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Abstract

In this thesis we explore to what degree large language models (LLMs) can
extract, learn and reproduce causal knowledge found on the internet. For this,
we look at two LLMs trained on large amounts of English natural language
texts and compare their output to the CauseNet, a large-scale graph of claimed
causal relations. We test the output of the LLMs for a large number of very
simple causal questions such as “smoking causes x. what could x be?” using
evaluation, mask-filling, and text-generation. From these outputs, we devise
metrics for gauging the confidence of each causal relation in the LLM.

We show that off-the-shelf LLMs possess a rudimentary ability to answer
open-ended questions about causal inference. LLMs were more likely to gener-
ate and repeat causal claims that were frequently found in their training data,
showing a correlation between the confidence the LLM has in a causal claim
and that claims support in the CauseNet. Our adapted text-generation-based
approach shows promising results in the task of aiding the construction of
causal graphs, outperforming an evaluation-based approach from a previous
paper by Long et al.. Furthermore, we find that using different techniques of
prompt engineering as well as increasing the size of the model increases the
performance of this task.
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Chapter 1

Introduction

With recent advancements such as ChatGPT, Large Language Models (LLMs)
have once again entered the public eye. LLMs are able to memorize knowledge
contained in their training data and are able to regurgitate that knowledge
through text generation [Hwang et al., 2021]. Parts of the training data may
contain causal knowledge. This knowledge about causal relations is a fun-
damental part of how humans interact with their surroundings. Assigning
cause and effect to events and phenomena is vital to building knowledge and
understanding of the world.

In this thesis we want to find out to what degree LLMs can extract, learn
and reproduce causal knowledge found on the internet. To answer this ques-
tion, we look at GPT-2 [Radford et al., 2019] and BERT [Devlin et al., 2019],
which are both LLMs trained on large amounts of English natural language
texts.

To gauge how well the LLM does at this task, we compare its output to
the CauseNet |Heindorf et al., 2020| (see figure 1.1), a large-scale graph of
claimed causal relations. The relations in the CauseNet were extracted from
natural language texts in the 2012 ClueWeb12 web crawl, as well as semi-
structured sources like info-boxes from Wikipedia. The LLMs we look at are
similarly trained on text found on the internet. This makes the CauseNet a
good baseline for comparison. Each relation in the CauseNet graph links a
cause to an effect. Additionally for each relation, the CauseNet provides the
source count and the number of linguistic patterns (Support) that found this
relation.

LLMs have been shown to possess the ability to extract and reproduce
causal knowledge from their training data at a small scale |[Long et al. [2023],
Hobbhahn et al. [2022]]. To investigate this, the previous research used a rela-
tively small sample of handcrafted phrases and relations or known benchmark
sets for causal tasks, such as SemEval at 1730 word pairs [Hassanzadeh et al.,
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Figure 1.1: A diagram illustrating the compilation of causal relations into the
CauseNet.

2019]. The methods used in this thesis probe for causal knowledge at a much
larger scale, relying on the large number of automatically extracted relations
of the CauseNet, instead of a small number of manually selected ones.

Our research utilizes the CauseNet metrics of support and source count to
further analyze the output of the LLMs and check for a potential correlation
between relations favored by the LLMs and relations that score highly in the
CauseNet.

To probe for causal relations we employ three approaches, each with their
advantages and limitations.

(1) Perplexity, where the LLM is given a causal relation in the form of a
short sentence and returns a score that represents how unfamiliar or perplexed
the LLM is with that sentence, giving an insight into which sentences it would
be likely to generate itself. However, this score is also influenced by the length,
phrasing, or starting word of the sentence, instead of just the content of the
causal relation. (2) Mask-filling, where the LLM is given an incomplete causal
relation in the form of a short sentence with some parts masked out. The LLM
returns words to fill in these masks, as well as a score of confidence for each
answer given. Since the different words fill in the same mask, this score is not
influenced by the varying length of the phrasing of the sentence in the way that
perplexity is. The output of mask-filling always has the same form, making
it easier to parse and analyze, but limiting the LLM in its answers. (3) Text
generation, where the LLM is tasked to output its own causal relations. This
allows the LLM the greatest degree of freedom in the answers given. While
this freedom allows us to probe for a larger variety and number of outputs, it
also introduces potential errors and makes the outputs harder to parse.

We also use text generation to see if it could be used to help construct
an example causal graph, using a much smaller causal graph as ground truth
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rather than the CauseNet.

For all of this probing, we use pre-trained versions of GPT-2 and BERT
transformer models. We compare how well different sizes of these models per-
form at these tasks and we employ different strategies of phrasing the sentences
and prompts (such as n-shot prompting or switching linking words) to see if
it can improve the LLM’s performance.

Under our conditions, GPT-2 can achieve a precision of up to 13% and
up to 6% recall at the task of generating relations found in CauseNet and
a precision of up to 64% and up to 61% recall at the task of recreating a
much smaller causal graph. The numbers around the CauseNet are quite low
when compared to the results of papers that work with smaller sample sizes.
They however broadly still showcase similar abilities of the LLM to learn and
reproduce causal knowledge. In our tasks of prompting, mask-filling, and
perplexity evaluation (when adjusted for starting word and input length) the
LLM’s confidence clearly correlates with that of the CauseNet. We show that,
similar to the relations in the CauseNet, LLMs are most confident in short,
very general causal relations, found frequently on the internet. These relations
are more likely to be learned and generated by the LLM. Our results show
that this ability to evaluate and reproduce causal relations scales with model
size and is heavily influenced by different phrasings of the prompts, matching
the results of Hobbhahn et al. [2022] in this regard.
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Related Works

In the following, we will go over the research directly related to this thesis fol-
lowed by a brief introduction to LLMs and their ability to learn and reproduce
knowledge. We will explain why causal knowledge in particular is a topic of in-
terest, how causal tasks have been categorized, and how causal knowledge can
be represented in causal graphs. We will go through different causal graphs,
how they were created, and how they are composed. We will explore other
works that aim to answer similar questions about the causal capabilities of
LLMs, their methods, and their results. And finally we will give an overview
of the CauseNet, its construction, and its use in this thesis.

2.1 LLMs and Knowledge

Recent advancements in Al have shown that LLMs possess impressive profi-
ciency in natural language tasks. They are able to answer complex questions
about a variety of topics, correctly identify and follow different tasks and gener-
ate large amounts of text e.g. for emails, essays, stories, or sections of program
code |Tang et al., 2023|. They frequently show the ability to recall and ap-
ply knowledge from all across different domains. The ability to capture and
memorize knowledge provides an opportunity to unlock various applications of
LLMs in fields involving healthcare, research, and risk assessment [Long et al.,
2023|.

LLMs such as GPT2 |Radford et al., 2019] and BERT [Devlin et al., 2019]
are trained on large amounts of English language texts in an unsupervised
fashion. This means that they are trained on raw text with no human labeling,
which allowed the researchers to use lots of publicly available data. In this
process of training, LLMs are able to internalize relationships between concepts
and knowledge about those concepts from data in the corpus. This knowledge
then influences the answer an LLM might give when prompted with a question
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or asked to complete a certain task. GPT2 is a model trained to predict the
next word at the end of a sequence, while BERT was trained to fill in missing
words anywhere in a sequence. These models can have variants with different
numbers of parameters and be specifically pre-trained to fulfill various different
tasks. We will go into more detail regarding which specific models were used
for this thesis in the next chapter.

