a robust η
is chosen since outliers are possible, the employed clustering algorithm and
evaluation index should be robust, as well.

Definition 3.5 (Strongly/weakly robust clusterability index) As the
number of objects in a model X grows, the maximal effect of single dissim-
ilarity changes in X on its score as measured by the clusterability index η
tends towards 0. Weak robustness assures a limited effect when one single
dissimilarity is changed, while strong robustness assures the same for changes
to dissimilarities of one object.

A clusterability index η is robust if, for all models X, di and models XΔr,d

as defined in definition 2.14 and positive real values d and e,

Dn0PZ`pn ě n0 ñ p|ηpXq ´ ηpXΔr,dq| ă eqq
Where for only weak robust clusterability indices the difference of X and XΔr,d

is restricted to one single dissimilarity.

Baseline models facilitate the interpretation of clusterability scores and can
be employed, as detailed for evaluation indices in section 2.1.2, to create abso-
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lute variants of clusterability indices. As it is the case for cluster evaluation,
cluster-less model distributions can provide a baseline for unstructured mod-
els (cf. section 2.1.1). This includes, for example, models with independent
dissimilarities from a uniform distribution or object vectors drawn uniformly
from a hypersphere. Distribution normalization is much more straightforward
for clusterability indices than for evaluation indices as there is no dependence
on the optimum clustering (cf. def. 2.16).

Definition 3.6 (Distribution normalized clusterability index) The ex-
pected clusterability score and the standard deviation of scores of models from
some specific model distribution are known.

Formally, η is called distribution normalized or X 0-normalized if, for mod-
els drawn from some fixed model distribution X 0, the expected value (eη) and
standard deviation (sη) of the score are known.

eη “ EX0ÐX 0

“
ηpX0q‰

sη “
a
EX0ÐX 0 rηpX0q ´ eνq2s

Definition 3.7 (Absolute clusterability index) The score of a model can
be interpreted without knowledge on the number of objects in the model or
additional model parameters (e.g., model dimensionality in the case of vector
models).

Similar to evaluation indices, clusterability indices represent certain as-
sumptions on clusterable models. This can take the form of preferences as
section 2.1.1 details for evaluation indices. However, with regard to our defi-
nition of clusterable models (def. 3.1), the most cohesive and most separated
models are not clusterable at all. These models contain 1 very compact cluster
and n spaced “clusters” respectively. Nevertheless, also measures of structure
that do not cover these special cases can be of interest in a clusterability anal-
ysis. For example, a combination of a pure measure of cohesiveness and a pure
measure of separation, like in experiment 3.1, might be able to provide deeper
insight into the clusterability of a model.

3.2 Indications of Structure
How can clusterable models be distinguished from not-clusterable ones? As
clusterability is an analysis of the structure of a model, measures of structure
allow for a comparison of models with respect to their clusterability. This

33



CHAPTER 3. MEASURING CLUSTERABILITY

allows for a ranking of different models of the same dataset. If the measure
of structure, the clusterability index, is absolute, models with a score above
some index-dependent threshold can be seen as clusterable.

This section introduces some clusterability indices based on related pub-
lications. We categorize the indices into three groups based on their basic
approach to the measurement of clusterability. Section 3.2.1 details cluster-
ability indices that evaluate clusterings. In section 3.2.2, we present tests for
unstructured/random models. Indices based on the spread or concentration
of dissimilarities within the model are analyzed in section 3.2.3. Not all of
the indices are actually published as clusterability indices. Instead, some of
them stem from related topics and are adjusted in order to form an index for
clusterability analysis.

The simple indices we introduced for experiment 2.1 and 3.1 have some
weaknesses that limit their use in practice. For experiment 2.1, one can use

ηL̄σ̂
1
pXq “ 1 ´ ccdf1pL̄σ̂

1 pXqq “ PrX0ÐX 1
N

“
L̄σ̂
1 pX0q ă L̄σ̂

1 pXq‰

First and foremost, L̄σ̂
1 is a measure of spread and not of structure. Spread and

structure do not necessarily correlate in general like they do in the experiment.
Moreover, a common disadvantage in the use of the empirical cumulative dis-
tribution function is the reliance on the distribution tails, which need a large
amount of samples (here: models) for their estimation. Furthermore, already
moderately clusterable models achieve a perfect score. For example, of the
1 000 models drawn from X 2

N with 256 objects in 64 dimensions, already 17%
achieve a score at or above 0.99 although the empirical risk is still at 0.26.
While this can suffice for a classification as in experiment 2.1, it is a drawback
in an optimization setting like model selection (cf. section 2.3).

The reliance of ηL̄σ̂
1

and similar clusterability indices on distribution tails,
as well as an upper limit on the score, can be alleviated when the measure-
ment on the baseline models has a known distribution. For example, we noted
from visual inspection that |msttpX0q| (X0 Ð X 0

‘ , cf. experiment 3.1) approx-
imately follows a discretized normal distribution for 0.03 ď t ď 0.09. For these
cases, ci and si could be redefined to employ the z-score (as in equation 2.3) in-
stead of the cumulative distribution (equation 2.2). Tests on the equality of an
empirical and a theoretical distribution, like Kolmogorov-Smirnov (Smirnov,
1948), can justify the approximation. A drawback of η that make use of ci
and si can be their reliance on the minimum spanning tree, which makes them
susceptible to the chaining effect (cf. experiment 2.2).

For a comparison of the clusterability indices, we show for each of the ones
we detail below the average result on the models of experiment 3.1. Each of the
clusterability indices is applied to 1 000 models from the model distributions
X 1,s

‘ , X 4,s
‘ , X 9,s

‘ and X n,s
‘ for s P t0.1, 0.2, 0.3u each. Moreover, the indices
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are also applied to 1 000 models from X 0
‘ , which corresponds to s “ 0 for all

of the above model types. The respective graphs show the mean score over the
1 000 models. The variance of these scores is shown by shaded regions. These
regions have a width of 2 standard deviations and are centered at the averages.

3.2.1 Salient Clusters

As detailed in section 2.1, clusterability is related to cluster evaluation analysis
and evaluation indices can be applied in clusterability, as well. Specifically,
the score ηνpXq “ maxCpνpC,Xqq can be a measurement of the clusterability
of the model X. If ν is absolute, then ην is absolute, too. Other schemes of
clusterability indices that make use of evaluation indices exist, as well. For ex-
ample, one can search for different optimum clusterings under different strong
and mutually exclusive assumptions on the structure of X. If one clustering
fits X far better than the other clusterings, this gives an indication of the type
and quality of the structure of X. As a disadvantage of these approaches, it
is often not feasible to find the optimum clustering and clustering algorithms
have to be used for approximation. Next, we introduce one example for each
of these schemes.

Dunn index family As an example for the direct use of an evaluation index
for clusterability assessment, we choose the well-known index by Dunn (1974).
The Dunn index family (Stein et al., 2003) is characterized as

νDpC,Xq “ minC‰C1PCpΨbpC,C 1qq
maxCPCpΨwpCqq (3.1)

where Ψb is a measure of dissimilarity between two clusters, while Ψw is a mea-
sure of the dissimilarity within one cluster. The corresponding clusterability
index is then

ηDpXq “ max
C

pνDpC,Xqq

As measures of between- and within-cluster dissimilarity we use the smallest
and largest edge length:

ΨbpC,C 1q “ min
xPC,x1PC1ψpx,x1q ΨwpCq “ max

e PmstpCq
}e} (3.2)

where mstpCq are the edges of the minimum spanning tree of the objects in C
and }e} is the length of the edge e. In this configuration νD is also called worst
pair ratio (Ackerman and Ben-David, 2009). It should be noted that νD is
undefined when there is only one cluster or all objects are in a cluster on their
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own. This is a weakness of other common evaluation indices, as well (Tibshi-
rani et al., 2001). Because of this, νD is not able to distinguish unstructured
and spaced models. Additionally, as we show below, ηD relies completely on
the minimum spanning tree of X, which makes it sensitive to noise objects (cf.
experiment 2.2). Furthermore, outliers also have a large effect on the score as
they cause unusually large edges in the minimum spanning tree. While this is
not a problem in the noise and outlier-free setting of experiment 3.1, it can be
a disadvantage in practice (cf. chap. 4).

Our choice of Ψb and Ψw allows for a feasible exact computation of ηD.
First we note that the optimum clustering of a model X with respect to νD,
Copt “ argmaxCpνDpC,Xqq,2 is defined by a threshold t on the edge lengths: all
edges less or equal to t are within a cluster and all edges above t are between
clusters. This can be proven by contradiction. Let tw “ maxCPCpΨwpCqq and
tb “ minC‰C1PCpΨbpC,C 1qq. We assume that Copt is not defined by a single
threshold t. Thus, there exists at least one edge that is smaller than tw and
links two objects of different clusters. In this case tb ă tw. We can therefore
merge all clusters that are connected by edges smaller than tw. This does not
change the denominator in equation 3.1 but increases the numerator and thus
the overall score. Therefore, the original clustering has not been optimal. It
is then easy to see that tw is the length of the largest edge of the minimum
spanning tree of X that is smaller than t. Correspondingly, tb is the length of
the smallest edge of the tree that is larger than t. Because of this, we get

ηDpXq “ max
kPt2,...,n´1u

tmstpXqun´k`1

tmstpXqun´k

(3.3)

where tmstpXqui is the i-th smallest edge in the minimum spanning tree of X.
We have formatted the equation such that k is the number of clusters in
the corresponding clustering. The computational cost is dominated by the
calculation of the minimum spanning tree of a fully connected undirected graph
with positive weights, which can be done in Opn2q by the well-known algorithm
by Prim (1957).

The clusterability index ηD is absolute and scale invariant. The score can
be directly interpreted as the best possible ratio of between- and within-cluster
dissimilarities (def. 3.7). It is scale invariant (def. 3.4) as a uniform scaling also
directly scales the edge lengths of the minimum spanning tree, which leaves
the ratio in equation 3.3 constant. As the effect of a change of the dissimilarity
that corresponds to tmstpXqun´k is not limited by the number of objects, it is
not robust (def. 3.5). Furthermore, it is not X 0

‘ -normalized (def. 3.6).

2This corresponds to the definition of optimum clustering with respect to a total cluster-
ing relation based on νD (def. 2.17).
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Figure 3.5: (Left) Average ηD-score of models from the model distributions of
experiment 3.1. The shaded regions cover the area from 1 standard deviation below
to 1 standard deviation above the averages. (Right) The same but when considering
only clusterings up to 13 clusters.

The average ηD-score of the models of experiment 3.1 are shown in the
left plot of figure 3.5. The large shaded region corresponds to a very large
standard deviation for models of the clustered and uniform model distributions.
This stems from models in which two objects are very close to each other in
comparison to all other dissimilarities. In these cases, tmstpXqu2{tmstpXqu1,
which corresponds to a clustering with n ´ 1 clusters, is very high. Note
that the score for the spaced models has a low standard deviation since this
effect can not occur in this case. In order to compensate for this effect, we
also show the average score when only considering values k ď 13 in the right
plot.3 In this case, the subregion and spaced models achieve similar results.
Because ηD is scale invariant, the subregion and complete uniform models can
not be distinguished. The structure in the models with 9 clusters leads only
to a small improvement in the score. In fact, the small gaps of size s{3 within
these models actually decrease the score, as they lead to a wider range of edge
lengths between the natural clusters and thus to a smaller ratio νD. This is
counter-intuitive for a measure of clusterability.

