
Friedrich-Schiller-Universität Jena
Fakultät für Mathematik und Informatik
Studiengang Informatik, B.Sc.

Query Spelling Correction using Pre-trained
Word Embeddings

Bachelorarbeit

Gustav Lahmann

Betreuer: Prof. Dr. Matthias Hagen,
Ines Zelch

Jena, den 27. April 2024

Zusammenfassung

Ein Großteil der Interaktion mit Webdiensten findet über Suchmasken statt. Wenn
Nutzer eine Suchanfrage an Websuchmaschinen stellen, erwarten sie korrekte Er-
gebnisse, auch wenn die formulierte Anfrage Schreibfehler enthält. Nicht alle Re-
trievalsysteme können von sich aus mit falsch geschriebenen Wörtern umgehen.
Daher ist es notwendig, die Fehler in der Suchanfrage zu korrigieren, bevor diese
weiterverarbeitet wird.

In dieser Arbeit testen wir die etablierte Rechtschreibkorrektur für Textdoku-
mente „Hunspell“, sowie den in vielen Benchmarks als Baseline verwendeten „Py-
spellchecker“ auf einem annotierten Datensatz echter Suchanfragen aus dem Webis
QSpell Korpus. Wir stellen fest, dass beide Verfahren nicht für die automatische
Korrektur von Suchanfragen geeignet sind, da Eigennamen und Abkürzungen zu
streng, und daher in sinnfremde Wörter, korriegiert werden.

Um eine für Suchanfragen geeignete Rechtschreibkorrektur zu entwickeln, unter-
suchen wir ein von Ed Rushton vorgeschlagenes Verfahren unter der Verwendung
von vortrainierten GloVe Wortvektoren. Durch eine Transformation der Wortvek-
toren im Vektorraum kann zu einer in den GloVe Vektoren enthaltenen Falsch-
schreibung eines Wortes die korrekt geschriebene Form gefunden werden. Das
Ergebnis ist eine Substitutionstabelle von häufigen Rechtschreibfehlern und ihren
Korrekturen. Wird diese kontextfrei auf die Wörter der Suchanfragen des Webis
QSpell Datensatzes angewendet, werden dadurch mehr Anfragen korrigiert, als dass
Anfragen sinnentstellt werden. Zum Vergleich wurden Korrekturen der Google Su-
che sowie der Bing Spell Check API abgefragt, welche eine Verbesserung beider
Dienste im Vergleich zu 2017 aufzeigen. Die erhaltenen Korrekturen für den QSpell
Datensatz können für zukünftige Projekte genutzt werden und werden mit dem
Code für diese Arbeit veröffentlicht.

Contents

1 Introduction .. 4

2 Background ... 5

3 Related Works .. 6
3.1 Robustness in Dense Retrievers ... 6
3.2 Norvig’s Spell Checker ... 7
3.3 Hunspell .. 8
3.4 GloVe Word Embeddings ... 10

4 Spelling Correction using GloVe Word Embeddings 12
4.1 Finding a Spell Correction Vector ... 12
4.2 Correcting a Misspelled Word ... 14
4.3 How far to correct .. 15
4.4 Rotation instead of Translation ... 17

5 Evaluation ... 19
5.1 Google Search .. 19
5.2 Bing Spell Check API .. 20
5.3 Results ... 20

5.3.1 Baselines .. 20
5.3.2 Traditional Spell Checkers .. 22
5.3.3 Word Embedding-based Spell Checkers .. 22

6 Conclusions ... 23

References .. 25

4

1 Introduction
The main way we interact with web search engines, online shops, or music streaming
catalogues today is through natural language search queries. The users expect the
retrieval system to understand their intent, even if the query is not spelled correctly.
In this thesis, we evaluate the established spell checker for text documents Hunspell
as well as the commonly used baseline Pyspellchecker on real-world search engine
queries from the Webis QSpell corpus [1]. For comparison, we use newly crawled
spelling suggestions from Google Search and the Bing Spell Check API, as well as
the suggestions Bing and Google returned when crawled by Hagen et al. in 2017. We
find both Hunspell and Pyspellchecker to be unsuitable for correcting web search
queries, as they correct abbreviations and entity names too strictly and thereby
corrupt originally correct queries.

guarantee

garantee experience

experiance

retrieved

retreived

really
realy

inherent

inherrent

lyinglieing

Figure 1. Difference vectors between word embeddings of misspelled
words and their correct spellings projected into 2D space using a PCA.

In an attempt to build a spell checker specifically for search queries, we explore
an idea of Ed Rushton to use GloVe word embeddings for detecting and correcting
spelling mistakes [7]. Word embeddings are low-dimensional, dense vector represen-
tations for words, that are learned from unlabeled natural language corpora in a
way that the word embeddings of semantically similar words are close to each other
in the vector space. Each dimension of the vector space then encodes syntactic or
semantic properties of the word, which allows for extracting relations between two
words and adding them to a third word. For example, adding the difference between
the vectors for “cars” and “car” to the word vector of “apple” results in a vector
which is closest to the word embedding for “apples”, as it represents the “plural”
relationship [4]. Rushton found that GloVe vectors encode such a relationship be-
tween misspellings of a word and their correctly spelled counterparts. Starting with
a list of commonly misspelled words and their correct forms, he calculated a spell

5

correction vector, that ends up close to the embedding of the correction when added
to the embedding of an incorrect word.

We reimplement Rushton’s approach and discuss the intuition and effectiveness
of its steps. The resulting spell checker is a context-insensitive lookup table of (cor-
rect, incorrect) pairs extracted from the GloVe word embeddings, which, applied to
the Webis QSpell dataset, outperforms the do-nothing baseline, but lacks behind
the spell corrector used in Google or Bing.

2 Background
In the broadest sense, a misspelling of a query occurrs when the actual input query
passed to the retrieval system deviates from the query the user formed in their
mind. This could be due to hitting an adjacent key on a keyboard, typing a similar
sounding word because of lacking knowledge in normative spelling, or an autocor-
rection system on a mobile phone guessing a different word from what the user
intended to write.

For detecting misspelled words, spelling mistakes fall in two categories. Typing a
wrong letter will usually result in a so called non-word error, meaning the misspelled
word does not exist. These mistakes are traditionally detected by checking against
a dictionary of the target language. Choosing the right size of this dictionary is
crucial for the effectiveness of this approach. When restricting the list of valid words
to curated dictionaries, terms commonly found in search queries like proper names,
product descriptions and newly emerging internet slang cannot be kept up with. In
contrast, constructing a list of valid words from the most commonly used words in a
document collection will introduce common misspellings present in the documents
to the dictionary, rendering it useless.

The second case of misspellings are real-word errors. Here, the misspelled word
itself is a valid, yet semantically different word, which occurrs in the language’s dic-
tionary. Therefore, real-word errors can only be found to be incorrect in the context
of the surrounding words of the query. Further cases of typos especially relevant in
search queries are wrongly added or omitted spaces. As spaces are usually used for
splitting a query into words, these errors have to be corrected across and within
word boundaries, making methods operating on single words ineffective.

In this thesis, we treat query spelling correction as the second part of the query
preprocessing pipeline, right after tokenizing a query into words at every whitespace.
Spell correction is applied before passing the modified query to the retrieval sys-
tem, preventing the retrieved document collection to affect the decision of the spell
corrector. While this makes the approaches applicable to various retrieval models,
the robustness against misspellings that the retrieval system possesses on its own
is important to keep in mind when designing the spell corrector.

