Bauhaus-Universitat Weimar
Faculty of Media
Degree Programme Medieninformatik

The Performance of Human Query
Obfuscation - A Gamified
Approach

Bachelor’s Thesis

Nicola Lea Libera

1. Referee: Prof. Dr. Benno Stein
2. Referee: Matthias Hagen

Submission date: October 29, 2021

Declaration

Unless otherwise indicated in the text or references, this thesis is
entirely the product of my own scholarly work.

Weimar, October 29, 2021

Nicola Lea Libera

Abstract

The internet is a great source to learn new things and many people use search
engines to answer their information needs. However, search engines like Google
save every search query in query logs which poses a risk to the privacy of users.
Many different approaches exist that try to improve the privacy of searchers
by distorting search profiles or hiding the user’s identity. But, all of these
approaches have weaknesses and need improvement. In this thesis, we research
how well humans are able to obfuscate sensitive queries while still retrieving
relevant web pages. Therefore, we developed City of Rebellion, a web game
on the ClueWeb12 in which users have to obfuscate a given sensitive query
without using any of its terms. For an obfuscated query, our game assigns
points depending on the result quality of the formulated query. To help the
player with their obfuscations, a list of useful search terms is provided along
with a relevant document. From the data we collected in a pilot study with
72 players, we conclude that the participants were able to obfuscate sensitive
queries while still retrieving relevant documents but only with the help of the
given keywords.

Contents

1 Introduction
2 Related Work

3 A Query Obfuscation Game
3.1 Game Overview
3.2 Game Properties
3.3 Game Development
3.3.1 Sensitive Queries

3.3.2 Visual Enriching of Sensitive Documents

3.3.3 Selection of Queries
3.34 Sampling
3.3.5 Logging
3.3.6 Preprocessing the Log File

4 Evaluation

5 Conclusion and Future Work

10
19
19
20
22
22
23
24

25

32

Chapter 1

Introduction

Playing is part of human nature and culture [23]. The fact that billions of
people spend several hours per week playing video games [10, 35| shows how
captivating games can be. Therefore, it is no wonder, that researchers became
interested in the motivational potential of video games. The idea of using
"game design elements in non-game contexts" [44] was developed and became
known as gamification. The goal of gamification is to boost the motivation and
concentration of people by making (boring) tasks more game-like and therefore
more enjoyable. Since the first reference of the term gamification in 2002 [32],
the field has grown rapidly and finds usage in a wide range of applications,
varying from marketing and healthcare to educational purposes [25, 16, 51, 52].
One of the more commonly known examples is the fitness app Zombies, Run!,
a running game that motivates users by turning every run into a mission to
help people in a zombie-infested, post-apocalyptic world [54].

Another field of application for gamification is computer science. Especially
the field of machine learning is one that has become quite important. Nowadays,
machine learning is used for various applications like image or speech recognition
and made the development of language assistants like Siri or Alexa possible.
It is also used by big internet companies like Google or Amazon to improve
their search algorithms and to provide a customized user experience. But in
order to develop such intelligent systems, annotated data is needed to train
the algorithms. This data must be produced by humans since computers are
not able to perform this task. However, annotating or producing data is often
boring and monotonous. For this reason, computer scientists fall back on
gamification to make these annotation tasks more appealing. Hence, they can
collect more quality data from different people quite cost-effectively through
e.g. crowdsourcing [6].

In this thesis, we concentrate on the appliance of gamification in relation
to the field of information retrieval. Information Retrieval "is concerned with

CHAPTER 1. INTRODUCTION 2

representing, searching, and manipulating large collections of electronic text
and other human-language data" [49]. Information Retrieval systems like
Google or Bing are omnipresent nowadays. These search engines process a lot
of requests from various people for a whole range of different purposes on a
daily basis. While helping users to satisfy their information needs, they collect
data for research purposes and to improve their algorithms to provide results
specifically tailored to each individuum. Although getting customized results
has its benefits, the privacy incident that occurred around AOL in 2006 [31]
has shown that even anonymized data of query logs can be deanonymized when
made public. The resulting danger for the privacy of users was made public
by two journalists of the New York Times. In their article, Barbaro and Zeller
described the case of the 62-years-old widow Thelma Arnold who could be
identified through sensitive search queries like bipolar or 60 single men [31].
This is quite alarming since such search queries contain private information.
These kinds of findings have motivated and still motivate computer scientists
to develop algorithms that provide some kind of privacy for internet searches.
Today, there exist various approaches to achieve privacy of search queries,
ranging from proxy-based [15] applications to hiding or replacing the original
query by a set of dummy queries [4, 34, 53|.

In this thesis, we research the ability of humans to obfuscate queries and also
the strategies which they develop in the process. Furthermore, we compare the
effectiveness of the obfuscated queries of humans to automatically obfuscated
queries. Our findings show that humans do not perform well when it comes to
hiding sensitive information needs while still retrieving relevant data. We hope
that our findings will help to improve already existing algorithms or inspire
new work in the field of query obfuscation.

Chapter 2

Related Work

To research the ability of humans to obfuscate queries, we developed a web
game with the purpose of collecting data about possible obfuscations of sensitive
search queries. First, we motivate the need for search query data protection by
regarding the privacy issues of search engines and reviewing state-of-the-art
techniques in the field of query obfuscation. Afterward, we illustrate why we
developed a game to collect the data by explaining the effects gamification can
have on the intrinsic motivation of users and their performance. And finally,
we have a look at some examples for applied gamification in the context of
information retrieval.