Evident number of clusters The index by Ostrovsky et al. (2006) com-
pares the quality of optimal clusterings for different number of clusters. The
idea is that if one of the optimum clusterings fits the model X far better than
the other clusterings, then X has a salient structure with the corresponding
number of clusters. For the assessment of clustering quality they use RSS, the

3We use 13 as it is about
?
n, which we deem to be a plausible number of clusters.
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residual sum of squares:

RSSpC,Xq “
kÿ

i“1

ÿ

xPCi

`}x ´ ci}22
˘

ci “ 1

|Ci|
ÿ

xPCi

x (3.4)

Where ci is the centroid of cluster Ci and }x}2 is the Frobenius- or L2-norm
of x, which is often referred to as the length of the vector x. Thus, RSS
requires a vector model and prefers spherical clusters. Note that RSS is not a
evaluation index since a larger value indicates a worse clustering quality. The
clusterability for a specific number of clusters, k, is given by Λk:

ΛkpXq “ 1 ´ ΔkpXq
Δk´1pXq ΔkpXq “ min

Ck
RSS

`
Ck,X

˘
(3.5)

Where Ck is a clustering with exactly k clusters. The clusterability index ηΔ
is then defined as:

ηΔpXq “ max
kPt2,...,kmaxu

ΛkpXq

We want to point out that, for all models X, ΔkpXq ď Δk´1pXq where an
equality requires that all dissimilarities within clusters in the optimal cluster-
ing of Δk´1 are 0. Also, since for all models ΔnpXq “ 0, which is the best
possible value, the range of values which are considered for k has to be lim-
ited. Moreover, when k « n, the index suffers heavily from missing robustness
similar to ηD. For our experiments we use kmax “ 10.

Unfortunately, an exact computation of ΔkpXq is only feasible in one di-
mension or if k is either 1 or about n. We thus employ the clustering algorithm
K-Means (MacQueen, 1967, chap. 3.6), γkm, in our experiments. K-Means is
known to optimize RSS for a selectable number of clusters. Moreover, it is
an algorithm that converges to a local minimum of RSS (cf. local optimum
clustering, def. 2.17). It does so by iteratively assigning the x to the nearest
of the k centroids ci and then recomputing ci as defined in equation 3.4. The
local minimum the algorithm converges to depends on the initial position of
the centroids. We select the centroids by random from the x. In order to im-
prove the approximation of the optimum clustering, we repeat K-Means with
different initial centroid sets: γk,i

km for i P t1, . . . , 1 000u where i is a seed for the
pseudo-random number generation used in the selection of the initial centroids
and k is the number of clusters to find. ΔkpXq in equation 3.5 is thus replaced
by:

Δ̂kpXq “ min
i

RSS
´
γk,i
kmpXq,X

¯
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Out of the properties we introduced in section 3.1, ηΔ only fulfills scale
invariance and the mandatory permutation invariance. A uniform scaling of
the dissimilarities by a increases the RSS by a2. This factor, however, is
canceled out by the ratio in equation 3.5 (cf. def. 3.4). Since the interpretation
of Λk depends also on k and the dimensionality of the vector space, ηΔ is not
absolute (def. 3.7). When Δk´1pXq is relatively small, even a small absolute
change in Δk´1pXq due to a change in the dissimilarities can have a large
effect on the score. Therefore, it is not (strong) robust (def. 3.5). We omit the
formal proof and only briefly sketch the counterexample that shows the lack
of robustness. Consider two very tightly packed clusters with sufficiently large
distance from each other and one outlier. The optimal clustering contains three
clusters: the two actual clusters and the outlier. For the clustering with two
clusters, the outlier is added to one of the clusters. We demand the clusters
to be packed so tight that the dissimilarity of the outlier to the centroid is
the major factor in the RSS. Note that in order to achieve this, the actual
dissimilarity of the outlier does not have to be large in an absolute sense.
Instead, it suffices that the clusters are really tight. As long as the clusters are
tight enough, the actual number of objects is unimportant and does therefore
not limit the change in the score. This, however, is required for robustness.
As a clusterability index that requires vector models, weak robustness as such
can not be applied since a single dissimilarity can not be changed without a
change in others.

The average scores on the models of experiment 3.1 are shown in figure 3.6.
The left plot shows the average score for the different model distributions.
Models from the spaced distribution achieve, on average, a lower score than
the uniform models. Since no score can be calculated for k “ 1 and k “ n,
the corresponding clusterings that would actually fit the model well are not
considered. Thus, the score is relatively low in both cases. While the score
for models from X 4,s

‘ increases appropriately with a higher separation s, this
occurs only to a much smaller extend for X9,s Ð X 9,s

‘ . We show the average
Λk for models from X 9,s

‘ in the right plot. First, a sudden decrease in the
score from 4 to 5 clusters can be noticed. We assume that this stems from
the rectangular setup with 4 corners. Second, although there is a noticeable
increase in the score for k “ 9 with an increased separation s, the score for 2 or
3 clusters is still higher. In order to rule out the possibility that the 9 clusters
are not detected by K-Means, we confirmed that they are indeed detected.
This incidence of a high relative but small absolute score is a symptom of the
missing absoluteness of the Λk and therefore of ηΔ. In detail, the low overall
score despite the large increase at k “ 9 is a result of the direct comparison of
Λk for different k, although the interpretation of them depends, among others,
on k.
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Figure 3.6: (Left) Average ηΔ-score of models from the model distributions of
experiment 3.1. (Right) Λk for models from X 9,s

‘ . The shaded regions cover the
area from 1 standard deviation below to 1 standard deviation above the averages.
Please note the different scaling of the two plots.

Ostrovsky et al. introduce a polynomial time approximation scheme to the
problem of finding a near-optimal clustering for ηΔ-clusterable models. In their
proofs, they use different lower bounds on ηΔ, which can be seen as a threshold
above which a model is deemed clusterable. One such bound in the analysis of
a part of their scheme is p1´ηΔpXqq{pp ¨ηΔpXqq ď 1{14 for p ď 0.1 (Ostrovsky
et al., 2006, section 4.1.2), which can be weakened to ηΔpXq ě 0.999. In order
to put this threshold into context, we sampled 1 000 models from X 4,0.9, for
which the objects are concentrated on only 1% of the total area. The highest
achieved score on these models is still below 0.997. We thus argue that this
result of Ostrovsky et al. is unlikely to be relevant in practice.

3.2.2 Tests for the Lack of Structure

As clusterable models are structured, not clusterable models are lacking struc-
ture, which might be easier to identify. Unstructured models are sometimes
referred to as random (Jain and Dubes, 1988). However, even structured model
distributions are random in some sense and we thus refrain from the usage of
“random” in this context in order to avoid ambiguity. The clusterability in-
dices we detail in this section perform statistical tests under the assumption
of a certain unstructured model. The actual score of the indices is a statistic
that is measured on the model. If the score is unusually high, the test is said
to have failed and the hypothesis that the model is unstructured is rejected.
Equivalently, the model is said to be clusterable.

Statistical tests for unstructured models can be categorized based on the
model type they apply to. Next, we list some methods that only require the
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graph representation of a model, although they assume that the graph is fully
connected. The usual unstructured model that is tested for in this case is
that of independent and uniformly distributed pairwise dissimilarities. On the
other hand, a significant portion of the tests stem from fields in which the
objects lie in a vector space. Jain and Dubes list tests for applications in
astronomy, ecology, forestry and geography. In these cases, the unstructured
hypothesis is that of a uniform distribution over a certain area, which is called
the sampling window of the model distribution. We will discuss this kind of
tests after the tests on graphs and detail one such test that is based on the
statistic by Hopkins and Skellam (1954).

Unstructured Graphs

These methods are similar in spirit to si and ci in experiment 3.1, although
it should be noted that experiment 3.1 tests for a lack of spatial structure.
Indeed, one of the methods mentioned by Jain and Dubes (1988) is the number
of connected components of the model X at a certain threshold t, which is just
n´ |msttpXq|. The expected number of components for a model with uniform
pairwise dissimilarities can be found for some values of n and t in the tables
by Ling and Killough (1976). The appropriate values can be subtracted from
the score such that unstructured models achieve, on average, a score of 0. This
makes the clusterability index distribution normalized.

Another possible statistic is the number of edges that are necessary to con-
nect every object in the model when they are added from shortest to longest
edge. This is equal to the number of edges that are shorter or of equal length
than the longest edge in the minimum spanning tree. For clusterable models,
it is expected that it takes a relatively large amount of the edges to connect
all objects. Since the objects reside in separated clusters, it is expected that
the edges within the clusters are added before the edges between clusters are
considered. As some of the between-cluster edges are also part of the min-
imum spanning tree, this increases this statistic. In comparison to si, this
removes the dependency on a parameter (t) and makes the clusterability in-
dex scale invariant. The score can again be distribution normalized by using
tables by Ling and Killough. They also note that the exact distribution of the
statistic can be obtained, which could then be used to interpret the score. By
incorporating this distribution in the clusterability index, it can thus become
absolute.

Lack of Spatial Structure

Spatial statistics assume a uniform distribution of objects over a sampling
window.
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Definition 3.8 (Sampling window (of a model distribution of vector
models)) The subspace of the vector space that contains all objects that
could possibly be sampled from the distribution.

For example, for distributions X 1,0.2
‘ , X 4,0.2

‘ and X 9,0.2
‘ (cf. experiment 3.1),

the sampling window consists of the 1, 4 and 9 squares respectively that are
shown in the corresponding plots in figure 3.1. The sampling window that is
used to determine the clusterability of the models, on the other hand, is the
whole square that is used by X 0

‘ .
The reliance on a sampling window can be a disadvantage for these clus-

terability indices. If the sampling window is not known, it has to be estimated
in order to allow the usage of the clusterability index. Estimations are usually
either the smallest axis-aligned hyperrectangle that contains all objects or the
convex hull (Jain and Dubes, 1988). However, as demonstrated by several au-
thors, including Jain and Dubes, a wrong sampling window can easily mislead
the clusterability index that relies on it. In detail, models can be deemed clus-
terable under one sampling window but not under another one. For example,
models X Ð X 1,0.3

‘ are clusterable with respect to sampling window of X 0
‘ ,

but not with respect to the sampling window of X 1,0.3
‘ . Therefore, a different

type of clusterability indices may be more adequate when the sampling window
is not known.

Tests on spatial structure usually focus on the relative density of subre-
gions of the sampling window S. A dense region contains, with respect to
its volume, relatively many objects as compared to other subregions of S. A
clusterable model has dense and sparse regions, while a non-clusterable model
is usually evenly distributed. Note that from this intuition, one can see that
these methods do also categorize models with only one cluster as clusterable
as long as the cluster is dense. Tests on the density rely, for instance, on the
number of objects in the most dense subregion or on the distribution of object
counts in the different cells of an m-dimensional grid. More detailed examples
are provided by Jain and Dubes (1988).

