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Abstract

This thesis presents a new corpus of science and technology Wikipedia articles
and assesses methods for the retrieval of history sections within them. Both
the corpus itself and the retrieval technology described in this thesis will assist
science studies research science priority disputes by availing of Wikipedia’s
unique position as a community-driven, up-to-date, and traceable account
of the debates surrounding the attribution of major scientific breakthroughs.
Science and technology Wikipedia articles are mined from Wikitext dumps
using iterative filtering of Wikipedia’s category network. The thesis details the
structure, extraction, segmentation, and breakdown of articles into sections,
subsections and subsubsections. It explains and evaluates how a combination of
heuristics analyzing section headings and classifiers trained on a ground truth
of articles with designated history sections can be utilized to identify sections
featuring the long-term historical development of technological innovations.
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Chapter 1

Introduction

When the 2020 Nobel Prize in Chemistry was awarded to Jennifer Doudna
and Emmanuelle Charpentier for their contributions to the development of a
method for genome editing [NobelPrize.org, 2022], biotechnology had already
seen a long history of legal battles over patent rights as well as “accusations of
impropriety” and “allegations of bad actors and bad faith”: The team at UC
Berkeley surrounding Doudna and Charpentier filed for a patent first, but the
Broad Institute, led by biologist Feng Zhang, “opted for an expedited review
process, and its patents were granted earlier”, resulting in Berkeley claiming
patent interference and “launching a complicated process to establish who first
came up with the invention” [Ledford, 2016b]. Matters were further complicated
in 2020 when the Patent Trial and Appeal Board ruled that the Broad Institute
had priority over inventions not covered by Berkeley’s patent [Cohen, 2020].
In the weeks leading up the 2020 Nobel Prize, some suspected Zhang would
be added to the list of recipients, and he was not the only addition people
expected to see on the list [Ball, 2021].

The science priority dispute surrounding CRISPR (Clustered Regularly
Interspaced Short Palindromic Repeats)1 illustrates how scientific discoveries
and innovative technologies can give birth to disputes, and they are highly
relevant to science studies. Researchers are interested in how these battles are
fought and, more importantly, how claims of actors (scientists, institutes, or
companies) can be linked to their research contributions, thus providing basis
to verify them. Science studies rely on accounts to shed light on these claims.
Accounts are reports of varying authority about actors, timelines, and priorities.
On the one hand, contributions can be measured by analyzing the impact of
the research conducted in a field over time (research accounts); on the other
hand, science studies can look at more removed sources (meta accounts) by
reviewing editorial and collaborative accounts (see Figure 1.1).

1“a family of DNA sequences found in the genomes of prokaryotic organisms such as
bacteria and archaea” [Wikipedia contributors, 2022a]
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Accounts

CollaborativeEditorial

MetaResearch

Figure 1.1: Taxonomy of science study accounts. [Ball, 2021, Cohen, 2020, Lander,
2016, Ledford, 2016a,b, Semantic Scholar, 2022, Wikipedia contributors, 2022a]

Analyzing research accounts by harvesting primary (e.g. research papers)
and secondary (e.g. review papers) literature can be seen as the first step
towards delineating the bibliometric field of research and trying to answer the
question which publications are the ones most relevant to a particular field of
study. A researcher interested in the scientific priority disputes surrounding
CRISPR could query the Web of Science or Google Scholar for the keyword
‘crispr’ or related terms and sort, filter, and analyze the results. In addition
to classical approaches of ready-made classifications like the Journal Impact
Factor [Larivière and Sugimoto, 2019], a number of computational methods
have been proposed to delineate a scientific field, such as keyword queries based
on a seed of highly cited articles, various clustering methods combined with
bibliometric mapping (coupling, chained citation, co-citation), citation and
co-author networks, and hybrid models of all these approaches [Zitt et al.,
2019].

Meta accounts can be divided into editorial and collaborative accounts.
Editorial accounts can be news articles, reports in popular science magazines,
editorial pieces in journals, as well as designated works detailing the history
and development of a scientific field or technology, like Lander’s ‘The Heroes
of CRISPR’ [Lander, 2016] or Ledford’s competing ‘The Unsung Heroes of

2



CHAPTER 1. INTRODUCTION

CRISPR’ [Ledford, 2016b]. Unlike editorial accounts with their unilateral com-
munication, collaborative accounts are based on, created via, and maintained
by multilateral communication. Wikipedia talk pages offer an insight into the
editing process and contributors’ decisions. More importantly, Wikipedia keeps
track of almost all revisions of all articles available. Researchers therefore have
access to a detailed timeline of historical snapshots of the current scientific
debate surrounding a research field, backed by Wikipedia’s policy of requir-
ing contributors to provide secondary and tertiary sources for their claims
[Wikipedia contributors, 2022c]. Most research in science studies has so far
focused on research accounts (i.e. primary and secondary literature) and, to a
lesser extent, editorial accounts (i.e. reports, journals, and designated publi-
cations), while collaborative accounts in general and Wikipedia in particular
have been largely overlooked.

This thesis will explore how article sections covering the historical develop-
ment of scientific and technological innovations (‘history sections’) can be mined
from Wikipedia at scale to provide science studies with a tool to track the way
the framing of priority claims has changed over time. A new corpus of science
and technology articles is the basis for assessing the efficacy of both heuristic
and computational classification approaches, a combination of which will prove
to be the best strategy to identify history sections, which can then in turn
be extended to the entire revision history of selected (science and technology)
Wikipedia articles.

3



Chapter 2

Related Work

Wikipedia has been of interest as a resource both for science studies in general
and for text extraction tasks in particular.

Science Studies

Wikipedia has become a highly relevant tool used by researchers and educators
and its quality is upheld by editors who ensure that articles adhere to the
standards of the community [Nix, 2010].

Several authors have highlighted Wikipedia’s unique selling point as “the
world’s largest collaboratively edited source of encyclopaedic knowledge” [Völkel
et al., 2006], “the largest collection of freely available knowledge” [Zesch et al.,
2008], and “a massive and relatively high-quality collection of text and (pre-
dominantly unstructured) encyclopedic knowledge” [Flickinger et al., 2010].
Wikipedia is a resource for understanding the historical development surround-
ing societal controversies as Wikipedia’s inherent revision history and talk
pages enable tracking and tracing any and all changes made to articles [Borra
et al., 2015].

According to Lin et al. [2017] Wikipedia has become one of the most
important resources for data extraction research and its practical applications.
They also highlight its importance for Wikipedia-based studies and Wikipedia-
based systems while addressing the article-as-concept assumption: An integral
idea behind many Wikipedia studies and systems is that there is a direct
mapping between concepts and the Wikipedia articles that describe them,
which, being a misconception, leads to incorrect assumptions about articles
describing the same concept in different languages, which in turn leads to
“mistaken conclusions about [...] the similarities and differences in the articles
about the same concept in different language editions”.

Owing to its ever-growing size and the way it covers both past and present
developments, Wikipedia is a new kind of lexical semantic resource, wherefore it
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has been used in a variety of NLP tasks, such as text categorization, information
extraction, information retrieval, question answering, computing semantic
relatedness, and named entity recognition [Zesch et al., 2008]. Zesch compares
Wikipedia to linguistic knowledge bases (LKBs) like WordNet and GermaNet,
referring to Wikipedia and Wikitionary as instances of collaborative knowledge
bases (CKBs), which provide information on named entities, phrases or terms
specific to domains uncommon in LKBs, but also noting that – like many other
CKBs – it lacks accessible APIs.

Text Extraction

Wikipedia has been employed as a source for a variety of text extraction tasks,
many of which are focused on article sections, as they “are the building blocks of
Wikipedia articles” [Piccardi et al., 2018]. As about one quarter of all English
language articles have only one or even no sections and the vast majority of
headings are only ever used once, Piccardi et al. recommend (sub)sections
for articles by finding sections from similar articles using topic modelling,
collaborative filtering, and Wikipedia’s category system, with category-based
approaches being most successful.

WIKITABLET (‘Wikipedia Tables to Text’) matches up tabular and meta-
data in Wikipedia articles with their respective sections using a transformer as
a base model [Chen et al., 2021].

Schenkel et al. [2007] extend Wikipedia dumps with “semantically rich,
self-explaining tags” by exploiting Wikipedia’s category network, which they
claim is of high quality due to categories being assigned manually. However,
this view is not shared by all authors, and Wikipedia’s category network has
been described as “noisy and ill-conceived” [Piccardi et al., 2018].

As many Wikipedia entries lack section subdivision and have inconsistent
headings, Field et al. [2020] generate section titles for Wikipedia articles with
BERT-based uncased encoders and RNN decoders.

Liu and Iwaihara [2016] extract representative phrases for sections from
external articles containing the same words as the target article. They retrieve
candidate articles by calculating the TF-IDF-based cosine-similarity between
related articles and each section (using Latent Dirichlet Allocation to assess
word-topic distributions and boost sections) and use FP-growth to extract co-
occurring word sets, then pipe phrases into search engines and apply gradient
descent to rank them.