6

3 Related Works
In recent years, query spelling correction has been mainly explored in combination
with dense retrievers, a new retrieval system used for passage retrieval. However,
algorithms for spelling correction reach back to way before computers were used for
text processing. For example, the Soundex algorithm was developed around 1918
and is still implemented in all popular database servers as of today. The variety of
spell checking approaches developed over the last century is why we restrict this
section to explaining the algorithms of Hunspell and Pyspellchecker in depth, in-
stead of trying to provide an overview over spell checking algorithms in general. In
the last section we describe the GloVe language model, which is the model used by
Rushton’s spell checking approach.

3.1 Robustness in Dense Retrievers
The effect of misspellings on retrieval effectiveness largely depends on the under-
lying retrieval system. Established sparse retrieval models like tf-idf and BM25 al-
ready suffer from vocabulary mismatch, which means that synonym words are used
to describe an information need with terms that cannot be found in the relevant
documents. Obviously, these approaches are not robust against spelling mistakes.

To overcome the problem of vocabulary mismatch and retrieve documents about
a certain topic instead of a specific choice of words, dense retrievers gained popu-
larity since 2020. Based on a pretrained BERT model, dense vector representations
for queries and documents are learned in a way that the dot product of query and
document vector is maximized for relevant query-document pairs. At interference
time, the vector representation of the query is calculated and relevant documents
are retrieved by finding the nearest neighbors in a precomputed index of document
vectors [2]. The query vectors for synonym queries are close to each other and hence
yield the same results, solving the vocabulary mismatch problem. However, Zhuang
and Zuccon found that classical dense retrievers are not resistant to spelling mis-
takes [11]. Passage retrieval datasets used for training dense retrievers, such as MS
MARCO, do not contain more than a handful of spelling mistakes, as the dataset
was manually curated. Queries containing typos are therefore out-of-distribution
and result in worse retrieval effectiveness. To overcome this weakness, a BERT dense
retriever was trained on a dataset augmented with artificial spelling mistakes. The
typos were injected into the original MS MARCO dataset by introducing random
character insertions, deletions, substitutions and swaps, as well as swaps of charac-
ters that are adjacent on the QUERTY keyboard layout. The dense retriever trained
with this dataset was more effective on queries containing typos than the standard
system, while keeping the same scores on queries without spelling mistakes.

In a following paper, Zhuang and Zuccon explored the underlying reason why
BERT based models are affected by typos. The WordPiece tokenizer used by BERT
assigns a single token to commonly used words, while less commonly used words
are built out of multiple tokens, each representing a part of the larger word [12].
When introducing a single character spelling mistake, a word that was tokenized
as a single token before, might now be tokenized as multiple tokens because the
misspelled word is too uncommon to have its own token. The query encoded as
tokens and passed to the dense retrieval model therefore looks completely different,

7

even if the mistake only affected one single character. To make the query encod-
ing robust against spelling mistakes, Zhuang and Zuccon replaced the WordPiece
tokenizer by a CharacterCNN, which encodes similar words into vectors that are
each other. The resulting dense retriever was better than a normal BERT dense
retriever, where queries were first corrected using Pyspellchecker. However, when
used in combination with Microsoft’s Bing Spell Check API, the normal model still
outperformed the CharacterCNN based robust dense retriever.

In this thesis, we follow Zhuang and Zuccon by evaluating the same baseline
spellcheckers, Pyspellchecker and Bing. However, instead of using artificially intro-
duced spelling mistakes, we use the real-world mistakes found in the QSpell dataset.

3.2 Norvig’s Spell Checker
The spell correction implemented in Pyspellchecker¹ is based on Peter Norvig’s ar-
ticle “How to Write a Spelling Corrector”, that was spontaneously written on an

¹https://github.com/barrust/pyspellchecker

intercontinental flight in 2007 [5]. Norvig’s spell checker is a simplified version of
the noisy channel model, first described in 1990 by Kernighan et al. [3].

The noisy channel model assumes the word, which the user intends to write,
passes through a noisy channel before entering the system, which changes the word
to a possibly misspelled word 𝑤. The source for the added noise can be sloppy
typing or bad orthography by the user. In order to recover the originally intended
word from the possibly misspelled word 𝑤, a list of correction candidates is selected
from a dictionary. This is done by finding words in the dictionary that have a so
called Levenshtein distance of one, which means the word can be obtained from 𝑤
by inserting, deleting, swapping or substituting one character.

Out of all candidates with a Levenshtein distance of one, the candidate maxi-
mizing the probability 𝑃(𝑐|𝑤) is chosen, that is the probability that correction can-
didate 𝑐 is the intended word, given the observed word 𝑤 leaving the noisy channel.

Using Bayes’ Theorem, it follows that 𝑃(𝑐|𝑤) = 𝑃(𝑐)𝑃(𝑤|𝑐)
𝑃(𝑤) , in which 𝑃(𝑤) is

independent of the candidate 𝑐 and therefore irrelevant when looking for the max-
imum probability over all the candidates. The correction candidate can be selected
out of a set of possible candidates by calculating

argmax𝑐 ∈ candidates 𝑃 (𝑐)𝑃 (𝑤|𝑐).
The probability 𝑃(𝑐) is called the language model, as it describes the probability of
observing the word 𝑐 in a text. It can be obtained by counting the occurrences of 𝑐
in a text corpus. The conditional probability 𝑃(𝑤|𝑐) is the error model, describing
the probability that the word 𝑐 was mistakenly turned into 𝑤 by the noisy channel.
Kernighan et al. calculated confusion matrices for each kind of the above-mentioned
error types with edit distance of one, from a list of misspelled words [3]. The four
matrices show how often the character 𝑥 is deleted and inserted after character
𝑦, how often characters 𝑥 and 𝑦 are swapped, and the number of times 𝑥 is substi-
tuted by 𝑦. Calculating 𝑃(𝑤|𝑐) is a matter of detecting the error type, looking up
the occurrences of that error in the corresponding matrix, and lastly dividing the

https://github.com/barrust/pyspellchecker

8

occurrences obtained from the matrix by the occurrences of the involved characters
in the training list of misspellings.

Since Norvig did not have Internet access during the flight, he resorted to a much
simpler error model. He omitted the 𝑃(𝑤|𝑐) factor and instead chose the correction
candidates for 𝑤 in the following way: If 𝑤 is in the dictionary, it is chosen. Other-
wise, the candidate 𝑐 with the larges 𝑃(𝑐) is chosen out of all candidates in the dic-
tionary with Levenshtein distance one. If there are no candidates with Levenshtein
distance one, candidates with Levenshtein distance two are used instead (these are
words that can be obtained from 𝑤 by applying two of the errors explained above).
If the list with an edit distance of two is empty as well, the unknown word 𝑤 is
returned, assuming it is a correctly spelled unknown entity name.

Norvig’s spell checker corrected 68% of the test split of the Birkbeck spelling er-
ror corpus, while Kernighan et al. reported 87% accuracy on their manually judged
spelling mistakes found in the 1988 AP corpus. The Pyspellchecker implementation
used by Zhuang and Zuccon as a baseline uses a dictionary obtained by applying
cleaning rules to English subtitles from the OpenSubtitles corpus.