One statistic that relies on nearest neighbor dissimilarities is proposed by
Cox and Lewis (1976). In the computation of the statistic, r objects xS

i are
sampled from the sampling window S. Let ψ1pxS

i q be the dissimilarity to the
nearest (i.e., least dissimilar) object in the actual model X, xX

i , and let ψ1pxX
i q

be the dissimilarity of this object to its nearest neighbor. Examples for these
distances are shown in the left plot of figure 3.7. The statistic then considers
the ratio ψ1pxS

i q{ψ1pxX
i q. The details can be found in the publication by Cox

and Lewis, who normalize the statistic to be uniform in the range r0, 1s when
the objects are uniformly sampled from a plane. An adaption to vector spaces
with more than 2 dimensions is provided by Panayirci and Dubes (1983). In-
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Cox and Lewis Hopkins and Skellam

Figure 3.7: Examples of sampled pairwise dissimilarities that are used for the
statistics by Cox and Lewis (1976, left) and Hopkins and Skellam (1954, right).
Original objects are depicted as disks and objects sampled uniformly from the entire
shown space as squares. The measured dissimilarities are shown as lines. The lines
for dissimilarities between sampled objects and their nearest neighbor are dashed.

tuitively, clusterable models contain regions that are free of objects. If objects
xS
i are sampled from such a region, then ψ1pxS

i q ą ψ1pxX
i q. In this case, one

can see ψ1pxS
i q as the distance to the nearest cluster and ψ1pxX

i q as a distance
within a cluster. If ψ1pxS

i q ą ψ1pxX
i q for most i, X tends to be clusterable.

Next, we detail the related statistic by Hopkins and Skellam (1954). Unlike
the statistic by Cox and Lewis, it does not use the dissimilarity ψ1pxX

i q. Instead
it employs the dissimilarity of a randomly chosen object from X to its nearest
neighbor (fig. 3.7, right). This difference can be important for data collection.
For example in forestry, which is the application for which the Cox and Lewis
statistic has been proposed, it is far easier to determine the nearest tree than
to choose a tree randomly from a forest. The latter would be necessary for
the statistic by Hopkins and Skellam. A comparison of these two and other
similar statistics is provided by Panayirci and Dubes (1983). They note that
a test based on the statistic by Cox and Lewis seems to perform worse than a
test based on the one by Hopkins and Skellam if the clusters are not perfectly
separated.

Hopkins and Skellam statistic The statistic Hr by Hopkins and Skellam
(1954) is defined by

HrpX,XS, πq “
řr

i“1

`
ψ1

`
xS
i

˘˘m
řr

i“1 pψ1 pxS
i qqm ` řr

i“1

`
ψ1

`
xπpiq

˘˘m

where XS is an additional model that contains r objects xS
i that are drawn

uniformly from the sampling window S, π is a permutation of the integer
numbers t1, . . . , nu, ψ1pxq is the dissimilarity to the least dissimilar x P X,
n is the number of x P X and m is the dimensionality of the x and the xS.
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A random permutation π is employed in order to select r different x P X
at random by xπpiq. Examples of the dissimilarities used by the statistic are
shown in figure 3.7. Note that the statistic is bounded to r0, 1s and that the
expected value of Hr if X is also drawn uniformly from S is 0.5. The latter can
be deduced from the fact that E

“řr
i“1

`
ψ1

`
xS
i

˘˘m‰ “ E
“řr

i“1

`
ψ1

`
xπpiq

˘˘m‰

in this case.
Note that the statistic can be undefined for finite sampling windows when

the model contains identical object vectors, as this can result in a division 0{0.
The corresponding clusterability index, ηHS , is then defined through the

randomized choice of XS and π. In detail, we denote by X S,r the uniform
model distribution over the sampling window S and by Πn a uniform distribu-
tion over all permutations of t1, . . . , nu. A total of l models and permutations
are drawn from the corresponding distributions: XS

i Ð X S,r and πi Ð Πn.
We define the clusterability index by

ηHSpXq “ 1

l

lÿ

i“1

HrpX,XS
i , πiq

The average over l applications is performed in order to decrease the variance
of the statistic over different samples from the same model.

If X is sampled uniformly from the sampling window S and the used
dissimilarities are independent of each other, Hr follows a beta-distribution
with shape parameters of r, βr,r (Panayirci and Dubes, 1983). According
to Panayirci and Dubes, the assumption of independence is reasonable for
r ă n{10. We certify this by measurement of the statistic on 1 000 models
X0 Ð X 0

‘ , where X 0
‘ is the uniform model distribution over the entire sam-

pling window (cf. experiment 3.1). We symbolize the sampling window of this
distribution in our notation by a filled square, S “ �. Since the models contain
180 objects each, we use r “ 17 ă 180{10. The theoretical distribution density
as well as the empirical distribution in the experiment are shown in figure 3.8.
For this shape value, 99.99% of the density mass of the distribution lies in
the interval r0.2, 0.8s. In the case of an optimal fit, the line for l “ 1 in the
quantile-quantile plot (right) would be equal to the main diagonal. We assume
that the small deviation stems from edge effects, that is objects near the bor-
der of the sampling window have a different distribution of nearest neighbor
dissimilarities. As the distribution of ηH� for l “ 1 000 concentrates on the
interval r0.4, 0.6s, the decreased variance is clearly noticeable. However, the
decreased variance also has the effect that ηH� is no longer distributed as βr,r.
Although we noticed in experiments that, for shape parameters somewhat in
the range of r120, 160s, the β-distribution is close to the distribution in the
experiments, we have no theoretical justification for this observation.

44



CHAPTER 3. MEASURING CLUSTERABILITY

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

pr
ob

ab
ili

ty
de

ns
it
y

fu
nc

ti
on

x

β17,17-distribution

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8

m
od

el
qu

an
ti
le

s

theoretical quantiles β17,17

Distribution of ηH�

l “ 1
l “ 1 000

Figure 3.8: (Left) Density of the β distribution with both shape parameters equal
to 17. (Right) Quantile-quantile plot of the β17,17-distribution quantiles and empiri-
cal quantiles for models sampled uniformly from a 2-dimensional square. In the case
of a perfect fit, the black lines would coincide with the main diagonal, which is shown
as straight gray dotted line.

The clusterability index ηHS is X 0
‘ -normalized, can be made absolute when

the theoretical distribution is known and included in the score, scale invariant
when the sampling window is estimated from the model and not robust. The
expected value for ηHS for the case that the x P X are sampled uniformly
from the sampling window S is 0.5 as both the x and the xS follow the same
distribution in this case (def. 3.6). If the theoretical distribution of ηHS is
known (see above), it can be used to interpret the score with respect to a
uniform model distribution. However, in order to make ηHS absolute, it has to
be normalized with respect to the different variances for different r (def. 3.7).
If S is estimated from the objects, it scales along with the dissimilarities,
which makes the index scale invariant (def. 3.4). ηHS with a fixed sampling
window is not scale invariant as the ψ1

`
xS
i

˘
scale differently from the ψ1

`
xπpiq

˘

in this case. Additionally, in the case of an estimated sampling window, a
single outlier, for example due to a measurement error, can lead to a too large
estimation for S and thus to a very different overall score. If, on the other
hand, S is known and fixed, outliers outside of S will barely have any effect
on the statistic as they are unlikely to be the nearest neighbor of any x or xS.
Nevertheless, ηH� is not strong robust (def. 3.5), as well, as the repositioning of
a single object in the center of an originally object-free area has an impact on
all the xS that are sampled from this area. Especially if this area is large, for
example when all x are close to the border of S and thus there is a large area
in the center of S without any x, the number of dissimilarities that is impacted
by this repositioning does not diminish with a growing n (with r « n{10).
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Figure 3.9: (Left) Average ηHS -score of models from the model distributions of
experiment 3.1 with a fixed sampling window of the entire square shown in figure 3.1.
The thin gray line shows the average score for models sampled uniformly from the
entire square. (Right) The same but with a sampling window estimated for each
model as the smallest axis-aligned rectangle that contains all objects. The shaded
regions cover the area from 1 standard deviation below to 1 standard deviation above
the averages.

The average score on the models from experiment 3.1 for l “ 1 000 and
r “ 17 are shown in figure 3.9. The index ηH� uses the fixed sampling window
over the entire square while ηH˝ estimates the window as the smallest axis-
aligned rectangle that contains all objects. Unsurprisingly, the only noticeable
difference occurs for the subregion models drawn from X 1,s

‘ , as all the other
models are likely to contain objects close to the borders of the entire square.
Since about 99% of the models from X 0

‘ achieve a score between 0.4 and 0.6 (cf.
fig. 3.8), one can say that a score below 0.4 or above 0.6 is already a significant
evidence for a structured model. This applies to the models from distributions
with s ě 0.2. The clear distinction in the score of ηH˝ between the clustered
(from X 4,s

‘ , X 9,s
‘ ) and the spaced models (from X n,s

‘ ) is apparent. It can
also be seen that the 4-cluster models achieve a higher score than the 9-cluster
models. This is the case as the bands that are free from objects are wider in
the 4-cluster case (cf. fig. 3.1). Interestingly, the subregion models achieve a
similar score as the 4-cluster models with respect to ηH� . The reason for this
is that, although the object-free bands have only half the width for models
from X 1,s

‘ as for models from X 4,s
‘ , only one side of them is adjacent to an

area that contains objects. Therefore, E
“
ψ1

`
xS
i

˘‰
for xS from the object-free

bands is identical for both types of models.
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Figure 3.10: Empirical densities of pairwise dissimilarities averaged over the models
from some of the model distributions of experiment 3.1. Densities are estimated over
dissimilarity-bins of size 0.02. The shaded regions cover the area from 1 standard
deviation below to 1 standard deviation above the averages.

3.2.3 Concentration of Dissimilarities

A third approach to clusterability is based on the empirical density of the
pairwise dissimilarities in a model. In a clusterable model, it is expected
that there are small dissimilarities within the clusters and large dissimilarities
between the clusters. For clusterable models, the empirical density of pairwise
dissimilarities is thus likely to have multiple modes, that is, clear local maxima
separated by a clear local minimum. Models with only one cluster, on the other
hand, are expected to have only one local maximum. This notion is illustrated
in figure 3.10 for the model distributions from experiment 3.1. However, it is
not guaranteed that all dissimilarity distributions of clusterable models have
multiple modes or that all distributions of non-clusterable models have only
one. Nevertheless, besides the number of modes also other properties of the
empirical dissimilarity density, like the overall spread, can be useful to identify
clusterability.