2.2 Causal Tasks

Some of the most common questions are causal in nature. They are fun-
damental to humans’ understanding of the world. Causality plays a role in
determining cause and effect in a situation, inferring causation from correlat-
ing data, predicting the potential effects of an action, or determining the best
action to take while considering many complex factors. Zhang et al. [2023]
classify causal tasks into three types.

e Type 1 are basic causal inference tasks that can be solved using do-
main knowledge. This includes finding potential causes of a given effect,
potential effects resulting from a given cause, or determining what in a
situation is the cause and what is the effect.

Example: “I washed my car. My car got dirty. Which sentence is the
cause of the other?”

e Type 2 are causal discovery tasks that aim to discover a causal link
from data. This includes estimating causation based on correlation or
reasoning if an action had an effect on the data. This task cannot simply
be solved by memorizing domain knowledge but requires a different skill
set in high-precision causal reasoning.

Example: “Here is a list of data on carbon emissions A:|...] and global
temperatures B:|...] over the years. Determine if there is a link between
A and B

e Type 3 are complex causal question tasks that require an understand-
ing of the potential consequences of actions, the relation between many
different inter-dependent factors, and the best path forward to reach a
desired outcome. Depending on the setting this may require high preci-
sion in mathematical or logical reasoning.

Example: “A patient returns for the third time with lumbago. The
epidural steroid injections helped him before, but not for long. I injected
12mn betamethasone the last two times. What is the dose that I should
use this time?”
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Zhang et al. [2023] find that current LLMs are very promising at answering
type 1 causal questions owing to their large collection of knowledge. How-
ever, they struggle with tasks of type 2 and type 3, since they require an
understanding of underlying causal mechanisms to infer causality from data
or make recommendations for very specific situations.

In Kiciman et al. [2023], the researchers further distinguished causality
along two axes. The first axis categorizes approaches by their primary emphasis
on data analysis (covariance-based causality) or logical reasoning (logic-based
causality). The second axis categorizes causality into reasoning about the
broad relationship between variables (type causality) and reasoning about the
cause and effect of specific events (actual causality).

Kiciman et al. [2023] further differentiate between 4 main categories of
causal tasks, those being effect inference, causal discovery, attribution, and
judgment. These can broadly be assigned to the 3 types of causal tasks.

Effect inference (determining a causal relation) and attribution (determin-
ing the potential cause or causes) have approaches that rely on both covariance-
based and logic-based reasoning, but are typically seen used for inferring type
causality. Effect inference and attribution broadly match the categorization of
type 1 task described above.

Causal discovery tasks (similar to those described in type 2 tasks above)
were categorized as mostly falling into covariance-based type causality.

Judgment tasks extend attribution to questions about reward, blame, moral-
ity, and intent. A judgment task can take into account any or all covariance-
based, logic-based, type, and actual causality. Having to take into account
complex factors and the goal of determining the desired outcome in the con-
text of morality or law puts the judgment tasks into type 3 as described above.

LLMs’ ability to answer questions of causal discovery (type 2) has been
a subject of recent research [Jin et al. [2023], Zhang et al. [2023], Tu et al.
[2023]], which has shown that unspecialized LLMs perform poorly in this task,
while LLMs specifically trained in this task were able to reach considerable
accuracy. However, while tasks like this and many other causal tasks may also
require extensive domain knowledge to answer, the experiments of this thesis
will be focusing exclusively on tasks of type 1 (specifically type causality), as
they are the most helpful when trying to answer the main questions of this
thesis.

2.3 Probing for Causal Knowledge

In this section, we want to look at the different types of causal tasks that have
been studied in regard to LLM capabilities in related research. For this we
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look at the kinds of methods used, the types and sizes of benchmarks used,
and results relating to causality obtained from these experiments, as well as
other useful observations that were gathered.

Hobbhahn et al. [2022] evaluated the performance of GPT3 at two similar
causal tasks. Task one involved using real-world knowledge to identify cause
and effect in a sentence and task two involved identifying cause and effect in
a constructed scenario completely divorced from the real world. Both of these
are tasks of basic causal inference (type 1). The knowledge tested in task
one is taken from a part of BigBench, a benchmark for LLMs maintained by
Google. The prompts tested in task two were manually constructed specifically
to remove any real-world knowledge from them. The exact number of evaluated
prompts was not stated in the paper, but we estimate it to be around 100
different prompts per setup. The researchers found, that GPT3 performed
with an accuracy of up to 98% under ideal conditions, but was very susceptible
to being influenced by the phrasing of a prompt, not just its content. Their
experiments used different sizes of GPT3 to test how its performance at these
tasks scaled with the size of the model, finding that larger models outperformed
smaller models. Furthermore, the researchers employed different prompting
strategies and found that preceding a prompt with correct examples (n-shot
setup) and following a “question: ...7 answer: ..” pattern improved their
results. The aforementioned varying model sizes as well as their prompting
techniques will also be employed in the text generation setup of this thesis.

Long et al. [2023] looked at LLMs’ performance in the task of constructing
causal graphs, specifically in the medical field. For this, they used the LLM
to identify whether or not the relationship between two concepts was a cause-
effect relationship. Similar to Hobbhahn et al. [2022] this is a type 1 causal
task, but instead of using text generation, they relied on an approach in which
GPT3 would rank two statements implying the presence or absence of a causal
relationship. In this thesis we plan to also use a slightly altered version of this
approach, instead utilizing text generation to rank these two statements. For
their experiments they worked with a very small sample of just 18 manually
crafted causal relations to evaluate the LLM’s performance, yielding an average
accuracy of 66.7%. We will also use this same sample as one of our benchmark
sets, which will allow us to compare our approach to the approach taken by
Long et al. [2023].

Hassanzadeh et al. [2019] tested the ability of LLMs to answer simple bi-
nary causal inference questions. To evaluate this ability the researchers worked
with example pairs of cause and effect taken from 4 benchmarks handcrafted
by human experts (SemEval with 1730 word pairs, NATO-SFA with 118 word
pairs, Risk Models with 804 word pairs, and CE Pairs with 320 word pairs).
The LLM was tasked with identifying if a causal relationship existed between a
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given pair of two concepts. Thereby all of these tasks are type 1 tasks that rely
on causal knowledge to answer. As established by Zhang et al. [2023] LLMs
perform well at these type 1 tasks. Matching this the researchers found that
their BERT implementation reached an accuracy above 50% in these tasks.
To evaluate the preferred answer of the LLM they introduced a method called
NLM-BERT, wherein BERT is used to encode a sentence “x may cause y” and
compute the cosine similarity to its top-k most similar sentences to obtain a
score. Since the experiments of this thesis already involve prompting BERT
to generate its own relations, we can instead simply use the score it provides.

Li et al. [2021] trained a BERT-based model to increase its accuracy of
different causal tasks. To train and evaluate their model they used a variety
of benchmarks that can be categorized into two different types. The first task
was causal classification, for which the researchers used the same benchmarks
as Hassanzadeh et al. [2019]. Additionally, the researchers worked with COPA,
another causal inference task using 500 examples, as well, as CausalQA and
CosmoQA, two causal question-answering tasks, which fall under type 3 tasks.
Similar to Hassanzadeh et al. [2019] NLM-BERT was used to evaluate the
answer of the LLM. Matching the previous research, unspecialized versions
of BERT performed above 50% at the type 1 tasks, but worse at the type 3
tasks. However, through specifically training their own model for causal tasks
they were able to significantly increase accuracy for all tasks compared to the
baseline.