Aprosio and Tonelli [2015] record a growing interest in the task of extracting
biographical information from data and name Wikipedia “the main source of
information for research in this direction despite its many biases”. Seeing as
Wikipedia’s lack of consistent templates for describing biographies has led to

5



CHAPTER 2. RELATED WORK

various page types to describe a person’s life, they employ Conditional Random
Fields (CRFsuite) and compare them to Support Vector Machines (YAMCHA)
but conclude that a basic token-based baseline using the words which appear
most frequently in the title is the most successful approach at the section level.

Lin et al. [2017] address the sub-article matching problem to “identify
all corresponding subarticles in the same language edition”. They parse out
subarticle candidates, mostly using regular expressions, then use SVMs, Random
Forests, Decision Trees, Naïve Bayes, Logistic Regression, and Adaboost to
identify subarticles, with Linear SVM and Random Forest being the most
successful.

According to Ostapuk et al. [2020] a significant number of Wikidata entries
has no corresponding article in any language. Assuming that many of these
‘orphan entries’ are described in existing Wikipedia articles or their sections
and subsection, they map orphans to (sub)sections using graphs and token-key
comparison.

6



Chapter 3

Methodology

3.1 Structuring Wikipedia

3.1.1 Articles and Revisions

Wikipedia keeps track of all revisions resulting from changes made by its
editors, with the exception of individual revisions being removed due to issues
such as copyright infringement, offensive content, and vandalism [Wikipedia
contributors, 2022d]. Each revision has a designated, unique revision ID and
can be accessed both through Wikipedia’s API and the website of the related
Wikipedia article itself. In addition, Wikipedia provides regular dumps of both
the most recent and all revisions of all articles.

For the purpose of this thesis, i.e. the creation of an explorative article
corpus, the analysis of extraction heuristics and classifiers, and all evaluations,
only the latest revisions as of 1 January 2022 as provided in the respective
Wikimedia dump were used, with the exception of first preliminary analysis
iterations, which used the revision dump from 1 June 2021.

3.1.2 Sections, Subsection, and Subsubsections

As Wikipedia articles grow in length over the course of their revision history,
editors add structure to them by dividing them into sections, subsections,
and subsubsections. In addition to plain text, sections can contain additional
elements, such as diagrams, images, charts, and tables. While individual
sections can be navigated from the table of contents, and whereas Wikipedia
allows for easy access to images and other content via MediaWiki and Wikidata,
Wikipedia does not provide built-in tools to extract individual sections, let
alone elements embedded in them. Figure 3.1 shows the table of contents box,
the beginning of the history section, and the reference section of the Wikipedia
article on CRISPR from 6 October 2022.

7



CHAPTER 3. METHODOLOGY

Figure 3.1: Contents, Sections and References. [Wikipedia contributors, 2022a]

Owing to Wikipedia’s aforementioned guidelines on source accountability,
almost all Wikipedia articles have a ‘References‘ and ‘Further Reading’ as well
as other frequent, generic, content-independent sections such as ‘External links’,
‘See also’, ‘Notes’, ‘Bibliography’, ‘Sources’, ‘Footnotes’, ‘External sources’,
or ‘Links’. However, there are no guidelines as to which sections a specific
type of article should or should not contain, so many section headings are
simply editors’ choices, resulting in syntactical and semantical variations to
represent the section’s content [Piccardi et al., 2018]. In contrast, some articles
do not contain any sections, with the entire article – with the exception of the
introduction and some boilerplate – being made up of a single block of text.

3.1.3 Wikidump, API, Browser, Wikitext, and HTML

Articles as provided by Wikimedia dumps and the Wikipedia API on the one
hand and the Wikipedia page as displayed in the user’s browser on the other
might not exactly match up for a number of reasons. The Wikipedia API
and Wikimedia dumps store and provide articles in Wikitext, Wikipedia’s own
markup language, which is parsed to HTML for the purpose of displaying
Wikipedia in the browser. While Wikitext provides for powerful templates,
updates in template and module syntax can potentially result in faulty output
of old revisions, and even at best the “HTML version of a Wikipedia article
typically contains more, oftentimes substantially more, information than the
original Wikitext source from which the HTML output was produced” [Mitrevski
et al., 2020].

Figure 3.2 provides a direct comparison between Wikitext, HTML, and the
browser output of a Wikipedia text section. Mitrevski et al. point out that,
in order to analyze Wikipedia as seen by the reader, researchers should work

8



CHAPTER 3. METHODOLOGY

===Discovery and properties===
The existence of the DNA fragments, which are known as CRISPR to-
day, was discovered in 1987 in the bacterium [[Escherichia coli|E. coli]].<ref
name=”pmid3316184”>cite journal |author=Ishino Y, Shinagawa H, Makino
K, Amemura M, Nakata A |title=Nucleotide sequence of the iap gene,
responsible for alkaline phosphatase isozyme conversion in Escherichia
coli, and identification of the gene product. |journal=J Bacteriol |vol-
ume=169 |issue=12 |pages=5429-33 |year=1987 |pmid=3316184</ref> In
2002 it was announced that there exist similar structures in the genome
of many different prokaryotes, and the name CRISPR was coined.<ref
name=”pmid11952905”>cite journal |author=Jansen R, Embden JD, Gaas-
tra W, Schouls LM |title=Identification of genes that are associated with
DNA repeats in prokaryotes. |journal=Mol Microbiol |volume=43 |issue=6
|pages=1565-75 |year=2002 |pmid=11952905</ref> In addition, a group of
genes discovered in all investigated organisms near the locus of CRISPR
repeats called CAS (CRISPR-associated) genes were were identified.<ref
name=”pmid11952905”></ref>

<h3> <span class = ”mw-headline” id = ”Discovery_and_properties”> Dis-
covery and properties </span> </h3> <p> The existence of the DNA
fragments, which are known as CRISPR today, was discovered in 1987
in the bacterium <a href = ”/wiki/Escherichia_coli” title = ”Escherichia
coli”> E. coli </a> . <sup id = ”cite_ref-pmid3316184_2-0” class = ”ref-
erence”> <a href = ”#cite_note-pmid3316184-2”> &#91;2&#93; </a>
</sup> In 2002 it was announced that there exist similar structures in the
genome of many different prokaryotes, and the name CRISPR was coined.
<sup id = ”cite_ref-pmid11952905_3-0” class = ”reference”> <a href =
”#cite_note-pmid11952905-3”> &#91;3&#93; </a> </sup> In addition,
a group of genes discovered in all investigated organisms near the locus of
CRISPR repeats called CAS (CRISPR-associated) genes were were identi-
fied. <sup id = ”cite_ref-pmid11952905_3-1” class = ”reference”> <a href
= ”#cite_note-pmid11952905-3”> &#91;3&#93; </a> </sup> </p>

Discovery and properties
The existence of the DNA fragments, which are known as CRISPR today,
was discovered in 1987 in the bacterium E. coli.[2] In 2002 it was announced
that there exist similar structures in the genome of many different prokary-
otes, and the name CRISPR was coined CRISPR.[3] In addition, a group
of genes discovered in all investigated organisms near the locus of CRISPR
repeats called CAS (CRISPR-associated) genes were were identified.[3]

Figure 3.2: Comparison of Wikitext, HTML, and browser output. [Wikipedia
contributors, 2010a,b]

with HTML, but they also note the challenges of processing time (downloading
HTML or parsing from Wikitext) and accuracy (arising from template and
module version mismatches). For the purpose of this thesis, and to circumvent
these restrictions, especially in respect to a prospective analysis of entire
revision histories, articles are retrieved from the revision dumps, the Wikitext
is extracted for all relevant articles, and Wikitext is processed, cleaned, and
handled using a custom parser.

9
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3.1.4 WikitextReader

From the more than 16 million entries in the Wikimedia dump, all articles
are selected using the Wikipedia namespace for Main/Article (0) [Wikipedia
contributors, 2022e], and title, pageid, revid (revision ID), timestamp, and text
(i.e. Wikitext) are extracted, yielding a total of 6,129,0241 articles with an
extractable section tree as of 1 January 2022. As Wikitext is partially incomplete
and contains in-line references and artifacts, the revisions as provided by the
Wikimedia dumps need to be cleaned and processed.

Wikitext does not feature a markup from which a structure can be inferred
in the sense that HTML has an inherent document object model tree. A
custom WikitextReader therefore processes the Wikitext, extracting headings,
associated Wikitext, and categories. Headings are identified by two or more
leading ‘=’ at the beginning and the same number of ‘=’ towards the end of
the line. ‘=’ characters are cleaned, the line is stripped, comments matching
‘&lt;.*&gt;’ are removed, and categories are identified by lines starting in
‘[[category:’. The category markup is removed, categories with ’|’ are cleaned
from the character itself and any preceding characters. The section heading
tree is built using the length of the ‘=’ heading markup. Based on this heading
tree, a section tree can be constructed for each article, featuring the name
(heading), level, parent, path, and cleaned text of each section, as well as a list
of subsections. The section tree can be recursively parsed for specific headings.
The section text pertaining to this heading can then be extracted up to a
specific level representing the depth in the section tree.