Spread of pairwise dissimilarities One index that measures the variabil-
ity in the pairwise dissimilarities for an assessment of the clusterability of
models is proposed by Dash et al. (1997). In detail, they use EpXq, which is
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defined as

EpXq“´
ÿ

x,x1PX
pϕXpx,x1q¨log2pϕXpx,x1qq ` p1´ϕXpx,x1qq¨log2p1´ϕXpx,x1qqq

where ϕX is a measure of object similarity that ranges from 0 (not similar) to 1
(practically identical). In the case two objects have a similarity of 0 or 1, the
term 0 ¨ log2p0q is replaced by 0. Because the equation has some resemblance
to the equation for information theoretic entropy, Dash et al. refer to EpXq as
entropy of the model X. This suggests a connection between similarities (E)
and probabilities (information theoretic entropy). Under this aspect, pairs of
objects that are either very similar or very dissimilar correspond to predictable
events: same cluster and different clusters. On the other hand, object pairs
with a similarity close to 0.5 have a high information content. As these should
be relatively rare in clusterable models, EpXq should be relatively low for a
clusterable model X. In our opinion, this line of thought is somewhat devious
in the connection between similarities and probabilities. Nevertheless, the
measurement of similarity variance through E is also not unreasonable outside
of the entropy context.

In the case of models based on object dissimilarities, Dash et al. suggest a
conversion of dissimilarities to similarities such that the average dissimilarity
yields a similarity of 0.5. In detail, they propose the use of ϕXpx,x1q as

ϕXpx,x1q “ exp

ˆ
logp0.5q ¨ ψpx,x1q

ψ̄pXq
˙

ψ̄pXq “
ÿ

x,x1PX

ψpx,x1q
n ¨ pn ´ 1q (3.6)

Where ψ̄pXq is the average dissimilarity between the n objects of X.
We then define the clusterability index ηE such that a higher score corre-

sponds to a more clusterable model:

ηEpXq “ 1 ´ EpXq
n ¨ pn ´ 1q

Although our experiments show a somewhat stable result for models sampled
from X 0

‘ even for different number of objects, we were not able to determine
the expected value for such models analytically. Without such a result, how-
ever, ηE can not be proven to be distribution normalized or absolute (def. 3.6,
3.7). On the other hand, due to the employed similarity function that nor-
malizes with respect to the average dissimilarity, it is trivially scale invariant
(def. 3.4). Moreover, it is robust in the strong sense (def. 3.5), as any change
to a single object affects only Opnq of the Opn2q dissimilarities that are used in
the computation of E. Thus, for large enough n, the unaffected dissimilarities
outweigh any change to the affected dissimilarities.
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Figure 3.11: (Left) Empirical density of pairwise similarities (ϕX, equation 3.6)
averaged over some of the model distributions of experiment 3.1. Densities are esti-
mated over similarity-bins of size 0.02. (Right) Average ηE-score. The shaded regions
cover the area from 1 standard deviation below to 1 standard deviation above the
averages.

The ηE-scores of the models from experiment 3.1 are shown in figure 3.11.
The left plot shows the empirical density of pairwise similarities ϕX (equa-
tion 3.6) for models with a high separation. The most clusterable models with
respect to ηE have most of their density close to 0 and close to 1. The relative
high densities close to 1 of models from X 9,0.3

‘ and especially X 4,0.3
‘ lead to

an increased clusterability score (right). Although the densities for models
from X 1,0.3

‘ and X n,0.3
‘ are very similar for similarities in the range r0, 0.8s,

the difference for values above 0.8 suffices to produce a visible difference in the
ηE-score (right). Since the influence of the similarities very close to 1 on the
score is especially high, the low density leads to a smaller clusterability score.

Intrinsic Dimensionality

The concentration of dissimilarities that ηE exploits as a characteristic of not
clusterable models is also known to be related to the dimensionality of vector
models. One result by Beyer et al. (1999) is the proof that, for some model
distributions and dissimilarity functions, in high-dimensional spaces the dis-
similarity between any object and its most dissimilar object is relatively equal
to its dissimilarity to its most similar object.4 This result is especially a prob-
lem with regard to nearest-neighbor searches in high-dimensional data, as it

4This is one of a collection of effects in high-dimensional spaces that are known as the
“curse of dimensionality.” The reader interested in the causes of these effect is referred to
the introduction by Köppen (2000).
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puts the meaningfulness of this task itself into question. However, it was noted
by some researches, including Chávez et al. (2001) and Korn et al. (2001), that
the theoretical result does not directly apply to practical models. Based on this
observation, they suggest the estimation of an “intrinsic dimensionality” from
the dissimilarities of the model and show its correlation with the practicality of
nearest neighbor search. Interestingly, Korn et al. show the connection between
the search time of nearest neighbor searches in a special search structure and
the (intrinsic) Fractal dimensionality of the model. The common box-count
estimation for Fractal dimensionality they employ uses the distribution of the
objects over a grid of hypercubes, which is also employed by some tests for
spatial structure (cf. section 3.2.2). This can be seen as further evidence for
the relationship of intrinsic dimensionality and clusterability.

Some estimators of intrinsic dimensionality can be used in the measurement
of model clusterability, although—or because—assumptions they are based
on are violated for clustered models. For example, Peres and Netto (2004)
use dimensionality estimates at different scales in order to detect clusters. In
detail, they count the number of hypercubes in a vector space grid that contain
objects for different granularities of the grid. When clusters are together in one
hypercube in a coarse grid and in separate hypercubes in a finer grid, the ratio
of hypercubes that contain objects is likely to be lower in the second case. The
assumption is based on the idea that the finer grid contains hypercubes that lie
between the clusters, and which are thus empty. With respect to the box-count
estimation for Fractal dimensionality, this corresponds to a decreased intrinsic
dimensionality estimate. We want to point out that the actual method for
estimating the intrinsic dimensionality based on box-counts assumes that the
dimensionality estimate is nearly constant over a wide range of granularities
(Korn et al., 2001). Similarly, the estimator by Chávez et al. (2001) is based on
the spread of the pairwise dissimilarities around their mean. The dissimilarity
density of models that contain well-separated clusters usually has multiple
modes (cf. fig. 3.10), which is not considered in the Chávez et al. estimate.
The estimator by Levina and Bickel (2004) relies on a consistent distribution
of objects in a neighborhood, which is not the case near the borders of a model
distribution. As models that contain multiple clusters tend to contain more
objects at a border of the distribution, such estimators are somewhat misled
for these models. Note that in all three cases, the intrinsic dimensionality is
estimated to be lower when the objects are grouped in clusters.

We continue with a more detailed analysis of the estimator by Levina and
Bickel (2004). The estimator is based on the assumption that the objects are
actually distributed according to some lower-dimensional model distribution,
but are smoothly mapped into the higher dimensional space. For example, the
plane x1 ` x2 ` x3 “ 0, although being an entity in a 3-dimensional space,
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is still a 2-dimensional plane. Similarly, objects sampled uniformly from a
plane continue to have the usual distribution of pairwise dissimilarities of a
2-dimensional model distribution. As this dissimilarity distribution differs for
model distributions with a different number of dimensions, the original dimen-
sionality can be detected. Levina and Bickel make a dimensionality estimate at
each object based on the number of “neighbored” objects in a growing hyper-
sphere. Under the assumption of a uniform model distribution, the expected
number of objects in a hypersphere with fixed radius depends on the denseness
of the distribution and the volume of the sphere. In turn, this volume depends
on the dimensionality of the space. In a higher-dimensional space, the volume
of the hypersphere has a more steep increase by radius. Therefore, the increase
in the number of objects in the growing sphere is also expected to be more
steep. From this reasoning, Levina and Bickel deduce an estimator for intrinsic
dimensionality based on the radius of the hyperspheres. They also adopt this
reasoning in order to provide a scale-invariant estimator based on the number
of neighbors to be considered, m̂b. For a more robust estimate, they suggest
to average the estimates for different numbers of neighbors, b:

m̂bpxq “
˜

1

b ´ 1

b´1ÿ

j“1

log

ˆ
ψbpxq
ψjpxq

˙¸´1

(3.7)

m̂pXq “ 1

bmax ´ bmin ` 1

bmaxÿ

b“bmin

nÿ

i“1

m̂bpxiq
n

(3.8)

Where ψipxq is the dissimilaritiy of x to the i-th least dissimilar other object
(i-th neighbor of x).

Levina and Bickel note that their estimator can be misled by “edge ef-
fects” that they assume to become even more severe in higher dimensions.
Consider again the idea of a growing hypersphere as a neighborhood. A 2-
dimensional example, where the hypersphere is a circle, is shown in the left
plot of figure 3.12. As long as the neighborhood remains within the sampling
window of the model distribution, the expected number of objects grows in
accordance with the area of a disk. However, this rate of growth decreases as
the neighborhood starts to extend outside of the sampling window (depicted
as circle segments in fig. 3.12). As the rate decreases, the estimator finds a
relatively high number of objects within the neighborhood relative to the cur-
rent rate, which would, under normal conditions, be characteristic for a lower
dimensional space. Note that it is this change of the rate that misleads the
estimator. Objects that lie directly on the border are not affected, as the esti-
mator interprets the smaller but steady rate as a lower denseness of the model
distributions. A measurement of the edge effect is shown on the right hand
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Figure 3.12: (Left) Model sampled from X 4,0.3
‘ (cf. experiment 3.1) with one object

highlighted. The circles correspond to the neighborhoods that contain the b nearest
neighbors for b P t1, . . . , 20u and are clipped by the sampling window of X 4,0.3

‘ .
(Right) Estimates of dimensionality for different x1 coordinates in the cross-section
at x2 “ 0.35 that is shown in the left plot (horizontal line). For each estimate
(x1 P t´0.50,´0.49,´0.48, . . . , 0.50u), an object was created at the corresponding
coordinates and its average dimensionality with respect to the models from the model
distributions was measured (bmin “ 10, bmax “ 20).

side of figure 3.12. The steep increase in the dimensionality estimate close
to the central border for models from X n,0.1

‘ can be explained by the reverse
effect as the neighborhood starts to reach into the adjacent cluster.

We want to note that dissimilarities of 0 can cause problems for this estima-
tor. This might be unsurprising, if one considers that the estimator assumes a
uniform distribution in which the probability of an exact 0 dissimilarity is 0.
However, due to the necessary quantization for electronical storage, dissimi-
larities of 0 are possible. If single dissimilarities are 0, it is reasonable to use
m̂bpxq “ 0 for the affected objects instead. This essentially performs a substi-
tution of x{0 by 8. However, if there are bmin objects that all have a pairwise
dissimilarity of 0, m̂b for any of these objects becomes 8 which also leads to
an estimated total dimensionality of 8. The estimator is thus not usable in
this case.