The internet is an enormous collection of knowledge, used by many people
in their daily lives, either for work or private issues [36]. Given the huge rise of
the web [46, 37, 47|, people need search engines. However, the search queries
people submit to web search engines could give away private information. For
one thing, obvious information can be revealed by queries, e.g. a query local
dating indicates that the user is single and looks for a new partner. And
through profiling, data mining techniques, or classifiers even the income of
users, their gender, or age can be deduced [43, 42]. These techniques indicate
that it is important that search queries stay private and can not be assigned
to specific individuals. The privacy of queries becomes especially important
given recent news, which report that the police have access to query logs [1].
Yet, internet companies continue to collect log files and we have seen from the
example of AOL that even anonymized query logs can be deanonymized [31].
The AOL incident is not even the only case in which the privacy of users got
compromised. In 2006, Netflix published anonymized movie-rankings data from
their users. With the help of very little information, researchers were able
to identify some users [2]. Another similar case happened in 1997, in which
anonymized medical records could be deanonymized with the help of a publicly
available voter database [8].

CHAPTER 2. RELATED WORK 4

This shows just how much of a security problem even anonymized data
can be. To tackle the problem of compromised user privacy through search
engines, different approaches have been developed with the intent to hide the
information need of users [4, 53, 15, 30, 34, 11, 24]. The developed algorithms
can support internet users to use the Internet as usual while protecting their
sensitive information needs. These algorithms are based on different ideas but
follow the two basic principles of query obfuscation. They either prevent the
linkability between the user’s identity and a submitted query or distort user
profiles. In the following, we will take a closer look at a few of them.

The Private Web Search [15] plugin for Firefox is a proxy-based approach
to protect the privacy of its users. It minimizes the personal data that search
engines receive in every request but still returns the normal responses from
queries that one would receive without the usage of this plugin. This is achieved
by using an HT'TP proxy to filter HT'TP requests and responses before sending
or receiving them through the Tor network. The filtering process removes
metadata from the HTTP requests to make them indistinguishable among
different users. Furthermore, the HI'TP responses are filtered for JavaScript
code, cookies, plugins, etc. that could reveal information about the user.
Additionally, the Tor network makes it harder to distinguish users with their
[P addresses and therefore to achieve query linkability.

Despite the elimination of personalized data, this approach has still some
weaknesses. First of all, tests showed that the usage of this plugin is about
20 times slower than a normal search request [15] which is partly caused by
the usage of Tor [41]. This is a big disadvantage when it comes to usability
and could potentially prevent users from installing this plugin. Second, the Tor
network itself has some weaknesses that can reduce the amount of privacy of
its users when exploited [14, 40]. It is for example vulnerable to traffic analysis
attacks that can deanonymize users [50]. Last, even though Private Web Search
anonymizes its users as much as possible, it is a huge disadvantage that it does
not obfuscate the search query and thus the sensitive information need of its
users.

Other approaches like TrackMeNot [53, 19] and the work of Arampatzis et
al. [4] use cover queries to distort user profiles. TrackMeNot is a Firefox plugin
that automatically sends randomized cover queries to search engines when the
browser is open. These cover queries are derived from a list of queries that
functions as a seed. New cover queries are generated from an HTTP response
triggered by a randomly selected query from the list. The HTTP response is
parsed for suitable phrases that can serve as a new query. After the selection
of a new query, the old query that started this process is deleted. This process
ensures that each user has an individual list of cover queries. To simulate as
well as possible the browsing behavior of its users, TrackMeNot has different

CHAPTER 2. RELATED WORK 5

strategies for scheduling the submission of the cover queries. These strategies
are the usage of randomized intervals, the analysis of users’ browsing behavior
by their browsing history, and the utilization of so-called Query Bursts [53|. The
Query Bursts are a method that sends a series of queries to the search engine
in quick succession when the user enters an actual search request. Furthermore,
newer versions of TrackMeNot also prevent the identification of cover queries
through technical conditions [53]. HTTP headers, for example, can also contain
user-specific data. Therefore, TrackMeNot sets the corresponding fields in the
headers of the cover queries similar to the real queries. The plugin also handles
active content in HT'TP responses and cookies accordingly. The advantage of
this idea is that the user gets the same search results that he would otherwise
see without using the plugin.

This looks like a solid approach to achieve privacy but research has shown
that TrackMeNot is not a secure system [39, 43]. Even standard machine-
learning classifiers are able to identify user queries with an average precision of
about 49% [43]|. The work of Peddinti et al. [43] also shows that the precision
of identifying user queries depends on the user and ranges from 10% up to
100% [43].

We have seen that TrackMeNot is not good at hiding the real query. This
is because the plugin does not obfuscate the real query but rather submits
it to the search engine. An approach that tries to achieve search privacy by
actually obfuscating the real query is the work of Arampatzis et al. [4]. Instead
of using simple cover queries, the actual query is replaced by a series of less
private queries. Every time a user submits a search query, a bunch of new
search queries derived from the original query is created. These queries are
chosen by statistical means with the help of a predefined document sample. The
queries are selected in a way that satisfies different privacy needs, for example,
if they are suitable to obfuscate the information need while still retrieving
relevant websites. After this process, the cover queries are submitted to the
search engine. To present the corresponding responses to the user, the results
get merged and ranked according to the original query. In addition to this
algorithm, Arampatzis et al. propose to use privacy-preserving tools like Tor
to prevent the linkability between the submitted queries and the user.

The advantage of this approach is the fact that the real query of the user is
not submitted to the search engine. But the number of derived queries that
have to be statistically evaluated is comparatively large which results in a
higher computation effort. Furthermore, some cover queries do not obfuscate
the original query very well. One example is the obfuscation of the query gun
racks by gun or gun light [4|. This means that, without the usage of Tor or
other privacy-preserving tools, third parties could draw conclusions about the
actual information need of specific users. However, as we have seen before in

CHAPTER 2. RELATED WORK 6

the paragraph about the Private Web Search, Tor has its weaknesses and is
slow.

The keyquery approach of Frobe et al. [30] levers out an enumeration algo-
rithm for the creation of cover queries to improve the efficiency of Arampatzis’
approach by 17% - 19%. Still, their evaluation with increased privacy (not
allowing to obfuscate gun rack with gun) showed that only 75% of queries
can be obfuscated by their algorithm. This is on par with the state-of-the-art
algorithms but is far from being perfect.