3.2 Finding Science and Technology Articles

3.2.1 Heuristic

In order to extract science and technology articles from the revision dump, the
articles are filtered using their assigned categories. The main goal here is to
find articles that describe innovative technologies as well as scientific concepts,
theories, and procedures, i.e. science and technology articles. In addition, only
articles with extractable sections are taken into consideration. The corpus does
not claim to be complete; instead, it should be as clean as possible in order to
be able to find both history and other sections within the same articles, which
serve as training data for classifiers and, thus, enable assessment of the most
successful strategy/strategies to extract history sections (see section 3.3.3).

1The very first corpus extraction iterations were based on the dump from 1 June 2021,
which only yielded 6,002,210 articles; see section 3.2.1 for details.

10
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While the list of inclusive strings initially only included the terms ‘science’
and ‘technology’ and was later reduced to just ‘technolog’ (to cover both
technology and technological), the list of exclusive string (hereafter ‘stopcats’)
was extended over several iterations of manual list expansion and sampling. This
approach turned out to be the most viable because, even though Wikipedia’s
categories span a graph, this “category network is noisy and ill-conceived”,
as Wikipedia is “notoriously incomplete” [Piccardi et al., 2018] and “authors
often tend to overstrain the features” [Schenkel et al., 2007]. In addition,
while categories can be very useful in classifying articles, some are simply
administrative in nature and only reference the subject matter, whereas others
do not imply that the thing described in the article is an instance of the concept
the category denotes [Schenkel et al., 2007].

An initial extraction of the June 2021 dump filtering all articles which
belong to the categories ‘science’ or ‘technology’ reduced the 6,002,210 articles
in the dump to 104,155. A small sample of 50 articles included 24 people and
2 companies (48% S&T). When articles belonging to categories containing the
strings ‘person’ or ‘company’ were excluded, this number decreased to 57,681.
A sample of 50 articles from this set contained 13 media entities, 7 people,
6 institutions, and 4 journals (40% S&T). Following a review of the most
frequent categories, the stopcat list was expanded to exclude media (‘films’,
‘movies’, ‘series’, ‘anime’, ‘manga’, ‘books’, ‘novels’, ‘screenplays’, ‘fiction’, ‘sto-
ries’, ‘games’), people (‘people’, ‘fellows’, ‘members’, ‘male’, ‘female’, ‘writers’,
‘authors’, ‘alumni’), institutions (‘institution’, ‘companies’, ‘colleges’, ‘universi-
ties’, ‘council’, ‘convention’), and some other concepts (‘journals’, ‘magazines’,
‘births’, ‘deaths’). This once more roughly halved the number of articles to
27,819. A sample of 50 articles from this set contained 10 institutions, 4
events, and 3 lists (66% S&T). The stopcat list was therefore extended by
institutions (‘institute’, ‘department’, ‘university’, ‘academies’, ‘committees’,
‘commissions’, ‘foundations’, ‘associations’, ‘organizations’, ‘societies’, ‘muse-
ums’, ‘establishments’, ‘agencies’, ‘churches’, ‘ministries’), and events (‘events’,
‘festivals’, ‘conventions’, ‘awards’, ‘conferences’), among some other categories,
almost doubling them to 55.

Not only did iteration 2, 3, 4, and 5 use the more recent dump from 1 January
2022 onwards, but checks on categories also included the most frequent tokens
instead of just the most frequent categories, allowing for easier selection of
stopcats. No sample was taken during iteration 2, as some bugs had to be fixed,
but the list was extended by a spelling variety of another stopcat (‘organisations’
in addition to ‘organizations’). The sample of iteration 3 contained several
glossaries, indices, and authorities, as well as esoteric and pseudoscience articles,
so the stopcat list was extended by collections (‘indixes’, ‘indices’, ‘glossaries’),
places (‘villages’, ‘towns’, ‘cities’, ‘countries’, ‘states’, ‘places’), and articles

11



CHAPTER 3. METHODOLOGY

Table 3.1: Number of science and technology articles in dump, number of categories
assigned to science and technology articles, size of sample taken and number of science
and technology articles in sample. Preliminary iterations 1.1 to 1.3 performed on
dump from 1 June 2021 (6,002,210 articles), improved iterations 2 to 5 performed on
dump from 1 January 2022 (6,129,024 articles). No sampling in iteration 2 due to
bug fixing. Sample size in iteration 3 and 4 increased to 100 as two samples were
taken to assess number of articles with history sections in articles with and without
designated history sections. Final iteration with sample statistically significant at
CL=95% and CI<5%. A large number of articles has more than one category (c.f.
Schenkel et al. [2007]).

Science & Technology

Iteration Stopcats Articles Categories Sample Size Positive

1.1 0 104,155 168,187 50 24 (48%)
1.2 2 57,681 98,004 50 20 (40%)
1.3 29 27,819 43,612 50 33 (66%)
2 55 17,085 18,034 – –
3 56 16,961 17,840 100 88 (88%)
4 73 15,177 14,667 100 96 (96%)
5 79 8,402 8,752 650 621 (96%)

describing unscientific topics (‘esoteric’, ‘pseudoscience’), in addition to some
other items. Iteration 4 already scored 96 science and technology articles in the
100 articles sampled. While this ratio was already very satisfying, the sample
still contained a large number of articles (Hydrogen, Statistics, Geochemistry,
Political sociology) and categories (‘by country’, ‘schools’, ‘occupations’, ‘parks’,
‘districts’) which proved difficult to assess, so the stopcat list was extended
one last time to include certain places (‘parks’, ‘districts’, ‘by country’), as
well as some other categories. Additionally, iteration 5 introduced a second
list of stopping strings (hereafter ‘stoptitles’). Article titles are checked for
these strings and, if matched, the article in question is excluded. The list
contains the strings ‘list of’, ‘index of’, ‘ in ’, ‘ on ’, ‘history’, ‘institution’,
‘company’, ‘school’, ‘college’, ‘institute’, ‘department’, ‘university’, ‘academy’,
‘committee’, ‘commission’, ‘foundation’, ‘association’, ‘authority’, ‘organization’,
‘society’, ‘council’, ‘museum’, ‘establishment’, ‘agency’, ‘church’, ‘ministry’, and
‘science and technology’. Table 3.1 shows the results of each iteration, with the
evaluation of the final iteration being the first statistical significant one (see
Section 4.1.2).

12
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Figure 3.3: Two subsubsections in one Wikipedia article describing the history of
two application for data compression respectively. [Wikipedia contributors, 2022b]

3.3 Finding History Sections

3.3.1 Level

Each iteration recorded the number of articles with a section with the heading
‘history’ (exact match) as well as the number of articles with a section whose
heading contained the string ‘history’ (iteration 1.0 to 2) or either ‘history’
or ‘histori’ (iteration 3 to 5) respectively (partial match). One issue that
became apparent during iteration 3 was the level at which the history section
was located. Figure 3.3 illustrates this: While the Wikipedia article on data
compression seems to contain two history sections, both are subsubsections.
More importantly even, neither section describes the historical development
of data compression, i.e. the improvements in compression ratios since the
mid 20th century or a timeline of algorithmic concepts, but the history of the
application of data compression in the respective usage scenario (audio and
video).

13
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Table 3.2: Number of history sections in science and technology articles, both as
partial (heading contains string ‘history’ or ‘histori’) and exact (heading ‘history’)
match. From iteration 3 onwards the level of the section was recorded.

History Sections in Science & Technology Articles

Heading with ‘histor[y|i]’ Heading ‘history’

Iter. Articles Any Level Top Level Any Level Top Level

1.1 104,155 13,965 – 11,145 –
(13.41%) (10.70%)

1.2 57,681 10,308 – 8,066 –
(17.87%) (13.98%)

1.3 27,819 7,340 – 6,288 –
(26.38%) (22.60%)

2 17,085 4,454 – 3,847 –
(26.07%) (22.52%)

3 16,961 4,743 4,564 3,953 3,861
(27.96%) (26.91%) (23.30%) (22.76%)

4 15,177 4,093 3,933 3,419 3,332
(26.97%) (25.91%) (22.53%) (21.95%)

5 8,402 2,363 2,289 2,068 2,021
(28.12%) (27.24%) (24.61%) (24.05%)

Table 3.2 gives an overview of the number of history sections in each iteration.
As, upon closer inspection, many partial-match history sections are not history
sections, and because exact-match history sections at any level below the top
level only occur in less than one percent of all articles in the corpus, training
data for history section classification is sourced from those articles which have
a designated section with the exact heading ‘history’ at top level (hereafter
‘designated history section’).