3.3 Hunspell
Hunspell is one of the most popular open source spell checkers, being used by Mozilla
Firefox and Thunderbird, Google Chrome, LibreOffice, and Adobe Illustrator and
InDesign, only to name the most well-known programs. Originally developed for
Hungarian, it now supports more than 130 languages when provided with the lan-
guage specific .dic and .aff files. As the spell checking algorithm was expanded
over time, its official documentation is lacking. Fortunately, in 2021 Victor Shep-
elev reimplemented the core parts of Hunspell in Python in his project Spylls and
documented the inner workings of Hunspell in a series of blog posts [8].

As the name suggests, the .dic file contains a dictionary of words of the language.
However, only the stems of words are stored in it, followed by a list of flags for each
stem. The flags can be found in the affix .aff file, where their meaning is defined.
The SFX and PFX keywords define a flag to represent a certain suffix or prefix. For
a single flag, different rules can match on the stem, and depending on parts of it,
allow for certain suffixes or prefixes. Another kind of flags are COMPOUNDFLAGs, which
signal whether words can be parts of compounds, and in which positions. There
are even COMPOUNDRULES which specify regular expressions of how stems with certain
compound flags can be combined. This for example allows defining the rules for
arbitrary English numerals (1st, 2nd, …, 901st).

These were just a few of the flag types that can be specified in the affix file. Their
purpose is to reduce the size of the dictionary file, while still covering all the possible
forms words can occur in. This is especially important in languages other than Eng-
lish, which use compounds and prefixes heavily. The compression algorithm comes
at the cost of fast lookup times. In order to find out whether a word is present in
the dictionary, the correct stem has to be identified, and depending on the flags
stored with the stem, the allowed compounds and affixes have to be considered. To
limit the runtime of this lookup, Hunspell allows for at maximum two prefixes and
suffixes per word, which is not enough for some languages, which will then have to
include affixes in the stems themselves, resulting in a larger dictionary file.

9

Hunspell is an entirely context free spell checker. In the lookup stage, each word
of the text is looked up in the dictionary, while following the rules specified in the
affix file. When no matching word can be found, the suggest phase will generate a
list of candidate words for the user to select from. This is done in two steps, an
edit-based search and a full dictionary search, where the latter is only employed in
cases the first one yielded no results.

The edit-based search follows a similar approach to the one described by Norvig,
but is much more advanced in the edits that are applied to the misspelled word. Ad-
ditionally, the transformations on the word are influenced by rules given in the .aff
file, for example the REP table can define replacements (like “f” to “ph”), and the
MAP table defines similar characters (like “a”, “å” and “ä”). Further transformations
include uppercasing of the whole word, inserting spaces or dashes at every position,
swapping two adjacent letters, swapping non-adjacent letters up to 4 characters
apart, replacing letters by their neighbors on the keyboard (whose layout is defined
in the KEY section of an .aff file), and many more variants of insertions, deletions
and splitting. After each of these transformations, whenever the resulting word oc-
curs in the dictionary, it is returned as a correction candidate. Therefore, the order
of the candidates is given by the order in which the transformations are tried out.
If none of the transformation rules results in a valid word from the dictionary, a
full dictionary search is performed as the second phase.

Because of the possible affixes for each stem, iterating over the whole list of
allowed words is expensive. Therefore, when performing a full dictionary search at
first only stems are used for comparing with. Only for the top 100 most similar
stems to the misspelled word, all forms allowed in the affix file are generated. Out of
these the top 200 most similar words to the misspelled word are selected. Only then
a detailed similarity score is calculated, based on features like n-gram counting,
the longest common substring length, the leftmost common substring length, the
number of equal characters at the same positions and a weighted n-gram score. The
n-gram count of two strings is the number of common substrings of length 1 to n
and in a weighted n-gram score the absence of common substrings adds negative
points. All of these features are weighted, with some of the weights being tunable
in the .aff file.

In his blog post, Shepelev summarizes the rules of the scoring function the fol-
lowing way:

It seems that they were grown through years of trial-and-experimentation to
choose the coefficients and the order of summands – not related to any theo-
retical linguistic meaning but just found empirically. Those parts of the algo-
rithms strongly resemble how machine learning works; only, in this case, it were
Hunspell developers who adjusted “weights” after each evaluation.

— Victor Shepelev

At last, Hunspell supports searching for correction candidates based on similar pro-
nunciation. When provided with a PHONE table in the affix file, which follows the
same format as the older, open source spell checker Aspell, misspelled words can

10

be converted into a representation based on the phonetics of the word. Hunspell
then searches through the phonetic representations generated for all the stems in
the dictionary and returns correction candidates that have the same representation,
and hence a similar pronunciation. This feature is pretty much unused in practice,
since out of all dictionaries distributed with Firefox and LibreOffice only the en_ZA
dictionary includes a PHONE table. Additionally, Hunspell only searches through the
stems, so words containing affixes or compounds cannot be found.

Due to its wide adoption and huge flexibility of language specific customization
in the affix file, Hunspell has worked out the specific quirks of many languages,
justifying its position as the standard spell checker.

3.4 GloVe Word Embeddings
In analogy to how dense retrievers learn to encode the semantics of queries and
documents as dense vector representations, word embeddings are vector representa-
tions for single words. The goal is to represent semantic relationships between words
as relationships between the vector representations. Words that have a similar se-
mantic meaning should have word embeddings that are close to each other in the
vector space.

The meaning of a word can be inferred by the words that appear in its context.
For example, you can easily guess the omitted just by having read the sur-
rounding sentence. Maybe it is unclear whether the original sentence said “word”,
“term”, or “phrase”, but all of these have a similar meaning that makes sense in the
context. Given a large corpus of natural language, each word appears in many dif-
ferent contexts, which define its relations to other words. Capturing these relations
as a vector is the objective of learning word embeddings from a text corpus.

Google’s word2vec library published in 2013 implemented two different ap-
proaches to learn word embeddings from text. The skip-gram model tries to predict
the context of a word, given the word itself, while the CBOW (continuous bag-
of-words) model predicts the missing word given its context, similar to the exam-
ple of the previous paragraph. During training, both methods iterate over context
windows of the corpus and adjust the vector representations to allow for better
predictions as they process more of the text.

Instead of looking at windows of text at a time, the GloVe (Global Vectors)
model [6], developed by Pennigton et al. at Stanford in 2014, first creates a statistic
of the whole corpus, which is only then used to learn word embeddings. Taking
inspiration from term-document matrices used in LSA (latent semantic analysis),
a term-term co-occurrence matrix 𝑋 is constructed over a corpus. For all words
𝑖 and 𝑗 found in the vocabulary of the corpus, 𝑋𝑖𝑗 stores how often 𝑗 occurred in
the context window of 𝑖. The exact value is accumulated by sliding the context
window over the whole corpus, where the ten words before and ten words after a
word are seen as the context of the word. A word in the context window which is 𝑑
words apart from the current word contributes 1

𝑑 to the count of the current word,
accounting for the diminishing importance of a word with increasing distance.

11

After calculating the term-term co-occurrence matrix 𝑋, the probability of the word
𝑘 occurring in the context of 𝑖 is given by

𝑃𝑖𝑘 =
𝑋𝑖𝑘

∑𝑙 𝑋𝑖𝑙

This probability, however, doesn’t say much about the relation between the words
𝑘 and 𝑖, since it is unknown whether the word 𝑘 is for example unlikely to appear in
the context of 𝑖 because it is unrelated, or because it is simply an uncommon, but
related word. For example, the word “water” is much more probable to appear in
the context of “ice” than is the word “solid”. That is not because “ice” is not related
to “solid”, but rather because “water” is a word used more often than “solid” [6].