We have seen that a broad spectrum of approaches exists to solve the
challenge of privacy in conjunction with the usage of search engines. However,
all these algorithms do not achieve satisfactory search privacy and still have
room for improvement. That’s why we want to look at the query obfuscation
problem from a completely different angle. Instead of thinking of a new
algorithm to achieve privacy for users on the web, we take a look at real users.
How would they obfuscate queries to protect their sensitive information need?
Are they even able to do this? To collect data for this research, we used
gamification and developed a little web game in which users have to obfuscate
real sensitive search queries from the AOL query logs.

Gamification is a tool that since 2010 has gained more and more attention
from various businesses and computer science sectors [32]. Nowadays, gam-
ification is a market that had an estimated worth between 3 billion and 12
billion USD in 2019 and was expected to continue growing by 30% [48, 27|.
Even well-known companies like Audi and forums such as StackOverflow use
gamification. Audi, for example, developed an e-learning game as a virtual
training for their sales personal [3] and StackOverflow uses points or "reputa-
tion" to reward active and helpful users [45]. This is no wonder since research
has shown that gamification has a high motivational potential [32]. Several
studies indicate that the application of game design elements can have a positive
effect on the intrinsic motivation [13, 32| that is "the motivation you get by
inherently enjoying the task itself" [25]. Furthermore, intrinsic motivation
has a positive impact on quantitative and qualitative performance [32] and
so does gamification [13, 32, 25, 12, 22, 33]. The benefits for performance
and motivation are due to the fact that the use of game elements affects the
psyche by covering certain psychological needs [25, 32|. Apart from the boost of
intrinsic motivation, the fulfillment of the psychological needs can have positive
effects on the social well-being and psychological and physiological health [32].
To achieve this effect, there exists a wide range of game design elements. There
is a number of publications that provide an overview on several of the design
elements |28, 25, 32, 33]. Some of these publications also deal intensively with
how which game design elements affect the psyche and how they can be used
wisely to achieve the best motivational effect [32, 25, 33].

CHAPTER 2. RELATED WORK 7

Research has shown that the most frequently used game design elements
in gamification are points, leaderboards, and badges [25]. Depending on the
sources, levels, badges, and narratives can also be included in this list [32, 7].

Points, badges, leaderboards, and levels focus on challenge. This means
that the user has to overcome problems and therefore has to develop specific
skills to make progress [25]. Points are a mean to give feedback about the
user’s performance. They have an enhancing effect on the performance, and
the experience of competency, and some studies indicate promotion of intrinsic
motivation [32, 13].

Badges and levels represent milestones and achievements of skills. These
game design elements have a beneficial impact on the user’s engagement and
the experience of competency [32]. Especially levels have a positive effect on
quantitative and qualitative user performance and can prolong participation [13].

Leaderboards have a similar effect to levels but their effect heavily depends

on their implementation. While the comparison with other users could create
a sense of challenge, encouraging users to become better and outperform
other users, it can also be demotivating. This negative effect could happen if
someone gets stuck at the bottom of the leaderboards without a chance of rise.
Therefore, developers have to take this into consideration when adding them
to their games [32, 25, 33].
Performance graphs also affect the perceived competence of users [32, 33]. They
provide good visual feedback about the progress and achievements of each
individuum. This makes people feel smarter and motivates them to improve
their skills [33].

The other prominent game design elements narratives and avatars have a
different purpose. They influence the experience of social relatedness [33| and
can sometimes induce task meaningfulness [32|. Avatars are a mean for users to
identify themselves with their virtual counterparts and users are therefore more
engaged in the game. Hereby, it is important that the outlook of the avatar
can be chosen. Narratives on the other hand can give meaning to an action.
Furthermore, stories can act as a collective goal and support social integration
[32]. Thus, solving the tasks presented in the game becomes more important
to players and improves their performance [13].

We have looked at examples of the effect that individual game design
elements can have. However, the actual effect heavily depends on the individual
player. In game theory there are different kinds of player types that respond
differently to different elements, as they have different goals or motivations [32].
The player type Killer, for example, loves challenges and competitions in which
he can outperform other players (like leaderboards). Socialisers, in contrast,
prefer game elements with a social component with which they can communicate
and cooperate with other players [32].

CHAPTER 2. RELATED WORK 8

The positive effects of some game design elements are also used by computer
scientists to collect data. Especially researchers from the field of information
retrieval, where a lot of data has to be collected manually, use gamification.
Various games were already developed with the intent to either gather informa-
tion about the search behavior of different population groups [20, 26, 9| or to
get labels for websites, images, etc. [29, 18]. In the following, we will have a
further look at some examples:

The ESP game is a collaborative game in which two random players must
work together [29]. These players are shown the same image for which they
have to enter short descriptive strings or labels. If at some time, both of them
entered the same string, they get points. The goal hereby is to collect labels for
images that can be used in search engines for better retrievability. Other games
to gather labeled data, in this case labels for websites, are Page Hunt, Page
Race, and Page Match [18]. In Page Hunt, players are simply shown a web page
that they have to retrieve by entering search queries. If the web page is found,
points are awarded. Page Race and Page Match are versions of Page Hunt but
with different game dynamics. Page Race is a competitive game in which two
players play against each other. Whoever retrieves the target web page first
wins and gets the points. Page Match, on the other hand, is a collaborative
game. Here, players must decide whether they see the same web page as their
partner based on the search queries both entered. The idea of Page Hunt was
also used by other researchers to gather information about the search behavior
and search abilities of people. Thus, the game Page Fetch was developed, which
in principle works in same way as Page Hunt but was adapted for children |20,
26]. The objective of this version was to investigate how children perform in
search tasks. Another variant of Page Hunt is Fu-Finder, a game with the goal
to measure the performance of a user’s querying abilities [9].