3.3.2 Heuristic

The baseline approach to extract history sections is to check all headings and
filter out all sections titled ‘history’. Sampling during iteration 3 and 4 had
shown that, while most sections labeled ‘history’ do describe the development
of the technology featured in the article, a considerable number of articles
without designated history sections also have a section which describes its
history (hereafter ‘non-designated history section’). For both iterations,
50 articles from both sets (n=100) were randomly sampled and analyzed.
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Table 3.3: Number of articles with history sections as predicted by article having
designated history section as compared to actual number of articles with history
section in iteration 3 (left, Ntotal = 1,559, Nhistory = 746, Nno_history = 813, ntotal

= 100, P = 0.98, R = 0.70, F1 = 0.82) and 4 (right, Ntotal = 1,333, Nhistory = 663,
Nno_history = 670, ntotal = 100, P = 0.98, R = 0.72, F1 = 0.83).

Prediction
Total History ¬History
100 50 50

L
ab

el

History 49 2170
¬History 1 2930

Prediction
Total History ¬History
100 50 50

L
ab

el

History 49 1968
¬History 1 3132

Table 3.3 compares the predicted and actual number of articles with history
sections. This was more thoroughly assessed during Evaluation I (see Section
4.1.3). Only articles with 10 or more sections (to account for boilerplate sections
like ‘See also’, ‘References’, ‘Further Reading’, ‘External links’, and ‘Notes’) at
top level were taken into consideration in order for the articles to be sufficiently
long and have enough exploitable structure (cf. section 3.3.3 and Aprosio and
Tonelli [2015]). This yielded 1,559 articles (746 with and 813 without designated
history section) and 1,333 articles (663 with and 670 without designated history
section) in iteration 3 and 4 respectively. All articles with designated history
sections at top level in this corpus happen to have exactly one such section.

3.3.3 Classification

Various classifier were trained to find history sections that cannot be extracted
by the simple heading-based heuristic described in section 3.3.2. Similar to
Aprosio and Tonelli [2015], who use the sections ‘Life’ and ‘Biography’ as
positive and all remaining sections in the same article as negative examples
to identify bibliography sections, articles with designated history sections are
extracted and their sections divided into the classes HISTORY and OTHER,
which serve as the gold standard data [Field et al., 2020] and, thus, ground
truth for training and cross-validation. The first text segments above the list
of contents are excluded from training and cross-validation to find the best
classifier candidates, as many of them had been labeled as history sections
during evaluations (see section 4.1.3). As these section do not have titles,
Chen et al. [2021] labeled them ‘Introduction’. However, as some articles have
designated sections with this title in addition to the first segment, a heading of
the format ‘[ARTICLETITLE] --- Introduction ---’ is used here instead.

Articles again need to be sufficiently long and have enough exploitable
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Table 3.4: Articles and sections (history and other). Boilerplate sections like ‘See
also’, ‘References’, ‘Further Reading’, ‘External links’, and ‘Notes’ are excluded.

8,402 articles

4,409 articles with 3 or more sections (excluding boilerplate)

2,825 without history 1,584 with history

8,179 sections with more than 100 characters
12,520 sections with

more than 100 characters
1,574 history sections 6,605 other sections

structure to get examples from both classes. The approach used in section 3.3.2
was improved: Instead of only selecting articles with 10 or more sections, an
article needs to have three or more sections excluding ‘See also’, ‘References’,
‘Further Reading’, ‘External links’, and ‘Notes’. This increases the number
of articles from 1,333 to 4,409, with 2,825 articles without and 1,584 articles
with designated history sections. The final training dataset contains 1,574
history and 6,605 other sections, while the 2,825 articles without designated
history sections contain a total of 12,520 sections with equal to or more than
100 characters (Table 3.4).

During the cross-validation of Scikit-learn (Sklearn) [Pedregosa et al., 2011]
classifiers, two assessments were performed, with the second one excluding
sections with less than 100 characters. The second run yielded the same
classifier candidates but with two of them having slightly different feature
parameters. While the comparison of the two approaches is inconclusive, an
oversight during the experiment setup to create the evaluation data to compare
the five classifiers in their performance against the articles without designated
history sections resulted in sections with less than 100 characters being excluded,
the classifiers, however, being set up with the feature parameters according to
the candidates resulting from the cross-validation including sections with less
than 100 characters. This, however, only affects the Gradient Boosting (4th
best) and the Multi-Layer Perceptron (5th best) classifier (see Section ‘Sklean
& BERT’ below for details).

16



CHAPTER 3. METHODOLOGY

Sklearn & BERT

26 Sklearn classifiers belonging to different model families underwent a 5-fold-
cross-validation to determine the best candidates. Hyperparameters were set
to default for all classifiers, with the exception of the four (multi-class) support
vector machines, which were also set up with a regularization parameter of
0.025 in addition to the default 1.000, resulting in a total number of 30 classifier
setups.

• Nearest Neighbor classifier: K-Nearest Neighbors Classifier

• Naive Bayes classifiers: Bernoulli, Categorical, Complement, Gaussian, and
Multinomial Naive Bayes Classifier

• Decision Trees: Decision Tree Classifier, Decision Tree Regressor

• Ensemble classifiers: AdaBoost, Bagging, Random Forest, Extra-Trees,
Gradient Boosting, Histogram-based Gradient Boosting

• Neural Network classifier: Multi-Layer Perceptron

• Linear models: Logistic Regression, Passive Aggressive Classifier, Perceptron,
Ridge Classifier, Stochastic Gradient Descent, Stochastic Gradient Descent
One-Class SVM

• Quadratic Discriminant classifier: Quadratic Discriminant Analysis

• Support Vector Machine classifiers: Linear Kernel SVC, Poly Kernel SVC,
Sigmoid Kernel SVC, Radial Basis Function SVC

The training sections are cleaned and preprocessed (lowering, stopping,
tokenization). Individual term frequency dictionaries are built for both history
and other sections, and the feature vector vocabulary is built from the union
of the most frequent tokens in both dictionaries. Several parameters optimize
feature selection: oversampling of history sections, unifying year tokens, unifying
person tokens, vocabulary sizes of the 10, 100, 1,000, and 10,000 most frequent
(non-stopword) tokens, and binary or relative term frequency. The 30 classifier
setups thus yield a total of 1,920 classifier-feature setups.

Table 3.5 shows the top results of the cross-validation. Classifier setups
with a precision of less than 0.75 or a recall of less than 0.45 are excluded, and
results are sorted precision first, recall second. The top five setups are selected,
ignoring setups with a classifier ranked higher with different parameters. Table
3.6 shows the ranking when sections with less than 100 characters are excluded.
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Table 3.5: Classifier performance on training data using 5-fold cross-validation
(sections with less than 100 characters included); parameters oversampling (OS),
mapping of years (Y), mapping of people (P), vocabulary size (V) and term frequency
(T); with precision ≥ 0.75 and recall ≥ 0.45; sorted by precision first and recall second.
Improvement (green), deterioration (red), and agreement (blue), as well as differing
feature parameters (underlined) for candidates (gray) over results in Table 3.6.

Classifier OS Y P V T Precision Recall

Random Forest 0 1 0 1000 relative 0.866 0.481
Extra-Trees 0 0 0 1000 binary 0.860 0.459
Extra-Trees 0 1 0 1000 binary 0.858 0.476
Random Forest 0 1 1 1000 relative 0.856 0.498
Extra-Trees 0 0 1 1000 binary 0.855 0.457
Extra-Trees 0 1 1 1000 binary 0.844 0.456
Extra-Trees 0 1 1 100 relative 0.832 0.493
RBF Support Vector 0 0 1 1000 binary 0.832 0.482
Extra-Trees 0 1 0 100 relative 0.830 0.499
RBF Support Vector 0 1 1 1000 binary 0.829 0.487
... ... ... ... ... ... ... ...
Gradient Boosting 0 0 1 1000 binary 0.809 0.538
... ... ... ... ... ... ... ...
Multi-Layer Perceptron 0 0 0 10000 binary 0.763 0.613

Selecting for precision over recall is motivated by the section heading heuris-
tic alone yielding decent (albeit insufficient) results. According to Evaluation
I (see Section 4.1.3 for details), roughly 13.24 percent, or 375 of the 2,825
articles without a designated history section should have a non-designated
history section. On the other hand, 99.03 percent, or 1,569 (TPhistory) of the
1,584 articles with a designated history section should have a history section,
while 15 should not (FPhistory). Given the high precision of the heuristic, using
section headings only would result in a precision of around PHeuristic = 0.990
and a recall of

RHeuristic =
TPhistory

TPhistory + TPno_hist + FNno_hist

=
1, 569

1, 569 + 375
= 0.807.