Since a higher clusterability is thus indirectly related to a lower dimension-
ality, the sign of the estimator has to be inverted for its usage as a clusterability
index. In order to show the difference to the expected (true) dimensionality m,
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Figure 3.13: Average ηM̂ -score of models from the model distributions of experi-
ment 3.1 (bmin “ 10, bmax “ 20 and m “ 2). The shaded regions cover the area from
1 standard deviation below to 1 standard deviation above the averages.

we propose to subtract m̂pXq from this value if it is known:

ηM̂pXq “ m ´ m̂pXq (3.9)

The clusterability index ηM̂ is scale invariant and robust in the weak sense. The
estimator contains some bias for a higher dimensionality for too few objects
(Levina and Bickel, 2004) and the extent of the edge effects depend on the
dimensionality and the number of objects, as well. Therefore, the clusterability
index is neither X 0

‘ -normalized nor absolute (def. 3.6, 3.7). Indeed, it is mere
coincidence that the bias and the edge effect negate each other for the uniform
models in our experiment and result in an average score very close to 0. Due
to the scale invariance of m̂b (cf. equation 3.7), ηM̂ is scale invariant, too
(def. 3.4). Furthermore, the averaging of the single object-based estimates in
equation 3.8 limits the effect a change in one dissimilarity can have on the
ηM̂ -score.5 Therefore, ηM̂ is weak robust (def. 3.5). However, if the change
can affect all dissimilarities of one object, they can all be set to a value very
close to 0 such that it is nearest neighbor to every other object. As this change
effects all m̂b-estimates, ηM̂ is not strong robust.6

The average scores of the models from experiment 3.1 are shown in fig-
ure 3.13. We use the values bmin “ 10 and bmax “ 20 that are also employed
in the experiments of Levina and Bickel (2004). The spaced models sampled
from X n,s

‘ have a lower score than the uniform models. This is because the
forced free region around every object leads to more regularly packed objects,

5This actually assumes that it is not allowed to set the dissimilarity to 0 in order to
make m̂b go to 8 (see above).

6We assume that bmax does not depend on the total number of objects.
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Table 3.1: Overview of which clusterability index (section 3.2) fulfills which prop-
erty (section 3.1). Permutation invariance is required for all clusterability indices, the
others are optional. Distribution normalization and absoluteness are neither proven
nor disproven for ηE .

property

index perm. inv. scale inv. robust X 0
‘ -norm. absolute

ηD yes yes no no yes
ηΔ yes yes no no no
ηH� yes no no yes no
ηH˝ yes yes no yes no
ηE yes yes strong
ηM̂ yes yes weak no no

which has the effect that the dissimilarities to the nearest neighbors are very
similar for most objects (cf. fig. 3.10). This, in turn, is a characteristic of high-
dimensional spaces. It can also be seen in the case of models from X 4,s

‘ that,
once neighborhoods do no longer reach into adjacent clusters, the ηM̂ -score
stops to increase.7 Furthermore, because models from X 9,s

‘ have more edges
than those from X 4,s

‘ , ηM̂ assigns a higher score to the former.

Summary Different approaches for measuring the clusterability of models
exist. We categorized them as being based on optimum clusterings, lacking
structure and the concentration of dissimilarities. A solid formalization of
consistency for clusterability indices is still an open topic. In this regard, we
want to point out that ηM̂ is the only clusterability index we analyzed that
assigns a higher score to models from the more fine-grained X 9,s

‘ than to
those from X 4,s

‘ . Besides consistency, we formulated 5 other properties for
clusterability indices. A summary of which clusterability indices fulfill which
property is given in table 3.1.

7This effect is also visible in the comparison of clusterability indices in figure 3.4.
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Chapter 4

Clusterability of Real-world Data

Are the most clusterable models also the most meaningful? Based on the con-
siderations in chapter 2, especially in section 2.1.3, it appears intuitive that
the most meaningful models—in which the clusters of the ground-truth are the
most evident—are also clusterable. This intuition encourages the use of clus-
terability indices in model selection, where it is desired to select meaningful
models without knowledge of the ground-truth. However, the inversion of the
argument, that clusterability implies meaningfulness, does not hold in general.
This chapter presents first empirical results that show that these intuitions can
nevertheless be valuable in practice and discusses when they are reasonable.

In order to take a look at the correlation of the clusterability and meaning-
fulness of models, we consider different models of the same dataset. In detail,
we generate different models of datasets with multiple attributes by remov-
ing some of the attributes and keeping the others. This corresponds to the
common model transformation by orthogonal projection (cf. section 2.3.2).

We selected 2 real-world datasets with a reasonable number of attributes (7)
such that we are able to consider all possible attribute sets (127). We use the
seeds and abalone datasets, which are freely available from the UCI Machine
Learning Repository (Bache and Lichman, 2013). The models of the seeds
dataset that we analyze are more meaningful than the models of the abalone
dataset. A comparison of the results provides thus insight on the relationship
of clusterability and meaningfulness under different circumstances.

Clusterability and meaningfulness are measured for each model. We employ
the clusterability indices detailed in section 3.2 to rank the different models
by their clusterability. Furthermore, through the use of the ground-truth, we
also rank the models by their meaningfulness to the dataset.

Section 4.1 details the setup of the experiments and the employed measures
and methods, while section 4.2 analyzes the datasets which are used. The
results are then shown in section 4.3 and discussed in section 4.4.
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4.1 Experiment Setup
The experiments compare the relative scores of 6 clusterability indices and 5 in-
dices of model meaningfulness on models of 2 datasets with up to 7 attributes
each. For each dataset, we analyze different models that employ different at-
tribute sets. The 7 attributes allow for 127 different attribute sets ranging
from 7 sets with 1 attribute to 1 set with all 7 attributes. The score of each
index is calculated for each attribute set.

In order to compare the indices, we consider their pairwise correlation for
the different attribute sets both visually and numerically. Scatter plot matrices
allow for a visual comparison of 2 indices. A scatter plot shows, in this case,
each attribute set as a point in a 2-dimensional coordinate system where the
coordinates correspond to the scores with respect to 2 different indices. A
scatter plot matrix contains scatter plots for all combinations of attributes in
a grid layout. The single plots are arranged such that the column in the grid
layout determines the index that is used for the x1 coordinate (horizontal) while
the row determines the index for the x2 coordinate (vertical). The scatter plots
are scaled such that the shown range is limited by the smallest and largest score
for each axis respectively. Because of this, the scatter plot is scale invariant
with respect to the scores. For the numerical assessment we employ the Pearson
and Spearman correlation coefficients that are detailed below.

The standard measure for linear correlation is the product-moment corre-
lation coefficient that is usually referred to as Pearson’s (Everitt, 2002). The
coefficient is calculated for two variables Y and Y1, where each observation yi
of Y is related to the observation y1

i of Y1. In the setting of our experiment,
the observations yi and y1

i correspond to the scores of the same model with
respect to different indices. On the other hand, the observations yi and yj for
i ‰ j are the scores of different models with respect to the same index. Let ȳ
be the mean of the observations in Y and ȳ1 be defined likewise with respect
to Y1. The Pearson or product-moment correlation of the 2 variables is then
defined by

řn
i“1pyi ´ ȳq ¨ py1

i ´ ȳ1qařn
i“1pyi ´ ȳq2 ¨ ařn

i“1py1
i ´ ȳ1q2

The correlation takes values between ´1 (strong negative correlation) and 1
(strong positive correlation). With respect to scatter plots, the points pyi, y1

iq of
strong positive (negative) correlated variables lie approximately on a straight
upward (downward) line. Note that, like for scatter plots, the scale of the in-
dices is of no importance as they are normalized by the mean (ȳ) and standard
deviation (denominator) of the observations.
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The approach of rank correlation does not consider the observations di-
rectly, but instead uses their rank within the observations of the same variable.
In detail, consider the observations of a variable Y in sorted order.1 The rank
of an observation is then its place in this sorted order. The rank correlation
that is known as Spearman’s is defined as the product-moment correlation
of the observation ranks (Everitt, 2002). Trivially, the rank correlation has
the same range as the product-moment correlation and a similar interpreta-
tion. However, where the product-moments require a linear relationship for
maximum absolute correlation, the rank correlation only require a monotone
relationship. If the points pyi, y1

iq lie on a monotone increasing (decreasing) line
in a scatter plot, their ranks have a linear increasing (decreasing) relationship
and the correlation is thus close to 1 (´1).

The rank correlation is better suited for our experiments as we are more
interested in a relative agreement on which models are more clusterable than
in a direct linear relationship. Therefore, we focus on the rank correlation
coefficients in section 4.3.

We continue with a brief listing of the indices we use in our experiments.
If an index is not defined in chapter 2 or chapter 3, we give a short description
and refer to further sources. The first indices are the clusterability indices
analyzed in section 3.2. For completeness, section 4.1.1 lists these again and
states specific parameter values. After that, we detail indices which measure
the meaningfulness of a model with respect to the ground-truth of the datasets
as mentioned in section 2.1.3. There are 2 methodologies for assessing the
meaningfulness of a model: (1, section 4.1.2) measuring the fit of the model to
the ground-truth and (2, section 4.1.3) measuring the similarity of the ground-
truth and an optimum clustering with respect to the model.

4.1.1 Clusterability Indices

We employ the clusterability indices based on the Dunn index and the min-
imum spanning tree, ηD, and the index ηΔ by Ostrovsky et al. (2006) (sec-
tion 3.2.1). For ηD, we only consider clusterings with a number of clusters
less than

?
n. For ηΔ, we use nmax “ 10 and 1 000 initial centroid sets per

evaluation.
For the index based on the statistic by Hopkins and Skellam (1954), ηH˝ ,

we use l “ 1 000 re-samples and the highest value r such that r ă n{10 as
mentioned in section 3.2.2. For m we use the number of attributes of the
particular model. The sampling window is estimated from the model as the
smallest hyperrectangle that contains all objects.

1With regard to correlation it is unimportant if the observations are sorted in ascending
or descending order as long as the same order is used every time.
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We also use the “entropy” index based on the measure by Dash et al. (1997),
ηE, and the index based on the intrinsic dimensionality estimator by Levina
and Bickel (2004), ηM̂ (section 3.2.3). We use ηM̂ as defined in equation 3.9
with m as the number of attributes of the current model. Additionally, we
show the scores for m “ 0. We denote this clusterability index by ηm̂. For
both indices, we use bmin “ 10 and bmax “ 20.

4.1.2 Internal Evaluation by Ground-truth

Evaluation indices for internal cluster evaluation measure the fit of a cluster-
ing C to the dissimilarities in a model X (cf. section 2.1). The usual application
assumes a fixed model and evaluates the clustering. However, when the model
is to be selected and the clustering represents the ground-truth of the dataset,
the same approach can be used to evaluate the model (cf. section 2.1.3). With
regard to the experiments, we use the 3 internal indices which are detailed
below.

The different indices base on different notions of cohesiveness and separa-
tion. Therefore, they do not necessarily agree with each other on the meaning-
fulness of models. This is an important observation that makes further con-
siderations on the employed clusterability and evaluation indices necessary. In
detail, clusterability indices and evaluation indices which are based on rather
different notions of cohesiveness and separation are unlikely to correlate.

Dunn index The index by Dunn (1974), νD, as defined by equation 3.1 on
page 35 with measures of between- and within-cluster dissimilarity given by
equation 3.2.

Note that νD is susceptible to noise objects and outliers as both have a
significant effect on the minimum spanning tree. It should also be noted that
ηDpXq “ maxCpνDpC,Xqq. Therefore, when the ground-truth is nearly optimal
and the model is thus a meaningful representation of the dataset, one can
conjecture that ηDpXq « νDpCgt,Xq. As shown in the experiments, this is
not the case for the models we consider. This is because the clusters of the
ground-truth are not separated (as defined by ηD/νD) for any of the models.

Residual sum of squares This index is the sum of the squared distances
of each object to the center of its cluster.