The game we developed for our research is also a competitive variant of
Page Hunt that possesses some additional features and game mechanics. We
will have a look at the game’s structure and properties in the following chapter.

Chapter 3

A Query Obfuscation Game

The goal of this thesis is to research how well humans obfuscate private search
queries. Therefore, we need appropriate, data about sensitive queries and
possible corresponding obfuscations. Since the collection of the necessary data is
a quite monotonous task, we decided to develop a web game. Using gamification
makes this task more fun and potentially increases user participation. In this
chapter, we give an overview of our game, its game design elements, and the
development process.

3.1 Game Overview

Our game, City of Rebellion, is a version of Page Hunt but with a significant
difference. Just like in Page Hunt, players are shown a web page that they have
to retrieve by submitting a query to a search engine. But instead of finding a
search query for the web page, the associated query is already provided (see (2)
in Fig 3.1). The task of the players is to hide the sensitive information need as
well as possible by obfuscating the given query while still retrieving the target
document. For the obfuscation, users are allowed to use any words or phrases,
except the ones that make up the original query. Queries that contain one or
more forbidden words are not accepted and the player will get an error message.
To help users to fulfill the task, a list of 10 keywords is presented (see (3) in
Fig 3.1). Players will receive points if the query they submitted retrieves the
target document.

In order to be able to go into more detail about the individual game elements,
later on, we will briefly explain a typical game course in the following.

If users are playing for the first time, they get an introduction that describes
the fictional scenario in which they find themselves. In this context, it is also
explained what their task is and how they can solve it. Afterward, players
get redirected back to the home screen, the starting point of the game. This

CHAPTER 3. A QUERY OBFUSCATION GAME 10

pDthlCS o Total Paints: B

= weapon-exports.pdf

. e weapon exports
PR —— Hone A car bl you
e —

Whats on | Links |
Help PMA grow | Pe n forms | Site map | PMA main page
defence o
i Government funding for p"mza
weapons exports submarine

trade
zealand
Kia ora, babcock

2 November 2001

From 14 to 16 November, the NZ Defence Technologies Joint Action Group Inc wellington

(DTJAG) will be having their annual bash in Wellington, another sinister gathering 1

funded in part by taxpayers. simulator
refit

The DTJAG was one of several JAGs set up through Trade NZ in the early 1990s.
Trade NZ was established as a Cr y under the aland Trade
Development Board Act in 1988,

o Search. .. Q

VI iiuiuiuuuuuiauuiuuuauuuauauuuauauiiuug

0 kip Query ©

Figure 3.1: A screenshot of the main game interface, containing (1) the target
document, (2) the associated query, (3) a list of auxiliary keywords, (4) a search field
to enter queries, (5) a progress bar, (6, 7) buttons to skip a query or quit the game
and (8) a header to show the selected category.

home screen consists of a city map with different districts, each representing
a different category (see Figure 3.2). Players may now start a new game by
selecting a category and then clicking on the corresponding district on the map.
The game interface will then open and participants can think of a suitable
obfuscated query. If they submit an appropriate query, they get points and
may continue the game or try to achieve more points.

In total, a game lasts five rounds. Once these are completed, players automati-
cally are returned to the home screen.

3.2 Game Properties

Narrative

To create a more meaningful experience, we thought of a background story for
the game. The setting is a dystopia in which the government passed a law that
completely abolishes data protection, turning the nation into a police state.
The player takes on the role of a rebel in a resistance group. This group is
helping others to hide their private information need by obfuscating queries
before submitting them to a search engine. This story is presented to users as a
part of the game instructions and introduction (see Figure 3.3). This scenario

CHAPTER 3. A QUERY OBFUSCATION GAME 11

City of Rebellion

>

Personal

) i

y (=Y

AIA Politics Knowledge

Select Level:

Figure 3.2: A screenshot of the game’s home screen where players can click on a
district of the city map to start a new game in the selected category.

is also reflected in the game design and structure. First of all, the starting
point of the game is designed as a city map, which is supposed to represent the
player’s hometown and also serves as a starting point for a new game round
(see Figure 3.2). The city makes things a bit more personal and at the same
time offers a clear design for the categories which is in line with the story. In
addition, the overall game design is futuristic to make the concept of a future
dystopia more realistic.

With the help of an interesting scenario, we want to increase participation
and the performance of players. For this reason, we have developed a background
story that addresses the problem of search privacy and is linked to a widely
known dystopian scenario. The emergence of a surveillance state, that collects
profiles of all web users through their search queries, appears in many video
games, books, and movies. With this, we want to bring the motivation of this
thesis closer to the users as well as create a recognition value and give players
the possibility to immerse deeper into the scenario.

Levels

Our game has two levels, Squid and Chameleon. The name givers of the levels
are both animals that are masters of camouflage and thus reflect the task of
players to obfuscate sensitive information needs. In the beginning, only the
first level Squid can be played. When a player has successfully obfuscated five
queries, a second level Chameleon gets unlocked (see Figure 3.2). The second

CHAPTER 3. A QUERY OBFUSCATION GAME 12

Welcome to the rebellion!

From now on, you are part of our resistance movement against the
dystopia we are currently living in.

As you know, a few years ago the government passed a law that changed
our time radically. The law abolished data protection completely, and our
nation became a police state. They even keep a watch on every search
query people submit to search engines. To prevent this from going on, our
resistance group is secretly helping web users to obfuscate their private
search queries, rendering the surveillance of the government useless. We
will need all the help and creativity we can get.

Let the rebellion start!

®

Figure 3.3: A screenshot of the introduction that explains the background story of
the game and the role of the player.

level is more or less identical to the first, except for two small differences. First,
the color scheme of the second level is purple in contrast to the blue Squid
level. The second and critical difference is that now players will lose points if
they use any auxiliary keywords. With this technique, we want to make sure
that players have to become more creative in their obfuscation attempts. We
also want to provide more variety to the game. Furthermore, adding levels to
the game suggests progress to the players, creating a sense of acknowledgment.