To determine the relationship 𝑘 = solid has to 𝑖 = ice, it would be interesting to
know, how probable “solid” is in another context, for example in the context of
𝑗 = steam. By looking at the ratio of probabilities 𝑃𝑖𝑘

𝑃𝑗𝑘
, the likeliness of 𝑘 appearing

in any context just by being a common word cancels out. In this example, the ratio
will be high, because “solid” is more probable in the context of “ice” than it is in
the context of “steam”. In analogy, for 𝑘 = gas the ratio would be low, as “gas” is
less likely in the context of “ice” than it is in the context of “steam”. If 𝑘 is an
unrelated word to both “ice” and “steam”, for example “fashion”, or a word related
to both of them in the same way, such as “water”, the ratio would be close to 1.
Each probability would not depend on the context, as the context is unrelated, so
both should be about the same.

Based on this observation about the relationship being captured by this ratio of
probabilities, the GloVe model aims to learn word vectors for the words 𝑖, 𝑗 and
𝑘 in a way that some function 𝐹 can calculate 𝐹(𝑤𝑖, 𝑤𝑗, �̃�𝑘) = 𝑃𝑖𝑘

𝑃𝑗𝑘
 based on the

vectors 𝑤𝑖, 𝑤𝑗 and �̃�𝑘. The possible options for 𝐹 are then reduced by putting spe-
cific constraints on 𝐹 . The function should only depend on the difference between
𝑤𝑖 and 𝑤𝑗, be linear in its arguments, be invariant to transpositions of the co-
occurrence matrix and be a homomorphism between the group of rational numbers
regarding addition and the group of positive rational numbers regarding multipli-
cation. Pennigton et al. end up with the equation 𝑤𝑇

𝑖 �̃�𝑘 + 𝑏𝑖 + �̃�𝑘 = log(𝑋𝑖𝑘), in
which the bias terms 𝑏𝑖 and �̃�𝑘 are introduced to make it symmetric. After adding
a weighting function dependent on 𝑋𝑖𝑗 to limit the impact of very common words
and avoid taking the logarithm of zero for words that do not appear in the context,
the equation can be formulated as a least squares regression problem.

The GloVe word embeddings were trained on multiple dumps of Wikipedia, as
well as on a Common Crawl corpus from 2014. Vector dimensions larger than 300
were empirically found to provide diminishing returns on semantic and syntactic
word analogy tasks. Overall, GloVe word vectors outperformed word2vec models in
named entity recognition, word analogy and word similarity tasks while also having
a lower required training time.

12

4 Spelling Correction using GloVe Word Embeddings
In the GloVe paper, Pennigton et al. describe how to use the linear structures in the
word embeddings to solve the word analogy task. To answer questions such as “A-
thens is to Greece as Berlin is to ” they calculate 𝑤Greece − 𝑤Athens + 𝑤Berlin.
The word whose GloVe embedding is closest to the calculated vector by cosine
similarity is the answer to the analogy question. Pennington et al. show that the
GloVe model successfully captures semantic relationships between words, such as
male – female, company – CEO, and city – zip code, but also syntactic properties
like adjective – comparative.

The idea Ed Rushton explored in a blog post in 2018 was that the misspelling
of words could be a further syntactic relationship that was automatically learned
during training of the GloVe vectors [7]. Finding the correct spelling of a misspelled
word would be reduced to a word analogy task of the form “lieing is to lying as
annouced is to ”, yielding the correctly spelled “announced” when calculating
𝑤lying − 𝑤lieing + 𝑤annouced and finding the word vector with the highest cosine simi-
larity to the calculated vector.

The cosine similarity between two vectors 𝑥, 𝑦 ∈ ℝ𝑛 is defined as

cos(𝑥, 𝑦) =
⟨𝑥, 𝑦⟩
‖𝑥‖‖𝑦‖

.

To find the vector 𝑥nearest out of all GloVe vectors that maximizes the cosine simi-
larity to a given vector 𝑦, nearest neighbor search libraries can be used to achieve
optimal performance. We use the library faiss, which is developed by Facebook,
and was also used by Rushton. The inner product metric offered by faiss corre-
sponds to the cosine similarity between normalized vectors because if ‖𝑥‖ = ‖𝑦‖ = 1,
then cos(𝑥, 𝑦) = ⟨𝑥, 𝑦⟩. That is why all GloVe vectors are normalized before adding
them to the index to search in. In analogy, the vector to search for has to be nor-
malized before using faiss to find the nearest neighbors in the index. Conceptually,
normalizing the vectors places them on a hypersphere around the origin with radius
one. Searching for the maximum inner product (so maximum cosine similarity) be-
tween these normalized vectors is equivalent to finding the vector with minimum
euclidean distance². This can be seen by writing the squared euclidean distance
between two normalized vectors 𝑥 and 𝑦 as

²https://github.com/facebookresearch/faiss/wiki/MetricType-and-distances

‖𝑥 − 𝑦‖2 = ⟨𝑥 − 𝑦, 𝑥 − 𝑦⟩ = ⟨𝑥, 𝑥⟩ − 2⟨𝑥, 𝑦⟩ + ⟨𝑦, 𝑦⟩ = 2 − 2⟨𝑥, 𝑦⟩

4.1 Finding a Spell Correction Vector
Following the assumption that there is a vector representing the “is correct spelling
of” relationship between a correct and a misspelled word, Rushton tried to find this
vector by averaging across multiple (correct, incorrect) pairs. To do so, he started
with a list of 111 common misspellings from the Oxford English Dictionary and
trained a spell correction vector using them. When taking the average over the dif-
ference vectors between the (correct, incorrect) pairs, the vectors that are averaged
should be normalized. Otherwise vectors with greater length would have a stronger

https://github.com/facebookresearch/faiss/wiki/MetricType-and-distances

13

weight in determining the average direction. Diverging from Rushtons implementa-
tion, these intuitions lead to the following formula

𝑣avg =
1

|pairs|
∑

(𝑐,𝑖)∈ pairs

𝑤𝑐 − 𝑤𝑖
‖𝑤𝑐 − 𝑤𝑖‖

from which the final spelling correction vector is obtained by normalizing it, since
we only care about its direction and will scale it suitably later on:

𝑣sc =
𝑣avg

‖𝑣avg‖

In contrast to this intuition, Rushton always works with the normalized embedding
vectors, so he calculates

𝑣avg rushton =
1

|pairs|
∑

(𝑐,𝑖)∈ pairs

𝑤𝑐
‖𝑤𝑐‖

−
𝑤𝑖

‖𝑤𝑖‖

which corresponds to determining the direction between the vectors lying on the
radius-one hypersphere instead of the actual GloVe embeddings. We found both
approaches to result in similar spelling correction vectors with equal correction
effectiveness. Because the explanation is more intuitive, we chose to use the first
approach going forward.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
cosine similarity between 𝑣sc and word embedding

0
10
20
30
40
50
60
70
80
90

nu
m

be
r

of
 w

or
ds

correct
incorrect

Figure 2. Correct and incorrect words from the Wikipedia list of common
misspellings as a histogram of their cosine similarity to the spell correc-
tion vector, trained on the same list of (correct, incorrect) pairs. Correctly
spelled words have a positive cosine similarity, whereas misspelled words

have a negative similarity score.

