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Abstract

Modern natural language processing (NLP) provides promising methods for
transforming healthcare in areas like drug discovery, patient care, consulta-
tion and diagnosis. However, experimental data is scarce and remains costly,
primarily due to its sensitivity, foreclosing computational models from being
useful in practice. Here, the author proposes a semi-supervised collaborative
framework capable of solving several clinical NLP tasks such as automatic de-
identification and classification of electronic medical records, by performing
controlled text generation with little supervision, where a set of tunable and
disentangled aspects, condition the featural profile of generated fake records,
while maintaining the integrity of the data. The data used is from i2b2 NLP
challenges for de-identification and smoking status classification, and consist
of 889 and 502 medical discharge summaries respectively. Previous solutions,
overfit on syntactic particularities of the training data and resembles named-
entity recognition, which make them good inference tools only for in-domain
data but have difficulties extrapolating and are far from being scalable gen-
eral solutions for these or more NLP tasks in Healthcare. The model used
is a variational auto-encoder (VAE) with holistic attribute discriminators as
proposed by Hu et al., 2018 [27], which through collaborative learning, learns
interpretable representations and produces surrogate records with the desired
presence-level of a set of attributes like personal healthcare information and
smoking status information. The VAE is based on gated recurrent units and
the discriminators are text convolutional neural networks. A model like this,
is capable of doing data augmentation, controlled text generation, and carry-
ing out automatic classification and interpolation of data points. These results
demonstrate that a framework based on VAEs as flexible and scalable like this,
boosted with extra regularization and latent space enrichment techniques, is
highly advantageously with potential general application to data scarce NLP
learning tasks on healthcare.
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Chapter 1

Introduction

1.1 Motivation
The first thoughts about Artificial Intelligence (AI) can be traced back to the
first attempts to describe human reasoning as a symbolic procedure. With
latest advancements in computer science and our understanding of biological
thinking processes, we can now develop computer systems able to mimic human
behaviour and perform tasks that would usually require human intelligence,
such as understanding text. Particularly, state-of-the-art Deep Learning (DL)
models, where the algorithms1 make use of brain-like logical structures called
Artificial Neural Networks (ANN), present remarkable applications in language
understanding.

Natural Language Processing (NLP) refers to the branch of computer sci-
ence, and more specifically, the branch of AI concerned with giving computers
the ability to understand text and spoken words in much the same way hu-
man beings can.2 Figure 1.13 shows a Venn’s diagram of these related fields.
Now, Clinical NLP refers to these computational techniques applied to tex-
tual sources—such as medical records—containing health information about a
patient.4

Health information includes past, present, and future information about
mental and physical health and the condition of an individual, the provision of
healthcare to an individual, and information related to payment for healthcare,

1series of instructions telling a computer how to solve a problem or task. This usually
means transforming a set of facts about the world (data) into useful information (concepts).

2taken from IBM Cloud Education 2020.
https://ibm.com/cloud/learn/natural-language-processing

3inspired by Skynet [58]
4common clinical textual sources: surgical and pathology reports, clinical discharge sum-

maries and progress notes

1
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CHAPTER 1. INTRODUCTION

Figure 1.1: Venn Diagram portraying how AI, ML, DL, NLP are related.

again in the past, present, or future. Health information also includes demo-
graphic information about an individual and information or opinion about an
individual’s illness, injury or disability [2].

The Health Insurance Portability and Accountability Act or HIPAA is a
federal law imposed on 1996 that required the creation of national standards to
protect sensitive information from being disclosed without the patient’s consent
or knowledge [1]. This information is known as Individually Identifiable Health
Information (IIHI) and constitutes the health information created or received
by a healthcare provider, health plan, employer, or healthcare clearinghouse,
that identifies the individual, or with respect to which there is a reasonable
basis to believe the information can be used to identify the individual [49].

Now, the HIPAA Privacy Rule is a set of standards that protects most IIHI
held or transmitted by a covered entity5 or its business associates6, in any form
or medium, whether electronic, on paper, or oral [50]. This is know as Pro-
tected Health Information or PHI. If a HIPAA-covered entity has a data set
containing IIHI, the data must first be de-identified previous to sharing the
information with an organization or individual. The Privacy Rule provides

5a health care provider that conducts certain transactions in electronic form. For in-
stance, a health care clearinghouse, which a third-party system that interprets claim data
between provider systems and insurance payers, or a health plan [1].

6a person or entity that performs certain functions or activities that involve the use or
disclosure of protected health information on behalf of, or provides services to, a covered
entity.

2



CHAPTER 1. INTRODUCTION

two de-identification methods: a formal determination by a qualified expert
in statistics or scientific principles; or the removal of specified individual iden-
tifiers as well as absence of actual knowledge by the covered entity that the
remaining information could be used alone or in combination with other in-
formation to identify the individual. The latest is known as the Safe Harbor
method and is the focus of automatic de-identification methods.

For clinical data to be considered de-identified, the Safe Harbor method
requires 18 PHI identifiers to be removed. Figure 1.27 shows the identifiers of
the individual or of relatives, employers, or household members of the patient,
that need to be removed for a medical record to be considered as de-identified.

Figure 1.2: HIPAA PHI categories

De-identification ensures the removal of identifiers (PHI) that directly or
indirectly point to a person (or entity). In practice, this process has to be done
while maintaining the integrity of the data8, enabling agencies to collaborate
in research efforts and produce better services, while preserving the patient’s
or entity’s privacy. There is a strong trade-off between the privacy of the data
defined by these identifiers, and utility defined by the value of the transformed
data. This is especially important in healthcare, where a very good model
could significantly help in the diagnosis of a mortal disease, but where the
data is extremely sensitive, ergo scarce.

Medical records can be an important source of information for clinical and
laboratory researchers alike, and the potential for clinical natural language pro-
cessing research is vast. Deep learning is already being used for early-detection
diagnosis, normal and end-of-life treatment, drugs discovery, and also to keep

7inspired by https://www.bridgepatientportal.com/blog/Protecting-Telehealth-Patient-
Data-With-HIPAA-Compliant-Video-Conferencing/

8with a similar distribution to the source; retaining key medical concepts
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CHAPTER 1. INTRODUCTION

people healthy via tech-apps, just to name some real-life uses. These applica-
tions leverage patterns found in data, and are usually data-hungry, meaning
that the more data, the better. Nevertheless, hospitals and patients are not
eager to share their data because of privacy concerns: someone’s personal
identity (or relatives) from being revealed. So, most of the textual data in this
domain has to be carefully de-identified before making used of it as input for
training NLP models.

Now, most of the information in medical records comes in the form of free
text. Identifying and removing certain arbitrary information is easy to do
manually, but at a very high cost: you need medical experts and statisticians
to check each individual record. That’s the reason why public data in this
domain is very scarce and depending on the de-identification method, sharing
it can still present a security risk for the patients and data owners. This
means that in practice, creating big data sets of de-identified medical records
to extract useful information from them, requires automatic processing. The
construction of automated systems capable of de-identifying clinical documents
is nowadays an important challenge for the research community in clinical NLP;
nevertheless, current state-of-the-art in automatic de-identification shows that
these systems could and should be better. This is mainly because they strongly
depend on the availability of the data and its local distribution, impeding them
to generalize well to out-of-domain data.

Optimal strategies to automatically de-identify clinical documents would
also facilitate the availability of clinical narratives for Information Retrieval
(IR) applications, which are of prime importance for clinical research [45].
Although the potential uses of IR from clinical text are numerous and far-
reaching, most applications rarely occur outside of the local scope, mostly
because of scalability issues, which could be overpassed if large sets of de-
identified data were made available. This represents a strong motivation to
develop data augmentation and automated de-identification systems [19].

A number of investigators have developed methods for automatically de-
identifying medical records by removing PHI, as specified in the HIPAA Safe
Harbor method but they are far from being general solutions, due to their high
dependency on the training data and because they are too task-specific, hence
not useful for other NLP tasks like classification, such as Uzuner et al. [60] and
FerrÃ¡ndez et al. [19]. Consequently, continuous efforts on unsupervised ML
methods with state of the art language models that can surpass these problems,
is currently an important line of research in clinical NLP. More information
about the related work can be found on chapter 2.

Considering that the creation of gold-standard data sets is very time con-
suming and requires access to sensitive data, it is difficult to increase the size
a considerable amount (> 1.000). Uzuner et al. [60], anticipated that unsuper-
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CHAPTER 1. INTRODUCTION

vised techniques, fed from de-identified data created by models such as theirs,
will need to be developed. It is clear then that in order to deal with data
scarcity and to create highly scalable general models for NLP in healthcare,
the problem has to be formulated and tackled differently.

In this work, instead of thinking the problem of de-identification solely as
a discriminative task, where the system identifies PHI in the token level9 and
instance level10 [60], the author’s idea is to generate a novel or an surrogate ver-
sion of a medical record, controlling the generative process by injecting codes
with featural profiles to the latent representations11, so the output is a surro-
gate record with a minimum content of PHI and maximum content of smoking
status information about the patient. This is known as Controlled Text Gen-
eration (CTG) and it is an application of Conditional Language Modelling12.
Current advances in language modelling and CTG show that is possible to
insert desired semantic and syntactic attributes to the generated text, via con-
ditioning while the model is learning. The control mechanism is usually applied
to featural information like sentiment and tense of to generate short sentences,
but it can also be applied to generate longer pieces of text, such as news ar-
ticles, movie scripts and medical records, and to control arbitrary aspects of
the text. Additionally a system with generative a discriminative capabilities
like this, could be use to solve both de-identification and classification tasks
with a single pipeline, leveraging patters found in the original data that and
the fake generated records in a semi-supervised manner.

Under this thought, the author solves automatic de-identification of medical
records and automatic classification of patient’s smoking status, with a multi-
task model capable of doing controlled text generation with scarce training
data, where the controlled aspects are initially the presence or not of personal
healthcare information (PHI) or smoking status information in the medical
records.

The data sets used in this work are from i2b2 2006 NLP challenges for
automatic de-identification and smoking status classification, and consist of
889 and 502 medical discharge summaries respectively [60][61]. Each of these
previously de-identified records is labelled whether with one of 4 smoking status
categories or contains PHI tags from 8 categories as stated on the challenge.

9correcting classification of words in a PHI category. A token is a word or string of
contiguous characters between two spaces, or between a space and punctuation marks

10instance-level evaluation checks individual PHI instances and marks the presence of a
correct instance or one of three types of errors: substitution, insertion, or deletion [65]

11latent variables are variables that cannot be measured directly and therefore have to be
inferred from the empirical measurements. examples include variables like pain, satisfaction,
abilities to perform activities of daily living, stress, burnout or well-being, and health [33]

12assigns probabilities to a set of words, given some code or context c. The code c provides
a point of control over the generation process.

5



CHAPTER 1. INTRODUCTION

Here the author focused his work on 3 of the most sensitive PHI: the names
of patients, doctors and hospitals, and the smoking status label for each
record. The data is transformed to produce 3 experimental data sets, 2 from
the smoking status classification challenge (with and without headers13) and
1 from the de-identification challenge (without headers), with binary labels as
follows:

• Present: Attribute i is present in text x.

• Not present: No sign of attribute i in text x.

Where the text x is a single medical record (or part of it) and the attributes
are personal healthcare information and smoking status of the patient. Further
description of the data can be found on chapter 3.1.

This present a fundamental difference with the challenges submissions,
where the goal of one is to identify the tokens or entities in text that cor-
respond to PHI, and the goal of the other is simply text classification, because
here the author identifies globally if the text contains PHI or smoking sta-
tus information and then generates a surrogate where the featural profile is
controlled, for example, to exclude PHI or smoking status content from it.
A more detailed description of the challenges, the distribution of the data,
pre-preprocessing and the can be found on chapter 3.