(3.1)
Using the heuristic first and the Random Forest Classifier with a precision of
PClassifer = 0.866 and a recall of RClassifier = 0.481 as fallback would, ideally,
increase the overall recall by almost 10 percent while reducing precision loss to
less than 2 percent: Given an estimate of 375 articles having a non-designated
history section, we would expect a classifier with a recall of 0.481 to correctly
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Table 3.6: Classifier performance on training data using 5-fold cross-validation
(sections with less than 100 characters excluded); parameters oversampling (OS),
mapping of years (Y), mapping of people (P), vocabulary size (V) and term frequency
(T); with precision ≥ 0.75 and recall ≥ 0.45; sorted by precision first and recall second.
Improvement (green), deterioration (red), and agreement (blue), as well as differing
feature parameters (underlined) for candidates (gray) over results in Table 3.5.

Classifier OS Y P V T Precision Recall

Extra-Trees 0 0 0 1000 binary 0.861 0.450
Random Forest 0 1 0 1000 relative 0.857 0.482
Extra-Trees 0 1 1 1000 binary 0.855 0.461
Random Forest 0 1 1 1000 relative 0.848 0.483
Extra-Trees 0 1 0 1000 binary 0.846 0.464
Extra-Trees 0 1 1 100 relative 0.845 0.495
RBF Support Vector 0 0 1 1000 binary 0.832 0.500
RBF Support Vector 0 1 1 1000 binary 0.831 0.498
... ... ... ... ... ... ... ...
Gradient Boosting 0 1 0 1000 binary 0.805 0.546
Gradient Boosting 0 0 0 10000 relative 0.805 0.543
... ... ... ... ... ... ... ...
Multi-Layer Perceptron 0 1 1 10000 binary 0.761 0.598
... ... ... ... ... ... ... ...

identify

TPno_hist = (TPno_hist + FNno_hist) ·RClassifier = 375 · 0.481 ≈ 180 (3.2)

articles. Using the above estimate of 180 articles correctly identified by the
classifier, we can, given its precision of 0.866, estimate it to incorrectly identify

FPno_hist = TPno_hist ·
1

PClassifier

−TPno_hist = 180 · 1

0.866
−180 ≈ 28 (3.3)

articles with a non-designated history section. Under ideal conditions, we can
therefore expect that using the heuristic first and the classifier as fallback to
achieve an overall precision of

PHeuristic+Classifier =
TP

TP + FP
=

1, 569 + 180

1, 569 + 180 + 15 + 28
≈ 0.976 (3.4)

and an overall recall of

RHeuristic+Classifier =
TP

TP + FN
=

1, 569 + 180

1, 569 + 180 + (375− 180)
≈ 0.900.

(3.5)
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With this in mind, favoring precision over recall is reasonable with respect to
the task at hand: If large spans of the revision history of a Wikipedia article
have a (non-designated) history section, it is sufficient to find roughly every
other one of them rather than dramatically reduce precision by incorrectly
identifying other sections as history.

Random Forest Classifier
A Random Forest [Breiman, 2001] is an ensemble classifier which casts a
majority vote based on a number of decision trees. It is a combination of tree
predictors and works similar to bagging. Each tree is grown from a randomly
sampled set of training data and a random selection of features according to
which data is split at each node. Random Forest classifiers compare favorably
to Adaboost and are very robust to noise, as they always converge and do not
suffer from overfitting, even when more trees are added. Despite not being
pruned, Random Forests are very fast as the sampled training sets are smaller
than the input needed for other decision trees.

Extra-Trees Classifier
Extra-Trees (“Extremely Randomized Trees”) [Geurts et al., 2006] randomize,
either partially or completely, both attribute and cut-point selection while
splitting nodes. While the entire learning sample is used, the simplicity of
individual node split operations results in Extra-Trees training considerably
faster than both Random Forests and Tree Bagging algorithms. A central
idea behind Extra-Trees is that randomization and ensemble averaging reduce
variance more than other randomization concepts in decision tree algorithms.
Error margins are very similar to Random Subspace and Random Forests, and
Extra-Trees are as accurate as or even more accurate than other ensemble
methods, with Extra-Trees never falling behind on classification problems.

RBF Support Vector Classifier
The RBF (Radial Basis Function) Support Vector classifier [Platt, 1999] is a
classical support vector machine which tries to fit a hyperplane into the vector
space between objects, thereby splitting them into classes while maximizing the
gap between them. In cases where the data points are not linearly separable,
their vector space is mapped into a higher-dimensional space using a kernel
function where they are then separable by a hyperplane. As standard SVMs
do not provide posterior probability calibration, an additional sigmoid function
is trained to map the output of the SVM to a probability. The parameters of
the sigmoid function are fit from the training set using maximum likelihood
estimation. As the support vectors of non-linear SVMs often contain a consid-
erable share of the training data, fitting a sigmoid to them can result in bias.
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Therefore, hold-out training sets and cross-validation are used as training data
for the sigmoid.

Gradient Boosting Classifier
Gradient Boosting [Friedman, 2002] finds a classifier H by optimizing a base
learner h by iteratively fitting a parameterized function β and parameters
a = a1, a2, ... via additive expansion of the form:

H(x) =
M�

m=0

βmh(x; am) (3.6)

Starting from an initial H0(x), βm and am are fit by minimising some loss
function Ψ(y,H(x)) such as squared-error for m = 1, 2, ...,M steps and N
training samples:

(βm, am) = argmin
β,a

N�

i−1

Ψ(yi, Hm−1(xi) + βh(xi; a)) (3.7)

with

Hm+1(x) = Hm(x) + βmh(x; am) (3.8)

A weak base learner (e.g. a decision tree) is improved by subsampling from
the training data at each iteration [Friedman, 2001]. Accuracy and speed of
Gradient Boosting can be improved by incorporating randomization, which
also guards against overfitting for the base learner.

Multi-Layer Perceptron Classifier
A Multi-Layer Perceptron [Hastie et al., 2009] classifier models a combination
of inputs derived from features to a (non-linear) target function. Using an
activator function σ, a perceptron derives a vector from the input vector X,
which is then mapped to a vector Y of size K, with the kth value representing
the probability for class k, with an additional bias in the output layer. An
output function g generates the final outputs. In its simplest form in case of
linearly separable input vectors, values x1 and x2 (plus a constant x0 = 1) are
multiplied with respective weights w1, w2, and w0, and a heaviside function is
applied to the scalar product, which maps a given value pair to class 1 or 0 in
a single-value vector as output. Training is achieved by adjusting the weights
for each misclassified data point by adding the derivative of the data point,
multiplied by an initially specified learning rate. For a multi-layer abstraction
of this concept, a larger number of hidden layers is chosen, with each layer
extracting features from the input layer before it. Multiple layers enable the

21



CHAPTER 3. METHODOLOGY

separation of non-linearly separable inputs and deriving hierarchical features
from the data, and it is generally advisable to prefer too many layers over too
few. Model selection is achieved trying a number of random configurations
and selecting the one with the lowest error, using the average prediction over a
number of independently trained networks, or by using bagging in that average
prediction is gained from networks trained from randomly sampled subsets of
the training data.

BERT
The uncased BERT base model of the Hugging Face Transformers library [Wolf
et al., 2020] was compared against the above Scikit-learn classifiers. BERT
(Bidirectional Encoder Representations from Transformers) is a multi-layer
bidirectional transformer encoder that can create pre-trained deep bidirectional
language representations from unlabeled text by analyzing both the left and
right context in all layers: “The pre-trained BERT model can be fine-tuned with
just one additional output layer to create state-of-the-art models for a wide range
of tasks, such as question answering and language inference, without substantial
task-specific architecture modifications” [Devlin et al., 2018]. Accordingly, only
the self-attention head of the BertForSequenceClassification model was trained
at a learning rate of 0.001 and using a weight decay of 0.001. Feature selection
and optimization is handled by BERT.

Finally, the most promising classifiers were applied to the articles without
designated history sections (now including introductory segments), and a
statistically significant sample was evaluated by labelers.

22



Chapter 4

Evaluation

Two evaluations assessed the efficacy of the approaches described in Section
3. Evaluation I assesses the heuristic using categories to identify science and
technology articles, and it also provides an approximation of the number of
articles with history sections, both in the set of articles with and without
designated history sections. Evaluation II focuses entirely on classifying history
sections, assessing various classifiers in their effectiveness at identifying these
sections in articles which do not contain designated history sections.

4.1 Evaluation I

4.1.1 Setup

From the 8,402 articles in the corpus 4,409 articles with 3 or more sections
(excluding ‘See also’, ‘References’, ‘Further Reading’, ‘External links’, and
‘Notes’) were extracted, and a sample of 650 articles was drawn: From the 2,825
without a designated history section 340, and from the 1,584 with a designated
history section 310 articles were chosen at random, with both samples sizes
having a confidence level of 95 and a confidence interval of 5 percent. All 650
articles were labeled by the author with regard to the question whether they
belong to the category of science and technology.