νRSSpC,Xq “ RSSptXu,Xq ´ RSSpC,Xq
pψ̄pXqq2

Where RSSpC,Xq is the residual sum of squares as defined in equation 3.4,
tXu is the clustering of the dataset that contains only 1 cluster and ψ̄pXq is
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the average dissimilarity of the model (cf. equation 3.6).
This index is related to ηΔ by Ostrovsky et al. (2006) which is based on

RSSpC,Xq for different C (cf. section 3.2.1). RSS assigns a high score to clusters
for which the objects are all close to each other. Although RSS does not
directly evaluate separation, νRSS does to some extent through the comparison
to the clustering that contains only 1 cluster.

Expected Density This evaluation index is proposed by Stein et al. (2003)
and compares the overall cohesiveness of the model to the cohesiveness of the
clusters. Stein et al. use the term “density” instead of cohesiveness due to the
derivation of the index from graph models.

νEDpC,Xq “
kÿ

i“1

|Ci|
n

¨ |Ci|θi´θ θ “ logpweightpXqq
logpnq θi “ logpweightpCiqq

logp|Ci|q
Where θ and the θi are called the densities of the model and of the clusters
respectively, weightpCq “ |C| ` 1

2
¨ ř

x‰x1PC ϕpx,x1q and weightpXq is the same
for the cluster that contains all objects of the dataset. In order to convert
the dissimilarities of the model (ψ) into similarities (ϕ), we use a conversion
scheme that normalizes with respect to the largest dissimilarity in the model:
ϕpx,x1q “ 1 ´ ψpx,x1q ¨ pmaxx2,x3PXpψpx2,x3qq´1.

The expected density index, νED is similar to νRSS in that it compares the
overall dissimilarities (or similarities) to the dissimilarities within the clusters.

4.1.3 External Evaluation Indices

Indices for external cluster evaluation measure the similarity of a clustering C to
the ground-truth (which is represented by a clustering, cf. section 2.1.3). There
are 2 factors that influence the search for a clustering in cluster analysis: the
model and the clustering algorithm. If the found clustering is very similar to
the ground-truth, one can assume both that the model is a good representation
of the dataset and that the assumptions made by the algorithm (cf. section 2.2)
are suitable for the model.

Like for internal indices (cf. section 4.1.2), we compare the results of dif-
ferent clustering algorithms. In this case, there are 2 different influences that
have to be considered: the clustering relation and the search strategy of the
algorithm. The clustering relation specifies the notions of cohesiveness and
separation that are employed by the clustering algorithm (def. 2.17). The
search strategy affects which clusterings are considered by the algorithm. For
our experiments, we want to focus on the relationship of clusterability and
meaningfulness based on notions of cohesiveness and separation. Therefore,
we try to keep the effect of the search strategy at a minimum (see below).
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In order to compute the similarity of 2 clusterings we employ the Rand
index (Rand, 1971) defined by

νe
RandpC, C 1q “

nÿ

i“1

nÿ

j“i`1

2 ¨ δi,jpC, C 1q
n ¨ pn ´ 1q

Where δi,jpC, C 1q is 1 if and only if both clusterings agree on the placement of
objects xi and xj either in different or a common cluster. More formally,

δi,jpC, C 1q “
#
1 if pDCPCpxi P C ^ xj P Cqq ô pDC1PC1pxi P C 1 ^ xj P C 1qq
0 else

Note that the score of the Rand index lies between 0 (complete disagreement)
and 1 (identical clusterings up to a permutation of clusters).

The 2 indices of this type that we consider in our experiments use the
clustering algorithms K-Means (γkm) and Single-link (γsl) respectively:

νγkmpC,Xq “ νe
RandpC, γk

kmpXqq νγslpC,Xq “ νe
RandpC, γk

slpXqq
Both clustering algorithms are parameterized to only consider clusterings with
the same number of clusters as the ground-truth.

K-Means A short description of K-Means can be found on page 38. More
details are provided by MacQueen (1967, chap. 3.6). Identical to the use of
the algorithm within ηΔ in section 3.2.1, we repeat for each model evaluation
K-Means 1 000 times with different initial centroids and choose the clustering
with the smallest residual sum of squares. Additionally, we initialized K-Means
with the ground-truth which minimizes the effect of K-Means search strategy
on the results as the algorithm is guaranteed to consider the ground-truth.
However, the results are nearly identical in both cases. We thus only show the
results for the ηΔ-like procedure.

Single-link The Single-link algorithm starts with all objects in an own clus-
ter and iteratively merges those clusters with the smallest dissimilarity as given
by ΨbpC,C 1q “ minxPC,x1PC1ψpx,x1q (cf. equation 3.2). The procedure stops
when the desired number of clusters are left.

Since Single-link is guaranteed to find the global optimum clustering with
respect to its clustering relation, its search strategy can be neglected in the
discussion of the results. Lance and Williams (1967) discuss Single-link and
related algorithms in more detail. As the definition of the between-cluster
dissimilarity suggests, νγsl is related to ηD and νD.
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Table 4.1: Summary of the processed seeds and abalone datasets. All attributes are
real-valued. The clusters of the seeds dataset correspond to the wheat types Kama,
Rosa and Canadian. For the abalone dataset, the clusters correspond to young,
average-aged and old abalone respectively. m is the number of attributes, n is the
total number of objects and |Ci| is the number of objects in cluster i.

Dataset m n |C1| |C2| |C3|
Seeds 7 210 70 70 70
Abalone 7 2 000 690 625 685

4.2 The Datasets
For the experiments, we selected the seeds and abalone datasets that are avail-
able for public access from the UCI Machine Learning Repository (Bache and
Lichman, 2013). We normalized both datasets such that the values of every
attribute have a mean of 0 and a standard deviation of 1, which weighs every
attribute equal. A summary of the datasets is shown in table 4.1.

The seeds dataset was collected for the cluster analysis study by Chary-
tanowicz et al. (2010). They showed that the K-Means clustering algorithm
(see above) is able to group seeds based on their wheat type. The three differ-
ent types which are present in the dataset are correctly distinguished in about
90% of the cases.

The abalone dataset originates from the study by Nash et al. (1994) and
is originally not related to machine-learning. Nevertheless, the UCI web page
cites 31 publications related to machine-learning that use this dataset.2 The
usual task is to learn a predictor for the age of abalone based on the attribute
values. For our experiment we grouped the abalone into 3 clusters of about the
same size based on their age: “young” (8 years and younger), “average-age” (9 or
10 years) and “old” (11 years and older). We use this grouping as the ground-
truth. Since this categorization is only a discretization of a continuous feature,
we expect the clusters of the ground-truth to be not separated from each other
in the models, which is indeed the case. This is because the thresholds (9 and
11 years respectively) are rather arbitrary with respect to abalones in general
and only motivated by the age frequencies in the dataset. Since we restrict
our considerations in this thesis to ratio attributes, we removed the categorical
sex attribute. We only use a random sample of 2 000 of the originally 4 177
objects in the experiments in order to speed them up.

2http://archive.ics.uci.edu/ml/datasets/Abalone (last accessed May 3, 2014)
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Table 4.2: Pearson product-moment correlation by attributes. A darker cell corre-
sponds to a higher absolute correlation. The last row shows the correlation of the
attributes with the cluster assignment (encoded as attribute values 1, 2 or 3).

Seeds
A P C KL KW AC KGL

Area (A) - 0.9943 0.6082 0.9499 0.9707 -0.2295 0.8636
Perimeter (P) 0.9943 - 0.5292 0.9724 0.9448 -0.2173 0.8907
Compactness (C) 0.6082 0.5292 - 0.3679 0.7616 -0.3314 0.2268
Kernel length (KL) 0.9499 0.9724 0.3679 - 0.8604 -0.1715 0.9328
Kernel width (KW) 0.9707 0.9448 0.7616 0.8604 - -0.2580 0.7491
Asymmetry coefficient (AC) -0.2295 -0.2173 -0.3314 -0.1715 -0.2580 - -0.0110
Kernel groove length (KGL) 0.8636 0.8907 0.2268 0.9328 0.7491 -0.0110 -

Wheat type (ground-truth) 0.9086 0.9049 0.5907 0.8483 0.8924 -0.3113 0.7529

Abalone
L D H WW SKW VW SLW

Length (L) - 0.9855 0.7717 0.9252 0.8995 0.9037 0.8933
Diameter (D) 0.9855 - 0.7778 0.9246 0.8935 0.9000 0.9005
Height (H) 0.7717 0.7778 - 0.7650 0.7256 0.7454 0.7595
Whole weight (WW) 0.9252 0.9246 0.7650 - 0.9665 0.9653 0.9573
Shucked weight (SKW) 0.8995 0.8935 0.7256 0.9665 - 0.9292 0.8800
Viscera weigth (VW) 0.9037 0.9000 0.7454 0.9653 0.9292 - 0.9085
Shell weight (SLW) 0.8933 0.9005 0.7595 0.9573 0.8800 0.9085 -

Age (ground-truth) 0.5866 0.6065 0.5164 0.5874 0.4976 0.5721 0.6331

The attributes and their pairwise product-moment correlations (cf. sec-
tion 4.1) are shown in table 4.2. As can be seen from the table, most at-
tributes have a strong positive correlation. Moreover, it should be noted that
the compactness attribute of the seeds dataset is directly related to other at-
tributes (Charytanowicz et al., 2010): Compactness “ 4 ¨π ¨Area ¨Perimeter´2.
The only attribute that seems to be unrelated to the others is the asymmetry
coefficient in the seeds dataset.

The tables also show that some of the attributes are correlated with the
assignment of objects to clusters. For the abalone dataset we used an encoding
of 1 “ “young” to 3 “ “old” as attribute values. Although a natural ordering
of wheat seeds seems not obvious, we noticed that indeed most attributes
correlate with a specific ordering: 1 “ “Canadian,” 2 “ “Kama” and 3 “ “Rosa.”
The strong correlation with some of the attributes facilitates the clustering of
the seeds dataset with clustering algorithms that segment the object space,
like K-Means. The strong correlation of some attributes with each other and
with the cluster assignment can also be seen in the top left plot of figure 4.1.
The top right plot, on the other hand, shows the 2 attributes of the seeds
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Figure 4.1: Plots of the objects of the 2 datasets for different attribute combina-
tions. In the case of the abalone dataset, the 2 outliers regarding the height and
198 randomly sampled other objects are shown. The assignment to clusters in the
ground-truth clustering is depicted by the different symbols.

dataset for which this is not the case. Some attributes for the abalone dataset
are shown in the bottom plots. We want to note that the attribute H contains
2 outliers. While these would be removed in a normal cluster analysis, we keep
them in order to study their effect on the clusterability indices.

The circumstances detailed above affect the indices differently based on
their notion of separation. There is no empty space between the clusters
of the ground-truth for any of the considered models. Thus, the ground-
truth clusters are not separated when separation is based on the minimum
dissimilarity between objects in different clusters (ηD, νD, νγsl). Although
the clusters “overlap,” they do only marginally so in the case of the seeds
but more so in the case of the abalone dataset. This explains the relatively
good performance of K-Means reported by Charytanowicz et al. (2010). This
evidence suggests that models of the seed dataset might be meaningful with
respect to a less strict notion of separation (ηΔ, ηE, ηH˝ , νRSS, νED, νγkm).
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4.3 Results
We first highlight some general observations and then continue with the results
on the seeds and abalone datasets. After that, we note the results for models
with a fixed number of attributes (4). The results are shown in the scatter
plot matrices in figure 4.2 (seeds) and figure 4.3 (abalone) and the tables 4.3
(rank correlation) and 4.4 (rank correlation, only models with 4 attributes).