The model’s pipeline is denoted here as CVAE-TextCNN to process med-
ical records in XML format, and train a conditional variational auto-encoder
(CVAE) combined with attribute discriminators (TextCNNs), based on Hu
et al. [27], that imposes desired semantic structures on novel generated medical
records. This model, together with regularization techniques and fine-tuning
is capable of performing both generative and discriminative task solving de-
identification and classification with little supervision. Figure 1.314 illustrates
the processes where we can distinguish generative and discriminative roles.

Additionally to the pipeline, the author of this work lays the tracks to
further improvement of CVAE-TextCNN, refine coherence of the generate text,
and to regularize the latent space representation of the medical records, as
further steps to create a more robust framework.

1.2 Structure of the Thesis
Chapter 2 present the bibliographical background and state-of-the-art imple-
mentations for handling free text on medical records for generative and dis-

13a header is a title or section inside a patient’s medical record text, that refers to a ’field’
or to the ’topic’ that the medical information refer to.

14original pipeline proposed by Hu et al. [27]
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CHAPTER 1. INTRODUCTION

Figure 1.3: Controlled text generation VAE with feature discriminators.

criminative task, it describes the current approaches paradigms and their dif-
ficulties, and lays the base for regulated latent representation learning (LRL)
systems and the methods for performing controlled text generation.

The data used for this work is described in Chapter 3, including its posterior
transformation for creating 3 data sets It also compiles a detailed description
about the design decisions taken for this work. Explains how the system works,
how it is trained and evaluated. At the end of this chapter, the author present
the output files and licensing. The requirements for reproducing the results
and using the model and repository are also described there.

The experiments descriptions and results are presented in Chapter 4, to-
gether with several figures and tables with common metrics that guided the
analysis of performance of the model.

Some considerations about the objective and results of this work, scalability
of the presented system and practical implications can be found on Chapter 5,
together with author’s last thoughts about an accurate general model for con-
trolled text generation being used as a block in a bigger network for healthcare,
and the conclusions for this work.

7



Chapter 2

Related Work

Typically in clinical NLP, the de-identification tools are classified as ruled-
based systems or machine learning systems. Rule-based systems usually tackle
the de-identification task leveraging syntactic information using pattern match-
ing, regular expressions and dictionary lookups. Although these systems are
easy to develop, they very fast and do not require any labelled data, the need
for experienced domain experts that can occur and to manually write dictio-
naries and patterns—catching all possibilities—for each dataset, make them
hard to generalize [19].

Conversely, ML systems are classified as supervised or unsupervised de-
pending on the use or not of labelled data. Supervised ML systems are in-
ference models to train classifiers, where in the case of de-identification, each
word or instance is labelled as PHI or not. These systems could end up being
really efficient and more general than ruled-based ones at the cost of trans-
parency; nonetheless, they depend on features handcrafted by someone with
medical and statistical knowledge the same way rule-based system depend on
the expert, making the task similarly challenging and time-consuming [4].

Recent approaches in NLP tasks such as Named-entity Recognition (NER)1

and Parts of Speech (POS) tagging 2 using non-linear neural networks have
shown promising results without any handcrafted features or rules. The fea-
tures in these systems are learned automatically with other parameters of the
network during training on a labelled dataset. Yet, de-identification differs
from NER in its focus on clinical records in one important way: the goal in
the challenge as reported by Uzuner et al. [60] is to find and remove PHI from

1subtask of Information Retrieval that seeks to locate and classify named entities men-
tioned in unstructured text into pre-defined categories such as person names, organizations,
locations, medical codes, time expressions, quantities.
https://en.wikipedia.org/wiki/Named-entity_recognition

2categorizing words in a text corpus in correspondence with a particular part of speech
(noun, verb, adjective,..)

8
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CHAPTER 2. RELATED WORK

medical records while protecting the integrity of the data as much as possi-
ble. The systems need to achieve this goal in the presence of ambiguities and
out-of-vocabulary words.

Between these two approaches there also have hybrid systems and ML
methods based on regular expressions templates. Particularly of 2006’s NLP
challenge for de-identification, statistical ML methods based on regular expres-
sions perform the best between these approaches, followed by hybrid systems
combining rules for some PHI categories with learning for others, pure learning
systems without regular expression template features or supplementary rules,
and pure rule-based systems (Uzuner et al. [60]) almost all used patterns, e.g.,
regular expressions or rules, for recognizing the format of the PHI. In general
the de-identification approaches in 2007 viewed the task as a problem of clas-
sification of tokens. Others viewed it as a sequence tracking problem using
Hidden Markov Models (HMM) (Manning and SchÃ¼tze [42]and i corporation
[28]) or Conditional Random Fields (CRF) (Lafferty et al. [35], Aramaki et al.
[5], Wellner [63] and Wellner et al. [64]). For example Aramaki et al. [5] uses
CRFs to learn the features that are important to identify PHI. They take a
text-chunking and sequence-tracking approach to de-identification and mark all
tokens as either beginning a chunk or as being inside or outside of a chunk using
IOB tagging (Sang and Veenstra [55]).3 These implementations leverage local
properties of the data—such as positions of PHI tags in the text—making them
too specific. Additionally, some ambiguous and out-of-vocabulary PHI cause
missed or partially recognized PHI. In general these approaches are cheap and
easy to implement, do not not scale well with other data and depend on the
quality of the data (annotation procedures).4 Extrapolation is difficult when
the systems take advantage of the specific structure of discharge summaries,
which is characteristic of the entity from where these were collected.

Latent Representation Learning, GANs and VAEs

Other approaches make use of unsupervised learning algorithms, to identify
hidden patterns in unlabelled input data. Unsupervised refers to the ability to
learn and organize information without providing an error signal to evaluate
the potential solution. The lack of direction for the learning algorithm in un-
supervised learning can sometime be advantageous, since it lets the algorithm
to look and find hidden patterns that have not been previously considered.
When these hidden patterns or variables cannot be measured directly because

3IOB (inside, outside, beginning) is a common tagging format for tagging tokens in a
chunking task in computational linguistics.
https://en.wikipedia.org/wiki/Inside--outside--beginning_(tagging)

4as reported by Uzuner et al. [60]

9
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they don’t correspond to any explicit featural information of the input, they
are called latent and they have to be inferred [53]. Latent Representation
Learning (LRL), or Latent Variable Modeling (LVM), is a machine learning
technique that attempts to infer latent variables from empirical measurements
(Kopf and Claassen [33]). And creating latent space representations is some-
thing deep neural networks are very good at, solving tasks inside generative
modelling that are useful for this work.

The essential idea of generative models is to approximate the underlying
data distribution by training a model to fit the training data, finding and
leveraging the dependencies and correlations between units (words, sentences,
etc), to then build models capable of generating observable data values. The
way the model finds this information depends on what it is intended to do
with the model and how we define the loss function. Several models have
been proposed, such as Latent Dirichlet Distribution, Restricted Boltzmann
Machines, Generative Adversarial Networks (GANs) and Variational Auto-
Encoders (VAEs) [33]. The latest two are the baseline networks for deep
learning generative state-of-the-art applications. These models make use of a
discriminator and a generator but differ particularly in the way they compute
the loss function.

The core idea of GAN is to play a min-max game between a discriminator
and a generator, known as adversarial training. The discriminator tries to
differentiate between real samples and surrogates, while the generator tries to
create realistic samples that can trick the discriminator into classifying them
as real (Li et al. [40]). GANs replace the maximum likelihood5 in training to
simulate the real data distribution and generate high-quality text.6 However,
the original GAN is only suitable for processing continuous data such as im-
ages, while text is discrete data; hence, it cannot be applied directly to text
generation (Guo et al. [24]). The details of how GANs work is not the scope
of this work; VAEs are generally more suitable for text and more controllable
than GANs when including conditional codes so it’s the centre of attention of
the research of this work.

VAEs are called autoencoders (AE) only because they resemble a traditional
autoencoder, but an AE is solely trained to encode and decode with as few
loss as possible, no matter how the latent space is organised. The VAE on
the other hand, instead of encoding an input as a single point, encodes it
as a distribution over the latent space, meaning unlike AE, its training is
regularised to avoid overfitting and ensure that the latent space has good

5method of estimating the parameters of an assumed probability distribution, given some
observed data.
https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

6coherent and similar to the input; looking like real data.

10
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CHAPTER 2. RELATED WORK

properties. Moreover, the term variational comes from the close relation there
is between the regularisation and the variational inference method in statistics
[54]. in Chapter 3.

The work of Bowman et al. [10] for instance, is an RNN-based VAE text
generation model which assigns distributed latent vectors to whole sentences.
Recurrent Neural Networks (RNNs) are networks design to deal with sequence
modeling. A sequence autoencoder model constructs the output sentence word
by word conditioned on the hidden vector to obtain consistency and diver-
sity. Notwithstanding RNNs face gradient propagation issues that prevent the
model from effectively capture long-term dependencies.

Attention mechanism networks like the transformer model are proposed to
replace the sequential structure RNN-based models. The self-attention mecha-
nism can capture the context dependencies among all sequences and words, to
achieve more efficient sequence modeling without distance restrictions and to
obtain more semantically-rich text representations. Transformers have shown
excellent performance in various NLP tasks and are currently used in some
of the best language models so far like GPT3 (OpenAI, 2020), the Switch
Transformer (Google 2021), Megatron (Microsoft and Nvidia, 2021) and Go-
pher (DeepMind, 2021). It has great development and potential too for the
de-identification task [4]. For the purpose of this work, the inclusion of trans-
former models plays as an extension to the encoder/decoder architectures; the
focus is on a cheap yet functional framework capable for solving clinical NLP
tasks including automatic de-identification and classification.

Attention Mechanism

Attention is a technique in neural networks that enhances some parts of the
input data while diminishing others, meaning that the network devotes more
focus—ergo attention—to that small but important part of the data.7 Ahmed
et al. [4] de-identify textual data based on the self-attention mechanism and
a stacked RNN. They compare experimental results of architectures based on
RNNs with others using Gated Recurrent Units (GRU) and analyse the effects
of conditional random fields and applying attention mechanism. Their results
prove that attention-based models perform better and with a faster executing
time for de-identifying MIMIC-III 8 and i2b2 datasets. Yet, an RNN-based
model looks at the tokens sequentially, whereas the attention-based model
looks at the whole sentence at the same time and process it. This means

7based on: https://en.wikipedia.org/wiki/Attention_(machine_learning)
8freely-available database comprising de-identified health-related data associated with

over forty thousand patients who stayed in critical care units of the Beth Israel Deaconess
Medical Center between 2001 and 2012.

11
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CHAPTER 2. RELATED WORK

that a GRU architecture could deal better with back-propagation 9 issues like
vanishing gradients with less complexity. On the side, they evaluate the quality
of the de-identified surrogate records, by introducing utility metrics based on
BLEU scores,10, which reveals how similar two sentences are in a document,
and topic modelling methods using Latent Dirichlet Allocation (LDA), which
is an unsupervised machine learning algorithm that clusters relevant words to
a topic (Ahmed et al. [4] and O’Malley et al. [51]).