Kwcvman et al. [2023] conducted four causal experiments using various
state-of-the-art LLMs, working with the Tiibingen Cause-Effect-Pair dataset
containing 108 more common cause-effect pairs from across different domains
and the Neuropathic Pain dataset containing 475 cause-effect pairs that rely
on very specific domain knowledge to answer. In addition, they used the Arctic
Sea Ice knowledge graph consisting of 48 edges to evaluate the LLMs’ abilities
to reconstruct a small causal graph using causal inference. These 3 tasks were
all type 1 causal tasks. The largest models had no problem solving either of
these tasks with impressive accuracy. The researchers evaluated the LLMs’
abilities to complete tasks of counterfactual reasoning (type 3) using the Big-
Bench benchmark containing 275 causal examples. Here too the results show
that the larger models (especially GPT4) displayed substantial ability. Finally,
they evaluated the LLMs’ performances at different related tasks, such as iden-
tifying necessary and sufficient factors and inferring normality from data.

Tu et al. [2023] conducted a small study on ChatGPT’s causal capabili-
ties. Despite setting out to investigate tasks of causal discovery (type 2) the
researchers admit that the tasks they used relied on causal knowledge and
meta information instead of observational data, bringing them closer to causal
inference tasks (type 1). For their experiments, they selected 100 examples
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from the Neuropathic Pain dataset and evaluated the outputs of ChatGPT
manually. In addition to the binary answer given by ChatGPT, they took into
account the additional reasoning the LLM would provide in its output. The
results show that ChatGPT achieved a high precision but low recall in this
task.

Jin et al. [2023] conducted a large-scale experiment (400000 samples) to
investigate the capabilities of LLMs at different causal discovery tasks (type
2). They found that off-the-shelf LLMs performed poorly at discovering causa-
tion from correlation, but that they could be specially trained to achieve high
accuracy at this task.

Li et al. [2020] compared the performance of different LLMs at two type
1 causal tasks using 100 samples each from two datasets. The first task was a
cause-effect classification task using the COPA dataset used by Li et al. [2021].
The second task was a causal inference task where either cause or effect had
to be filled in by the LLM. This setup provided the LLM with an incomplete
sentence (like “babies cry because ...”) and prompted the LLM to finish the
sentence through text generation. The discussed setup differs from binary- or
multiple-choice tasks more commonly used in related research, which tests the
LLM’s ability to correctly identify causal relations without relying on a choice
between predetermined options. Our thesis employs a comparable approach
for generating effects from causes using LLMs. In their paper, Li et al. [2020]
found that conventional transformer models like GPT2 produced low accuracy
for the task of generating their own causal relations and performed considerably
better at identifying cause and effect from a predetermined list. Unsurprisingly
LLMs specifically trained for similar causal tasks like CausalBERT were able
to outperform the conventional models.

Analyzing the existing research in this field we learned that almost all of
the studies done previously worked with a comparably small sample size for
their benchmarking (less than 10000 samples) when probing for type 1 causal
capabilities. Jin et al. [2023| used a large-scale benchmark of 400 000 samples,
however only evaluated LLMs’ performance at causal discovery tasks (type
2). Papers like Li et al. [2020] relied on a large number of causal relations to
train their LLM, but used only a small subset of those relations to benchmark
the LLM’s performance. This thesis aims to build on the different approaches
seen in the discussed papers (like mask-filling and effect-inference) and apply
them to a much larger sample. In order to accomplish this we cannot rely on
manually evaluating the output, but instead use automated approaches. The
automated approaches for evaluating outputs in related research papers mostly
rely on the restricted and formulaic nature of multiple-choice questions, which
finds only limited application in our thesis. The specifics of our automated
approach will be discussed in the next chapter.
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Figure 2.1: A diagram showing the bootstrapping process used to create the
CauseNet.

2.4 CauseNet

The CauseNet [Heindorf et al., 2020] is a large-scale knowledge base of claimed
causal relations. It is comprised of over 11 million causal relations, making it
one of the largest knowledge bases for causal knowledge. Before we explore
how the CauseNet was utilized as a ground truth in the next chapter, we will
first go into how the CauseNet was constructed, how it is composed, how it
can be used, as well, as give examples of causal claims contained within it.

The CauseNet was compiled from a large amount of natural language texts
with the purpose of cataloging causal beliefs commonly expressed on the in-
ternet. It draws its data from two sources: the ClueWeb12, a web crawl made
up of over 730 million English web pages, and Wikipedia, taking into account
the natural language text on the site as well as information contained in lists
and info-boxes.

The CauseNet was automatically generated in three steps (see figure 2.1)
with minimal supervision. First, a small set of well-known causal relations
were chosen as seeds, which included relations like “smoking — cancer” and
“earthquake — tsunami”. Using these seeds, Wikipedia was searched for sen-
tences that contained both cause and effect from any seed, which were then
mined for linguistic patterns expressing the causal relation. Gathering these
linguistic patterns gives insights into how causal relations are expressed in nat-
ural language text. In the next step, the extracted patterns were used to find
more causal relations in the corpus. In the final step, some of the collected
relations were selected based on the number of different patterns that found
them (support) and added back into the pool of seeds. This process was it-
erated twice, yielding 53 different linguistic patterns that were then used to
search the entire web crawl.

10
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For each causal relation, the CauseNet keeps track of cause, and effect, the
total number of times this relation was found in the data, and the number
of different linguistic patterns that found this relation. The latter number is
referred to as the support of a relation.

For example if the relation “smoking — lung cancer” was represented in
the data with the sentences

“smoking causes lung cancer” and
“smoking leads to lung cancer”

the relation would be given a support of 2.

The support metric provides a way to express in how many different ways
a given relation was expressed in the corpus, which can be used to discern the
CauseNet’s “confidence” in the relation. A relation expressed in many different
ways is more likely to accurately represent beliefs about causal claims found on
the internet. Causal relations assigned high support in the CauseNet tend to
be common and short general statements between broad concepts. These are
relations very frequently expressed in a variety of ways. In contrast, relations
with low support in the CauseNet tend to be very narrow, domain-specific,
and wordy.

For our ground truth, we only consider the “High-Precision-CauseNet”, a
sub-graph of the CauseNet, containing only relations with support of 2 or
higher, which aims to increase precision by reducing the number of only weakly
supported causal relations and still leaves around 198 000 claimed causal rela-
tions.

For the automated parsing of LLM outputs we make use of the full “High-
Recall-CauseNet”, which contains over 11 million claimed causal relations.

In this thesis, we will be working with the CauseNet as our ground truth.
Since the LLMs examined in this thesis were trained on a similar corpus to
the CauseNet (large-scale natural language text extracted from the internet),
this allows us to infer connections between the causal claims found in the
training data and the causal relations learned and reproduced by the LLMs.
The large size of the CauseNet enables us to prompt at a larger scale (over
10000 samples) than related research (see section 2.3). As discussed in a later
chapter all our prompts were sampled from a subset of causal relations in the
CauseNet. The large scale of our prompting set allows us to use an additional
metric to evaluate the LLMs’ confidence in a relation by counting how often it
repeats that relation across different prompts. This approach will be discussed
in the next chapter.

We will also make extensive use of the support metric of the CauseNet. We
expect that similar to the most supported relations in the CauseNet, LLMs

11
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also hold the strongest confidence in commonly found, general causal state-
ments. Using this, in our thesis, we set out to see if such a correlation can
be observed between causal relations commonly found on the internet (high
CauseNet support) and the causal relations favored by the LLM.