Number of attributes A general comparison of models with different num-
bers of attributes is difficult as the indices are not absolute. In the scatter plot
matrix of figure 4.2, it can be noted that for some of the indices, models with
only 1 attribute (depicted as circles) are separated from the other models.
This is especially the case for ηH˝ (low score) and ηm̂ (high score). It is to
some extent also the case for ηE (high score). In the case of ηm̂, the estimated
intrinsic dimensionality is close to the real dimensionality of 1, which results
in a relatively high score. This shows the natural bias of ηm̂ for models with
fewer attributes, which is the reason we also consider ηM̂ . On the other hand,
the score with respect to ηH˝ is relatively low for models with only 1 attribute
as there are no large empty regions in this case.

Another effect that occurs for low-dimensional models in the case of the
abalone dataset is that a significant number of object pairs with a dissimilarity
of 0 exist. This is because the measurements on the abalones use only between
3 and 4 significant digits which results in identical object vectors for up to 2-
dimensional models. If a certain part of the pairwise dissimilarities are 0, ηM̂
and ηm̂ can not be employed (cf. section 3.2.3). A possible fix to this problem
is to add some small random value to the measurements. However, the effect
of such a modification on the clusterability scores has not yet been studied and
we thus instead simply omit these cases in our considerations.

Although these effects show the difficulty of comparing the (non-absolute)
scores on models with different numbers of attributes, still some noticeable
correlations of indices exist in these cases. We also verified the results by only
considering models with a common number of attributes. We found that the
exact number of attributes has some but no large effect on the results for all
indices but νγsl . However, we assume that this special behaviour by νγsl can be
explained by the notion of separation that it employs, which is too strict for the
particular models (cf. section 4.2). Because of this, we assume that νγsl is more
influenced by random variations in the models than by their meaningfulness
(as defined by the clustering relation of νγsl , but which is also approximated
through νe

Rand).
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Seeds, 2 and more attributes The scatter plot matrix in figure 4.2 gives
a visual impression on the correlation of the different indices. Note that the
scatter plot also shows the scores for 1-dimensional models.

When models with only 1 attribute are excluded, one can see a rather
strong positive correlation of the νRSS scores with the scores of ηΔ, ηH˝ , ηE
and νED. The strong correlation of some of the attributes of the seeds dataset
(cf. section 4.2) has the effect that the objects lie in a relatively thin corridor
when these attributes are employed (cf. fig. 4.1, top left). This explains the
high scores with respect to ηH˝ and ηE. Moreover, the seeds of each wheat
type are concentrated in a relatively small region (about 1{3) for some of the
attributes. This is the case for the attributes A, P, KL, KW and KGL but not
for C and AC. Because of this, the scores for the indices that rely especially
on the concentration of objects within each cluster, ηΔ, νRSS and—to some
extent—νED, are especially high for models that contain only these attributes.
Indeed, the gap between models that contain the attributes AC and C and
those that do not is clearly visible in the scatter plots for ηΔ and νRSS.

While the clusters of the ground-truth are rather cohesive, the cluster of
Kama seeds is not that separated from the others in most combinations of
attributes (cf. fig. 4.1, top). Because of this, indices that require separated
clusters for a high clusterability score, ηD in our case, do not correlate with
the ones mentioned above. Another effect of the missing separation is that νγsl
produces bad results for nearly all models. Indeed, there are only 2 models for
which the Single-link clustering algorithm finds clusterings that are somewhat
related to the ground-truth. Even in these cases, we found that the clustering
produced by Single-link separates only 1 of the 3 ground-truth clusters from
the others, but combines the remaining ones. This shows the effect of the
employed concept of cohesiveness and separation on the indices.

Although νγkm , which optimizes the residual sum of squares and compares
the result clustering to the ground-truth, is related to ηΔ and νRSS, it shows
a small negative correlation with respect to these. Thus, also for models that
fit the ground-truth with respect to the residual sum of squares (high relative
νRSS), the ground-truth is still not optimal under this measure (νγkm ă 1). We
want to highlight this point, as it shows that the different methodologies for
measuring the meaningfulness of a model to the ground-truth, represented by
the otherwise related methods νRSS and νγkm , do not necessarily agree.

The different behaviour of the methodologies for measuring the meaning-
fulness of a model suggests the question which of them is better suited for the
problem. Unfortunately, we have no solid answer to this question, yet. Both
methodologies have their weaknesses. For example, νRSS, νED and νe

Rand are
not absolute. However, their main weakness in this regard is with respect to
different number of clusters, where this number is fixed in our experiments.
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Figure 4.2: Scatter plot matrix of the different scores on models of the seed dataset
with different attribute sets. All 127 possible different attribute sets are shown. The
shown clusterability scores are with respect to ηD (Dunn/minimum spanning tree),
ηΔ (Ostrovsky et al.), ηH˝ (re-sampled Hopkins and Skellam statistic with estimated
sampling window), ηE (normalized Dash et al. entropy), ηM̂ (intrinsic dimensionality
difference based on the estimator by Levina and Bickel) and ηm̂ (negative intrinsic
dimensionality). Also shows internal evaluation scores of the ground-truth based on
νD (Dunn index/minimum spanning tree), νRSS (residual sum of squares) and νED
(expected density by Stein et al.). The last scores are Rand index similarities of the
ground-truth to the clustering found by some clustering algorithm: νγkm (K-Means)
and νγsl (Single-link). A more detailed description of the experiment setup can be
found in section 4.1.
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Abalone, 3 and more attributes We proceed with an overview of the
results for the abalone dataset. A visual representation is given by the scatter
plot matrix in figure 4.3. The rank correlation of each pair of attributes of
both datasets are shown in table 4.3.

A first significant difference to the seeds dataset is the existence of outliers
with respect to 1 of the attributes (H, cf. fig. 4.1 bottom left). There are
3 indices for which the models without H are clearly separated from the models
that include H with respect to their scores: ηΔ, ηD and νED. The indices ηΔ and
νED both give a higher score to models without H, while ηD does the opposite.
This is because the outliers introduce an otherwise lacking separation into the
model, which is required for a high ηD-score. It can also be noted that ηH˝

and ηE tend to give a higher score to models without H, as well.
In contrast to the results for the seeds dataset, ηΔ and νRSS are not corre-

lated for the abalone dataset. An explanation for this is that there is nearly
no separation between the clusters of the ground-truth for the abalone models
(compare fig. 4.1 top left and bottom right). This makes the ground-truth less
evident in the models and a clusterability analysis based on ηΔ thus more sus-
ceptible to random dissimilarity variations which are unrelated to the ground-
truth. Moreover, presumably for the same reason, νγkm is uncorrelated to every
other index (cf. table 4.3).

Both datasets, 4 attributes We report the results for the 35 models with
4 attributes for each dataset in table 4.4.

The strong correlation we noticed for ηΔ, ηH˝ , ηE and νRSS for the seeds
dataset is even stronger when only considering models with 4 attributes. Addi-
tionally, there is a strong correlation with ηM̂ -scores, as well. Furthermore, the
small negative correlation with the νγkm-scores is strengthened, too. Indeed,
although the notions of separation and cohesiveness on which νγkm is based are
more similar to those of ηΔ and νRSS than to the one of νD, it shows a negative
correlation to the former and a positive correlation to the latter.

For the abalone models, on the other hand, νγkm is practically uncorrelated
to all other indices. Moreover, ηΔ, ηH˝ , ηE and ηM̂ are less pairwise correlated
and less correlated with νRSS. The correlation of these 4 clusterability indices
with νED is, however, similar for both datasets.

Finally, we want to point out that the correlation of ηD with the other
4 clusterability indices is at least as strong and sometimes considerably stronger
for models of the seeds dataset as it is for those of the abalone dataset. More-
over, the correlation is positive in the first case and negative for the abalone
dataset.
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Figure 4.3: Scatter plot matrix of the different scores on models of the abalone
dataset with different attribute sets. All possible different attribute sets with at
least 3 attributes are shown. The shown clusterability scores are with respect to
ηD (Dunn/minimum spanning tree), ηΔ (Ostrovsky et al.), ηH˝ (re-sampled Hopkins
and Skellam statistic with estimated sampling window), ηE (normalized Dash et al.
entropy), ηM̂ (intrinsic dimensionality difference based on the estimator by Levina
and Bickel) and ηm̂ (negative intrinsic dimensionality). Also shows internal evalua-
tion scores of the ground-truth based on νD (Dunn index/minimum spanning tree),
νRSS (residual sum of squares) and νED (expected density by Stein et al.). The last
scores are Rand index similarities of the ground-truth to the clustering found by
some clustering algorithm: νγkm (K-Means) and νγsl (Single-link). A more detailed
description of the experiment setup can be found in section 4.1.
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Table 4.3: Rank correlation (Spearman) of different index scores on models with
different attributes for both datasets. In the calculation, the 121 models with 2 or
more attributes are used for the seeds dataset and the 99 models with 3 or more
attributes for the abalone dataset. Darker cells correspond to a higher absolute
correlation.
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Table 4.4: Rank correlation (Spearman) of different index scores on the 35 models
with 4 attributes for both the seeds and abalone datasets. Since the normalized
scores of ηM̂ and ηm̂ are identical when only models with a common number of
attributes are considered, we omit ηm̂ as it would show the same correlation values
as ηM̂ . Darker cells correspond to a higher absolute correlation.
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4.4 Discussion
We have seen some evidence that the different clusterability indices are cor-
related, with ηD being a special case as it adheres to a more strict notion
of separation than the other indices. This difference is very obvious in our
experiments as the models contain no completely separated groups.

The different notions of cohesiveness and separation affect the clusterability
indices as well as the measures of meaningfulness. There is a strong correlation
of the meaningfulness of a model as measured by νRSS and the clusterability
as measured by all clusterability indices besides ηD for the seeds dataset. A
similar correlation, but less strong, is also apparent for νED and even for the
abalone dataset. On the other hand, as the evaluation of the abalone dataset
shows, correlation heavily depends on the particular models and the dataset.
With respect to the considerations of section 4.2, one can conjecture that,
when the models are somewhat meaningful representations of a dataset, clus-
terability analysis can help select the models that fits the dataset best. This
seems intuitive, as the condition of a meaningful representation assures that
an evident structure exists in the model. One can then assume that out of
the meaningful models, the ones with a more evident structure (higher clus-
terability) are also clearer representations with respect to the ground-truth
(higher meaningfulness). When considering cohesiveness and separation, one
can expect that indices which employ similar notions have a higher correlation.
The experiment on the seeds dataset provides some empirical evidence for this
theoretical consideration, but only for measures of meaningfulness that use
internal indices.