Ensemble Learning for Text Generation

Furthermore, multiple learning algorithms could be used to obtain a better
predictive performance than the one obtained from any of the constituent
learning algorithms alone. 11 This approach is know as ensemble learning
or ensemble methods. One example of such approach is Murugadoss et al.
[48] work, who developed an automated de-identification system that employs
an ensemble architecture, incorporating attention-based deep-learning models
and rule-based methods. Ensemble methods can result in highly accurate
models but evaluating the prediction typically requires more computation than
evaluating the prediction of a single model. In many ways, ensemble learning
is a way to compensate for poor learning algorithms by performing a lot of
extra computation.8 Their work performance performance on 2014 i2b2 de-
identification dataset was better compared to other state-of-the-art models, but
in the context of solving automatic de-identification together with automatic
classification, there are simpler single models that could perform similarly with
higher scalability and control. Additionally, their analysis of focused only on
the performance of detecting PHI instances, meaning that the system fails to
detect risk of re-identification based on semantics [48]. Li et al. [40] combine
Re-inforcement Learning (RL),12 GANs and RNNs to build a new model with
high performance in the supervised task of sentiment analysis.

Conditional Text Generation (CTG)

As stated in the introduction, the effort in this work is into generating a novel
or an surrogate version of a medical record, controlling the generative process

9method for propagating the total loss back into the neural network distributing it ac-
cordingly to what every node is responsible for.

10Bilingual Evaluation Understudy score, which indicates how similar is a text to another
reference text, providing an overall assessment of model quality. A BLEU score of 1 means
perfect similarity.

11 based on https://en.wikipedia.org/wiki/Ensemble_learning
12RL problems concern learning what to do and how to map situations to actions inside an

environment, so as to maximize a numerical reward signal. For instance, in online gaming.

12

https://en.wikipedia.org/wiki/Ensemble_learning
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by injecting codes with featural profiles to the latent representations. This is
precisely the goal of CTG: to take condition-codes into consideration to influ-
ence the output during the generation process. These conditions usually in-
clude context, topic, emotion, external knowledge, and so on, but in theory any
syntactic or semantic feature encoded in the text could be controlled. Biswal
et al., 2020, [8] make use of a VAE-based model called EVA for synthesizing
sequences of discrete Electronic Health Record (EHR) encounters (like clinical
visits). Models like this and like the one from Hu et al. [27] perform well on
short sentences and can be scaled to long text generation by the use of hierar-
chical structures, attention mechanisms, and extra latent space regularization
techniques. Keskar et al. [31] released CTRL, a 1.63 billion-parameter condi-
tional transformer language model, trained to condition on control codes that
govern style, content, and task-specific behavior. They used a huge amount of
training data and derived the control codes from the text structure preserving
the advantages of unsupervised learning while providing more explicit control
over text generation. A pre-trained model like this could easily escalate to sev-
eral dataset of free text via transfer learning 13. Other authors propose simpler
approaches based on transformers, such as Dathathri et al. [14], who put for-
wards the Plug and Play Language Model (PPLM) for controllable language
generation, which combines a pre-trained model with 1+ attribute classifiers
that guide the generation without any further training of the language model.
In general, attention based models capture long-term dependencies better than
most of the alternatives, but training such models is costly and usually more
complex due to the higher number of parameters and hyperparameters. Ta-
ble 2.114 summarizes some pros and cons of the most popular text generation
techniques.

The chosen model for this work is based on VAEs. Hu et al. [27] ad-
vanced a conditional language model with holistic attribute discriminators,
which through collaborative learning, learns interpretable representations of
text conditioned on a code c. For this purpose the authors used IMDB text
corpus 15 and the Stanford Sentiment Treebank-2 (SST-full) to train a gener-
ator and to sample from a latent space conditioned on the sentiment of the
text (positive/negative). Their model is trained in two phases similarly to

13to take advantage of previously learned feature maps without having to start from
scratch by training a large model on a large dataset. The process of refining the pre-trained
model is called fine-tuning and is the essence of transfer learning.
https://www.tensorflow.org/tutorials/images/transfer_learning

14inspired by Guo et al. [24], whose work is focused on giving a comprehensive review of
new research trends in CTG

15Movie Reviews dataset is a binary sentiment analysis dataset consisting of 50000 re-
views from the Internet Movie Database http://nlpprogress.com/english/sentiment_
analysis.html

13

https://www.tensorflow.org/tutorials/images/transfer_learning
http://nlpprogress.com/english/sentiment_analysis.html
http://nlpprogress.com/english/sentiment_analysis.html
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Architecture Advantages Disadvantages
RNN Natural structure for sequence

modeling
Cannot capture long-term de-
pendencies (context)

GAN Its learning is unsupervised.
Generate realistic samples

Unstable training. Cannot
handle discrete data like text

VAE It leverages the latent vector to
increase diversity

Content is generated in spite of
the quality

Transformers Attention mechanism captures
long-term dependencies

Very costly: long calculation
times and slow training speed

Table 2.1: Common techniques for Text Generation: Advantages & Disadvantages

Dathathri et al. [14] work : one that trains the generator into creating plau-
sible surrogate sentences, and a second one where the full model is trained
alternating the optimization of the generator and the discriminator. They ob-
tained meaningful generation results, but with restricted sentence length due
to the chosen architectures for encoder and decoder and lack of regularization.

Hierarchical Structures and Regularization for Long-Text Genera-
tion

The length of the input and output text is a very important aspect for design
decisions, when choosing an architecture for the blocks of the generative model.
The VAE architecture has made and continues to make progress text gener-
ation tasks, but different research efforts have shown how encoder/decoder
selections can translate into meaningful performance changes of the model.
There is a particular relationship between each sentence; more specifically,
between the latent variables that control the generation of the sentences. Re-
lationships between these latent variables help in generating continuous and
logically-connected long text. Zhao et al. [66] proposed a method for combining
a Transformer-Based Hierarchical Variational Auto-Encoder (based on (BERT
and GPT-2) and a Hidden Markov Model into a model (HT-HVAE) capable
of learning multiple hierarchical latent variables and their relationships. A
hierarchical VAE extends the basic idea by introducing a hierarchy of L latent
variables and intermediate sentence representations into the generative net-
works to guide the word-level predictions. A hierarchically-structured16 VAE
alone already shows a significant improvement for generating long and coherent
units of text (Shen et al. [56] and Shen et al. [57]). VAE and transformers-
based models for CTG has also been proved useful for generating high quality
and realistic electronic health sequences (Libbi et al. [41]), and gold standards

16loosely-coupled sub-nets arranged in layers (acyclic graph).
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data augmentation systems in healthcare are of a lot of interest for clinical NLP
researchers. However, as stated before, in this thesis work the author’s efforts
are into offering a simple but robust and scalable architecture for conditional
text generation capable of solving the tasks of automatic de-identification and
automatic classification of medical records, by the side of data augmentation
and interpolation tasks. Implementations like HT-VAE from al., could be
valuable extensions of this base architecture, the same way extra regulariza-
tion techniques and design decisions for encoder/decoder are. The architecture
proposed by Hu et al., 2018 [27], modified with extra regularization and to pro-
duce long coherent text seems suitable for the task and is the baseline for this
thesis.

More methods to improve Text Quality

Moreover, to further alleviate the issue of noisy data and ensure robustness
and uniform information density in the generated text by the learned language
models, several techniques could be considered into being incorporated to the
base model as extensions such as: using a minimum entropy regularization
term, latent space enrichment methods like the ones presented by Li et al.
[39], Li et al. [37] and Dieng et al. [16]), beam search (Meister et al. [44]) and
bias correction (Grover et al. [22]). These efforts have shown that incorporating
these methods is highly advantageously with potential general application to
data scarce NLP learning tasks on healthcare, like i2b2 datasets. The details
and effect of some of them are discussed later in this work.

Text Classification

Finally, from the side of automatic text classification, the participant teams
submissions (reported by Uzuner et al. [61]), include supervised and unsuper-
vised classifiers, and handcrafted rules based systems. Despite the differences
in their approaches many of them produced good results. The best solutions
came from systems that leveraged the existence or lack of explicit smoking
status information on the records, meaning that they would most likely mis-
perform inferring on a smoke-blind17 dataset or inferring about another featural
description like psychological status of the patient or his/her risk of develop a
specific progressive disease. On the contrary and as stated before, deep learn-
ing based systems, don’t make use of handcrafted rules and can mitigate the
training dependency of the model, making it more general. The two main
deep learning architectures for text classification are based on the RNN and

17data where all explicit mentions of smoking terms have been removed leaving only the
nonsmoking-related text
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the Convolutional Neural Network (CNN) architectures. As summarized in
the work of Minaee et al. [46], CNNs work better where detecting local and
position-invariant patterns is important. The CNN where firstly introduced
into text classification by Kim [32] and performed remarkably well compare to
state-of-the-art of the time, and is still widely used in NLP applications to-
gether with attention mechanism or as part of bigger language models, based
for instance in conditional modelling. Hence, TextCNN is the chosen base
architecture for the discriminator(s) blocks of the conditional model.
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Approach

3.1 Data Description, Pre-processing and Fea-
ture Engineering

In 2006, to increase the availability of clinical records and to contribute to the
advancement of the state of the art in Medical Language Processing (MLP),
within the i2b2 (Informatics for Integrating Biology to the Bedside) project
, Uzuner et al. [60][61] de-identified and released a set of clinical records
from the Partners Healthcare Research Patient Data Registry.12 The records
were initially pre-processed so that they were de-identified3, tokenized, broken
into sentences, converted into XML format, and separated into training and
test sets. The free text in the original XML records (as in 2006’s challenge)
is structured by clinical titles such as the ones shown in Figure 3.1, and on
the right image of Figure 3.2. A title is defined an upper-cased noun phrase
followed by ’:’. Details about the regular expression pattern used to match
them can be found in the script utilsEDA.py inside the repository. There are
around 2.000 different titles present on the free text of the dataset, outlining
a different aspect of the patient clinical history.

In total, 1.391 records were released, providing the basis for the develop-
ment of the ground truth for two clinical NLP challenges:

• Automatic de-identification of clinical data

• Automatic evaluation of the smoking status of patients based on medical
records

1centralized clinical data registry. It gathers data from various hospital systems and
stores it in one place. https://precisionmedicine.bwh.harvard.edu/resources/

2hosted on Harvard’s Medical School DBMI Data Portal under the name of n2c2.
https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/

3manually with the help of existing de-identification systems
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Figure 3.1: Preview of 32 unique headers present in the records.

3.1.1 Automatic De-Identification Challenge

A total of 889 medical discharge summaries were part of this challenge: 669
for training and 220 were used for testing. They were prepared by anno-
tating and by replacing all authentic PHI with realistic surrogates. The
datasets contain a total of 8 different PHI tags derived from the 18 cate-
gories defined by the HIPAA (Figure 1.2). Figure 3.2 shows an example of
record from the training data in its original format. The original records
for the de-identification challenge are annotated with PHI tags in the form
<PHI TYPE=’_phi_type_’>_phi_</PHI>. The red rectangles in-
side this image refer to the subsections inside the records as described in Figure
3.1.

The goal of de-identification, as defined in the first challenge, was to find
and remove PHI from medical records while protecting the integrity of the
data4, in the presence of ambiguities5 and out-of-vocabulary PHI.6 Ambigu-
ous and out-of-vocabulary PHI reduce the contribution of dictionaries and
gazetteers (NER approaches) to de-identification and emphasize the value of
studying context and language (Uzuner et al. [60]).

PHI-Tags Categories

The 8 Private Health Information tags used in the original challenge were de-
rived from the existing 18 categories defined by HIPAA. The PHI category

4retaining medical concepts, such as diseases, is important to enable the use of de-
identified records for research[60].

5PHI and non-PHI can lexically overlap, e.g., Huntington can be the name of a disease
(non-PHI) as well as the name of a person (PHI) [60].

6can include misspelled and/or foreign words that cannot be found in dictionaries[60].
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Figure 3.2: Real training data samples. Left: de-identification challenge; Right:
smoking status classification challenge.