While working with the CauseNet it is important to keep in mind a few
caveats. (1) In order to evaluate how well an LLM learns causal knowledge
from its training data one has to compare its output to the causal knowledge
contained in its training data. We made the assumption that the training data
is similar enough to the data from which the CauseNet was constructed for us
to be able to make this connection. However, there are differences between the
two datasets that must be taken note of. The CauseNet was constructed from
a web crawl taken from 2012 as well as Wikipedia, while GPT2 was trained
on a number of English language books and websites from 2019 or later and
BERT was trained on the Brown corpus and Wikipedia. While there is likely
considerable overlap between the different training sets and the CauseNet, it
is hard to say how much this might influence the accuracy of our results. (2)
We need to keep in mind that the CauseNet is a collection of claimed causal
relations. The results of this thesis, therefore, cannot show how accurately an
LLM performs at producing correct causal relations, only how well it can learn
the causal knowledge encoded in its training data.

12
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Methods

In this thesis, we use three different methods of probing LLMs for causal
knowledge: (1) Perplexity, (2) mask-filling, and (3) text generation (see figure
3.1). For each of those methods, we will go into detail on how the prompts
given to the LLM were selected, what metrics of confidence we used, and how
the output of the LLM was analyzed.

To compare the capability to generate and evaluate causal relations at dif-
ferent sizes of LLM, we chose four different variants of GPT2 [Radford et al.,
2019] and three different variants of BERT [Devlin et al., 2019]. For the tasks
of perplexity evaluation and text generation, we chose GPT2 (124M param-
eters), GPT2-Medium (355M Parameters), GPT2-Large (774M parameters),
and GPT2-xl (1.5B parameters) as pre-trained transformer models from Hug-
gingface [Wolf et al., 2020]. For the task of mask-filling we chose BERT-Base-
Uncased (110M parameters), BERT-Large-Uncased (340M parameters), and
BERT-Large-Uncased-Whole-Word-Masking (340M parameters) also as pre-
trained transformer models from Huggingface.

As a ground truth, we worked with the CauseNet, meaning that we ex-
amined how many of the causal relations generated by the LLM were also
present in the CauseNet, as well as comparing our different confidence metrics
to support and source numbers in the CauseNet. Even the smaller “High Pre-
cision CauseNet” contains around 198 000 claimed relations, which is orders of
magnitude larger than benchmark data sets such as NATO-SFA or SemEVAL
used by previous research like Li et al. [2021] and Hassanzadeh et al. [2019].
This large ground truth allows us to probe the LLMs at a larger scale than in
previous papers. We work with the CauseNet as the ground truth, as well as
a source of sample relations for creating prompts.

13
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Prompting Mask Filling Perplexity

qg: drought drought drought
CﬁU:ES Xl-d causes causes
what cou [MASK]. famine.
x be?
Text Mask Filling ;
Generation & Scoring Evaluation

q: drought causes x. drought
what could x be? causes
famine:

Figure 3.1: Examples of input and output of the three probing methods used in
this thesis

3.1 Perplexity

Perplexity is a metric that measures the uncertainty of generating a word in
a sequence, based on the previous words. It is calculated using the average
inverse log-likelihood, which results in texts that are more likely to be generated
by the LLM having a lower perplexity [Tang et al., 2023|.

By evaluating the perplexity for a large and diverse sample of relations it
is possible to gain insight into which relations the LLM favors. To create this
sample we pseudo-randomly selected over 12 000 relations from the CauseNet,
making sure it would include relations ranging in support from 2 to 39.

In order to evaluate the perplexity of a relation (|cause|, [effect|) we con-
structed a simple natural language sentence that encoded it. To construct
these sentences we employed two different approaches. In the first approach
all sentences took the form “|cause| causes |effect].”, only using “causes” as the
linking word. In the second approach instead of “causes” for each relation we
used the most common linking word with which the relation was found in the
CauseNet. Examples of relations and the resulting sentences can be found in
figure 3.2.

The perplexity of a word is influenced by the words that precede it. This
needs to be kept in mind when comparing the perplexities of different sentences.
In short sentences, the starting word has a large influence on the perplexity. An
unlikely starting word could increase the calculated perplexity of an otherwise
coherent sentence. To account for this we separated our results by starting
words and different sentence lengths.

Such problems with the perplexity method have to be accounted for or even
worked around, making this method not ideal when trying to probe for causal
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First approach:

“heart failure causes death”
“smoking causes lung cancer”
Second approach:

“heart failure results in death”
“lung cancer caused by smoking”

heart failure — death
smoking —  lung cancer

(a) 2 relations selected from the CauseNet

sample
(b) Sentences constructed from the relations

in (a). Linked with “causes” or with their most
common linking words in the CauseNet.

Figure 3.2: Examples of sentences used in perplexity evaluation

knowledge. In contrast to mask-filling and text generation, the perplexity
method also does not use the LLM’s ability to generate its own relations.

3.2 Mask Filling

For a mask-filling task, an LLM is given a sentence with some of the words
masked out such as “|[MASK] causes death.”. The LLM is then tasked to predict
which words should replace those masks. It returns its top-k predictions along
with the probability score of each one.

Similar to 3.1 we can use a sample of relations from the CauseNet to con-
struct natural language sentences, this time with parts of them masked out.
Each sentence was constructed with 10 different linking words and the first
concept in the sentence was masked out. Since half of the linking words re-
versed the order of cause and effect in the sentence the masked out concept
was not always the cause.

Compared to text generation (see 3.3), the method of mask-filling is more
restrictive in terms of which outputs the LLM can produce. On one side this
can be beneficial, making the outputs easier to parse automatically. On the
other hand, it also excludes some causal relations from being generated by
the LLM. In the prompt, either the cause or the effect is already filled in and
cannot be changed by the LLM. This means that the LLM cannot generate
relations in which both cause and effect are arbitrary. Since the LLM can only
ever replace a mask with a single word, there are some causal relations that
can never be generated through this method. The LLM is further limited by
its own vocabulary since it can only fill the mask with words that appear in
its vocabulary. Considering all these restrictions, only around 64000 (32%) of
the around 198 000 CauseNet relations could ever possibly be generated using
this method. However, an upside of using mask-filling as compared to text
generation is that in addition to generating its own causal relations, the LLM
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also returns a probability score, which can serve as a measure of confidence for
that relation.

For the relations generated in this way by the LLM, we used two metrics to
represent which relations the LLM favors. The first metric is the probability
score provided by the LLM (if a relation was generated multiple times with
different scores, we use the average). The second metric is the number of times
the same relation was generated by different prompts. Finally, we calculated
the precision and recall of the mask-filling setup and compared the output to
the CauseNet, looking for a potential correlation between the LLM’s metrics
of confidence and the CauseNet’s support and source number.

3.3 Text Generation

For the task of text generation, an LLM is given a prompt and continues it
by generating text. The generated text is in large parts based on the form
and content of the prompt. We use this fact to instruct the LLM to generate
causal relations while being careful not to skew its results.

Similar to perplexity (3.1) and mask-filling (3.2) we worked with a sample
from the CauseNet to construct natural language sentences from. But other
than in perplexity and mask-filling the prompts for text generation have to be
more complex to ensure that the LLM can reliably generate causal relations.
Compared to mask-filling the LLM has a greater degree of freedom for its
response in text generation. Where in mask-filling it is limited to filling in one
word at a time, in text generation the length of the responses can be arbitrary.
As such the opportunity for prompting more- and more diverse causal relations
arises. However this also introduces a lot of noise in the form of results that
do not generate causal relations at all. To reduce this noise we employ n-
shot prompting as our prompting strategy. Instead of simply asking the LLM
to generate causal relations, we first provide an example of a question and an
answer in the correct form. The LLM can then learn from this correct example
to generate text that follows similar patterns [Wei et al., 2023|.