After calculating the initial spelling correction vector, Rushton observes the co-
sine similarity between 𝑣sc and a normalized word embedding 𝑤word is positive for
correctly spelled words, whereas misspelled words lead to a negative similarity score,
as visualized in Figure 2. He then samples some probably correctly spelled words
from the GloVe corpus by selecting those with a large, positive cosine similarity to
𝑣sc. By subtracting 𝑣sc from the correctly spelled word and performing a nearest

14

neighbor search, Rushton builds a larger list of (correct, incorrect) pairs, from which
he then trains a second spelling correction vector, that generalizes better than the
first one. Instead of following this two-step process, we chose to simply use a larger
existing list of word pairs, specifically the one obtained from the Wikipedia list of
5,712 common misspellings³ from A to Z. As can be seen in the final evaluation

³https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings

in Section 5.3.3, the spelling correction vector trained on this list performs slightly
better than using Rushton’s correction vector.

4.2 Correcting a Misspelled Word

is_misspelling(𝑤1, 𝑤2):
𝑤1 = 𝑤1.lower()
𝑤2 = 𝑤2.lower()
if 𝑤1 == 𝑤2: # capitalization

return False
if (𝑤1[−1] == “s” and 𝑤2[−1] ≠ “s”) or (𝑤1[−1] ≠ “s”
and 𝑤2[−1] == “s”): # plural

return False
if 𝑤1[: −2] == 𝑤2 or 𝑤2[: −2] == 𝑤1: # suffix

return False
if 𝑤1[2 :] == 𝑤2 or 𝑤2[2 :] == 𝑤1: # prefix

return False
if (𝑤1[−1] == “e” and 𝑤2[−1] == “d”) or (𝑤1[−1] ==
“d” and 𝑤2[−1] == “e”): # added d

return False
return lev(𝑤1, 𝑤2) ≤ 2

Listing 1. Rushton’s function determines whether 𝑤2 is a plausible mis-
spelling of 𝑤1 by rejecting equal words of different capitalization, plural
forms, words with pre- or suffixes and forms with an added “d”. Accepted
misspellings are required to have a Levenshtein distance less or equal two.

The general procedure for spell checking a single word as proposed by Rushton
consists of two steps. At first, 𝑣sc is added to the embedding 𝑤word of the possibly
misspelled word. A nearest neighbor search yields the top five GloVe vectors with
the highest cosine similarity to 𝑣sc + 𝑤word. In the next step, the five correction
candidates are iterated in order of increasing distance. If a candidate word is equal
to the possibly misspelled word, the word is considered to be spelled correctly and is
returned. Otherwise the is_misspelling function, developed by Rushton, described
in Listing 1 is evaluated for the candidate word and the supposedly misspelled word.

https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings

15

If the function determines the candidate word to be a misspelling, the correction
candidate is returned and the iteration stops. If the function evaluates to false,
the next candidate is checked. If none of the five correction candidates satisfy the
is_misspelling function, the original word is considered to be correct again and
will be returned.

4.3 How far to correct
When Rushton evaluated the spell correction method described above, he noticed
the correct correction candidate sometimes does not make it into the five nearest
neighbors. His intuition was that some words require a stronger correction than
others, meaning the spell correction vector has to be scaled to end up close to
the correction candidate. Rushton found the amount of scaling depends on how
misspelled the word is, which is indicated by the cosine similarity to 𝑣sc. Rushton
further assumed the relation between the cosine similarity and the factor 𝑘, by
which to scale 𝑣sc, can be modelled using a linear function

𝑘 = 𝑚 cos(𝑣sc,
𝑤word

‖𝑤word‖
) + 𝑛

which we will analyze empirically in the following section.
For the set of (correct, incorrect) pairs from the Wikipedia list of common mis-

spellings, we can calculate how much the normalized spell correction vector 𝑣sc has
to be scaled after being added to the incorrect word vector 𝑤incorrect, to end up clos-
est to the word embedding 𝑤correct of the correct word. The vector 𝑤incorrect + 𝑘 ⋅ 𝑣sc
is closest to 𝑤correct when the difference vector 𝑤correct − (𝑤incorrect + 𝑘 ⋅ 𝑣sc) is per-
pendicular to 𝑣sc, as can be seen in Figure 3.

𝑤incorrect

𝑤correct

𝑣sc 𝑘 ⋅ 𝑣sc

Figure 3. For a given pair of a correct word with embedding 𝑤correct and
a misspelling with embedding 𝑤incorrect, the factor 𝑘, by which to scale
𝑣sc by, can be calculated by choosing 𝑘 in such a way that the remaining

difference vector to 𝑤correct is perpendicular to 𝑣sc.

16

By demanding the inner product between the vectors to be zero, the formula for
the optimal 𝑘 to scale 𝑣sc, can be obtained. It can be further simplified in the last
step because 𝑣sc is normalized, so the inner product ⟨𝑣sc, 𝑣sc⟩ is one.

0 = ⟨𝑤correct − (𝑤incorrect + 𝑘 ⋅ 𝑣sc), 𝑣sc⟩

⟺ 𝑘 =
⟨𝑤correct − 𝑤incorrect, 𝑣sc⟩

⟨𝑣sc, 𝑣sc⟩
= ⟨𝑤correct − 𝑤incorrect, 𝑣sc⟩

For investigating the relationship between the optimal scaling factor 𝑘 and the co-
sine similarity between 𝑣sc and the word embedding of misspelled words, Figure 4
plots (correct, incorrect) pairs from the Wikipedia list of common misspellings. By
running a linear regression, the parameters 𝑚 and 𝑛 for the linear fit are computed.
They are visualized as a black line in Figure 4, whereas the parameters obtained
by Rushton using an optimization algorithm are represented by the gray line.

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
cosine similarity

−0.6

−0.3

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

k

Figure 4. Optimal scaling factor 𝑘 plotted over the cosine similarity be-
tween 𝑣sc and misspelled words sampled from the Wikipedia list of com-
mon misspellings. The linear fit is colored in black, whereas the parame-
ters found through optimization in Rushton’s blog post are added in gray.

The pink lines show the parameters tested in Table 1.

Although the linear fit looks loosely like it would match the data points, using
the scaling factor 𝑘 as determined by the calculated parameters 𝑚 and 𝑛 does not
result in a better correction accuracy. To test this, we split the Wikipedia list of
common misspellings into a train and test set, and calculate the spelling correction

17

vector as well as the optimal parameters 𝑚 and 𝑛 on the training set. We then
evaluat the correction vector with varying parameters on the test set, both for the
incorrect words and the correct words. The i2c (incorrect to correct) score shows
the ratio of incorrect words corrected to their correct counterpart, wheareas c2c
(correct to correct) shows how many correct words were not changed into a different
word by the correction. To give a better intuition, the tested parameters are plotted
using pink lines, with opacity related to their i2c score.

m = 0 m = −0.62 m = −2
n i2c c2c i2c c2c i2c c2c

−0.023 0.004 1 0.004 1 0.426 0.602
0.277 0.009 1 0.009 1 0.694 0.88
0.577 0.554 0.998 0.554 0.998 0.609 0.996
0.877 0.764 0.995 0.764 0.995 0.471 0.996
1.177 0.618 0.995 0.618 0.995 0.339 0.997

Table 1. Evaluation of Rushton’s approach on the test split of the
Wikipedia list for combinations of the parameters 𝑚 and 𝑛. The results do
not vary when using a constant function (𝑚 = 0) instead of the slope de-
termined by Rushton (𝑚 = −0.62). Because the values for those selections
of 𝑚 do not vary at all, the results for 𝑚 = −2 are included as a check.