’Names’ is one of the most sensitive PHI inside the established HIPPA cate-
gories. So, here the author focuses initially in 3 of the PHI tags existing on
the data: names of patients, doctors and hospitals, and transform the data
according to the details about the pre-processing and binary re-labelling in
section 3.3 of this chapter. The existence of any of this PHI tags in the text,
define the ’Present’ or positive label in one of the output datasets, and are
defined as follows [60]:

• Patients: includes the first and last names of patients, their health
proxies, and family members. It excludes titles, such as ’Mrs.’, e.g.,
’Mrs. (Mary Joe) was admitted...’.

• Doctors: refers to medical doctors and other practitioners mentioned in
the records. For transcribed records, it includes the transcribers’ names
and initials. It excludes titles, such as Dr. and MD, e.g., He met with
Dr. [John Bland], MD.

• Hospitals: marks the names of medical organizations and of nursing
homes where patients are treated and may also reside. It includes room
numbers of patients, and buildings and floors related to doctors’ affilia-
tions, e.g., The patient was transferred to Gate 4.

19



CHAPTER 3. APPROACH

3.1.2 Automatic Classification Challenge

A total of 502 medical discharge summaries were used for this challenge. These
records contain non-tagged-PHI and were labeled with one of 5 smoking status
categories by pulmonologists. The data is transformed to produce 2 experi-
mental datasets. The 2 versions represent including or not the removal of
headers from the text as a pre-preprocessing step as described in section 3.1.3.

Smoking Status Categories

For the purpose of the challenge, the smoking-status categories are defined as
(Uzuner et al. [61]):

• A Past Smoker is a patient whose discharge summary asserts explicitly
that the patient was a smoker one year or more ago but who has not
smoked for at least one year.

• A Current Smoker is a patient whose discharge summary asserts ex-
plicitly that the patient was a smoker within the past year.

• A Smoker is a patient who is either a Current or a Past Smoker but
whose medical record does not provide enough information to classify
the patient as either.

• A Non-Smoker is a patient whose discharge summary indicates that
they never smoked.

• An Unknown is a patient whose discharge summary does not mention
anything about smoking. Indecision between Current Smoker and Past
Smoker does not belong to this category.

3.1.3 Pre-processing and Binary Re-labelling

The recurrent appearance of the noun phrases that compose the titles in the
free text, could lead the model to overfitting7. Part of the pre-processing steps
include creating an dataset version removing this titles from the text.

For the de-identification challenge the training data was split by chunks of
text of a defined length range. If chunk x contained PHI tags, then it was
cleaned of them and labelled with the positive label: Present. The data for
the smoking-status classification challenge was re-labelled similarly. Here, only

7the production of an analysis that corresponds too closely or exactly to a particular set
of data, and may therefore fail to fit additional data or predict future observations reliably.
https://en.wikipedia.org/wiki/Overfitting
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the Unknown class represents that there is no information present about the
smoking status of the patient in the text (negative class). Hence, the other 4
possible classes compose the positive label. Figure 3.3 illustrates this process.
In result, there are 2 possible labels for each of the 2 possible attributes.
However, the model can be easily adapted to include more labels and more
attributes for multi-class and multi-label tasks.

• Present: There are signs/content of attribute i in the text. If attribute i
is the smoking-status, then this implies that inferring the smoking-status
is possible is the discriminator is trained to include all the categories as
described in 3.1.2.

• Not Present: Attribute i cannot be found in text. If the attribute
i is the PHI, this means that the generated record x̂ is a de-identified
version of x, which has been sampled from the latent representation z of
the record .

Figure 3.3: Generating A, B and C through binary re-labelling

Additional pre-processing steps include removing dates and most of non-
textual information, and skipping some generated samples due to their short
length.

Training Datasets

The three resultant datasets are:

• Dataset A: Unlabelled dataset composed of 669 of pre-processed medi-
cal records without PHI tags8. The average length of the records is 2439
words. A.1 represents the dataset as original using headers and A.2 is
an alternative version where these titles have been removed.

8meaning that the removal of the XML format which indicates that the noun-phrase
is of type PHI. For instance: <PHI TYPE="HOSPITAL"> Macomtoma Medical Center
</PHI> → Macomtoma Medical Center

21



CHAPTER 3. APPROACH

• Dataset B: Labelled dataset composed of 1824 chunked pre-processed
medical with binary-labelled depending on the presence of PHI in the
text. The average length of the records is 2439 words.

• Dataset C: Labelled dataset composed of 398 pre-processed medical
records without titles nor PHI tags which has been binary-labelled de-
pending on the presence of smoking-status information in the text. The
average length of the records is 439 words.

The distribution of instances and tokens in the challenge corpus is shown
in Table 3.1 (based on Uzuner et al. [60] report). This is an insight of the
information content inside datasets A,B and C.

Type Complete Corpus Training Data Test Data
Instance Token Instance Token Instance Token

Non-PHI - 444.127 - 310.504 - 133.623
Patients 929 1.737 684 1335 245 402
Doctors 3.751 7.697 2.681 5.600 1.070 2.097
Hospitals 2.400 5.204 1.724 3.602 676 1602

Table 3.1: Instance & token distribution: de-identification challenge data.

3.2 Architecture9

Variational Auto-encoder

Variational Auto-encoders receive this name because their remind AEs, but in
reality they work in a very different way. The AE is a self-supervised technique
and one of the most powerful ideas in deep learning architectures for Latent
Representation Learning. In simple words, auto-encoding is a data compres-
sion algorithm where the compression and decompression functions are learned
automatically (through the neural network weights for encoder and decoder).
AEs are in general too data-specific10 and lossy.11 These facts make them
impractical for real-world data compression problems but still useful as a di-
mensional reduction and data denoising method (Rocca [54]). As a generative

9global structure you want to build your neural network on. For instance connecting some
convolutional layers to extract features, some fully connected layers, and finally a softmax
layer to make predictions.

10fit to be able to compress data similar to what they have been trained on
11similar to JPEG compression, the outputs will be degraded compared to the original

inputs.
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model they fail as well, due to the irregularity of its latent space representa-
tion, which depends on the distribution of the data in the initial space, the
dimension of the latent space and the architecture of the encoder. Because of
the fact that an AE is trained to encode and decode with as few loss as possi-
ble, they really don’t care about how the latent space is organised and cannot
ensure an smart way of doing it, leading them to overfitting. The problem is
that this also implies that some points of the latent space will give meaningless
content once decoded as shown in A in Figure 3.412. Regularization creates a
gradient over the information encoded in the latent space. Therefore, a point
which is halfway between the means µz(x) of the encoded distributions coming
from different inputs (color clouds), should be decoded in something that is
somewhere between the data points that gave the initial (reflected by shape
and color distributions).

Figure 3.4: Effect of regularization on the latent space .

On account of involving some regularization, instead of encoding an input
as a single point x, the Variational Auto-encoder encode it as a distribution
p(z|x) over the latent space. Then, it samples points from that distribution in
the latent space, decodes them and calculates the error to back-propagate it
through the network. The encoder model is also referred to as the recognition
model while the decoder model as the generative model. Now, the amount of
information is that is lost is measured using the reconstruction log-likelihood
log pϕ(x | z). This measure tells us how effectively the decoder has learned to
reconstruct an input x given its latent representation z, which is inferred by
a conditional probabilistic encoder E. Figure 3.5 illustrates in high level the
encoding and decoding process. The latent variable or code z is then:

z ∼ E(x) = p(z|x) = q(z|x) (3.1)
12modified image from Rocca [54]. Used here with the permission of the author.
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The statistical motivation of the VAE originates from variational inference
principles, with the aim of providing a approximate solution q(z|x) to an in-
tractable distribution p(x). In simple words, If starting by an observation x
which is generated by some hidden variable z, this we would like to infer the
characteristics of z, this is p(z|x):

p(z|x) = p(z|x)p(z)
p(x)

(3.2)

But the integral for computing p(x) is computationally intractable:

p(x) =

∫
p(x|z)p(z), dz (3.3)

In essence, it is possible to define the parameters for an tractable distribu-
tion q(z|x), such that is similar to the intractable p(z|x), and perform inference
with it. In other to compare the distributions, the Kullback-Leibler Divergence
is used. This function measures how different two different distributions are,13.
This divergence measures how much information is lost when using q to repre-
sent p, and can be understood as a measure of how close is q to p. Is calculated
as:

KL(q||p) =
∑
x

q(x)log
q(x)

p(x)
(3.4)

The fact that VAEs encode inputs as distributions instead of simple points
is not sufficient to ensure continuity14 and completeness.15. As stated by Rocca
[54], without a well defined regularisation term, the model can learn to min-
imise its reconstruction error by ignoring the fact that distributions are re-
turned, behaving almost like classic autoencoders, and leading the model to
overfitting.16 In order to avoid these effects, we have to regularise both the
co-variance matrix and the mean of the distributions returned by the encoder,
pushing them into being close to the identity and close to 0 respectively. This
is the reason why the total loss of the variational autoencoder for a single
data point is composed by the reconstruction loss (negative log-likelihood 17)

13KL(p||p) = 0; KL-divergence is 0 for two identical distributions.
14two close points in the latent space should not give two completely different contents

once decoded [54]
15for a chosen distribution, a point sampled from the latent space should give "meaningful"

content once decoded (Rocca [54])
16the encoder can either return distributions with tiny variances (punctual distributions)

or return distributions with very different means (far apart from each other in the latent
space) (Rocca [54]).

17cost function in ML, that tells how bad the model it’s performing; the lower the better.
urlhttps://medium.com/deeplearningmadeeasy/negative-log-likelihood-6bd79b55d8b6
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and the KL-divergence between q(z|x) and p(z) as a regularization. The full
derivation of the loss function begins from minimizing KL(q(z|x)||p(z|x)) and
it’s explained in detail in works such as the one from Doersch [17] , Asperti
and Trentin [6], and Kuleshov and Ermon [34].

lossvae = log(p(x))−KL(q(z|x)||P (z|x)) (3.5)

lossvae = Eq(z|x)logp(x|z)−KL(q(z|x)||p(z)) (3.6)

The KL-divergence is always positive, hence the maximization of equation
3.5 is precisely the learning objective of VAEs and is the so known Evidence
Lower Bound or ELBO (Asperti and Trentin [6]). A simpler way of writing the
reconstruction loss instead as the negative log-likelihood between distributions
is by expressing it as the Squared Euclidean Distance18 between and input x
and the output of the decoder d(z):

Eq(z|x)logp(x|z) => ||x− d(z)||2 = ||x− x̂||2 (3.7)

In VAEs, p(z) is the enforced known prior distribution, and is specified
as a Standard Normal Distribution with zero mean and variance equal to one
(p(z) = Normal(0, 1)). In other words, VAEs assume that there is no simple
interpretation of the multiple dimensions of z, and instead claim that samples
of z can be drawn from a simple distribution, the normal distribution N(0, I).
If the encoder outputs representations z that are different than those from a
standard normal distribution, it will receive a penalty in the loss, keeping the
representations z of each digit sufficiently diverse. Figure 3.519 illustrates the
variational encoding and decoding process.

In this order of ideas, a VAE computes, for each latent variable z and each
sample x, an expected value µz(x) and a variance σ(x) around it. During
training, the variance generally drops very fast to values close to 0, reflecting
the fact that the network is highly confident in its choice of µz(x). The KL-
divergence in the loss function can be also understood as a term aimed to
reduce this confidence, by forcing a non-negligible variance. Considering this,
the loss function of the VAE can be rewritten as:

lossvae = ||x− x̂||2 −KL(N(µx, σx), N(0, 1)) (3.8)

As for any regularisation term, this comes at the price of a increase of the
reconstruction error on the training data. As proved by Asperti and Trentin [6]
in their work, the former will try to improve the quality of the reconstruction,

18sometimes referred simply as quadratic distance in the literature [6]
19modified image from Rocca [54]. Used here with the permission of the author.