From the sample of CauseNet relations, we took the causes and asked the
LLM to generate text filling in possible effects. In addition to this, the prompt
would include either one or three example pairs of correct question and answer
for 1-shot and 3-shot prompting respectively. An example of a 1-shot prompt
is illustrated in figure 3.3. The relations chosen for these examples were also
semi-randomly taken from the CauseNet while making sure to not skew their
distribution towards high or low support. The question-and-answer examples
were constructed in a very formulaic way. We chose this form to make it easier
to extract the causal relations from the text generated by the LLM. The LLM
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“q: high fever causes x. what could x
be?

a:

1. high fever causes death.

2. high fever causes convulsions.

3. high fever causes hair loss.

(a) éi relations selected from the CauseNet . cancer causes x. what could x be?”
sample

high fever — death

high fever — convulsions
high fever — hair loss
cancer — hospitalization

(b) A prompt constructed from the relations
in (a)

Figure 3.3: An example of a 1-shot prompt used in text generation

was, for example, encouraged to express its causal relations in short, simple
sentences, each separated by a line break.

To construct the set of prompts each unique cause in the sample was com-
bined with 5 different example questions and answers each. We did this to
reduce the probability of our results being too heavily influenced by specific
examples. For each pair of example answer and question, we then asked the
LLM to generate answers of 40 tokens or fewer.

For 3-shot prompting, we picked the example questions and answers in the
same way but added 3 pairs of question and answer before each prompt.

We asked the LLM to generate text for over 23 000 prompts each for the
1-shot and the 3-shot approach.

For the relations generated in this way by the LLM, we counted the number
of times the same relation was generated by different prompts. We used this
metric to represent which relations the LLM favors. We then calculated pre-
cision and recall as compared the our ground truth, as well, as the correlation
between the CauseNet’s metrics (support and source number) and the LLM’s
metric.

In addition to our comparison to the CauseNet, a very large causal graph,
we also examined if the method of text generation could also be used to re-
construct a small causal graph. For this, we chose the set of 4 small causal
graphs used in the paper by Long et al. [2023]. For this, we constructed a set
of 1-shot prompts based on the relations on this much smaller causal graph.
These prompts are similar in structure to the prompts constructed from the
CauseNet. However, we also prompted the LLM to generate statements imply-
ing the absence of a causal relation such as “smoking does not cause diabetes”.
In the paper by Long et al. [2023] had the LLM score two statements, one im-
plying the presence and one implying the absence of a causal relation, in order
to determine if a causal relation between two concepts should be present. We
used a slightly different method based on the number of times each relation
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was generated to decide if there should be an edge or no edge between any pair
of two concepts. For this, we used the number of times the LLM generated
a sentence implying the presence or absence of the edge as our result. For
each possible relation in the graph, we consider the LLM to be accurate if it
generated more sentences agreeing than disagreeing with the graph.

3.4 Text Parsing

Extracting causal relations from the text generated by LLMs (as done in 3.3)
is not trivial. The generated text can encode the causal relation for example in
the form of a comma-separated list, a natural language sentence, or even not
encode any causal relations at all. At a smaller scale, it is possible to manually
go through all of the generated text and extract the causal relations encoded
within it. However, the scale at which we were prompting made this approach
unfeasible for us. Instead, we chose to automate this process.

For the purposes of parsing the output text, we assumed that each answer
to the question was separated by a line break and contained a linguistic pattern
that directly indicated cause and effect. If no causal relation could be found
to be indicated in a given line of generated text, the entire line was treated as
an effect. This effect in combination with the cause from the prompt would
then be added to the list of extracted relations.

This parsing algorithm performed better at parsing some types of texts
over others, preferring short and clear sentences that stated both cause and
effect explicitly. We encouraged the LLM to generate answers of this form,
by providing examples of just that in the n-shot prompts. To analyze how
well the LLM could adhere to this pattern, we categorized different ways that
the generated text veered from the pattern. Examples of these ways that we
categorized can be found in figure 4.4.

If the n-shot pattern was not followed, each line of the full text response
generated was simply assumed to be a claimed effect corresponding to the cause
in the prompt. However, this would also be applied to responses consisting of
full sentences or nonsensical outputs that do not make a claim to any causal
relation at all. To discern if an output could be plausibly interpreted as a claim
to a causal relation, we utilized the High-Recall-CauseNet. If a pattern-less
result from the LLM never occurred as cause or effect (or as part of cause or
effect) in the High-Recall-CauseNet, it was regarded as nonsense (making no
claim to any causal relation).

Taking a manual sample of 205 pattern-less relations that were tagged in
this way yielded an accuracy of 71% for this method of differentiating nonsense
from causal claims.
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Results

In the previous chapter, we detailed the different methods of probing for causal
relations in LLMs. In this chapter, we want to answer how well LLMs can
extract, learn and generate causal relations found on the internet. To do this
we analyze the results of our experiments, give examples, discuss their overall
composition, and compare them to the ground truth. Furthermore, we will
show how different methods of creating prompts and parsing generated text
can influence the LLMs’ performance.

4.1 Correlation with CauseNet

In our setups, we used LLMs to assign the metrics of perplexity, score (in mask-
filling), and count (in mask-filling and text-generation) to assign numbers to
causal relations. We used these metrics to find out which relations the LLM
was confident in. A high count metric of a relation means that the relation was
generated multiple times from different prompts, indicating high confidence.
Likewise, a high score metric directly shows that the LLM was confident in its
answer. The inverse is true for perplexity since it reflects the degree to which
an LLM is unfamiliar with an output. Here a low perplexity indicates higher
confidence.

We then used these metrics to compare them with the metrics of support
and source number in the CauseNet. For mask-filling and text-generation a
positive correlation between the metrics would indicate that the LLM prefers
similar causal relations to the CauseNet. Since perplexity is inverted, a nega-
tive correlation between it and the CauseNet metrics would indicate a similar
overlap in preferred relations.

In figure 4.1 (c) we see that in the text generation setup the majority of
the generated relations cluster in the lower left corner. These relations have
low support in the CauseNet and are only generated very few times by the
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Figure 4.1: The results of text generation, mask-filling, and perplexity. Each
relation is plotted according to its count of occurrence (or perplexity) and its support
in the CauseNet. The average of all relations with the same support is shown in red.
(d) shows the probability that a relation of specific support is generated at least once
by the LLM. For (b) and (c) the values in the graph are discretized since the count
of occurrence can only be a whole number.

LLM. This corresponds to the overall makeup of the CauseNet. Similar to
the distribution here, the majority of the CauseNet is made up of relations
with low support that were only found a couple of times in the corpus. We
also see that relations with higher support in the CauseNet were on average
more likely to be repeated by the LLM. Furthermore, we found that a relation
with a support over 30 had a near 100% chance to be generated at least once,
a relation with support of 15 had a 50% chance and a relation of support
5 had only a 20% chance to be generated at least once. From this, we can
see that the LLM was more likely to generate and repeat generations of high
CauseNet-support.
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Similar observations are also true for the results of mask-filling (sub-figure
(b)). The majority of generated relations cluster towards both low support
and low count. However, unlike in text generation, we also see a significant
clustering in relations up to a count of 5, above which the occurrences quickly
decline. We suspect that this is due to the construction of the prompts used in
mask-filling. Fach prompt would be asked 5 times with varying linking words,
leading to the LLM being more likely to repeat the same relation up to 5 times.

In the perplexity setup (subfigure (a)), we see a less pronounced but still
present clustering of relations with low support and low perplexity. At face
value, this contradicts our expectations, since we would expect lower support
relations to have a higher perplexity. We also found that lower support re-
lations, while largely clustered around lower perplexities, also tended to be
spread into much higher perplexities. Relations of low support were also more
likely to produce outliers with extremely high perplexity. Since the average of
a set is very susceptible to outliers, we suspect that this artificially increased
the average perplexity for lower support relations.