As can be seen in Table 1, using the constant function with 𝑚 = 0 is just as effective
as when using the slope determined by Rushton. For sanity checking the results, an
arbitrary slope of 𝑚 = −2 is included in the results, showing, as expected, a worse
effectiveness. This observation falls into line with the run rushton_const achieving
a higher score than rushton_re_wiki in the final evaluation, the only difference be-
ing the latter using 𝑚 = −0.62 as used by Rushton, while the former uses 𝑚 = 0.
Despite further experiments and visualizations we could not find a definite answer
to whether there is an advantage to using a non-constant 𝑘 depending on the cosine
similarity to the spelling correction vector.

4.4 Rotation instead of Translation
A detail omitted so far, is the normalization of GloVe vectors before performing the
vector calculations described above. Since Rushton always works with normalized
GloVe vectors, he also uses normalized vectors when adding the spell correction
vector to them. Altough it seems unintuitive, as the relations in the vector space
are distorted when all vectors are scaled into a hypersphere by normalizing them,
the unnormalized vectors performed worse in some of our experiments.

Thinking about the meaning of going in the direction of the spell correction vec-
tor when all starting points lie on a hypersphere, the idea emerged that the spell
correction relationship might be representable as a rotation, rather than the trans-
lation achived by adding the spell correction vector. Instead of a correction vector,

18

there could be a rotation matrix transforming the normalized word embeddings
of misspellings into the embeddings of correctly spelled words by rotating them
around the origin. The problem of finding such a rotation matrix was originally
posed in the context of determining the attitude of satellites and became known as
Wahba’s problem [10]. Specifically, the problem is to find an orthogonal matrix 𝑅
such that the average distance between the embedding 𝑤𝑐 of a correct word and
the embedding 𝑤𝑖 of the matching incorrect spelling rotated by 𝑅 is minimized.

𝐽(𝑅) = ∑
(𝑐,𝑖)∈ pairs

‖𝑤𝑐 − 𝑅𝑤𝑖‖
2

The Python library rowan4 provides an implementation of the Kabsch algorithm for
solving this problem in arbitrary dimensions. Our implementation uses the same

4https://rowan.readthedocs.io/en/latest/package-mapping.html

procedure as in Rushton’s method described above, with the only difference of ro-
tating the vectors of misspelled words instead of adding 𝑣sc to them. In the evalu-
ation results shown in Table 2, the rotation approach performs poorly compared
to Rushton’s approach. However, it does introduce no false corrections for already
correct words in this experiment setup, as can be seen by the c2c score of 1, and
only a few when evaluated on the Webis QSpell dataset as is shown in Section 5.3.3.

corrector evaluation set i2c c2c
rotate wikipedia 0.399 1
rotate rushton 0.189 0.999
rotate oxford 0.694 1

rushton_const wikipedia 0.764 0.994
rushton_const rushton 0.894 0.998
rushton_const oxford 0.946 1

rushton_re wikipedia 0.763 0.994
rushton_re rushton 0.904 0.999
rushton_re oxford 0.946 1

Table 2. The rotation based spell correction approach compared to the
translation approaches of Rushton, trained and evaluated on distinct train

and test splits of the Wikipedia list of common misspellings

https://rowan.readthedocs.io/en/latest/package-mapping.html

19

5 Evaluation
The common query datasets like Natural Questions, MS MARCO, and TREC Deep
Learning used to test retrieval systems with do not contain annotated spelling mis-
takes. When trying to measure the effect of spelling mistakes on the retrieval ef-
fectiveness, researchers resort to artificially introducing spelling mistakes instead,
treating the original queries as the correctly spelled groundtruth. Transformations
such as random character insertions, deletions and substitutions, swaps of adjacent
letters on the keyboard, and replacing correctly spelled words by common mis-
spellings, are applied to the queries to simulate typos [9].

Because Rushton’s approach extracts a list of commonly misspelled words from
the GloVe vocabulary, it can only be tested on real world query logs containing
exactly these mistakes commonly produced by human writers. The Webis QSpell
dataset [1] provides 54,772 manually annotated queries, 9,170 of them having alter-
native spelling variants. The queries were sampled from the AOL query log released
in 2006 and follow the same query length distribution as the whole query log, for
queries that are between 3 and 10 words long. Queries can have multiple correct
spelling variants, which often also include the original spelling variant as typed by
the user. When the Webis QSpell dataset was released in 2017, the performance of
the Google Search spelling correction and the Bing Spellcheck API was evaluated
on the dataset. To include current state-of-the-art spelling systems for comparison
and to see whether Google’s and Microsoft’s spellchecking improved in the past
years, we crawled the whole Webis QSpell dataset again and publish the responses
obtained from the search engines alongside this thesis for future research.

5.1 Google Search
Apart from providing live suggestions and underlining every misspelled word in red
while typing, Google works with four different categories of misspelled queries. At
the top of the results page, the phrases “Showing results for”, “Including results
for”, “Did you mean:” and “These are results for” indicate Google’s spellchecking
found one, or, in rare cases, multiple corrections. In case of multiple corrections,
we only stored the first one to make the evaluation easier. Following the evaluation
in the Webis QSpell paper, the corrections proposed with the “Did you mean:”
label are discarded, as in this case Google is unsure about the correction and is
showing the search results for the original query, instead of automatically correcting
it. However, treating the “Did you mean:” cases as valid suggestions would result
in an even higher effectiveness.

Scraping Google Search is difficult, as Google tries to stop SEO bots from collect-
ing information about their search ranking. However, using a headless Chromium
instance controlled using playwright and waiting 30 to 40 seconds between each
new search query worked reliably in the end, even from the IP space of a popular
rental VPS service in Germany. To get English search results even when accessing
Google from an IP address located in Germany, the host language parameter was
set to en, resulting in the following URL for a given {query}: https://www.google.
com/search?hl=en&q={query}&btnG=Google+Search&safe=off&cr=&filter=0&tbas=0.

20

Figure 5. Rare occasion of Google providing three spelling corrections.

5.2 Bing Spell Check API
Microsoft’s Bing Spell Check API is used as a baseline in many papers [12,13]. It
offers two modes of spellchecking: proof and spell. The former is meant for larger
documents and also corrects grammar mistakes, while the latter is meant for re-
turning better search results in web search scenarios. Curiously, Zhuang and Zuccon
used the proof mode in their evaluation5, which is why we decided to crawl both

5https://github.com/ielab/CharacterBERT-DR/blob/main/data/ms_spellchecker.py

of them to find out which one returns the better corrections on the Webis QSpell
dataset. In the S1 tier, Microsoft charges $25 per 25,000 transactions, one API call
accepting one query to correct at a time. Crawling the Webis QSpell corpus once
for each correction mode hence resulted in a total cost of about 100€, which were
fortunately covered by the free 200€ Azure credit that is granted when signing up
for the first time.