25



CHAPTER 3. APPROACH

Figure 3.5: VAE diagram + high level data flow from real x to surrogate x̂.

neglecting the shape of the latent space; on the other side, KL-divergence
is normalizing and smoothing the latent space, possibly at the cost of some
additional "overlapping" between latent variables, eventually resulting in a
more noisy encoding. The trade-off between the reconstruction error and the
KL divergence can however be adjusted by a parameter β. A VAE that takes
this into consideration is sometimes called βVAE in the literature. The total
loss can be then rewritten as:

lossvae = ||x− x̂||2 − β ·KL(N(µx, σx), N(0, 1)) (3.9)

Now, there is one more point to consider. The sampling process has to be
expressed in a way that allows the error to be back-propagated through the
network, and gradient descent is not possible for a random sampling process.
To alleviate this, a simple transformation knows as re-parametrization, uses
the fact that if z is a random variable following a Gaussian distribution with
mean µ and with covariance σ then it can be expressed as:

z = µ+ σ ⊙ ϵ (3.10)

Epsilon ϵ ∼ Normal(0, 1), meaning that the idea is to randomly sample
ϵ from a unit Gaussian, and then shift the latent distribution’s mean µ and
scale it by the co-variance σ. Using this re-parametrization, the parameters
of the distribution can be optimized while still maintaining the ability to ran-
domly sample from that it. Figure 3.6 (Jordan [30]) illustrates the described
transformation:
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Figure 3.6: Re-parametrization transformation for latent z.

Wake-sleep Mechanism

This algorithm proposed by Hinton et al. [25] for learning deep generative mod-
els like Helmholtz Machines (Dayan et al. [15]), consists of two phases: wake
and sleep, which optimize the generative model and inference model respec-
tively. The updates in the wake phase updates the generator parameters θ by
fitting pθ(x|z) to the real data and hidden code inferred by the inference model
qλ(z|x). On the other hand, the sleep phase updates the parameters λ based
on the generated samples from the generator. VAEs can be seen as extend-
ing the wake phase by also optimizing the inference model q, with additional
prior regularization on code z. Additional details about the relationship. The
connection between VAEs, GANs and the wake-sleep algorithm is formally
explained in the work of Hu et al. [26].

Encoder and Decoder design: The Gated Recurrent Unit (GRU)

RNNs suffer from a short-term memory problem. For long text like the medical
records, they are not capable of carrying information from earlier time steps
to later ones. Meaning that RNNs may forget important information from
the beginning of the text. From the training (back-propagation) perspective,
they suffer from the vanishing gradient problem. Gradients are values used to
update a neural networks weights. The vanishing gradient problem is when
the gradient shrinks as it back propagates through time. If a gradient value
becomes extremely small, it does not contribute too much learning, preventing
the network to learn fit representations (Phi [52]). . Almost all state of the
art results based on RNNs are achieved with these two networks. Both Long
Short Term Memory networks (LSTMs) and Gated Recurrent Units (GRUs)
make use of internal mechanisms called gates that can regulate the flow of
information, solving the short-term memory problem. Figure 3.7 (Gunawan
et al. [23]) shows the gates inside the LSTM and GRU blocks.
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Figure 3.7: LSTM and GRU cells with inside gates.

Technically GRUs are similar to LSTMs but GRUs use fewer parameters
and only two gates: the update and reset gates. The update gate tunes the
update speed of the hidden state while the reset gate decides how much of the
past information to forget by resetting parts of the memory (Aggarwal [3]).
These gates can learn which data in a sequence is important to keep or throw
away. By doing that, it can pass relevant information down the long chain
of sequences to make predictions (Phi [52]). GRUs are defined by a set of
5 equations but in practice these units are easily constructed using PyTorch
library.20 Thereafter this mathematical description is negligible information
for the scope of this work.

As reported by Cahuantzi et al. [13], an increase of RNN depth does not
necessarily result in better memorization capability when the training time is
constrained; when not, then LSTMs are better for more complex input text.
On the side of that, their results also indicate that the learning rate and the
number of units per layer are among the most important hyper-parameters
to be tuned (Cahuantzi et al. [13]). GRUs are the chosen base architecture
for encoder and decoder of the VAE, because they deal well with long-memory
dependencies and are simpler and easier to train than the LSTM. Nevertheless,
these decisions can be optimized in an ensemble learning setup so the chosen
design is the most suitable for a specific application.

20machine learning framework that enables fast, flexible experimentation and efficient
production. https://pytorch.org/features/
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Convolutional Neural Networks for Text Classification (TextCNNs)

Kim [32] reported on a series of experiments with CNNs trained on top of pre-
trained word embeddings21 for sentence classification tasks, achieving great
results in multiple NLP tasks such as Sentiment Analysis and Question Clas-
sification. TextCNN architecture and its transformations from input to output,
are shown in Figure 3.822, and is the base chosen architecture to prototype the
discriminator in the conditional text generation setting:

Figure 3.8: TextCNN sentence transformations to prediction.

Firstly, a sentence of length n is represented as:

x1:n = x1 ⊕ x2 ⊕ ...⊕ xn (3.11)
where xi:n or xi:i+j refers to the concatenation of words and ⊕ is the con-

catenation operator. A convolution operation involves kernels or filters wc,
21vectors of n dimensionality which are an efficient dense representation of words; hence,

similar words have a similar encoding.
https://www.tensorflow.org/text/guide/word_embeddings

22modified image from Le et al. [36], posted on CoRR journal.
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which is used to extract the features. Mathematically, they are matrices that
move over the input data (a window of words), perform the dot product with
the sub-region of input data, and gets the output as matrices of dot products.
These kernels are applied to each possible window of h words in the sentence
to produce feature maps :

c = [c1, c2, ..., cn−h+1], (3.12)

where each feature ci is the activation—via a non-linear function f like the
hyperbolic tangent— of the convolution of the kernel wc with a window of h
words, plus a bias term b :

ci = f(wc · xi:i+h−1 + b) (3.13)

The convolution operation for text is very similar to one with images, but
in this case it’s applied to 1-dimensional vector of words. Subsequently, the
most important feature (highest value) for each feature map is capture through
a max-over-time pooling operations.

ĉ = max(c) ∈ R (3.14)

The difference with max-pooling lies in the fact sentences naturally have
different length in a corpus, making the feature maps different for different
sentences, and what is wanted is to reduce the tensor23 to a fixed size so it’s
possible to apply softmax24. The resulting filters are concatenated to form a
shallow-and-wide network as described by Le et al. [36]:

g = [ĉ1, ĉ2, ..., ĉm] (3.15)

where m is the total number of filters. The network end with the class
predictions thanks to a fully-connected layer as described—without dropout
regularization25—in equation 3.16:

ŷ = f(wy · g + by) (3.16)

As detailed in Section 3.1, we transcribe the automatic de-identification
and smoking status challenges, into two binary classification tasks for a couple
of TextCNN discriminators D1 and D2, part of a conditional generative model
as described further in this chapter.

23array of numbers arranged on a regular grid with a variable number of axes [21].
24mathematical function that converts a vector of numbers into a vector of probabilities,

proportional to the relative scale of each value in the vector. Each value in the output of
the softmax function is interpreted as the probability of membership for each class [12]

25to not consider neurons during the training phase of certain set chosen at random
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Controlled Text Generation: CVAE

The idea is to come up with a multitask framework for clinical NLP with
scarce data, competent resolving automatic de-identification and classification
of medical records among other applications. Thus, what is needed is a model
that instead of penalizing the error between a single prediction and the ground
truth, is capable of performing controlled generative tasks, such as mapping
a single record with personal information to many possible outputs where the
personal content has been removed/obfuscated; and discriminative tasks, like
inferring the smoking status of a patient from the information present in the
medical record. In the context of generative modelling, this is an algorithm
that takes in text and produces a complex, multi-modal distribution that we
can sample from. The Conditional Variational Auto-encoder (CVAE) allow us
to tackle problems where the input-to-output mapping is one-to-many, with-
out requiring us to explicitly specify the structure of the output distribution
(Doersch [17]).

Essentially, in a Conditional Generative Model (CGM), for a given ob-
servation x, z is drawn from the prior distribution p(z|x), and the output y
is generated from the distribution p(y|x, z). The latent variables z allow for
modeling multiple modes in conditional distribution of output variables y given
input x, making CGM capable of for modeling one-to-many mapping (Sohn
et al. [59]).

The CVAE is composed of multiple Multi Layer Perceptrons,26 such as
the recognition network q(z|x, y), the (conditional) prior network p(z|x), and
the generation network p(y|x, z); and need to compute three functions: the
decoder distribution µ(x, z), and µ̂, σ̂ which comprise the encoder distribution
q(z|x, x) [62].

As explained by Hu et al. [27] in their work, the idea is to augment the
unstructured variables z with a set of structured variables c, in order to con-
trol the attributes of interest in an interpretable way. The generator should
the be conditioned on the combined vector z|c, and generate samples that ful-
fill the attributes as specified in the structured code c.The target attributes
for c are PHI and smoking status information presence in the records as de-
scribed in section 3.1, Figure 3.3, but in theory it could control any salient and
independent syntactic or semantic feature of the medical records.

These models are trained to maximize the conditional log-likelihood, pre-
dicting the original medical record. The objective function for VAE as seen in
equation 3.6, is now written for a CVAE as:

26artificial neural networks (ANNs) composed of multiple layers of perceptrons (with
threshold activation)
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losscvae = EqE(z|x)qD(c|x)logpG(x|z, c)−KL(qE(z|x)||p(z)) (3.17)

where E, D and G correspond to Encoder, Discriminator and Generator
respectively. A more detailed description of this model and how it’s trained
can be be found in the work of Hu et al. [27] and in the next section.

3.3 Model and Pipeline: CVAE-TextCNN
In the VAE proposed by Hu et al. [27], a generator is trained to reconstruct
real sentences in an "extended" wake-sleep procedure, and is combined with
set of independent27 attribute discriminators for imposition of structures c to
augment the unstructured latent code z. The "extended" wake-sleep proce-
dure refers to having a wake phase which updates the generator with samples
generated from the inference network on training data, while the sleep phase
updates the inference network based on samples from the generator, enabling
collaborative learning with little supervision.

The model’s structure is shown in Figure 3.928 . In general terms, as
described by Hu et al. [27], an encoder E takes an input x and produces
a latent vector z . Thereafter, a structured controllable vector c is defined,
concatenated with the unstructured latent code z, and fed to the generator
G to generate the corresponding sentence x̂. The discriminator(s) Di ensures
that the generated sentence is consistent with the controllable vector c.

In order to prevent the potential dependence of the structured code with
attributes not explicitly encoded, Hu et al. [27] introduced an independence
constraint by training the generator so that other non-explicit attributes can be
correctly recognized from the generated samples and match the unstructured
code z. For this task, the variational encoder E is re-used and trained by
minimizing the Lvae in equation 3.6. With this in mind, the generator’s G
optimization objective is defined by:

LG = Lvae + λcLAttr,c + λzLAttr,z (3.18)

where the first term corresponds to maximizing the likelihood of predict-
ing the original medical record x given the latent spaces and the generator.
G(z, c), LAttr,c (equation 3.19) corresponds to maximizing the likelihood of
generating the output documents x̂ with the desired injected structured code

27imposing different attribute codes will keep the unstructured attributes invariant as long
as z is unchanged

28based on Hu et al. [27]
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Figure 3.9: Pipeline with networks details and hidden connections

c (style entanglement), and LAttr,z (equation 3.20) refers to the loss due to
the independence constraint, for which the encoder E is re-used to regenerate
the latent distribution z devoid of the structured code c , from the output
distribution Ĝτ (z, c) [27]. λc and λz are are balancing parameter between the
optimization objectives, the same way β is for the reconstruction loss and the
KL-divergence in equation 3.9. LAttr,c and LAttr,z are calculated as follows:

LAttr,c == −Ep(z)p(c)logqD(c|Ĝτ (z, c)) (3.19)

LAttr,z = −Ep(z)p(c)logqE(z|Ĝτ (z, c)) (3.20)

with qD(c|x) as the conditional distribution—given an observation x—
defined by the discriminator D for each structured variable in c.