To quantify the correlation between our different metrics and the CauseNet,
we calculated the correlation coefficient. For this, we used Spearman’s rank
coefficient, the results of which are shown in table 4.1 and discussed in the
following paragraphs.

As discussed in Chapter 3, perplexity alone is not a great measure of the
confidence an LLM has in a causal relation, since it is heavily influenced by
factors such as the length of the sentence and what starting word is used. To
account for this we used different approaches. For the first approach ((a) in
table 4.1) we compared the perplexity of all relations produced by our setups.
The first setup (naive) used only “causes” as a linking word, while the other
setup used the most common linking word for each relation. We found that
the results from approach (a) have no statistically significant correlation with
either support or source number in the CauseNet. To account for the influence
that sentence length has over perplexity, we calculated the correlation for only
relations with the same number of words (b). This yielded small and negative,
but statistically significant coefficients. When separated by sentence length like
this we found that on average, shorter sentences had a higher perplexity. We
suspect this to be because of the greater influence that an unexpected starting
word has in a short sentence. To account for the difference in starting words
we looked at only relations with the same starting word ((c¢) and (d)). In the
example in table 4.1 we looked at the perplexities only of relations that started
with “smoking causes ...”.  We found that accounting for starting word and
sentence length yields a statistically significant negative correlation between
perplexity and support for almost all starting words that we checked. However,
we also found that this did not hold true for “conditions” as the starting word,
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approach model metrics method coeft.
perplexity  gpt2-xI perpl.-support (a) mnaive *0.0221
gpt2-xl1 perpl.-support linking word *0.1413
gpt2-xl1 perpl.-sourceNo. linking word *0.1120
gpt2-x1 perpl.-support (b) length 3 -0.0508
gpt2-xl1 perpl.-support length 5 -0.2689
gpt2-x1 perpl.-support length 7+ -0.3653
gpt2-x1 perpl.-support (¢) “smoking” *.0.1222
gpt2-x1 perpl.-support (d) “smoking” & len. 3 | -0.3046
mask-fill. ~ BERT-base | count-support one-sided 0.1845
BERT-base | score-support one-sided 0.1907
BERT-large | score-support one-sided 0.2207
text-gen.  gpt2-base count-support 1-shot 0.0687
gpt2-xl1 count-support 1-shot 0.1841
gpt2-xl1 count-support 3-shot 0.2160
gpt2-xI1 count-sourceNo. 3-shot 0.1895

Table 4.1: Spearman rank coefficients between different LLM metrics with the
metrics of the CauseNet. We compared coefficients for different model sizes and
methods. The coefficients for some perplexity correlations were not statistically
significant, these are marked (*) in the table.

which produced no correlation even when controlling for sentence length.

Looking at the results of mask-filling we see a consistently small but signifi-
cant correlation between both score and the CauseNet as well as count and the
CauseNet. Of the two metrics produced by the mask-filling setup, the score
showed a slightly higher correlation with support than the count did. We also
found that for both score and count the correlation with the CauseNet scaled
with the size of the model. This positive correlation shows that BERT tends
to favor relations with higher support and will both assign them higher scores
and repeat them more frequently.

The results of the text generation show a small, but significant correla-
tion with the CauseNet, similar to the results of mask-filling. This correlation
increases with the size of the model as well as with the number of n-shot exam-
ples. Comparing the two CauseNet metrics to the text-generation count shows
us that count shows a greater correlation with the support metric. We suspect
that this is the case since the count metric in text generation is similar to the
support in the CauseNet. Support indicates how many different linguistic pat-
terns found a given causal relation, while count indicates how many different
prompts generated a given causal relation.

Looking at the overall results of text generation and mask-filling we find
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that the correlations shown prove a measurable link between the causal knowl-
edge found in the training data of an LLM and the causal knowledge it can
reproduce. LLMs are more likely to repeat common, general causal relations
that are also favored in the CauseNet. This shows that support in the CauseNet
is a helpful metric for predicting the degree to which an LLM can memorize
and reproduce causal claims.

However, this link between the CauseNet and the LLM does not show up
when looking at perplexity, making perplexity alone an unreliable metric for
evaluating an LLM’s confidence in a causal relation. However, by accounting
for influence outside of the causal relations itself (sentence length, starting
word) we found that under certain conditions perplexity can be used as an
indicator of confidence for causal relations.

4.2 Precision and Recall

The methods of mask-filling and text generation both prompted the LLM to
create its own causal relations. We will look at the precision and recall of
these results for different sizes of LLM and prompting strategies. Since we
allow and even encourage the LLM to generate the same relation multiple
times we distinguish between macro- and micro-precision. For the purposes of
macro-precision, we consider all instances of the same relation being generated
to form one class and count how many of these classes are also present in the
ground truth. For micro-precision, we count each relation separately.

4.2.1 Mask-Filling

As discussed in Methods, this method as well as the LLM used places some
restraints on the possible outputs. The LLM can only ever replace the mask
with one word, so a prompt of the form “|[MASK] causes cancer” could produce
the answer “smoking”, but not the answer “cigarette smoking”. Furthermore,
in order for the LLM to use it, the word that replaces the mask has to be in its
vocabulary. In our one-sided approach we also always provided either an effect
or a cause from the sample. This meant, however, that relations where both
cause and effect were not in the sample could not be generated by the LLM
since one side would always be unchangeable. Of the around 198 000 relations
in the CauseNet only 63682 (32%) could ever possibly be generated by the
LLM with this method. This restriction needs to be taken into account when
looking at recall, since we calculate it in regards to only relations generateable
by this method, instead of in regards to all relations in the CauseNet.

As seen in table 4.2 we found that less than 10% of the relations generated
by BERT also appeared in the CauseNet. Looking closer at the relations
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model micro-precision | macro-precision recall
base 9.12% 6.18% | 39.49%
large 9.44% 7.90% | 40.97%
large-wwm 9.35% 7.91% | 41.24%

Table 4.2: Results of the Mask-Filling method, comparing the models BERT-base-
uncased, BERT-large-uncased and BERT-large-uncased-whole-word-masking all us-
ing the one-sided approach described in Methods.

reveals that this is in part because of words like “it”, “this” or “he”, single
letters or abbreviations like “mr” or “j” or first names like “thomas” frequently
getting filled in for cause or effect. While “thomas causes cancer.” or “smoking
causes it.” are linguistically sound sentences, they do not contain valid causal
relations. We further found that BERT achieved a higher micro- than macro-
precision. This observation holds true for all the sizes of BERT that we tested.
This shows that BERT was more likely to repeat relations that also appear in
the CauseNet than those not in the CauseNet, which matches the correlation
shown in section 4.1

In these mask-filling experiments, we were able to reach a recall of around
40%, which is impressive considering the size of our ground truth. Judging
from the precision we can gather that BERT has some ability to generate
causal relations. These results are quite low compared to the results of other
causal inference tasks (such as cause and effect identification using COPA [Li
et al., 2021]) evaluated in other papers that worked with the same sizes of
BERT. This suggests that, while showing promising results in some causal
tasks, BERT still struggles to generate its own causal relations at a larger
scale. However, this ability could be increased by using a larger version of the
model.

4.2.2 Text Generation

In these experiments, we used 23 050 different prompts and were able to gen-
erate up to 137560 unique causal relations. We go into more detail about the
distribution and form of these relations in section 4.3.