5.3 Results
In the process of experimenting with different parameters for the word embedding
based correction approach, evaluations were performed on a 40% train set of the
Webis QSpell dataset. An additional 20% split was reserved for validation. The final
evaluation was run on the 40% test set to avoid overfitting the hyperparameters
to the specific dataset. In correspondence with the Webis QSpell paper, we report
Prec@1 as the main measurement of correction effectiveness. It is calculated as the
ratio between query corrections that are case-insensitive equal to one of the spelling
variants given for each query, divided by the total number of queries. The scenario
modeled by this measure is a search engine that has to decide whether to correct a
query or leave it untouched, without giving the user a choice for alternatives.

5.3.1 Baselines
For comparing the various spell checking approaches described in this thesis, we
created multiple baseline runs that either represent best-in-class spell checking
algorithms such as the bing and google runs, or really simple approaches. The
do_nothing run does not modify the query at all, so the Prec@1 score represents how

https://github.com/ielab/CharacterBERT-DR/blob/main/data/ms_spellchecker.py

21

many queries in the Webis QSpell dataset contain the original query itself within
the set of alternative query variants. Because most of the queries (87.5%) are spelled
correctly, this provides a rather strong baseline, as spell checking approaches tend
to correct too much. In Table 3, the c2i (correct to incorrect) column indicates how
many correct queries were turned into incorrect queries, illustrating this problem.
In contrast, the i2c (incorrect to correct) column shows the number of originally in-
correct queries that were turned into a query that is part of the alternative spelling
variants set of each query.

model Prec@1 correct total c2i i2c
bounds_replace_word 0.961 21062 21909 0 1898

bounds_in_glove 0.958 20984 21909 0 1820
bing_2023_spell 0.938 20559 21909 457 1852

google_2017 0.928 20339 21909 172 1347
google_2023_en 0.927 20320 21909 225 1381

bing_2023_proof 0.926 20288 21909 202 1326
rushton_const 0.892 19535 21909 66 437

rushton_re_wiki 0.892 19533 21909 60 429
rushton_orig 0.891 19520 21909 52 408

rushton_re 0.891 19516 21909 66 418
wikipedia 0.879 19255 21909 29 120

bing_2017 0.876 19199 21909 230 265
rotate 0.876 19195 21909 4 35
oxford 0.876 19191 21909 3 30

rushton_linreg_nonorm 0.876 19182 21909 3 21
rushton_linreg_norm 0.875 19171 21909 2 9

do_nothing 0.875 19164 21909 0 0
hunspell 0.687 15057 21909 4498 391

pyspellchecker 0.472 10342 21909 9114 292
birkbeck 0.261 5723 21909 13502 61

Table 3. Evaluation on the test split of the Webis QSpell dataset. The c2i
score shows the number of originally correct queries that were altered to
an incorrect one by the corrector, whereas the i2c score shows the number

of originally wrong queries successfully corrected by the spell checker.

While bing_2017 only achieved an effectiveness close to the do_nothing baseline,
the bing_2023_spell run achieves the best Prec@1 score of all tested spell check-
ers. This indicates that Zhuang and Zuccon chose the seemingly worse baseline to
compare against when using the proof instead of the spell mode, which goes in

22

line with the documentation that suggests using the spell mode for query spelling
correction. Google did not improve over the 2017 run, but achieved a similar result
in 2023. It should be noted that the Google and Bing spell checkers are the only
included approaches that access the whole surrounding query for correcting a word,
as all other approaches operate on single words only in a context-free manner.

Since these context-free spell checking approaches can be reduced to lookup ta-
bles of (incorrect, correct) word pairs, we included multiple existing lists of mis-
spelled words in the evaluation. The wikipedia run applies the Wikipedia list of
common misspellings, also used for training the spell correction vector. The oxford
list is the one originally used by Rushton for building the first spell correction vec-
tor, and birkbeck6 is another large collection of spelling mistakes from handwritten

6https://www.dcs.bbk.ac.uk/~ROGER/corpora.html

texts. The rushton_orig run uses the correction table Rushton created as a final
result of his spell correction, and therefore results in the same score as Rushtons
original implementation.

5.3.2 Traditional Spell Checkers
Both pyspellchecker and hunspell result in Prec@1 scores below the do_nothing
baseline because of the many correct queries they overcorrect into an incorrect one.
This is due to web search queries containing numerals, abbreviations, entity names
and Internet slang not found in dictionaries and usually not encountered in written
text. They are therefore unsuitable for correcting search queries out of the box, but
no attempt was made to reduce the strictness of their behavior. It should be noted
that Hunspell is meant to be used in a writing scenario where the user selects one
of the suggested correction candidates, instead of automatically selecting the first
result automatically as done in our evaluation.

5.3.3 Word Embedding-based Spell Checkers
The rushton_re run is our reimplementation of Rushton’s approach and performs
similar to the rushton_orig run, which uses the substitution table provided by
Rushton. By precisely selecting a few common misspellings and finding the correct
spelling of those, the spell checking runs based on Rushton’s approach overall avoid
the problem of correcting too strictly. The rushton_re_wiki run uses a spell correc-
tion vector trained using the Wikipedia list of common misspellings, showcasing
that the list is usable for training a correction vector and that Rushton’s approach
does not depend on the two-step process he used to create a refined correction vec-
tor. The rushton_linreg runs show that using the scaling factor 𝑘 determined by
the linear fit does not improve the correction accuracy over using a constant 𝑘. The
effect of normalizing all the GloVe vectors before calculating the parameters 𝑚 and
𝑛 for determining 𝑘 and adding 𝑣sc does not appear to be large when comparing
the rushton_linreg_nonorm to the rushton_linreg_norm run.

To provide an upper bound for how good single word based correction methods
could get (when also using the word’s context), the oracle run bounds_replace_word
gets every query right that has the same number of words in the original query as in
the correction, or that includes the original query as a valid variant. As the Prec@1
score suggests, only 3.9% of queries contain mistakes introduced by spaces.

https://www.dcs.bbk.ac.uk/~ROGER/corpora.html

23

All the word embedding based approaches presented are limited by the require-
ment that both the misspelled word and the correction have to be included in the
2.2 million pre-trained GloVe embeddings. The bounds_in_glove run provides an
oracle that corrects every query where the correct and incorrect word are contained
in the GloVe vocabulary, and assumes the word is correct if it does not have an
embedding, showcasing the maximum score a GloVe based corrector could achieve.

The rotation based correction approach falls behind compared to Rushton’s
method, but it works in principle and might just need a different candidate selection
process than the one Rushton developed for his method. Since this thesis explored
translation based approaches and a rotation based approach separately, it might be
interesting to explore learning a linear map between the incorrect and correct word
vectors, which would combine rotation and translation in a single transformation.

6 Conclusions
In this thesis, we recreated the spell correction approach described by Rushton and
showed it can be used to correct real-world web search queries. This correction task
poses new challenges compared to correcting text documents, which is why estab-
lished spell correctors for documents like Hunspell are unsuited for it. While the
relationship between incorrect and correct spelling variants is undoubtably encoded
in the pre-trained GloVe vectors, it remains unclear what is the best approach to
extract this information. Although we tried to explore the effect every step in the
algorithm has on the correction effectiveness in multiple experiments, we could not
get a clear understanding on which procedures actually benefit the effectiveness.
Considering we were unable to further improve on the accuracy of the method
provided by Rushton, it could be argued Rushton already found the best possible
way of using the encoded relationships. However, there are more advanced machine
learning methods left to explore, that might be able to capture the relationship
between the word vectors in a better way.