The experiments show that the different methodologies for the evaluation
of model meaningfulness can lead to different results. The evaluation by means
of an evaluation index measures the agreement of the ground-truth and the
model. The other methodology, on the other hand, compares an “optimal”
clustering and the ground-truth. The latter methodology is more strict to the
notions of cohesiveness and separation which are implied by the choice of the
clustering algorithm. The former methodology allows for some divergence in
the notions implied by the evaluation index and the actual structure in the
model as it does not focus on the optimum clustering. Therefore, we assume
that the reason for the general disagreement of the methodologies is that the
particular models are not completely separated representations with respect
to the ground-truth.

A further difference between the methodologies is the weighting of objects
with dissimilarities that do not fit to the ground-truth. The evaluation by
the index of Rand (1971) gives an equal weight to every such object (as long
as the clusters have about the same size), while internal evaluation indices
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usually weight by the degree to which the dissimilarities disagree with the
ground-truth. This observation might also be a part of the explanation why
the different methodologies disagree. However, further investigations in this
regard are necessary for a solid understanding of the causes and effects.

The experiments on the abalone dataset also show that outliers can have a
strong influence on clusterability indices. Some indices (like ηD) can be mislead
by outliers to overestimate the clusterability of the model. Other indices (like
ηΔ) give a low clusterability score to models that contain outliers. It has to
be decided with the particular task in mind if single objects should be able to
have a large influence on the score (cf. robustness, def. 3.5).
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Chapter 5

Conclusion

Clusterability is the assessment of the clustered structure in the dissimilarities
of models. In chapter 2, we showed how clusterability fits into the broader
context of cluster analysis as a factor in model evaluation and selection. While
classical cluster evaluation asks if particular clusterings agree with the dissim-
ilarities of a model, clusterability asks if the model is amenable to cluster anal-
ysis at all. While the former is of interest when a clustering has to be selected
from a set of possible clusterings, the latter is helpful when different models
are at disposal. Chapter 3 introduced the different clusterability indices and
formal properties of these. Although one can approach the problem of cluster-
ability with ideas based on cluster evaluation and clustering algorithms, other
ideas based on statistical tests and the concentration of dissimilarities exist,
as well. In the experiments of chapter 4, we analyzed the relationship of the
clusterability of models and their meaningfulness with respect to the ground-
truth of 2 real-world datasets. If multiple models are all somewhat meaningful
representations of the dataset, the more clusterable models of them are also
likely to be even better representations as they contain a more evident struc-
ture. However, when the considered models are not meaningful, the choice of
a more clusterable model might actually mislead clustering algorithms as they
pursue evident structure that is unrelated to the ground-truth.

In chapter 4, we analyzed clusterability for models of 2 different publicly
available datasets. While the models for one of the datasets are somewhat
meaningful, the models of the other dataset are less so. The clusterability
indices indeed correlate with measures of model meaningfulness for the for-
mer dataset, but not for all notions of cluster-separation or methodologies for
model-meaningfulness evaluation. A further analysis of the requirements for
the correlation is an interesting task for future publications.

We showed that properties of evaluation indices can apply to clusterability
indices, as well. Unfortunately, we were not yet able to define a property that
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captures the effect of straightforward changes of models on the clusterability
score. We believe that the formalization of such a definition of consistency is
an important task for future work. Currently, there are many different ideas
on how clusterability can be measured. A sound formalization of consistency
can provide a sanity-check for these methods and is likely to be a good starting
point for the development of new and specialized clusterability indices. Espe-
cially when models with thousands of dimensions are considered, which are far
outside the reach of human intuition, a mathematical proof of consistency can
still provide a solid justification for the application of clusterability indices.

We discussed multiple different clusterability indices and compared them
on synthetic datasets that showcase their behaviour. It is interesting to note
that only 1 of the analyzed indices assigned a higher clusterability score to
models that have a more fine-grained structure with more clusters, but which
are on the other hand less separated. It might be interesting to analyze in
future work if a property can be formalized that captures this behaviour.

Further interesting possibilities for future work include the relationship of
clusterability and cluster stability or constraint-set coherence. Are cluster-
able models stable as defined by Lange et al. (2004)? Stability implies that
the structure of the model does not change for sub-models sampled from it.
Intuitively, this corresponds to an evident, and maybe clusterable, structure.
Another possible relationship is that of clusterability and the coherence of con-
straint sets. Davidson et al. (2006) noted that instance-based constraints—
which specify additional knowledge in the form of which objects definitely
belong to the same cluster and which do not—can mislead clustering algo-
rithms even if they agree with the ground-truth. As such constraints modify
the model, an evaluation of constraints with respect to clusterability might
provide further insight on which constraints are beneficial and why.

Finally, we want to note that, for a practical application of clusterability,
an assessment of the running time and memory requirements of clusterability
indices is necessary. Especially for large datasets, even a runtime that grows by
the square of the number of objects might be prohibitive. However, sampling
strategies similar to the statistic by Hopkins and Skellam (1954) seem to be
promising in this regard.
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Glossary

absolute The result of a measurement or evaluation can be interpreted on
its own. Can be a property of evaluation indices (p. 10 (def. 2.15)) or
clusterability indices (p. 33 (def. 3.7))

attribute Some measurement taken on all objects. Each attribute defines a
domain of possible values as well as a semantic meaning of these values.
We assume ratio attributes in this thesis. 18

ratio Values are real numbers (R) and semantically scaled by multiplica-
tion with a scalar.

cluster (Ci) A subset of the dataset X. When the term cluster is used, it
is usually assumed that the subset C is cohesive and separated from
objects x R C. The index i (1 ď i ď k) identifies the cluster when the
associated clustering C is clear. 4 (def. 2.4)

cluster analysis The task of identifying clusters in a dataset. It encompasses
the choice of a model, the assessment of clusterability, the use of a clus-
tering algorithm, and the validation by cluster evaluation. 4 (def. 2.4)

cluster evaluation The problem of measuring the quality of a clustering C
either in an absolute or relative manner. 5 (def. 2.7)

external A ground-truth Cgt is used to define high-quality clusterings.
Deviations of C from Cgt are associated with a loss in quality.

internal The quality is measured with respect to the dissimilarities in a
model. The model is assumed to be meaningful with respect to the
dataset. A high-quality C contains cohesive and separated clusters.

cluster evaluation index (ν) A quality measure of a clustering C. We mainly
consider indices for internal cluster evaluation, νpC,Xq, which are con-
sistent and permutation invariant and can be absolute, distribution
normalized, scale invariant and robust. 7 (def. 2.10)

clusterability (analysis) The problem of assessing the extent to which clus-
ters are evident in a model. 5 (def. 2.8), 22, 33

clusterability index (η) A permutation invariant mapping from the space
of models to the space of real values. A higher value/score indicates a
more clusterable model X. Some indices are also absolute, distribution
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Glossary

normalized, scale invariant or robust. 30 (def. 3.2), 30 (def. 3.2)
clustering (C) A mapping from the objects x of a dataset X to a set of

clusters which satisfy completeness (@xPXpDCPCpx P Cqq) and strictness
(@C‰C1PCpC X C 1 “ t uq). The number of clusters is referred to as k. 4
(def. 2.4)

locally optimal (Ĉopt) The clustering algorithm prefers it over all other C
it compares it to. 16 (def. 2.17), 38

optimal (Copt) The clustering algorithm prefers it over all other C it can
be compared to. 16 (def. 2.17)

clustering algorithm (γ) A function that takes a model and returns a clus-
tering of the underlying dataset. 4 (def. 2.5), 16

clustering relation (ďγ) A partial order relation used by a clustering al-
gorithm γ in order to decide which of multiple clusterings to choose.
Depending on the search algorithm and cluster assumptions of γ, also
not total relations can be possible. 16 (def. 2.17)

cohesive The parts (objects in a cluster) form a consistent whole. 6 (def. 2.9)
consistent A straightforward change in the input variables has no unintuitive

effect on a measurement. Is defined for evaluation indices based on
clusterings of the model (p. 8 (def. 2.12)).

cumulative distribution function ((c)cdf) A function that gives for a value y
the probability PrY rY ď ys for observations from a distribution, Y .
Similarly, the complementary cumulative distribution function is de-
fined as ccdfpyq “ PrY rY ě ys. 14, 27

dataset (X) The set of the objects to be clustered. The number of objects in
the dataset X is given by |X| and is often referred to as n. 3 (def. 2.1)

dissimilarity function (ψ) A function that takes two objects x, x1 of the
dataset X and returns a non-negative real number, ψ : X ˆ X ÞÑ R`.
Higher values indicate more dissimilar objects. Required properties are
ψpx,xq “ 0 and @x,x1pψpx,x1q “ ψpx1,xqq (symmetry). 4 (def. 2.2)

distribution normalized For models X from a (specific) distribution, the
expected value of a measurement as well as its standard deviation are
analytically known. Can be a property of evaluation indices (p. 10
(def. 2.16)) and clusterability indices (p. 33 (def. 3.6)).

ground-truth A natural categorization of a dataset which is independent of
any model. 3 (def. 2.1), 14, 58, 59

minimum spanning tree The smallest tree that connects all objects with
the size of a tree being the sum of its edge weights. 20, 27, 35

model (X) A representation of the dataset X which includes at least a dis-
similarity function ψ defined over the objects. 4 (def. 2.3), 18
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Glossary

clusterable A model that contains evident clusters.
meaningful The dissimilarities reflect the ground-truth of the dataset.
synthetic A model that is not an actual representation of a real-world

dataset, but instead drawn from a model distribution.
vector A type of model in which the x are from a object space X, most

often X “ Rm. The dimensions often correspond to attributes.
model distribution (X ) For a synthetic random model X sampled from X ,

X Ð X , X specifies the distribution from which the dissimilarities
for X are sampled. 5 (def. 2.6), 42

noise (object) An object that does not clearly belong to a specific cluster. 20
(def. 2.19)

object (xi) One entity with a semantic real world meaning outside the math-
ematical context. The index i (1 ď i ď n) identifies the object in
the dataset. Models define dissimilarities between the objects. Special
objects are noise objects and outliers. 3 (def. 2.1), 19

outlier An object that has a high dissimilarity to (nearly) every other object.
9, 19 (def. 2.18), 32

permutation invariant The ordering of the input variables is irrelevant for a
measurement. Applies to all evaluation indices (ordering of objects and
clusters, p. 8 (def. 2.11)) and clusterability indices (ordering of objects,
p. 30 (def. 3.3)).

relative The result of a measurement or evaluation can be interpreted with
corresponding results on similar entities (models, clusterings). Not
absolute.

robust The effect on a measurement of a change in a single dissimilarity
(weak) or dissimilarities of one object (strong robustness) of a model is
limited by the model size. Property of some evaluation indices (p. 9
(def. 2.14)) and clusterability indices (p. 32 (def. 3.5)).

sampling window (S) For a model distribution of vector models, the sampling
window is the subspace that contains all objects that could possibly
be sampled. 42 (def. 3.8), 51

scale invariant The measurement is constant under an uniform scaling of the
input variables. Property of some evaluation indices (p. 9 (def. 2.13))
and clusterability indices (p. 31 (def. 3.4)) with respect to all dissimi-
larities in a model.

separated The addition of other elements (objects not in the cluster) would
have a significant negative impact on the cohesiveness. 6 (def. 2.9)
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