D(x) = qD(c|x) (3.21)

z ∼ E(x) = qE(z|x) (3.22)

and τ corresponds to an annealing temperature term initialized in 1 and
pushed towards 0 as the training proceeds. The need for this arise—again, as
explained by Hu et al. [27]—from the difficulty of applying the discriminators
as the model proposed, as text samples are discrete and non-differentiable,
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breaking down gradient propagation from the discriminators to the generator.
The use of this decreasing temperature, introduces a continuous approximation
based on softmax which anneals to the discrete case during training. The
foundations for the use of this method (based on Simulated Annealing search)
are well explained in the work of Li et al. [38]. Thereafter, a generated token29

x̂t at step t involves discrete decision making. The token is sampled from
a multinomial distribution parametrized using softmax function at each time
step t, which inputs a scaled ot (logit vector30) as follows:

x̂t ∼ softmax(
ot

τ
), (3.23)

Now, the code c represents in his work, a binary decision on whether to
include or not information about two aspect of the patient: personal health
information and smoking status information as described in section 3.1, Figure
3.3. For instance, if the controlled aspect is the smoking status information
presence in the surrogate medical record, then c is one of [0, 1]. A decision
of c = 0 for an input medical record x with ground truth "current smoker",
would imply that the output surrogate x̂ is purged of this attribute, meaning
that ideally any syntactic or semantic sign of the smoking status of the patient
would be gone, and the new label—given by fitted discriminator D— would
be Unknown. In a similar way if the controlled attribute is the personal health
information, the conditional model should be able to de-identify the medical
record producing a surrogate that is trained to look like and keep the essence of
x, without exposing private information from the patient as the original record
was. To keep the essence means that as a minimum if the original record x
was labelled as Present for the attribute A, and then conditioned on purging
attribute B from it, the record should still be classifies as Present for attribute
A, but Not Present for B. These 2 discriminators are trained using separate
labeled data for the respective attribute as described in section 3.1. This is one
huge advantage of this model, because it also mean that it is easy to arbitrarily
combine a set of discriminators controlling the targeted attributes.

Figure 3.10 shows the unrolled pipeline with the 3 back-propagation signals
that compose the optimization objective of the generator as show in equation
3.18:

As for the discriminator(s), it learns in collaboration with the generator to
infer about the sentence attributes and to evaluate the error of recovering the
desired feature as specified in the latent code c. For this case with categorical
attributes (discrete), the discriminator can be formulated as a binary sentence

29instance of a sequence of characters in some particular document that are grouped
together as a useful semantic unit for processing [43]

30vector of raw predictions that a classification model generates
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Figure 3.10: Unrolled model pipeline.

classifier. The structured variable c is learned using labelled data, as opposed
to the unstructured code z which is learned in an unsupervised manner. To
learn specified semantic meaning, a set of real labeled examples XL = (xL, cL)
is used; nevertheless, the conditional generator G is also capable of augment
the training data by synthesizing text-attribute pairs (x̂, c) (semi-supervised
learning). To alleviate the noise in the data and ensure robustness, a minimum
entropy regularization term is also introduced as part of the total training
objective of the discriminator. The join objective is then:

LD = Ls + λuLu (3.24)

where λu is a balancing term, Ls is the discriminator objective for the
classification of labelled samples, calculated as:

Ls = −EXL
[logqD(cL|xL)] (3.25)

and Lu is the minimum entropy regularization term due to classification
of surrogate medical records x̂, which drives the model into having high con-
fidence in its predictions:

Lu = −EpG(x̂|z,c)p(z)p(c)[logqD(c|x̂) + βH(qD(c
′|x̂))] (3.26)

where H(qD(c
′|x̂)) is the Empirical Shannon Entropy of qD evaluated on the

generated sentence x̂; and β is another balancing parameter. It quantifies the
amount of uncertainty for an event measured in bits, and provides a measure
of the average amount of information needed to represent an event drawn from
a probability distribution for a random variable (Brownlee [11]).
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3.4 Training Algorithm
The training of the conditional model is done in two phases, one that updates
the weights of the generator, and one that updates the weights of the discrim-
inator, resembling the wake-sleep procedure with some extra details. In this
context— additionally to the learning algorithm described in Figure 3.11—the
model works in 2 modes in which [27]:

Sleep-phase (extended): samples are produced by the generator and
used as targets for maximum likelihood training of the discriminator. Addi-
tionally, the generated samples are leveraged to improve the generator (dream
samples obtained through Ancestral Sampling from the generative network).
Ancestral sampling, as defined by Bishop et al. [7] in his book, is "the process of
producing samples from a probabilistic model by first sampling variables which
have no parents using their prior distributions, then sampling their child vari-
ables conditioned on these sampled values, then sampling the children’s child
variables similarly and so on...".

Wake-phase: samples c from the discriminator distribution qD(c|x) on
observation x, to form a target for training the generator.

The work of Hu et al. [27] is based on short sentences x and sentiment
classifiers Di. As an addition, the author here argues to adapt the model
for long text and equally obtain a stable discrete latent code with holistic
discriminator metrics for arbitrary attribute of medical records.

Figure 3.11: Conditional Text Generation algorithm

3.5 Implementation
The model used in this work was based on the worked of Hu et al. [27] as
stated before. Some parameter values were tuned to the challenge purpose
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and for long text generation, and the pre-processing steps were design for
the datasets of the challenges; simple manipulations were imposed like extra
regularization, gradient monitoring and gradient clipping, and GRU units for
encoder/decoder instead of RNN or LSTM. The code is written in Python,
adapted from the base provided by the University of Bonn’s NLP Lab project
on Winter Semester 2017/2018.31.

The best version of the models which are described in the next chapter,
were trained using Gammaweb Cluster 32 from Bauhaus University Weimar, for
3.000 iterations in the first phase (generate pre-trained VAE) and 100.000 it-
erations in the second. To accomplish this, the application was dockerized,3334

uploaded to the Docker Hub and downloaded into Betaweb Cluster for pos-
terior execution. Figure 3.1235 illustrates the process together with the most
important python scripts inside the container.

Figure 3.12: Dockerization and important files.

The steps for correct execution and additional information about the struc-
ture of the project can be found inside the repository for this work hosted by
Bauhaus University Weimar.

31base code: https://github.com/wiseodd/controlled-text-generation
32with 9 nodes, 360 cores at 2.1 GHz, 7.5 TB RAM, 70.5 TB SSD, 24 Nvidia A100, 24

GeForce GTX 1080
33Docker is an open source tool that ships an application with all the necessary function-

alities as one package.
34dockerizing means packing + deploying + running applications using Docker containers.
35the icons were taken from Implementing Embedded Continuous Integration with Jenkins

and Docker
https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/
posts/
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Chapter 4

Evaluation

4.1 Experiments
Goal: Starting from a pre-trained language model (word embeddings) and
a vanilla VAE, train a generator to reconstruct realistic surrogate medical
records x̂, conditioned on the latent code z|c; and a discriminator to binary-
classify the records depending on the presence of attribute i in the text. c is
binary-conditioning the latent z to impose semantic structures for 2 attributes.

c(x,Attri) =

{
1 if Attri is present in text x

0 if Attri is NOT present in text x.
(4.1)

with Attri : [PHI, Smoking Status Information]. Each of the discriminators
Di corresponds to controlling one attribute:

• D1: smoking status presence classifier. In the context of the original
5 categories described in chapter 3.1, this is a smoking-status binary-
classifier where 0 corresponds to the Unknown category and 1 corre-
sponds to any of the other 4.

• D2: PHI presence classifier (for any of the 3 PHI types: Doctor, Patient,
Hospital).

Each of the experiments was repeated for several settings changing the
number of epochs1 in the wake and sleep phases and applying hyperparameter
tuning. The training procedure was stopped when convergence of the KL-
term or reconstruction loss in the optimization objective equation. The stored

1training iterations
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models include only the best versions for each experiment, and the number of
epochs is reported in Section 4.3.

Pre-trained word embeddings are used to leverage learned representations
from large datasets and transfer the knowledge to other data and NLP tasks.
They are specially useful for data-scarce NLP applications where generaliz-
ability is relevant. The embedding weights used for this work are pre-trained
GloVe Vectors2 trained on Wikipedia 2014 and Gigaword 5 3 datasets to pro-
duce 6 billion token-representations. The embeddings from words that are part
of the training data, are still updated during the two phases of the training
procedure.

4.1.1 I. Controlling the smoking-status presence

Here, the author propose to train a vanilla VAE on Dataset A, creating a
regular latent z, to which semantic structures c for smoking-status information
will be imposed. Due to the Independence constraint, if the original record
contained PHI, then it should be classified as such when inferring with pre-
trained discriminator D2 for PHI presence (output of experiment II). After
the model has converged, trained D1 will be able to solve the task for the
automatic smoking-status classification challenge, with the difference that here
the discriminator only binary decide whether or not the text x contain enough
information for it to be labelled as any of the first 4 smoking status categories,
or if the label is Unknown, as described at the beginning of chapter 3.1. In
theory the TextCNN architecture could be trained alone to solve the challenge
without considering conditional generation models of any kind, yet the author
consider the experiment to test the quality of the model in another setting.
The generated record does not have to be particularly driven to have a content
structure of any kind, this means that the balancing parameter in equation 3.9
can be ignored or set to a fixed neutral value.

For this purpose we define the variables according to the training algorithm
in Figure 3.11 as:

• Di = D1

• Unlabelled text corpora X = Dataset A.1 and A.2 = x

• Labelled text corpus X = Dataset C = x

• c refers to controlling the content of semantic structures of PHI in the
latent code, to generate an x̂ that is exposing or not sensible information

2Global Vectors for Word Representation: https://nlp.stanford.edu/projects/glove/
3newswire text data : https://catalog.ldc.upenn.edu/LDC2011T07
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of the patient’s record, such as his/her name, hospitals names or any
doctors names.

After the first phase is done by minimizing Lvae, the model outputs a
generator capable of sampling surrogate medical records from the unstructured
latent z through E(x). For this experiment the first phase is doubled, this
means that after the doubled extended sleep phase we have two generators
trained with unsupervised A.1 and A.2 respectively. After the second phase
(wake) has converged, the model outputs are:

• Trained generators GI1 and GI2 conditioned on disentangled representa-
tion (z, c) capable of reconstructing an x̂, performing data augmentation
controlling the amount of smoking-status content, and performing inter-
polation between points in that latent (z|c).

• Trained discriminators D11 and D12 capable of deciding whether or not
text x contains smoking-status information.