24

Acknowledgements

I would like to thank my supervisors Prof. Matthias Hagen and Ines Zelch for
their ongoing support, feedback, and patience. I am grateful for the many times

in which Maik Fröbe supported me when facing challenges using the Webis
infrastructure, and for the discussion we had when I felt stuck. Lastly, I want to

thank the whole Webis group at Jena for the lovely time I had during their
weekly seminar, and especially at their Christmas party.

25

References
[1] Matthias Hagen, Martin Potthast, Marcel Gohsen, Anja Rathgeber, and Benno Stein. 2017. A Large-

Scale Query Spelling Correction Corpus. In Proceedings of the 40th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, August 7-11,
2017, 2017. ACM, 1261–1264. https://doi.org/10.1145/3077136.3080749

[2] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-Domain Question Answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, 2020. Association for Computational Linguistics, 6769–6781.
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550

[3] Mark D. Kernighan, Kenneth Ward Church, and William A. Gale. 1990. A Spelling Correction Program
Based on a Noisy Channel Model. In 13th International Conference on Computational Linguistics,
COLING 1990, University of Helsinki, Finland, August 20-25, 1990, 1990. 205–210. Retrieved from
https://aclanthology.org/C90-2036/

[4] Tomás Mikolov, Wen-tau Yih, and Geoffrey Zweig. 2013. Linguistic Regularities in Continuous Space
Word Representations. In Human Language Technologies: Conference of the North American Chap-
ter of the Association of Computational Linguistics, Proceedings, June 9-14, 2013, Westin Peachtree
Plaza Hotel, Atlanta, Georgia, USA, 2013. The Association for Computational Linguistics, 746–751.
Retrieved from https://aclanthology.org/N13-1090/

[5] Peter Norvig. 2007. How to Write a Spelling Corrector. Retrieved from https://norvig.com/spell-correct.
html

[6] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global Vectors for
Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, 2014. ACL, 1532–1543. https://doi.org/10.3115/V1/D14-1162

[7] Ed Rushton. 2018. A Simple Spell Checker Built from Word Vectors. Retrieved from https://edrushton.
medium.com/a-simple-spell-checker-built-from-word-vectors-9f28452b6f26

[8] Victor Shepelev. 2021. Rebuilding the Spellchecker. Retrieved from https://zverok.space/spellchecker.
html

[9] Georgios Sidiropoulos and Evangelos Kanoulas. 2022. Analysing the Robustness of Dual Encoders for
Dense Retrieval Against Misspellings. In SIGIR '22: The 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval, Madrid, Spain, July 11 - 15, 2022, 2022. ACM,
2132–2136. https://doi.org/10.1145/3477495.3531818

[10] Grace Wahba. 1965. A Least Squares Estimate of Satellite Attitude. SIAM Review 7, 3 (1965), 409–
410. https://doi.org/10.1137/1007077

[11] Shengyao Zhuang and Guido Zuccon. 2021. Dealing with Typos for BERT-based Passage Retrieval and
Ranking. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, 2021. Asso-
ciation for Computational Linguistics, 2836–2842. https://doi.org/10.18653/V1/2021.EMNLP-MAIN.225

[12] Shengyao Zhuang and Guido Zuccon. 2022. CharacterBERT and Self-Teaching for Improving the Ro-
bustness of Dense Retrievers on Queries with Typos. In SIGIR '22: The 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, July 11 -
15, 2022, 2022. ACM, 1444–1454. https://doi.org/10.1145/3477495.3531951

[13] Shengyao Zhuang, Linjun Shou, Jian Pei, Ming Gong, Houxing Ren, Guido Zuccon, and Daxin Jiang.
2023. Typos-aware Bottlenecked Pre-Training for Robust Dense Retrieval. In Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific
Region, SIGIR-AP 2023, Beĳing, China, November 26-28, 2023, 2023. ACM, 212–222. https://doi.
org/10.1145/3624918.3625324

https://doi.org/10.1145/3077136.3080749
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550
https://aclanthology.org/C90-2036/
https://aclanthology.org/N13-1090/
https://norvig.com/spell-correct.html
https://norvig.com/spell-correct.html
https://doi.org/10.3115/V1/D14-1162
https://edrushton.medium.com/a-simple-spell-checker-built-from-word-vectors-9f28452b6f26
https://edrushton.medium.com/a-simple-spell-checker-built-from-word-vectors-9f28452b6f26
https://zverok.space/spellchecker.html
https://zverok.space/spellchecker.html
https://doi.org/10.1145/3477495.3531818
https://doi.org/10.1137/1007077
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.225
https://doi.org/10.1145/3477495.3531951
https://doi.org/10.1145/3624918.3625324

Eigenständigkeitserklärung
1. Hiermit versichere ich, dass ich die vorliegende Arbeit – bei einer Gruppen-

arbeit die von mir zu verantwortenden und entsprechend gekennzeichneten
Teile – selbstständig verfasst und keine anderen als die angegebenen Quellen
und Hilfsmittel benutzt habe. Ich trage die Verantwortung für die Qualität
des Textes sowie die Auswahl aller Inhalte und habe sichergestellt, dass
Informationen und Argumente mit geeigneten wissenschaftlichen Quellen
belegt bzw. gestützt werden. Die aus fremden oder auch eigenen, älteren
Quellen wörtlich oder sinngemäß übernommenen Textstellen, Gedanken-
gänge, Konzepte, Grafiken etc. in meinen Ausführungen habe ich als solche
eindeutig gekennzeichnet und mit vollständigen Verweisen auf die jeweili-
ge Quelle versehen. Alle weiteren Inhalte dieser Arbeit ohne entsprechende
Verweise stammen im urheberrechtlichen Sinn von mir.

2. Diese Arbeit, sowie der für diese Arbeit geschriebene Programmcode, ist
vollständig ohne den Einsatz generativer KI-Anwendungen entstanden.

3. Ich versichere des Weiteren, dass die vorliegende Arbeit bisher weder im
In- noch im Ausland in gleicher oder ähnlicher Form einer anderen Prü-
fungsbehörde vorgelegt wurde oder in deutscher oder einer anderen Sprache
als Veröffentlichung erschienen ist.

4. Mir ist bekannt, dass ein Verstoß gegen die vorbenannten Punkte prüfungs-
rechtliche Konsequenzen haben und insbesondere dazu führen kann, dass
meine Prüfungsleistung als Täuschung und damit als mit „nicht bestan-
den“ bewertet werden kann. Bei mehrfachem oder schwerwiegendem Täu-
schungsversuch kann ich befristet oder sogar dauerhaft von der Erbringung
weiterer Prüfungsleistungen in meinem Studiengang ausgeschlossen werden

Jena, den 27. April 2024

	Introduction
	Background
	Related Works
	Robustness in Dense Retrievers
	Norvig's Spell Checker
	Hunspell
	GloVe Word Embeddings

	Spelling Correction using GloVe Word Embeddings
	Finding a Spell Correction Vector
	Correcting a Misspelled Word
	How far to correct
	Rotation instead of Translation

	Evaluation
	Google Search
	Bing Spell Check API
	Results
	Baselines
	Traditional Spell Checkers
	Word Embedding-based Spell Checkers

	Conclusions
	References