In our text-generation experiments, we find that the ability of an LLM to
generate causal relations correlates with the size of the LLM and the number
of shots used in the prompt. As shown in table 4.3 we see that in terms
of precision and recall 3-shot outperforms 1-shot and larger variants of GPT2
outperform smaller variants in every instance. These findings match the results
of Hobbhahn et al. [2022] and show that they still hold true when prompting
at a larger scale.
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model method | micro-precision | macro-precision | recall
GPT2 1-shot 3.83% 3.72% | 1.29%
3-shot 7.63% 5.59% | 3.60%
GPT2-medium 1-shot 6.25% 5.22% | 2.15%
3-shot 11.05% 8.04% | 4.86%
GPT2-large 1-shot 7.75% 6.28% | 3.02%
3-shot 12.55% 8.53% | 5.25%
GPT2-xl1 1-shot 9.44% 7.41% | 3.65%
3-shot 13.93% 9.38% | 6.14%

Table 4.3: Results of the Text-Generation method using GPT2, comparing micro-
precision, macro-precision, and recall by model size and method.

Looking at micro- and macro-precision we find that the micro-precision
is always higher, similar to the results of the mask-filling. This shows us
that GPT2 was more likely to repeat relations also present in the CauseNet,
matching the correlation shown in section 4.1.

These experiments showed that GPT2 has the ability to generate plausible
causal relations. The GPT2-xl variant achieved the highest precision with close
to 14% in the 3-shot setup, as well as a recall of just over 6%. At first glance,
these results appear quite low when compared to other experiments done in
similar papers like Long et al. [2023] or Hobbhahn et al. [2022]. In these
papers, GPT3 reached accuracies of over 90% in tasks of causal classification.
However, in those papers, the size of the models and the nature of the tasks
differed greatly from the ones used in this thesis. However comparing our
results to experiments that are similar in task and model size, we find that our
results more closely align with the previous research. In a paper by Li et al.
[2020] GPT?2 achieved a precision of 8% at the task of generating possible effects
corresponding to causes. This number was reached by manually evaluating its
small sample instead of large-scale automatic parsing in our case.

4.2.3 Constructing Small Causal Graphs

In this setup, we evaluated the ability of GP'T2 to reconstruct a smaller causal
graph. For this we used the collection of 4 small causal graphs from a paper by
Long et al. [2023] containing 18 causal relations in total as seen in figure 4.2. In
our first approach, we employed the exact same method used in text generation
to construct prompts and generate and parse outputs, using the smaller graphs
in place of the CauseNet as ground truth. This unsurprisingly yielded a much
lower precision of only 0.41%, in part because the fewer relations are contained
in the ground truth, the lower the likelihood of GPT2 generating them. The
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Figure 4.2: The 4 small causal graphs used in Long et al. [2023].

opposite was true for recall. GPT2 was able to generate 17 out of the 18
causal relations at least once, yielding a recall of 94.44%. This is likewise
unsurprising due to the small size of the new graph. This first approach yielded
an accuracy of only 0.41%, showing that the same exact text generation method
was ineffective at reconstructing smaller causal graphs.

In our second approach we altered the text-generation method slightly by
implementing the idea of comparing positive to negative statements as used by
Long et al. [2023]. Instead of taking all generated relations to be part of a new
causal graph that is then compared to the ground truth we use the generated
relations to determine if there is a causal link between two concepts from the
ground truth or not. This way of using generated relations to help answer
binary questions yielded a much better result. The second approach reached
an accuracy of 77.19%, outperforming the base case in the paper by Long et al.
[2023] (66.70%). This is very impressive considering we used a smaller model
and error-prone automatic parsing.

Our results show that a slightly adjusted method of text generation can
be used to achieve considerably improved performance in the task of recon-
structing small causal graphs. Comparing this result to the results of the
text-generation method, we see that using the output of GPT2 to answer
binary causal questions yields better results than simply using all causal rela-
tions generated by GPT2 to construct a causal graph. This ability to answer
binary causal questions matches previous research. We showed that our metric
of count, when used to determine the answer to these binary questions, can
achieve comparable performance.
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4.3 Text Parsing

As we have shown in this thesis we probed LLMs for causal relations at a large
scale. Experiments using perplexity or mask filling are easily scaled up, owing
to the predictable form of the output that they give. The same is not true for
text generation, however, necessitating another step to the pipeline in which
the outputs of the text generation would be parsed into causal relations. In
other studies, this was done by human experts for a small sample of the output
for the purposes of benchmarking performance. This human expert approach
was unfeasible at our scale, so we instead chose to automate the parsing of the
outputs.

However, the automation of the parsing step runs the risk of introducing
additional error. To decrease this error and improve our parsing algorithm
we analyzed the types of outputs most commonly produced by the LLM. We
differentiate between outputs that followed the pattern of the n-shot prompt
(further divided into the categories of “Baseline”, “Copied Effects” and “Ignored
Cause”) and outputs that did not follow the n-shot pattern (“Free-form Out-
puts”). Outputs that follow a predictable pattern such as “x causes y” are
naturally easier to parse correctly. In the following, we included a description
of each of those categories.

Breaking down the results of the text generation by these categories (table
4.4) shows that outputs following the n-shot pattern performed more than two
times better than non-pattern outputs at generating relations of the CauseNet.
We found that the ratio of free-form to patterned outputs appears not to
be correlated to model size, however, larger versions of GPT2 show a higher
precision when compared to the CauseNet. This implies that larger models
have to rely less on the pattern to produce plausible causal claims. We also
found that, just as expected, going from a 1-shot to a 3-shot prompt increased
the number of relations that follow the pattern, making them easier to parse
and more likely to appear in the CauseNet, increasing overall performance.

Baseline: Outputs are considered part of the baseline if they followed the
structure of the n-shot example and are not part of any other category. Each
baseline output consists of a short sentence containing a cause and an effect
linked with a linking word implying a causal link. Following this pattern makes
them very easy to parse automatically. Over half of the relations generated by
the LLM are baseline relations and around 14.85% of those can also be found
in the CauseNet.

Example:
Prompt: “death causes x. what could x be?”
Answers: “1. death causes sickness.
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Type of Total % of Total in % of | precision
Output Total | CauseNet | CauseNet

Overlap
All 163179 100.00% 19892 100.00% 12.19%
Baseline 95337 58.42% 13344 67.08% 14.85%
Copied Ef- 11850 7.26% 4169 20.96% 35.18%
fect
Ignored 23088 14.15% 5098 25.63% 22.08%
Cause
Free-form 35498 21.75% 2114 10.63% 5.96%
Output

Table 4.4: A breakdown of the output of 3-shot text generation using GPT2-xl,
broken into the different output patterns. Columns 2 and 3 show this breakdown
in regards to all generated relations, columns 4 and 5 in regards to only relations
that were generated that were also present in the CauseNet and column 6 shows the
precision when compared to the CauseNet.

2. death causes a lack of assets.
3...0

Copied Effects: 1f a causal relation produced by the LLM contains a con-
cept that also appears in the n-shot example, it is considered a copied effect.
The effects getting copied tend towards more general concepts, though this is
not always the case. It is likely that the inclusion of these relations in the
n-shot example influences the LLM into repeating them. This is reflected in
the fact that relations with copied effects are three times as likely to also ap-
pear in the CauseNet when compared to the baseline. This could be because
the LLM tends to copy common and general concepts more. These are also
more likely to be the effect of another relation as well, or it could simply be
because the example effects are taken from the CauseNet, therefore increasing
the likelihood that the whole relation also appears in it. However, this is not
the case for all relations with copied effects since the same relation will be
generated by a different prompt not containing the effect in its example.

Example:
N-shot example: “poor health causes x. what could x be?
a:
poor health causes poverty.
poor health causes lack of concentration.”
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Prompt: “death causes x. what could x be?”
Answers: “(1) death causes a lack of concentration.
(2) poor health causes poverty.”