Points

Players receive points for successfully retrieving the target document while
obfuscating the original query. The points are divided into different categories
and are loosely based on some evaluation measures for information retrieval
systems. First of all, let’s look at the points calculation of the first level Squid.

CHAPTER 3. A QUERY OBFUSCATION GAME 13

Paoints

Points Document Position: 199/200
Points Number Related Documents: 3g/150
Points Position Related Documents: 56/100

Points Query Length: 50/50

343/500

Total Points: 343

Figure 3.4: A screenshot of the score board that opens up if a player retrieved the
target document.

Four factors play a role here:
1. The position of the target web page inside the search response,

2. the number of related documents that would also be retrieved if the
original query were to be submitted,

3. the average position of these related documents inside the response, and
4. the length of the obfuscated query.

Players could receive a maximum total of 500 points per round. First of all, it
is checked whether the target document is among the top 8000 positions, which
the search engine returns as soon as the player submitted his search query. If
this is not the case, the player receive an error message and has to revise and
resubmit his search query. If, however, the document was found by the search
engine, the number of relevant documents, their average positioning, and the
length of the player’s search query are calculated. These variables are then
used to calculate the corresponding points.

For the web page’s position (1.) a maximum of 200 points is possible. The
further down the web page is positioned, the fewer points the player receives.
To compute the final points, we divide the 8000 possible positions, on which
the web page could be placed into steps, and, based on these steps, deduct

CHAPTER 3. A QUERY OBFUSCATION GAME 14

Table 3.1: (a) Steps of the algorithm to compute points for the position of the
target web page. (b) Example of the points calculation for the average position of
found related documents.

(a) Target document (b) Related web pages
Position Points Average Position Points
1-10 200 x < 160 100
11 - 20 199 161 < = < 320 98

21 - 30 198 320 <z < 480 96

101 - 120 190
121 - 140 189

2001 - 2050 95
2051 - 2100 94

5001 - 5100 35
5101 - 5200 34

> 7000 10

points from the 200 starting points. In the range of the positions 1-100, one
point is deducted for every 10 steps down in the positioning, from 101-2000
it is 20 steps, from 2001-5000 50 steps, from 5001-7000 100 steps and from
a positioning of 7001 and above players constantly receives 10 points as a
minimum (see Table 3.1 (a)).

For the number of related documents (2.) players may reach 150 points
at max. For this purpose, the number of relevant documents found is simply
converted directly into points, for example, 24 found documents result in 24
points. Since we saved the IDs of 300 related documents for each query, players
may retrieve more than 150. In this case, they simply get the maximum of
points (see Table 3.1 (b)).

The third factor (average position of related documents) brings a maximum
of 100 points. The computation is similar to the calculation of the points that
players can achieve for the positioning of the target web page. For this purpose,
the 8000 positions that the search engine returns as a maximum are divided
into levels of 160 positions each. For each level down, which means a worse
positioning, two points are deducted from the initial 100 (see Table 3.1 (b)).

CHAPTER 3. A QUERY OBFUSCATION GAME 15

For example, if the average position is < 160, players receive 100 points, if it is
between 161 and 320, 98 points are awarded, and so on.

And finally, players get points for the query length. The maximal number
of points users can achieve here is 50. Players receive the maximum number of
points if their query is shorter or the same length as the original query. For
each additional word, one point is deducted. In this context, length is defined
as the number of words the query consists of.

In the second level Chameleon, the same aspects play a role in calculating
the points. This means that players receive points for the same criteria as
before. In addition, however, the use of the suggested keywords has a negative
effect on the achievable points. When players use one or more of the provided
keywords, they lose points. This works as follows: Each keyword has a certain
value, which is reflected by its position in the list. The value decreases with each
word in descending order. Thus, the first word is worth 100 points, the second
90, and so on. When a player submits a query, the values of the keywords used
for it are summed up and then subtracted from the total number of points.
This means that players can lose up to 550 points which would result in a
negative score. We implemented this kind of point calculation to encourage
the players to give more thought to the formulation of their search queries.

Performance Graphs

In contrast to the competitive leaderboards, performance graphs show the
individual performance of players. This can create a sense of mastery for
the participants, motivating them to invest more time in the game [32]. We
implemented two kinds of graphs. One kind shows the performance of users
(collected points and number of successfully obfuscated queries) over time (see
Figure 3.5. The second kind shows how many queries have already been solved
in each category.

Usernames

When a participant visits the web page of the game for the first time, a new
entry in our MongoDB database is created with a random user name. This
username consists of an adjective followed by a surname. It is used to identify a
player inside the leaderboards and can be changed to fit the player’s preferences
(see Figure 3.6). The username is a game design element that creates more
freedom for players as well as customization.

CHAPTER 3. A QUERY OBFUSCATION GAME 16

Statistics

Weekly Statistic

Points Number of obfuscated Queries

Figure 3.5: A screenshot of a user’s performance graphs. One graph (left) shows
how many points a player received for each level and in total for every day he or
she played. The other graph (right) shows how many queries the player successfully
obfuscated over time.

Leaderboards

We have designed three leaderboards, one for each level and a third one that
combines the points from both levels to an overall performance (see Figure 3.7).
With this, we want to achieve a sense of challenge between the users and
motivate them to climb to the top by playing more and/or better than the
others. We designed three leaderboards to prevent the demotivating effect one
could have. Now, players have a greater chance to be at the top of at least one
of the boards. Furthermore, participants can gain a lot of points in a short
period which makes it easier to raise inside this hierarchy. We added this game
design element to help us to increase the user performance, thus, collecting
more data.