These two blocks are comprised in a pair of single models ctextgen_I1
and ctextgen_I2 that represent the conditioned generative models as explain
in chapter 3.1, section . However, the stability of ctextgen_I2 was severely
compromised after the second phase of the training algorithm (overt-fitting
too much into titles such as the ones shown in Figure 3.1 or into), so there
are no evaluation metrics for discriminator D12. D11 will be referred simply
as D1. Additional experiments are left for further work mainly due to time
constraints. The dimensionality of the hidden layers of the stored models
strongly depends on the vocabulary size of the training data and is considered
a hyperparameter. It is necessary to fast prototype several conditional models
version in order to effectively search for the optimal paramaters for an arbitrary
dataset. Continuing with the efforts in this direction is also part of further
work.

4.1.2 II. Controlling the PHI presence: De-identification

Here, the author propose to lift sentence level knowledge of the presence of
PHI (Dataset B), to document level knowledge, where we can produce a whole
medical record x̂ (of a length similar to the average Dataset A) controlling
the presence of this attribute via c. Due to the Independence constraint,
if the original record was labelled as containing smoking-status information
(the patient was a ’current smoker’ for example), it should remain as such
when inferring over the surrogate record using pre-trained discriminator D1 for
smoking-status (output of experiment I). This task corresponds to the proposed

40



CHAPTER 4. EVALUATION

solution for the automatic de-identification challenge. The generated record is
driven to have a content and structure highly similar to the original medical
record x, this means that the balancing parameter in equation 3.9 should be
tuned more in favor into improving the quality of the reconstructed medical
records by the cost of reducing the quality of the sampled medical records.
This means setting a low value for β in the named equation.

For this purpose we define the variables according to the training algorithm
in Figure 3.11 as:

• Di = D2

• Unlabelled text corpus X = Dataset A.2 = x

• Labelled text corpus X = Dataset B = x

• c refers to controlling the content of semantic structures of PHI in the
latent code, to generate an x̂ that is exposing or not sensible information
of the patient’s record, such as his/her name, hospitals names or any
doctors names.

After the first phase is done (extended sleep phase) by minimizing Lvae,
the model outputs a generator capable of sampling surrogate medical records
from the unstructured latent z through E(x). After the second phase (wake)
has converged, the model outputs are:

• Trained generator GII conditioned on disentangled representation (z, c)
capable of reconstructing an x̂ that has less PHI content than the original,
sampling from a continuous latent to augment the data controlling the
amount of PHI content, and performing interpolation between points in
that latent.

• Trained discriminator D2 capable of deciding whether or not text x con-
tains PHI.

4.2 Gradient Propagation Regularization
It is to be expected that this model has some issues with the weights updates
as is usual for big sequential models. This is due to the fact that when propa-
gating the error back through the network, many derivatives will be multiplied
together. If these are large, the gradients will increase exponentially as we
propagate down the pipeline until they eventually explode. This is known as
the exploding gradients problem. Alternatively, if the derivatives are small then
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the gradient will decrease exponentially as we propagate through the model
until it eventually vanishes. Vanishing gradients also prevent the network from
learning. Coherently, the bigger the network, the higher the chances to suffer
from exploding or vanishing gradients.

Initially, during the first phase of the algorithm, only the VAE block is
learning; therefore, these are the only weights being updated. None of the ex-
periments presented severe vanishing or exploding gradient phenomena during
the first phase; nevertheless, is helpful to regularize them to avoid having this
problems whenever they are plugged into the controlled network in the sec-
ond phase of the algorithm. Once the output model was not converging after
some hundred iterations or was converging too fast but not showing signals
of learning, a monitoring function was put in place for some parameters of
interest.

The most common signs of problems while updating the gradients updates
problems is summarized by Bohra [9] as follows:

Exploding gradients main signals:

• There is an exponential growth in the model parameters.

• The model weights may become NaN during training.

• The model experiences avalanche learning.

Vanishing gradients main signals:

• The parameters of the higher layers change significantly whereas the
parameters of lower layers would not change much (or not at all).

• The model weights may become 0 during training.

• The model learns very slowly and perhaps the training stagnates at a
very early stage just after a few iterations.

Figure 4.1 shows the plots for the model updates of 20 of the most critical
parameters of the whole model as training proceeds during the second phase
of the algorithm. The fact that the model uses GRU units instead of standard
RNN cells, mitigates the vanishing gradient problem; however, the gradients
of this model easily explode to values that causes undefined NaN values, pre-
venting the network to learn and making it very unstable. The plots were
generated by taking measuring at three different point of the propagation of
the error: after the backward pass of the discriminator, the generator and the
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Figure 4.1: Exploding Gradients. Left: 20 most significant weights being updated
during Wake phase for Experiment I. Right: Zoom to the exploding peak.

encoder respectively. That’s why exploding gradients generate peaks of up-
dates that can trigger undesired behaviour later on the network, as on the left
image where the gradients explode to ∞ and stop the training procedure.

The image on the right is simply a zoom to one of these peaks, where we
can see 6 gradients exploding. The rest of the gradients are close to 0 but
present variation like the ones showed on the right image of Figure 4.2. The
most common solutions to improve the stability of the network updates when
propagating the error are [9]:

• Weight Initialization: randomly initialize the connection weights for
each layer in the network as described by the equation of Xavier Initial-
ization [20]

• Non-saturating Activation Functions: instead of using activation
functions like sigmoid and tanh, we must use some other non-saturating
functions like ReLu and its alternatives.

• Batch Normalization: lets the model learn the optimal scale and mean
of each of the layer’s inputs. It zero-centers and normalizes each input,
then scales and shifts the result.

• Gradient Clipping: this is literally clipping the gradients during back-
propagation so they cannot exceed a threshold, which can be defined by
value or by the norm.

Weight Initialization can be done in practice through the GRU class method
’reset_parameters()’, which by default is randomly sample from an uniform
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Figure 4.2: Gradients after applying gradient clipping by value → 10.0

distribution uniform(−stdv, stdv). Additionally, the model uses ReLu acti-
vation functions for the hidden layer of the TextCNNs. The GRU architecture
uses tanh activation function; finding the fittest non-linear function and test-
ing different initialization methods, is part of the hyper-parameter optimiza-
tion search. Now, even though the first two solutions significantly reduce the
chances of vanishing/exploding problems at the beginning, it didn’t prevent
the problem for reappearing later during training. After testing with several
fixed values for clipping the gradients, the model updates behaved in a more
stable manner as shown in Figure 4.2 (clipped by value with threshold = 10.0).

The image on the right shows how the actual behaviour of the weight
updates through time, looks like waves ripples. This is due to the way the
data points are taken for plotting. Then stability of the weight changes is
better appreciated, if instead what is considered is the maximum value of the
amplitude. Colors in the graph represent a different parameter value.

4.3 Evaluation Methods and Results
The performance metrics of the trained discriminators D1 and D2, respond to
some aspects of the automatic de-identification and automatic classification
challenges but using a considerable lower number of training samples. The
effect of the generator arises from the collaboration with these discriminators,
in which the former provides extra samples to the discriminators while these
give signals to control the semantic structure of the latent space.

Performance metrics are measured against binary classification for featural
presence, not taking into account all the existing categories inside this feature
as in the original challenges. Including multiple classes for feature and encoding
several features during training is left as further work for this model. The
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standard metrics in NLP include precision, recall, and F1-Score, which emerge
from the concepts of True Positive (tp), True Negative (tn), False Positive (fp),
and False Negative (fn). Respectively they refer to the number of samples that
were: predicted positive when the sample was positive (fp), predicted negative
when it was negative (tn), predicted positive when it was negative (fp) and
predicted negative but was positive (fn). As stated by Intellica.AI [29] in his
article, different kinds of mistakes and their significance depends on the use
case. Different accuracy, precision, recall, and F1-score can be used to balance
the classifier estimates as preferred. For this work the positive and negative
classes are the labels "PRESENT" (c = 1) and "NOT PRESENT" (c = 0)
respectively, and considered metrics are defined as:

• Accuracy: simply statistically describes the number of correct predic-
tions over all predictions.

• Precision: measures how many of the positive predictions made are
correct.

• Recall: measures how many of the positive cases the classifier correctly
predicted, over all the positive cases in the data. It is sometimes also
referred to as Sensitivity.

• Specificity: this tells how many negative predictions made are correct.

• F1: Harmonic Mean 4 between precision and recall. It provides a single
metric that weights the two ratios

• Support: the number of occurrences of the class in the dataset.

Measures like the accuracy and precision are more intuitive metrics, but the
F1-score is better addressing a more imbalanced dataset; for instance, when
there are fewer medical records labels as with the positive class Present for
the smoking-status feature.

Some performance signals and generator are implicitly measured during
training by variables like the KL-divergence. In spite of this, there exist sev-
eral methods to asses the quality of generated texts, that are useful to evaluate
a model depending the context. In this case, the author proposes a framework
that can be set for a particular purpose and task in clinical NLP, to trained a
model that will produce, in the case of de-identification for example, a surro-
gate record that is close to the original but that keeps the variability necessary

4Harmonic mean is just another way to calculate an "average" of values, generally de-
scribed as more suitable for ratios (such as precision and recall) than the traditional arith-
metic mean
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metric\target D1: smoking-status presence D2: PHI presence
Accuracy 0.90 0.93
Precision 0.87 0.87
Recall 0.87 0.86

Specificity 0.92 0.95
F1 0.81 0.86

Support 27/53 90/275

Table 4.1: Performance metrics for trained discriminators against test data)

to train an acceptable discriminator with a few number of real samples. There
is a difficulty in evaluating the quality of the generated text fairly, since each of
the existing methods have disadvantages, making hard a clear generalization
[29].

4.3.1 In the context of the automatic classification of
smoking status challenge

Considering the data transformation defined in the binary re-labelling section
(3.1.3) in chapter 3.1, the only smoking status category that remains com-
parable to the challenge submissions, is the ’Unknown’ class. The outputs
of Experiment I are a generator capable of creating novel/surrogate medical
records with injected semantics related to smoking-status information, and a
discriminator D1 capable of binary classify medical records (it can also be seen
as an ’Unknown’ class classifier, that can be easily escalated to infer about the
5 original categories). The model performs well considering the size and char-
acteristics of the training data—imbalanced data with more samples for the
negative class—and simple architecture, meaning that the model is capable
of capturing the patterns that corresponding to smoking status information
and to control its presence on a generated surrogate record x̂. The evaluation
metrics for both discriminators are presented in Table 4.1.

The best model for Experiment I was trained updating the VAE in the
first phase throughout 100.000 iterations with 80% of Dataset A.2 (535 medi-
cal records), updating the whole conditional model ctextgen2 throughout 3.000
iterations with 80% of Dataset C (318 samples) in the second phase, and was
evaluated against the rest 80 samples of Dataset C (27 negative samples and
53 positives). As previously clarified, the alternative of training the model
during the first phase with the dataset with headers (A.1) produced a severely
over-fitted model after the second phase, so is not included in the evaluation
tables. Nevertheless, the control mechanism for some of the samples showed
the desired behaviour as shown in appendix A Figures A.1 and A.2. These
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figures are respectively: a real medical record that contains smoking-status
information—meaning is not part of the original Unknown class— and a novel
medical record sampled from the latent z conditioned on containing smoking
status information. Blue-coloured text indicates coherence through long text
generation—at least for the gender and life stage of the patient—and signs
of keeping the context and the structure of records such as organizing the
records as a story with headers; while the red-coloured text refers to signals
of smoking-status content in the text. It’s evident that the model is capa-
ble of capturing syntactic and semantic information of an arbitrary medical
record x, capable of imposing independent featural structures and regularity
on the latent representation, and sampling an indefinite amount of conditioned
novel/surrogate medical records with similar representation to x− > E(x).