In the example we see two answers to the question in the prompt, one re-
peating the effect from the n-shot example (1) and the other copying both
cause and effect from the n-shot example (2). Relations that were taken as a
whole from the n-shot example were not counted as relations claimed by the
LLM to avoid our data being skewed by the LLM just copying our input.

Ignored Causes: Outputs are considered to have ignored the cause if it
provided a causal relation in the correct form but that relation had a different
cause than the one asked for in the question of the prompt. A lot of the time
the LLM will replace the cause in the question with one that is broader or
more generic. Despite not answering the exact question asked in the prompt,
these outputs still contain a plausible causal claim. Relations with a copied
cause have a higher likelihood of also occurring in the CauseNet than in the
base case. This is likely because when introducing its own causes the LLM
tends towards broader, more general concepts, which are likely to also appear
in the CauseNet.

Example:
prompt: “bpa exposure causes x. what could x be?”
answer: “stress causes complications.”

Free-form Outputs: A considerable fraction of the generated relations do not
semantically follow the structure demonstrated in the n-shot example. Despite
the large number of free-form outputs, less than 6% of them also occurred in
the CauseNet, making it the lowest-performing category of output in this re-
gard. This is likely in part due to the LLM having difficulty following the
question at all if it does not follow the pattern, but also in part due to inac-
curate parsing of the results. Many of the outputs that diverge in this way
fit into one of two categories: (1) Plausible claims to causal relations that are
simply stated in a different natural language way than the n-shot example and
(2) generated text that has nothing to do with or makes no statements about
any causal relations (nonsense).

Example:

prompt: “death causes x. what could x be?”

answers: “(1) lack of time or energy

(2) when the answer to each of the above three questions is to be found in
the answer to a fourth question exercise”
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precision | recall | f1-score
(a) all free-form are valid 12.19% | 6.14% 8.17%
(b) free-form are nonsense 15.94% | 4.97% 7.58%
(c) nonsense-filter 13.93% | 6.14% | 8.52%

Table 4.5: Results of different approaches of parsing Free-form Outputs from 3-
shot text generation using the GPT2-x1 model. Precision and fl-score here refer to
micro-precision and micro-fl-score.

Actual: valid | Actual: nonsense

Predicted: valid 73 27
Predicted: nonsense 32 73

Table 4.6: Confusion matrix of the nonsense filter algorithm with an overall accu-
racy of 71.21%.

In this example we see that the answer given in (1) does not follow the “x
causes y.” structure. Nonetheless, it could plausibly be an answer to a causal
question. Many free-form answers given, come in the form of a single concept
or a comma-separated list of concepts. Since the question is asking for the
LLM to fill in the effect of a causal relation, simply stating a list of potential
effects is a valid way to answer it.

The same cannot be said for the answer given in (2). In this case, a
human reader would easily come to the conclusion that the generated text
contains no answer to the question “what could x be?”. However, automatically
differentiating between answers of categories (1) and (2) is not trivial. For
this, we devised an algorithm (nonsense filter) to automatically tag free-form
answers as either (1) valid or (2) nonsense, which would not be counted towards
the answers given by the LLM. Table 4.5 compares this algorithm to two naive
tagging algorithms that would tag all free-form answers as either all valid (a)
or all nonsense (b). We can see that the nonsense filter outperforms the naive
algorithms in (a) and (b) in terms of fl-score.

As described in Chapter 3 the nonsense filter tags output as “valid” or “non-
sense” based on their occurrence in the High-Recall-CauseNet. To evaluate
how accurate this method was at tagging the output, we manually evaluated
205 free-form outputs and compared that to the prediction made by the non-
sense filter (table 4.6). This yielded an accuracy of 71.21%. This was better
than random chance, but still a far cry from having the output tagged man-
ually. The large number of outputs that needed to be tagged however made
automation necessary, even at the cost of potentially lowering overall accuracy.
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Conclusion

In this thesis, we set out to evaluate how well LLMs can internalize and repro-
duce causal knowledge. In the related works chapter, we discussed the different
kinds of causal tasks tested on LLMs in related research. We found that the
performance of LLMs at tasks of causal inference is well studied, but current
research into this topic most commonly relied on small-scale sample sets for
their evaluation. With the experiments of this thesis, we aimed to build on
the different approaches seen in the related works and probe for causal knowl-
edge at a much larger scale. For this we heavily relied on the CauseNet, a
large-scale knowledge base containing over 198 000 claimed causal relations.
These relations were extracted from a large English language corpus based on
internet pages and are thus comparable to the training data of the LLMs we
used. We used a subset of around 12000 relations to prompt LLMs to create
over 700000 of their own causal claims.

First, we must acknowledge the limitations of our research. In this thesis,
we worked under the assumption that the CauseNet contained similar causal
relations to the large texts the LLMs were trained on. This is likely true
to some degree, however, it might not be enough to accurately estimate how
well an LLM learns causal knowledge from its training data. For the corre-
lation to be as representative as possible of the LLM’s ability to learn causal
knowledge, we would need to use an LLM pre-trained using the Clueweb12
web crawl. However, creating such an LLM was outside the scope of this the-
sis. Additionally, probing for causal knowledge at a larger scale through text
generation introduced the difficulty of automatically parsing a varied output.
While we tried to filter out nonsense and incentivize adherence to a known
output pattern, this process was not perfect leaving some degree of error in
our measurements.

For our experiments, we employed three different approaches: perplexity,
mask-filling, and text generation.
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In our perplexity approach (section 3.1), we looked into using the calcu-
lated perplexity to evaluate an LLM’s confidence in a causal relation. This,
however, returned mixed results. We found that perplexity as a metric is
heavily influenced by contextual factors of a causal sentence like word count
and starting word. This means that perplexity on its own was found to be
an unreliable indicator for gauging the causal knowledge of an LLM. Control-
ling for these factors allowed for clearer results, but also heavily restricted the
kinds of relations that could be compared. We suspect that an approach that
normalized perplexity in regards to word count and starting word could be
more significant as a metric for the causal knowledge of an LLM and further
research could be done to test this.

Our approaches using mask-filling and text generation yielded slightly more
promising results. We found that through these approaches off-the-shelf ver-
sions of GPT2 and BERT were able to demonstrate a rudimentary ability to
answer open-ended causal inference questions by learning and reciting knowl-
edge contained in their training data. The LLMs were much more likely to
repeat causal claims that showed up in the CauseNet. We also found a small
but significant correlation between the LLMs’ confidence in a causal claim and
the support in the CauseNet (see section 4.1). This means that the LLMs
were more likely to generate and repeat relations with high support in the
CauseNet, showing that the CauseNet support is a useful indicator for the
causal knowledge of LLMs.

We found that in all of our experiments, larger variants of the LL.Ms consis-
tently outperformed smaller variants. In our experiments, GPT2-x] was able
to reach a micro-precision of 13.9% and a recall of 6.1% in the task of text
generation while BERT-large reached a precision of 9.4% and a recall of 40.9%
in the mask-filling approach. In addition to the size of the LLM, we also found
that the number of shots in the n-shot setup improved the LLM’s performance.

Adapting the text-generation approach for the task of recreating causal
graphs also returned promising results. The accuracy of 77% observed in
our experiments outperformed the results of previous research on the same
task with GPT3 [Long et al., 2023]. This is a surprising outcome considering
we used GPT2 compared to GPT3, which is much larger. This shows that
a large-scale text generation approach has promising potential in aiding the
construction of causal graphs. Judging from the results of our experiments
we predict that larger models like GPT3 would perform even better using this
approach.
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