Categories

To make things more interesting and to create more freedom of choice, players
may choose between six categories of query types. These categories correspond
to specific subject areas into which the queries could be classified, namely
Health, Personal, Crime, Knowledge, Law, and Politics (see Figure 3.2 and
Table 3.2). This potentially has a positive effect since players may choose to
play game rounds in a category they are either interested in or have further
knowledge about [22]. This offer makes the game more interesting and diverse

CHAPTER 3. A QUERY OBFUSCATION GAME 17

Welcome elegant ardinghelli

C I'IEIFN;]E username:

| My new name.. |

Figure 3.6: A screenshot of the form which allows players to choose their own
usernames.

since it creates meaningful choices and demonstrates preferences. It is a game
technique that addresses the feeling of empowerment and the creativity of
players [25], thus, satisfying psychological needs.

Progress Bar

We implemented two different kinds of progress bars in the game. One kind
of progress bar is part of the main game interface and indicates in which
game round a player currently is (see Figure 3.1). It acts as a simple feedback
function that reflects the player’s status. Furthermore, it serves as a goal and
motivates people to finish the game round by addressing the psychological need
to finish incomplete things [25]. The other progress bar is part of the home
screen included in the city map. On this map, a donut chart is drawn for each
category, showing how many queries from that category have been successfully
obfuscated (see Figure 3.8, 3.9) in the selected level.

Other Features

We implemented a few more features that are not directly typical game design
elements but also help to make the user experience more pleasant. To prevent
frustration and make the navigation inside the game easier, we added two

CHAPTER 3. A QUERY OBFUSCATION GAME

18

zealous shamir W
Maik
Johannes
reverent beaver
friendly hertz
elegant meitner
gant ardinghe
quirky wing
inspiring cohen
priceless ride
goofy keller
priceless bardeen

. vigorous elion

L eaderboards

. zealous shamic W

Friendly hertz
reverent beaver
Maik

laughing nobel
hopeful black

kind wing

. funny pike

Festive mestorf
goofy wozniak
goofy keller
inspiring montalcini

elegant meitner

Total

. zealous shamic W

friendly hertz
reverent beaver
Maik

Johannes

. elegant meitner

elegant ardinghelli

. quirky wing

inspiring cohen

. priceless ride

goofy keller
priceless bardeen

Vvigorous elion

Figure 3.7: A screenshot of the three different leaderboards, one for each level and
one for an overall performance.

Personal Personal

Knowledge

Politics Knowledge Politics

Figure 3.8: A screenshot of the cate-
gory graphs in the level Squid.

Figure 3.9: A screenshot of the cate-
gory graphs in the level Chameleon.

buttons in the main game interface. These buttons allow the players to either
quit the game and return to the home screen or to skip a query after 60
seconds if they get stuck (see 6. and 7. in Figure 3.1). Another feature is the
Retry button. Every time, players successfully obfuscated a query they get
the possibility to continue with the next query or try to improve their current
score. The idea behind this button is to give players the chance to improve
their performance. The auxiliary keywords were taken from the list of keywords
that the search engine ChatNoir [21] extracted for the corresponding web page.

CHAPTER 3. A QUERY OBFUSCATION GAME 19

3.3 Game Development

In this section, we explain the different components of the game development
by describing the process of collecting queries to obfuscate and rendering the
target documents visually appealing. Afterward, we describe how and what
data we collected for the evaluation.

3.3.1 Sensitive Queries

The first step we had to take was to create a collection of sensitive search
queries. For this purpose, we consulted the AOL query logs, a collection of
TREC Web track queries [38], and a paper of Arampatzis et al. [4] from which
we extracted suitable sensitive queries. The basis of our collection is a list of
sensitive queries that Arampatzis et al. created '. However, we skipped all
queries with sexual or inappropriate content like free porn movies. These
kinds of queries are certainly sensitive and should stay private but their content
is unsuitable for our game, especially since we display relevant web pages.
Skipping these unsuitable queries, allowed us to gather 82 queries for our
collection out of the original 95. Furthermore, we extracted queries from a
collection of sensitive TREC Web Track queries. These queries were particularly
helpful for our evaluation since there exist annotated data on the information
needs and relevant web pages. With this additional data, we are able to make
even more well-founded statements about the obfuscation skills of players. The
biggest sources for our collection are the AOL query logs, a huge collection of
queries from various users. Here, we also ignored the pornographic and hateful
contents. Additionally, inspired by these resources, we added some self-devised
queries to our collection. Overall, we assembled a list of 700 sensitive search
queries. To group the queries into districts on the city map, we had to find
suitable categories for the queries. Inspired by Arampatzis’ paper [4] and our
list, we were able to derive six different categories in which we organized the
queries (see Table 3.2).

'http://lethe.nonrelevant.net/datasets/95-seed-queries-v1.0.txt

http://lethe.nonrelevant.net/datasets/95-seed-queries-v1.0.txt

CHAPTER 3. A QUERY OBFUSCATION GAME 20

Table 3.2: The six different categories in which we organized the queries and the
number of queries for each category.

Category Example Query Number of Queries
Health folk remedies sore throat 65
Personal cheating husbands 45
Knowledge evidence for evolution 35
Crime forged passports 30
Law pregnancy discrimination laws 15
Politics weapon exports 15

3.3.2 Visual Enriching of Sensitive Documents

To support users in obfuscating queries, we show them a relevant ClueWeb
document for the sensitive query. For this task, we used the Elasticsearch-based
search engine ChatNoir, a search interface for the two ClueWeb corpora and
the Common Crawl [21]. It was developed especially for research purposes and
has a freely accessible API [21], allowing us to easily access the ClueWeb12
from which we chose the target documents for the sensitive queries. We decided
to use the ClueWeb12 since web pages from 2012 often look better than those
from 2009. This improves the graphic aesthetics of our game. Moreover,
modern-looking web pages are more compliant with our futuristic background
story. ChatNoir also provides additional data for each web document, such
as a list of keywords, which we have adopted for the game (see Section Game
Overview). However, documents in the ClueWeb are not intended to be shown
to humans because additional resources like CSS stylesheets or images are not
included in the crawl. This means that most web pages are not well-formatted
and are rather unsightly and chaotic. That would be disadvantageous for our
game because you can not draw information from these documents easily. To
counteract this issue, we have developed a strategy that allows us to make
web pages visually pleasing again with the help of the web archive Wayback
Machine. This works as follows (see Algorithm 1):