4.3.2 In the context of the automatic de-identification
challenge

For automatic de-identification systems to be trusted, the performance of the
model needs to be tested in the real final application, taking into account the
final purpose of the de-identified documents, the legal agreements that could be
imposed to avoid re-identification, the sensitivity of the PHI categories [19].
Meaning that there is no standard objective that correctly asses a fair and
conclusive evaluation that can compensate the trade-off between similarity and
the variability + utility for the generated samples. Nevertheless, as reported by
Uzuner et al. [60] in 2006’s challenge, de-identification systems can be evaluated
on the instance level and on the token level. Precision, recall, and F-measure
are often applied at the token level and measure the performance of systems
on individual tokens. instance-level evaluation checks individual PHI instances
and marks the presence of a correct instance or one of three types of errors:
substitution, insertion, or deletion. This evaluation considers a PHI instance
as a combination of three slots: type, content, and extent, which have to
be correct in order for the PHI to be correct. However, in this work only
performing binary classification for featural presence is performed, not taking
into account the existing categories inside this feature as described in chapter
3.1. Including multiple classes for feature and encoding several features during
training is left as further work for this model.

The best model for Experiment II was trained updating the VAE in the
first phase throughout 100.000 iterations with 80% of Dataset A.2 (535 medical
records), updating the whole conditional model ctextgen2 throughout 3.000
iterations with 80% of Dataset B (1.459 samples) in the second phase, and
was evaluated against the rest 365 samples of Dataset B (275 negative samples
and 90 positives). The output the experiment includes a generator capable of

47



CHAPTER 4. EVALUATION

producing surrogate or novel medical records with imposed semantics regarding
the presence of PHI in the record x̂, and a discriminator D2 that binary decides
if there is PHI in the text or not. Naturally, a simple rule-based system will
suffice for this purpose, but it would not be able to escalate to use more labels or
other datasets in a simple way. The evaluation metrics for both discriminators
is presented in Table 4.1.

The metric for D2 suggest that the TextCNN correctly captures PHI for
proper names of doctors, hospitals and patients. Even though, the training
procedure of this model was performed with imbalanced data—almost 3 times
of the negative class than the positive— the model does not show signs of
overfitting. Notwithstanding it is necessary further evaluation with other PHI-
labelled datasets and including another PHI-tags types like numerical instances
(dates, phone numbers, etc).

4.3.3 Conditioning Efficacy

After training the models as described by the experiments training, if a novel
x̂1 is sampled from the prior z and classified by Di as a positive sample for
attribute a with a score s, it is to be expected that after imposing semantic
structures c in that z via conditioning to sample an x̂2, this new record will
be classified as positive with more confidence. This is what the author means
by conditioning efficacy and it’s another evaluation performed to the output
models described in Experiment I and II sections, and goes as follows:

1. Generate N novel medical records sampling z and c from their prior
distributions.

2. Classify the generated samples using Di and assess its performance (A).

3. "Push" the generated samples xi via imposing c structures on z E(xi)
depending on the true label.

4. Generate another N novel medical records sampling from previous z|c.

5. Classify the new generated samples using Di, assess its performance (B),
and compare with the metrics obtained in step 2.

This procedure is repeated for both discriminators to check on how efficacy
of the control mechanism. Figure 4.4 shows a diagram of the same procedure
for discriminator D2 (PHI), where N = 100.

Now, the results summarized on table 4.2 are shown inconclusive for D2ctrl.
This could be to the fact that the training data was strongly imbalanced to-
wards the negative class, making the control mechanism to overfit, meaning
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Figure 4.3: Diagram for Conditioning Efficacy experiment.

that most of the pushed records will result in records labelled as Not Present.
This does not imply that the discriminator D2 has also over-fitted into the
negative class, but that the conditioning mechanism has to be done more ef-
fectively by the means of training the model under different conditions than
the ones proposed. Both discriminators behaviour is as desired as seen in pre-
vious table 4.1. On the other hand, the first model’s result proves the efficacy
under the described experiment.... The metrics for D1prior and D2prior are not
better than random because z and c are sampled from distributions—as shown
in Figure 4.3—that produce point very close to the center of the records latent
space, meaning that if these were to be used to generate a surrogate x̂, this
would be a record that has an ambiguous label. This ambiguity is reflected
on the metrics of the first column for each discriminator Diprior. Due to the
size of the medical records produced by the first model, which average length
is 2.500 words (a complete example can be found in appendix A Figure A.1,
the number of samples N for D1 results is 20, and 100 for D2 (Figure 4.3)
with an average length of 440 words. Figure A.3 shows an example of the
effect of the control mechanism for an input medical record chunk x using a
conditional model which was trained with records including headers in the first
phase and chunks of medical records without headers in the second phase of
learning. PHI referring to hospital names are enclosed in red rectangles. The
model correctly captures the PHI category but overfits when the control mech-
anism intends to make the sample more positive. As shown the figure, even
though the generated positive sample (c = 1) is actually more positive than
the original, it posses way too many repeated hospital names instances. The
text quality needs to be improved and similarity metrics need to be assessed.
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metric\target D1_prior D1_ctrl D2_prior D2_ctrl
Accuracy 0.45 0.75 0.47 0.47
Precision 0.50 0.87 0.50 - (0/0)
Recall 0.36 0.86 0.07 0.00

Specificity 0.55 0.91 0.45 1.0
F1 0.41 0.86 0.12 - (0/0)

Support 11/9 53/47

Table 4.2: Conditioning mechanism efficacy. Improved performance metrics via
conditioning.

4.4 Generalizability and Interpretability
Data augmentation is an crucial tool for self-supervised and semi-supervised
ML models. As the name implies, it consist on a set of input transformations
which enrich an existing corpus with samples of similar properties as the in-
puts, so that more reliable predictive modeling is possible. This fact naturally
improve the generalizability of this work model as intended. Now, standard
data augmentation methods for NLP such as back translation,5 synonym re-
placement via word embeddings, random insertion, random swap and random
deletion (Shahul ES [18]), are limited in application and produce a limited
amount of useful data. Deep learning methods based on generative models
like VAEs and GANs on the other hand, build a lower dimensional probability
distribution that represent the data, that can be used for generating synthetic
samples without any predetermined augmentation method; therefore, improv-
ing the performance of CNNs networks. They have had a great impact in
research in the recent years, specially in data-scarce/data-hungry situations.
The work of Motamed et al. [47] is a great example of how significant can
augmentation techniques be for clinical research. The authors augment chest
X-ray images for Pneumonia and COVID-19 detection using GANs, success-
fully improving the classification accuracy of this diseases.

The trained models of this work are capable of producing plausible surro-
gate records of an arbitrary length. The targeted data to augment can be a
set of different corpora with different properties, which will guide the learning
process of the discriminators together with the generated samples. The feat-
ural information of independent datasets can be combined or translated from
one to the other, due to the capabilities of the conditional generative model.
In general, clinical NLP solution are data hungry while publicly available data
is scarce. If the TextCNN network were to be separated from the model, and

5translate the text data to some language and then translate it back to the original
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trained with the same data, it will probably need more iterations, will easily
overfit on the seen data, and misperform with other datasets. The discrimi-
nators weights in the CVAE-TextCNN models, are updated alternatively with
real and surrogate samples. Every surrogate record presented in the appendix
A via sampling, interpolation and/or conditioning, is an example of augmented
data.

Another clinical NLP application of this work’s model is into model inter-
pretability. In general, if the decisions made by a model are easy for a human
to understand, the model is interpretable. In this order of ideas, it is easier
catch the reason behind a predictions if the interpretability of a model is high.
As explain previously, a generative model creates a useful latent from where
it’s possible to sample surrogate samples. Extra regularization and condition-
ing helps with the quality of the generation; however, a method that enables
to explore the latent is necessary to generate samples that give insights about
the decision of the discriminators and possible ambiguities (samples for which
the discriminator does not have a defined decision). Besides this, exploring
the latent representation could also aid into clarifying vague labelling like the
’Unknown’ class in the original dataset for the smoking-status classification
challenge, and to better define the extend of the existing class clusters.

Interpolation in generative models, is performing simple linear algebra in
the latent space z. For instance, interpolation can be used to estimate the
central point between two known samples x1 and x2, to generate a novel sample
with properties that are coherent with sampling from the center of a vector
from z1 to z2. Interpolation occurs through an axis and moving by steps
defined by a magnitude α. In this work, α is defined as n = 5 equidistant
steps between 0 and 1 and the manipulation of z as:

zi = (1− α) ∗ z1 + α ∗ z2 (4.2)

Figure 4.4 shows the interpolation proposed process using the trained PHI
conditional model and the results are presented in Appendix A Figure A.4.
Firstly, with the trained model, two medical records are encoded into the
latent spaces z1 and z2. Then, inside this pair of latents, a linear interpolation
is performed according to the set of alphas and equation 4.2, and decoded back
to the original space, ending up with 5 novel medical records.

The produced outputs do manifest correlation between some tokens; nev-
ertheless, without defining a specific featural axis to explore, each step in the
latent space could guide the generated samples into fitting more to unconsid-
ered attributes such as dates. More regularization and exploration is needed to
conclude about the utility of the proposed basic interpolation, but it is proved
that the model and the used methods (such as the re-parametrization trick)
enable sampling from a continuous latent with imposed semantics to carry out

51



CHAPTER 4. EVALUATION

Figure 4.4: Interpolation procedure unrolled.

tasks as interpolation of medical records.
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Conclusion

Few works exist that offer a multitask framework to solve a big a portion of
clinical data-scarce NLP tasks. Most of the state-of-the-art successfully re-
solve one of the targeted challenges solely with limited generalizability. The
model of this work is capable of learning disentangled representations even
from only sentence-level labels, escalate them to the document-level and pro-
duce plausible long coherent medical records with imposed semantic structures.
The conditioning mechanism proved to be a promising direction to modify the
latent representations and guide the generation process while refining the pre-
dictions for both real and surrogate records in a single model and with little
supervision. Additionally, a collaborative semi-supervised framework as such
could be a helpful tool for data augmentation and model interpretability inside
entities manipulating clinical text data such as hospitals, assisting its personal
into understanding how an inspected discriminator makes its predictions. Both
aspects are relevant in the clinical context where the data is very sensitive by
nature, ergo limited. For the proposed binary classification, the TextCNN net-
works proved to be ideal for the collaborative learning setup, achieving a good
performance for the defined features.

Further work is necessary to provide a gold standard in de-identification
systems with enough guarantees to be trusted in practice; however, the current
model is suited to be extended to include more labels during training and to
include more attribute discriminators. Furthermore, the design decisions for
encoder/decoder architectures and their hidden-layers dimensionality can be
added to the hyperparameters list which should be set to be tuned automat-
ically through several training cycles. There is a trade-off between variability
and similarity of the generated records with respect to the originals, which is
handled by the balancing terms inside the optimization objectives of the model.
This is relevant information to guide the learning process of the model and es-
tablish and adequate early-stopping criteria. For instance, for the automatic
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smoking-status challenge we might want to prioritize the variability aspect of
the model to increase generalizability of the model and alleviate the limited
dataset size. On the other hand, in the de-identification challenge makes sense
to have a middle point between these 2 aspects, to obtain a decent generator
capable of producing an alternate version of the input x keeping its integrity,
while a trained discriminator is capable of distinguishing between a medical
record with PHI and one without. In order to analyse this trade-off, several
similarity metrics such as BLEU scores must be introduced and compared
considering the application.

Finally, research questions like: What kind of attributes are the most/least
suitable to control? and How to assess the security guarantees for a de-
identification system based on generative conditional models?, could help into
generalizing the model even further to include it in bigger settings like Feder-
ated Learning, which uses distribute learning to obtain higher security stan-
dards.
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Generated Samples

Figure A.1: Real training sample: current smoker.
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Figure A.2: Surrogate sample with smoking-status presence.
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