The articles were then randomly split into 10 batches, with each batch
containing 34 articles without and 31 articles with designated history sections.
The batches were distributed among 9 labelers, with one batch being labeled
by 5 labelers. For 15 articles, all of them without designated history sections,
labelers were unable to determine whether they contained a history section.
For two of them in the inter-labeler batch a majority vote decided the label.
Labeling was accomplished using a custom tool which provides examples and
instructions, and gives users the option to leave articles unlabeled in case they
cannot conclusively decide whether or not the article contains a history section.
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Table 4.1: Inter-labeler agreement for 5 of the 9 labelers involved regarding history
section labeling based on one sample batch of 65 articles (Fleiss’s Kappa = 0.819).

Labelers labeler 02 labeler 04 labeler 06 labeler 08 author

labeler 02 - 0.849 0.715 0.908 0.816
labeler 04 0.849 - 0.699 0.939 0.851
labeler 06 0.715 0.699 - 0.753 0.752
labeler 08 0.908 0.939 0.753 - 0.909
author 0.816 0.851 0.752 0.909 -

Table 4.1 shows the inter-labeler agreement (Cohen’s Kappa) for the five
labelers of the inter-labeler batch. The agreement between each pair of labelers
is strong to almost perfect, with the exception of labeler 06, who still displays
moderate to strong agreement when their assessment is compared to those of
other labelers. Fleiss’s Kappa for the entire group of labelers is 0.819, indicating
almost perfect overall agreement.

4.1.2 Science and Technology

As the first non-representative assessment during iteration 4 had already sug-
gested, the precision of the heuristic described in Section 3.3.2 is already very
high, with more than 95 percent of all articles in the corpus covering topics
of science and technology. The number of science and technology articles
is proportionally only insignificantly larger in the subsample of articles with
designated history sections at about 0.5 percent. Table 4.2 shows the number
of science and technology articles in the samples of both subsets as described
in Section 4.1.1 of articles as well as in total.

Some articles proved difficult to assess, others were simply incorrect, most
of which were retrieved using inconsistent categories. These include business
and science parks (ANAS High Technologies Park), attractions (Rush (Thorpe
Park), Musical fountain), government programs (Green Salt Project, BINC,
Project Galileo, Aerospace Cadets of the Philippines), technology infrastructure
stubs (State data centre), pseudoscience and science folklore (UFO conspiracy
theories, Gremlin), degrees and certifications (Master of Business Informatics,
Certified Forensic Computer Examiner, Offensive Security Certified Profes-
sional, Certified Information Systems Security Professional, Apple certification
programs), court cases (2G spectrum case), meta articles (Kazakh Wikipedia),
military equipment and concepts (Land Warrior, Wunderwaffe), media (Ghacks,
PC Perspective, Linux Outlaws, Film Sack, The Naked Scientists, Industry Dive)
and lists (Comparison of crewed space vehicles).
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Table 4.2: Number of science and technology articles in corpus as per Evaluation I.

Articles Sample Size Science and
Technology

without designated history sections 340 324 (95.29%)
with designated history sections 310 297 (95.81%)
Total 650 621 (95.54%)

At least one article has now been deemed irrelevant to warrant an article of
its own and has subsequently been deleted or merged into existing articles (e.g.
Francis Tuttle Technology Center). The article on Hohe Salve, a mountain in
Austria ended up in the corpus as it has a transmission mast and has therefore
received the category ‘Radio technology’. The article Human capital flight from
Iran describes a phenomenon rather than scientific research or technology.

Figure 4.1 shows the top 20 categories in the corpus, all of which are science
and technology, with the majority relating to engineering, physics, chemistry,
and life science.

1 film and video technology 495
2 emerging technologies 342
3 biotechnology 330
4 television technology 280
5 information technology management 196
6 engine technology 195
7 display technology 173
8 nanotechnology 160
9 mobile technology 144

10 gas technologies 129
11 cooling technology 121
12 radio technology 121
13 assistive technology 118
14 automotive technologies 110
15 nuclear technology 103
16 educational technology 99
17 waste treatment technology 99
18 american inventions 98
19 sustainable technologies 97
20 drilling technology 97

Figure 4.1: Top 20 categories.
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4.1.3 History Sections

While the the vast majority of articles with a designated history section do
in fact contain a history section, namely 99.03 percent, or 307 out of the
310 articles sampled, the labelers confirmed that a considerable number of
articles without designated history sections contain one or more sections that
describe the historical development of the technology or concept: According
to Evaluation I, 13.24 percent, or 45 out of the 340 articles sampled contain
a history section. Table 4.3 provides an overview of the number of history
sections in both article sets.

The good true positive and low false positive rates show that having a
section with the heading ‘history’ strongly indicates that a Wikipedia article
has a history section and that it is this section which describes the historical
development of the featured technology or concept. On the other hand, the
high false negative and low true negative rates show that not having a dedicated
section titled ‘history’ does not mean that this article does not contain a history
section.

It should also be noted that an article might contain more than one non-
designated history sections, either in addition to another non-designated history
sections or one section titled ‘history’.

Unfortunately, labelers were only asked to determine if an article contained
a history section, not which one it was that made them come to this conclusion.
As some of the articles sampled during Evaluation I also were found by the
classifiers, these were labeled by the author as part of Evaluation II. About a
quarter (7 out of 29 articles) had an introduction which could easily qualify as
a history section.

Table 4.3: Number of articles with history sections as predicted by article having
designated history section as compared to actual number of articles with history
section (Ntotal = 4,409, Nhistory = 1,584, Nno_history = 2,825, ntotal = 650, P = 0.99,
R = 0.87, F1 = 0.93).

Prediction
Total History ¬History
650 310 340

L
ab

el

History 307 45352
¬History 3 295298
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Figure 4.2: Number of articles in intersection of runs per Sklearn classifier.

4.2 Evaluation II

4.2.1 Setup

For Evaluation II the five most promising Sklearn classifiers and BERT were
trained using the entire set of 1,584 articles with designated history sections (see
Section 3.3.3) and then applied against the 2,825 articles without a designated
history section.

As some classifiers are non-deterministic, all Sklearn classifiers were applied
against the corpus until the accumulated intersection of articles over all runs
did not decrease over five consecutive runs. The Random Forest classifier
unifying years, using a vocabulary size of 1,000 and relative token frequency
achieved this after 46, the Extra-Trees classifier using a vocabulary size of 1,000
and binary token frequency after 71 runs. The RBF Support Vector classifier
and the Gradient Boosting classifier, both unifying persons using named entity
recognition, a vocabulary size of 1,000 and binary token frequency basically
converged immediately, whereas the Multi-Layer Perceptron classifier using a
vocabuly size of 10,000 and binary token frequency required 9 runs. Figure 4.2
compares the convergence curves for all five Sklearn classifiers.
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Table 4.4: Number of articles assessed to contain history section for each labeler
(*new labeler; †93/ ††128 if 29 articles also found in Evaluation I are included).

Labeler Articles with History Sections Articles in Batch

labeler 00* 55 100
labeler 02 62 100
labeler 03 82 100
labeler 04 0 (author: 56) 100
labeler 05 39 (author: 75) 100
labeler 06 61 100
labeler 08 37 100
author 55 100
author 64† 99††
author 39 85

Together with the articles identified by BERT, the evaluation pool contains
a total of 1,013 articles. 8 batches of 100 articles were labeled by 8 labelers. No
batch was labeled by more than one person; therefore, inter-labeler agreement
is not available for Evaluation II, but 7 of the 8 labelers involved had already
participated in Evaluation I. However, as one labeler (04) had judged one batch
to not contain a single history section, which was in stark contrast to the
other batches (see Table 4.4), their judgements were reassessed by the author.
One batch of 128 articles contained 29 articles which had already featured
in Evaluation I and was labeled by the author, as were 85 articles found by
BERT and not included in any of the other batches. In addition, as one labeler
(05) was unable to finish the evaluation of their batch, approximately half of
that batch was also labeled by the author. A total of 615 articles were labeled
as containing a history section. In comparison to Evaluation I, labelers were
required to indicate which section or sections it was/were that made them
decide that an article contains a history section. Labelers could select more
than one section, including the introduction. As only the articles returned
by the classifiers were evaluated, the exact number of false negatives for each
classifier is unknown.

4.2.2 History Sections

Precision and recall are calculated for all classifiers both on article and section
level. All sections that were not labeled as history sections by the labelers are
considered and therefore labeled as non-history.

For reference, Table 4.5 provides precision and recall for the five Sklearn
classifiers as selected during cross-validation and BERT as well as as the
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Table 4.5: Precion, recall and F-Score of classifiers during cross-validation.

Cross-Validation

Precision Recall F0.3

Random Forest Classifier 0.87 0.48 0.80
Extra-Trees Classifier 0.86 0.46 0.79
RBF Support Vector Classifier 0.83 0.48 0.78
Gradient Boosting Classifier 0.81 0.54 0.77
Multi-Layer Perceptron Classifier 0.76 0.61 0.74
BERT 0.81 0.37 0.72

F-Score, for which β is set to 0.3 so that the the models are sorted in the
same descending order resulting from the criteria according to which they were
selected in Section 3.3.3 (precision ≥ 0.75, recall ≥ 0.45, sorted by precision
first, recall second).