First, we send a request to ChatNoir that returns the corresponding top
three web documents. For each document, we extract the original URI and the
time at which it was crawled. With these two pieces of information, we send
a request to the Wayback Machine API. The response then tells us whether
the web page exists inside the web archive or not. If the web page is not inside
the archive, the algorithm repeats the process described above with the next
document. Otherwise, we take the URL of the web page inside the Wayback
Machine. Since there can exist several snapshots of the same web page inside

CHAPTER 3. A QUERY OBFUSCATION GAME 21

Algorithm 1 Change Resources
Input: Set Q of sensitive search queries
Output: HTML files with changed resources for queries in Q

1: for qin Q do

2 chatnoir response = request top 3 documents(q)

3 for document in chatnoir response do

4 archived document = closest snapshot in_archive(document.uri,
5: document.timestamp)

6 if archived document is not None then

7 replace _stylesheets(document, archived document)

8 replace _images(document, archived document)

9 render enriched document(document)

10: save(document)
11: end if

12: end for

13: end for

the web archive, we save the URL of the version that was crawled in close
temporal proximity to the wanted ChatNoir document. Next, we replace the
links to the stylesheets and images in the ChatNoir document so that they
point to the resources stored by the Wayback Machine. Therefore, we first
extract all stylesheet links from the web page inside the Wayback Machine.
This is done with the Python library Beautiful Soup and the URL we got from
the web archive in the previous step. Next, we extract the stylesheet links
from the ChatNoir web page and delete the part of the links that define the
communication protocol. Afterward, we check for all stylesheet links of the
ChatNoir web document if they are part of a web archive link. If this is the
case, then the link inside the ChatNoir web page gets replaced by the link of
the Wayback Machine. Afterward, the same is done for the image resources.
In the last step, the changed ChatNoir web page is saved as a new HTML file.
We also deleted all links of the <a> tags from the file to prevent users from
being redirected when they accidentally click on one of them.

CHAPTER 3. A QUERY OBFUSCATION GAME 22

3.3.3 Selection of Queries

Finally, we had to decide which queries should become part of our game. For
the selection process three criteria were taken into consideration:

1. The target document is part of the web archive.

2. The resources of the target document could be enriched enough to be
visually pleasing.

3. The target document is relevant for the sensitive query.

First of all, if neither of the top three documents of a query was found inside
the web archive, then the query was considered to be unsuited. That is because
the look of a web page is important for the game (see Section Visual Enriching
of Sensitive Documents). Next, we had a look at all queries for which at least
one of the top web pages could be visually enriched. Not all web pages could be
restored by our algorithm and were therefore unsuited to be part of the game.
The last criterion for a query or rather a web page was if it contains relevant
and helpful data that could support the players in their obfuscation attempts.
Only if at least one of the web pages for a query met all these criteria, the
query was included in our game. This selection process was very strict and only
50% of the regarded queries passed it. After the completion of this process,
the selected documents were converted and saved as PDFs. The reason for this
conversion was the fact that the web pages needed a long time to load which
was rather disadvantageous for the usability of our game. In addition to the
mentioned criteria, we had to make sure that enough queries for each category
remained. In total, 200 queries were selected for the game.

3.3.4 Sampling

In our first prototype, we included ChatNoir as the search engine. But through
testing, we realized that obfuscating queries while still retrieving relevant web
pages can be difficult. We became aware that one problem is the large number
of documents inside ChatNoir (638.8m alone in the ClueWeb12). The size of
this corpus made it hard to find the target web pages without using terms from
the original query. Therefore, we took a sample consisting of 626.629 ClueWeb
documents and built an index. First, we had to make sure, that all needed
web documents would be part of the sample. For this reason, we sent a request
to ChatNoir for every query of the game and some randomly selected queries
from our collection. From every response, we saved the top 1000 web pages.
For more variety, we used the sampling strategy of Aramatzis et al. [4] to add
random documents to our sample. This idea works as follows. First, the query

CHAPTER 3. A QUERY OBFUSCATION GAME 23

www is submitted to a search engine (in our case ChatNoir). The top result is
added to the sample which is then used to select a new random query. This
process is repeated until the desired amount of web documents is acquired. In
the last step of our sampling process, all collected web documents were stored
in a file. Then we transformed the raw HTML of each document into its text
by using the parsing library Jsoup.

With the prepared data, we were able to build an index with Pyserini, a
Python interface for the Ansirini toolkit. This index served us as a smaller
search engine alternative to ChatNoir. The advantage of using Anserini [38] is
that it uses a similar retrieval model to ChatNoir (BM25, BM25F for ChatNoir).
This allows us to draw conclusions about the query obfuscation skills of humans
in the context of a bigger search engine.