Table 4.6 shows the results on section level. Precision and recall are
calculated for each classifier over the pool of all sections. β for the F-Score is
again set to 0.3. As only part of the corpus was labeled, namely the articles
that were identified to contain history sections by the classifiers, recall is based
on the number of 615 articles said to contain history sections as per the labelers’
assessments and might therefore be lower than given.

Table 4.7 shows the results on article level. This more lenient approach
considers a classifier’s decision as correct if it

a) correctly identifies at least one history section (true positive), or

b) ignores the article if it does not contain a history section (true negative)

and only considers the classifier to be wrong if

a) it does not find any history sections even though the article contains one
or more history sections (false negative), or

b) none of the sections it identifies are history sections (false positive).

Using this approach, a researcher gets an indication of whether or not an article
contains a history section but will have to examine the sections of an article a
classifier identified to contain a history section more closely to identify potential
false positives or negatives within it.

Results were calculated both including and excluding sections with less than
100 characters but are inconclusive. Removing short sections does not seem to
affect the results one way or the other. Tables 4.8 and 4.9 provide results when
sections with less than 100 characters are excluded.
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Table 4.6: Number of history and non-history sections according to classifiers
compared to actual number of history and non-history-section. Sections with less
than 100 characters included.

Random Forest Classifier
P = 0.66, R = 0.17, F0.3 = 0.51

Prediction
Total History ¬History
8380 305 8075

L
ab

el

History 200 9591159
¬History 105 71167221

Extra-Trees Classifier
P = 0.55, R = 0.14, F0.3 = 0.43

Prediction
Total History ¬History
8380 292 8088

L
ab

el
History 162 9971159
¬History 130 70917221

RBF Support Vector Classifier
P = 0.57, R = 0.32, F0.3 = 0.53

Prediction
Total History ¬History
8380 661 7719

L
ab

el

History 376 7831159
¬History 285 69367221

Gradient Boosting Classifier
P = 0.55, R = 0.31, F0.3 = 0.51

Prediction
Total History ¬History
8380 643 7737

L
ab

el

History 354 8051159
¬History 289 69327221

Multi-Layer Perceptron Classifier
P = 0.45, R = 0.45, F0.3 = 0.45

Prediction
Total History ¬History
8380 1163 7217

L
ab

el

History 526 6331159
¬History 637 65847221

BERT
P = 0.50, R = 0.28, F0.3 = 0.47

Prediction
Total History ¬History
8380 650 7730

L
ab

el

History 328 8311159
¬History 322 68997221

30



CHAPTER 4. EVALUATION

Table 4.7: Number of articles with and without history sections according to
classifiers compared to actual number of articles with and without history sections.
Sections with less than 100 characters included. Note that labels vary between
classifiers depending on each classifier’s individual performance.

Random Forest Classifier
P = 0.79, R = 0.17, F0.3 = 0.58

Prediction
Total History ¬History
1013 133 880

L
ab

el

History 105 504609
¬History 28 376404

Extra-Trees Classifier
P = 0.70, R = 0.13, F0.3 = 0.49

Prediction
Total History ¬History
1013 115 898

L
ab

el
History 80 530610
¬History 35 368403

RBF Support Vector Classifier
P = 0.60, R = 0.53, F0.3 = 0.60

Prediction
Total History ¬History
1013 486 527

L
ab

el

History 294 259553
¬History 192 268460

Gradient Boosting Classifier
P = 0.60, R = 0.50, F0.3 = 0.59

Prediction
Total History ¬History
1013 460 553

L
ab

el

History 277 282559
¬History 183 271454

Multi-Layer Perceptron Classifier
P = 0.53, R = 0.72, F0.3 = 0.54

Prediction
Total History ¬History
1013 727 286

L
ab

el

History 383 146529
¬History 344 140484

BERT
P = 0.59, R = 0.41, F0.3 = 0.56

Prediction
Total History ¬History
1013 393 620

L
ab

el

History 230 335565
¬History 163 285448
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Table 4.8: Number of history and non-history sections according to classifiers
compared to actual number of history and non-history-section. Sections with less
than 100 characters excluded.

Random Forest Classifier
P = 0.66, R = 0.16, F0.3 = 0.51

Prediction
Total History ¬History
8380 286 8094

L
ab

el

History 189 9701159
¬History 97 71247221

Extra-Trees Classifier
P = 0.55, R = 0.14, F0.3 = 0.43

Prediction
Total History ¬History
8380 300 8080

L
ab

el
History 165 9941159
¬History 135 70867221

RBF Support Vector Classifier
P = 0.57, R = 0.33, F0.3 = 0.53

Prediction
Total History ¬History
8380 665 7715

L
ab

el

History 380 7791159
¬History 285 69367221

Gradient Boosting Classifier
P = 0.56, R = 0.31, F0.3 = 0.51

Prediction
Total History ¬History
8380 645 7735

L
ab

el

History 358 8011159
¬History 287 69347221

Multi-Layer Perceptron Classifier
P = 0.44, R = 0.45, F0.3 = 0.44

Prediction
Total History ¬History
8380 1177 7203

L
ab

el

History 521 6381159
¬History 656 65657221

BERT
P = 0.51, R = 0.25, F0.3 = 0.46

Prediction
Total History ¬History
8380 572 7808

L
ab

el

History 293 8661159
¬History 279 69427221
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Table 4.9: Number of articles with and without history sections according to
classifiers compared to actual number of articles with and without history sections.
Sections with less than 100 characters excluded. Note that labels vary between
classifiers depending on each classifier’s individual performance.

Random Forest Classifier
P = 0.82, R = 0.17, F0.3 = 0.59

Prediction
Total History ¬History
1013 123 890

L
ab

el

History 101 510611
¬History 22 380402

Extra-Trees Classifier
P = 0.73, R = 0.14, F0.3 = 0.51

Prediction
Total History ¬History
1013 118 895

L
ab

el
History 86 522608
¬History 32 373405

RBF Support Vector Classifier
P = 0.61, R = 0.53, F0.3 = 0.60

Prediction
Total History ¬History
1013 484 529

L
ab

el

History 294 256550
¬History 190 273463

Gradient Boosting Classifier
P = 0.60, R = 0.50, F0.3 = 0.59

Prediction
Total History ¬History
1013 468 545

L
ab

el

History 279 277556
¬History 189 268457

Multi-Layer Perceptron Classifier
P = 0.51, R = 0.72, F0.3 = 0.53

Prediction
Total History ¬History
1013 730 283

L
ab

el

History 375 149524
¬History 355 134489

BERT
P = 0.59, R = 0.39, F0.3 = 0.56

Prediction
Total History ¬History
1013 369 644

L
ab

el

History 218 346564
¬History 151 298449
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Chapter 5

Discussion

5.1 Science and Technology
With more than 95 percent of all articles sampled describing science and
technology topics, filtering articles by their assigned categories proves success-
ful. Discarding categories iteratively results in a fine-tuned list of excluding
categories. However, the resulting corpus is neither perfect nor complete.

On the one hand, some articles missing from the corpus were excluded by
their categories. As a very prominent example, the article on the Large Hadron
Collider belongs to the categories ‘Buildings and structures in Ain’ and ‘Build-
ings and structures in the canton of Geneva’ [Wikipedia contributors, 2022f]
and is therefore excluded by the stopcat ‘buildings’. Out of 25 technologies to
have changed the world according to CNET [Musil, 2020], only 6 are featured
in the corpus (Internet of things, Artificial intelligence, 3D printing, Blockchain,
Quantum computing, Drones [Unmanned aerial vehicle in Wikipedia]). While
some of the articles in the list, such as E-cigarettes (Electical cigarette in
Wikipedia), might be debatable to begin with, other very valid candidates
were excluded as a result of the categories assigned to them. None of the
excluded articles had a category that contained the string ‘technolog’, with the
exception of two articles (Video streaming [Video on demand in Wikipedia] and
Videoconferencing [Videotelephony in Wikipedia]), which, however, contained
the stopcat string ‘service’. A more severe shortcoming of using Wikipedia’s
categories to identify articles is revealed by the low number and quality of
the categories assigned to some of the other articles in the list missing from
the corpus. The article on Face recognition (Face detection in Wikipedia) be-
longs to only two categories, namely ‘Face recognition’ and ‘Object recognition
and categorization’, as does the article on Autonomous vehicles (Vehicular
automation in Wikipedia), with the two categories being ‘Uncrewed vehicles’
and ‘Vehicular automation’.
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On the other hand, some articles in the corpus do not really qualify for the
concept of science and technology but were included in the corpus based on
their categories. As already mentioned in Section 4.1.2, this is again a result
of Wikipedia’s imperfect category system. To further clean the corpus from
articles, additional stopcats could be added. The string ‘amusement’ would
have excluded the article Rush (Thorpe Park). Articles like UFO conspiracy
theories or Gremlin could have been filtered by the strings ‘conspiracy’ and
‘folklore’, five of the six media articles (Ghacks, PC Perspective, Linux Outlaws,
Film Sack, The Naked Scientists, Industry Dive) by the strings ‘website’ or
‘podcast’, and all five degree and certification articles (Master of Business
Informatics, Certified Forensic Computer Examiner, Offensive Security Certi-
fied Professional, Certified Information Systems Security Professional, Apple
certification programs) by the string ‘qualifications’. Other articles could have
been excluded by expanding the stoptitle list (Comparison of crewed space
vehicles). However, some articles will slip past even the most elaborate stopcat
list, such as State data centre, which has no category disqualifying it from
inclusion (‘Ministry of Communications and Information Technology (India)’,
‘Information technology in India’, ‘E-government in India’), or ANAS High
Technologies Park, which has but one category (‘Science and technology in
Azerbaijan’). The same holds for other articles like Kazakh Wikipedia, Green
Salt Project, BINC, Project Galileo, and Aerospace Cadets of the Philippines.

5.2 History Sections

5.2.1 Heuristic

As expected, designated history sections can reliably be identified by the
baseline approach of matching the strings ‘history’ or ‘histori’ in their titles.
Evaluation I indicates that the heuristic alone is not sufficient though, as there
are a considerable number of articles without a designated history section that
have a section describing the historical development of a technology. Evaluation
II confirmed this assessment, with the number of articles with non-designated
history section (615) in the corpus as found by the classifiers and labeled by
labelers alone considerably exceeding the extrapolation based on the results of
Evaluation I (375).

The most common non-designated history sections labeled as history in the
corpus are the introductory section (267), ‘Background’ (49), ‘Development’
(41), ‘Origins’ (31), ‘Overview’ (16), ‘Origin’ (8), ‘Construction’ (7), ‘Invention’
(5), ‘Design and development’ (5), ‘Discovery’ (5), ‘Applications’ (4), ‘Decline’
(4), ‘Etymology’ (4), ‘Description’ (4), ‘1980s’ (4), ‘1990s’ (4), ‘2000s’ (4),
‘2010s’ (4), ‘20th century’ (4), ‘21st century’ (4), ‘Clinical trials’ (4), and
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‘Design’ (4). 14 section titles appear only three times, 26 appear only twice,
and a staggering 583 headings appear only once. While extending the heuristic
by adding common strings like ‘background’, ‘development’, or ‘origin’ would
increase the recall of this approach, a considerable number of sections would
not match. Conversely, always considering the introductory section as a history
section would in turn also increase the number of false positives.

5.2.2 Classification

All five Sklearn classifiers and BERT fall behind the expectations based on the
cross-validation as outlined in Section 3.3.3.

Excluding sections with less than 100 characters has very little to no effect
on recall and precision, with inconsistent improvements not pointing in any
clear direction. While excluding sections with less than 100 characters seems to
marginally improve precision of the Random Forest and Extra-Trees classifier
by 0.03 and RBF Support Vector classifier by 0.01 points respectively on article
level, section level performance appears to be unaffected except for the Gradient
Boosting classifier, where precision improves by 0.01 points. The Multi-Layer
Perceptron classifier seems to fair ever so slightly better when sections with less
than 100 characters are included both on article and section level. The precision
improves for BERT both on article and section level when short sections are
removed, but recall is 0.02 and 0.03 points better when they are included.

The Random Forest classifier scores the best precision, with around a third
of all sections identified by it being history sections. However, it also only
manages to find less than a fifth of all history sections. The Extra-Trees
classifier, the second-best model in the cross-validation, fails completely with
the overall lowest recall and yet only a mediocre precision when compared to
the other classifiers. The RBF Support Vector classifier achieves the highest
F-Score but only manages to identify about a third of all history sections at
a low precision below 60 percent. Only the Multi-Layer Perceptron classifier
manages to find a satisfying number of articles but scores a precision of below
50 percent. BERT manages to find a quarter of all history sections but labels
every other section incorrectly.

The considerable discrepancies between article and section level indicate
that classification works well for some articles but completely fails for others.
From a pragmatic point of view, using the RBF Support Vector classifier
would still return a third of all non-designated history sections. Even though
about half of all sections identified are not history sections, a science study
researcher would still get an indication of revisions that contain information on
the historical development of the technology they are studying and would leave
them with less sections to discard than sections gained.
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We can therefore reassess the calculations in Section 3.3.3 with the informa-
tion gleaned from Evaluation II. Using the a section title based heuristic only
would give us, again, a precision of PHeuristic = 0.990, and a recall of

RHeuristic =
TPhistory

TPhistory + TPno_hist + FNno_hist

=
1, 569

1, 569 + 615
= 0.718.

(5.1)
Using the heuristic first and the lenient, recall-focused RBF Support Vector
classifier with a precision of PClassifer = 0.61 and a recall of RClassifier = 0.53
as fallback would increase the overall recall by more than 14 percent while
reducing precision by almost 9 percent: Given that there are at least 615 articles
having a non-designated history section, 294 of which the classifier identifies
correctly, and 190 which it identifies incorrectly to contain a history section,
using the heuristic first and the classifier as fallback will give us an overall
precision of

PHeuristic+Classifier =
TP

TP + FP
=

1, 569 + 294

1, 569 + 294 + 15 + 190
≈ 0.901 (5.2)

and an overall recall of

RHeuristic+Classifier =
TP

TP + FN
=

1, 569 + 294

1, 569 + 294 + (615− 294)
≈ 0.853.

(5.3)
Using the heuristic first and the lenient, precision-focused Random Forest
classifier with a precision of PClassifer = 0.82 and a recall of RClassifier = 0.17
as fallback would increase the overall recall by almost 5 percent while reducing
precision by less than 2 percent:

PHeuristic+Classifier =
TP

TP + FP
=

1, 569 + 101

1, 569 + 101 + 15 + 22
≈ 0.978 (5.4)

and an overall recall of

RHeuristic+Classifier =
TP

TP + FN
=

1, 569 + 101

1, 569 + 101 + (615− 101)
≈ 0.765.

(5.5)
Going back to our initial reasoning, a researcher is, depending on the

classifier, provided with a considerable number of revisions with at least one
history sections to fill an otherwise lengthy gap in a timeline of revisions without
any apparent history section.
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Chapter 6

Conclusion

This thesis explores the creation and analysis of an explorative corpus of
science and technology Wikipedia articles using Wikipedia’s category network
and classifiers with the aim of assisting science studies research by unlocking
Wikipedia’s unique position as a community-driven, up-to-date and traceable
account of science priority debates.

Using Wikipedia’s category system yields a satisfying dataset covering a
wide range of articles on innovative technology. While the corpus is not complete
in the sense that it does by no means contain all science and technology articles
available on Wikipedia, evaluations indicate a very low number of articles which
do not fall into this category or are, at most, edge cases. This corpus then
serves as the basis for an in-depth analysis of various classifiers regarding their
capability for identifying non-designated history sections.

Classification of non-designated history sections is attempted by using sec-
tions in articles with designated history sections as positive and negative ground
truth and training various Sklearn classifiers and BERT. The performance of
all classifiers falls behind the expectations set by the cross-validation with
both precision and recall below the thresholds set for the classifier candidate
selection. Employing the classifiers as a fallback option in addition to the
baseline of using the headings of sections to identify history sections can still
aid researchers as it yields more relevant revisions to consider than it leaves
irrelevant revisions to discard.
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Chapter 7

Future Work

In order to increase the size of the Wikipedia science and technology corpus
and, therefore, the study of history section mining, all articles in the corpus
could be labeled with regard to them covering science and technology topics.
This annotation could then be utilized to train classifiers to find additional
science and technology technology articles that slipped past the category-based
heuristic. This will, however, require identifying and labeling a representative
dataset of articles that are not science and technology to serve as negative
training examples. Alternatively, specific segments other than the categories
could be used to classify articles, such as headings, infoboxes, or the introductory
section.

While, according to Evaluation I, the assumption that designated history
sections are history sections and any other sections are not might be correct,
the few incorrectly auto-labeled sections might introduce noise into the training
data, which could in turn account for the suboptimal final results. This issue
could be addressed by annotating any and all sections in the corpus, including
all sections in articles with designated history sections with regard to them
being history sections.

Working on section rather than article level could be advisable in general
but might cause more harm than it relieves as taking sections out of context
can make the already challenging task of deciding whether or not a specific
section covers the historical development of a technology even more difficult.

One major pathway to improve history sections classification will be to
improve feature selection and fine-tune hyper-parameters of classifiers.

Last but not least, the application of the ideas presented in this thesis can
be put to the ultimate test by running a case study using the entire revision
history of one or more Wikipedia article(s) and exposing the results to the lens
of science study research.
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