3.3.5 Logging

For our evaluation, we had to collect data on the obfuscated queries. Therefore
we used logging. Every time a new sensitive query is presented to players in a
game round, their ID, the sensitive query, the timestamp, and the category and
level they are playing in, are saved inside a log file. Furthermore, in addition
to the previously mentioned data, the obfuscated queries of users are stored as
soon as they submit it. Hereby, each user-specific log entry is designed as a
Python dictionary so that the entries can be combined into one JSON file for
the evaluation later on. This is what typical log entries look like:

{
"_id": "eb605791-c99f -4f£f7-a900-4817da86925e",
"username": "cool euclid",
"category": "knowledge",
"original query": "usda food pyramid",
"level": "squid",
"timestamp": "Tue Oct 12 09:50:24 2021"

"_id": "91£173db-£26c-4d97-8d27-a5fb0baed3e7",
"username": "strange spence',

"category": "personal",

"original query": "bankruptcy",

"user query": "no money",

"level": "chameleon",

"timestamp": "Tue Oct 12 12:50:30 2021"

CHAPTER 3. A QUERY OBFUSCATION GAME 24

3.3.6 Preprocessing the Log File

We use the collected and prepared log data to analyze the efficiency and
effectiveness of players in obfuscating sensitive information needs. We research
how long players needed to formulate an obfuscated query, what kind of terms
they used, at which position they retrieved the target document and the number
of retrieved related web pages, etc.. To make profound statements about these
aspects that we use as a mean to determine the effectiveness and performance
of players, the log data needs to be prepared and amended first. Therefore, we
wrote a Python script that generates data for each obfuscated query.

First, we analyze the efficiency of players that we define as the time they
spend to obfuscate a sensitive query. For this, we collect all entries from the
log files that have the same user ID and refer to the same sensitive query.
We then sort these entries by their timestamp and calculate the time spans
between them. This gives us the seconds needed for each obfuscated query.
Next, we check for each submitted query if it contains one or more of the
provided keywords. We save which of the suggested keywords were used and
how many. Then, we measure the effectiveness of the obfuscated query by
submitting it to ChatNoir. The response is then stored in a shortened version,
which contains only the ID, the TREC ID, and the score for each retrieved
web document. This response is then further used to determine the position
of the target web page, the number of related documents, and their average
position. This process is performed for the ClueWeb09, the ClueWeb12, and
our document sample. We chose to analyze the effectiveness of players for
the sample as well as for ChatNoir so that we could research how much the
size of a document collection would influence the effectiveness of the players’
queries. Furthermore, this data could help to analyze the success rate of users.
This could be used as an indicator if players get frustrated because the game
is too difficult. Finally, we test whether the users have used terms from the
target document in their queries. For this, we first convert the content of the
target web page into human-readable text with the Python library Beautiful
Soup. Then we use a tokenizer for the query and the web page text, remove all
stopwords and apply the porter stemmer from NLTK. We do this to make the
web text comparable to the query so that we may check if it contains terms
from the web document. Next, we check for each word in the revised query if
can be found inside the web page text. Through this process, we save which of
the words were used and how many. In a final step, we check if players used
words or phrases from the target document in or as their queries. Therefore,
we convert the tokenized query and the web page text back to one string each
by separating every word with a space. Then we check whether the obfuscated
query is a phrase from the web page or not.

Chapter 4

Evaluation

In this chapter, we evaluate the prepared log files of our game to study the
effectiveness and efficiency of the obfuscated queries. We have a look at some
general aspects like the distribution of the obfuscated queries among players
and their preferences regarding the categories and levels. Then we compare the
average length of queries formulated by the participants with the length of the
sensitive queries. We also investigate the overall success rate (target document
retrieved) of players and the Mean Reciprocal Rank of the participants’ queries
in our document sample and ChatNoir. Finally, we categorize the obfuscated
queries into five different types and compare their effectiveness to each other
and to queries automatically obfuscated with the approach of Arampatzis et
al. [4].

We recruited users for our query obfuscation game from an information
retrieval course and dedicated mailing lists at our universities (Bauhaus Univer-
sitdt Weimar, Martin-Luther-Universitét Halle-Wittenberg). The information
retrieval course was held at the Martin-Luther-Universitdt Halle-Wittenberg (~
20 students). As a result, we were able to acquire 72 players which submitted
a total of 1.534 obfuscated queries, 1.476 of those unique. 38 of the players
completed a demographic survey which revealed that 13 were female, 25 male
and their age ranged from 19 to 64 years.

There is great variance among the players regarding the number of their
obfuscated queries. About 42% of the players only submitted one to five queries
and about 18% submitted six to ten. This means that most players (=~ 60%)
played one or two game rounds. As we can see in Figure 4.1, the number of
participants who submitted more than ten queries declines with increasing query
quantity. However, we had one very engaged player who alone submitted a
total of 499 obfuscated queries. The collected queries spread over the two levels
we implemented, Squid and Chameleon, even though most players preferred
the level Squid. Only 13% of the collected queries were made in the level

25

CHAPTER 4. EVALUATION 26

40

30

20

Players

10

0 ‘IIIIII []
0 10

0 200 300 400 500

Obfuscated Queries

Figure 4.1: Distribution of the amount of obfuscated queries among the players.

Chameleon, and only 18 participants decided to play this level. This can be
explained, among other things, by the fact that the second level Chameleon is
only unlocked after a participant successfully obfuscated five queries. Successful
in this context means that the target document was retrieved. But since
numerous players submitted very few queries, many did not even reach the
second level. However, it is noticeable that approximately 79% of the queries
in the level Chameleon were created without the usage of one of the provided
auxiliary keywords (see Figure 4.2). This shows that the intention behind the
level, to encourage the players to be more creative, was successful, even if the
level itself was not very popular.

Apart from the levels, there were also differences in the popularity of the
individual categories. This can be seen from the number of obfuscated queries
in each category (see Figure 4.3). The category Knowledge was by far the most
favored. If we look at the level Squid, almost all other categories are equally
popular, except for Law. In the level Chameleon, the differences between the
categories are not completely the same as in the other level but even here the
category Knowledge was the most popular and law the most disliked. This is
an interesting distribution since it shows that the number of sensitive queries in
one category is not related to the number of obfuscated queries in this category.
Because if this were the case then most queries would have been obfuscated in
the categories Health and Personal. But these are on par with a category like
politics which does not even consist of half as many queries.

CHAPTER 4. EVALUATION 27

B Queries without Keywords Squid B Queries without Keywords Chameleon

M Queries with Keywords Squid Queries with Keywords Chameleon

Figure 4.2: The distribution of queries that were created wit