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Abstract

Research questions in the digital humanities can often be framed as a semantic
search query that has to be answered with respect to a given corpus. Such
semantic search queries are usually specific and complex. Specific in the sense
that it is not easy to anticipate the search query given the corpus. Complex
in the sense that the semantic annotations needed to answer the query cannot
be obtained algorithmically without human intervention. To account for this
situation, in this thesis, a faceted search system is proposed which allows users
to explore arbitrary relations between concepts. Users can introduce custom
semantic concepts to the search system and manually edit the semantic an-
notations in the corpus. Furthermore, an API allows algorithms to access the
corpus and to contribute semantic annotations. This way, the user can ac-
tively engage in generating the answer to the search query in a semi-automatic
fashion. The prototypical implementation of the semantic search engine is
evaluated in a user study.
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Chapter 1

Introduction

In the field of the digital humanities, as research at the intersection of the
digital technologies and the humanities, many different search systems and
tools are used to answer research questions of any kind, especially regarding
textual corpora. While some research questions explore basic linguistic or
grammatical properties of corpora[6], others are more elaborate and can not
be answered trivially. Many of these more elaborate research questions can
be formulated as to investigate relations between different concepts. For
example, one could ask the question of how many sentences in a corpus
that intersect occurrences of a term are similar to paragraphs intersecting
occurrences of another term. Here, the explored relations are spatial overlap
and semantic similarity. With this thesis, we offer a framework that allows
iterative construction of a research environment tailored to a set of research
questions that can be answered using a simple query language. We use the
concept of faceted search as the underlying base of our approach.

Search engines, and more specifically faceted search systems, are ubiq-
uitous and indispensable tools for exploring information spaces by offering
means of iteratively refining search results using a faceted taxonomy. A
faceted taxonomy describes a hierarchically organized set of terms, describing
different aspects of underlying data. When working with textual data, usually
entire documents are the focus of the exploration and the set of documents is
filtered by using facets describing meta data.

In a regular faceted search system, relations between terms in facets are
defined to exist if the terms index the same underlying object. Considering a
relation not to be an abstract concept but rather an arbitrary but well defined
association between two terms, like semantic similarity or spatial overlap,
those relations may be too complex to be described by this simple definition.
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CHAPTER 1. INTRODUCTION

Thus we want to introduce a model for faceted taxonomies which shifts the
focus from exploring a set of underlying objects to exploring relations between
terms. This model should be able to properly handle unidirectionality of
relations to construct more complex dependencies. Also, different types of
relations should be explorable in one faceted search system. This leads to
a necessary variability in the used query language to properly formulate
complex requests.

The digital humanities have some specific requirements for successful
operation of search systems. The quality of the underlying annotations is
crucial for receiving adequate results and precision and recall of the system
must be as good as possible[10][2]. For this reason, we include means for a
user to manually and semi-automatically alter semantic annotations during
the use of the system to improve the general quality of the annotations and
thus improve the quality of results and allow the user to iteratively take part
in constructing the research environment.

In the following chapters, we will first introduce the theory of faceted search
which serves as the basis for our model and also present some related works
in the fields of faceted search and the digital humanities. Then, our model for
exploring relations in a faceted search system is presented, which we consider
as our main contribution. Afterwards, a prototypical implementation of the
model is demonstrated and evaluated. The evaluation shows that while the
framework can be an efficient tool to answer complex research questions, it is
not straightforward to provide an easy and clear user interface for it.
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Chapter 2

Background and Related Work

2.1 Related Work
Modern search engines adequately address the problem of what was his-
torically called known-item search: the searched object is known and it is
certain it exists in the collection one searches[25]. Exploratory search on
the other hand describes the seeking of information without a clear target
object or even without a well established information need. The term was
first introduced in the book “Exploratory Search: Beyond the query-response
paradigm” by White and Roth in 2009 [38]. It picks up existing problems
from the field of information retrieval addressing vague information needs
of users, like search result clustering[8] or subject search[5], which offer
topical overviews in a retrieved document set. Exploratory search now shifts
the focus from supporting users to find specific document sets to a general
attempt to aid a user’s learning and investigating of a document collection
[20]. Various common problems exist not only in the field of exploratory
search, but in most tools for information retrieval. Two major issues are the
vocabulary problem, which describes a possible discrepancy between the user’s
vocabulary and the vocabulary of the indexed objects, and the challenge of re-
ceiving an overload of search results which hinders the efficient exploration[32].

Faceted search is one concept that is well established for use in ex-
ploratory search. The term facet is conventionally used to describe one
side of a cut gemstone[23]. Each facet contributes differently to the gem’s
optical performance. In the context of information science a facet refers to
some orthogonal attributes of underlying information objects where each facet
should describe the objects from a different perspective.[11]. The term facet
was originally introduced by S.R. Ranganathan, a mathematician from India,
in the 1930s[24], in the process of creating colon classification which found
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CHAPTER 2. BACKGROUND AND RELATED WORK

use in classification in libraries. He used faceted classification to organize all
knowledge available in libraries using the five main facets personality, matter
or property, energy, space and time. In general, faceted search is a technique
that allows users to narrow down search results by iteratively applying
multiple filters from a given set of categories. It enhances conventional search
engines by offering navigational opportunities that allow and encourage
exploratory search. Many different faceted search systems were developed
in the last two decades (See [19] for a recent review of current research).
While faceted search is a very broad field with many different approaches and
resulting models, we will now focus on important and related search systems.

The Flamenco browser[40], which stands for FLexible information Access
using MEtadata in Novel COmbinations, was one of the earliest tools for the
exploration of large information spaces using faceted navigation. Flamenco
uses a combination of hierarchical faceted metadata and full text search allow-
ing users to iteratively refine their query. Figure 2.1 shows an exemplifying
query in the Flamenco interface.

Figure 2.1: Filtering nobel prize winners with multiple facets using the Flamenco
browser. Image by [39].

The mSpace explorer[28] is another notable mention. Other than most tools
for faceted navigation like Flamenco or also commercially used systems for
online retail, mSpace relies on a spatial multicolumn layout. This layout uses
a persistent display, thus information are always present in the same window,
to assist maintaining awareness of contextual information. Also, the need to
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CHAPTER 2. BACKGROUND AND RELATED WORK

remember what appeared before the current selection is reduced. Figure 2.2
shows the mSpace classical music explorer, which is based on the mSpace
model. Since we also use the concept of sequentially aligned facets in the
implementation of our prototype, we consider mSpace a related work.

Figure 2.2: The mSpace classical music explorer, using the mSpace model. Image
by [30].

The most recent and probably most related work is the publication
’Relation-oriented faceted search method for knowledge bases’ by Aso et al.
from 2020[1]. The authors introduce a faceted navigation for knowledge bases
which includes a novel facet describing relations between entities. Predicates
in a knowledge base are clustered as relations and made accessible in the nav-
igation. Thus the focus of their system is the search for interesting relations
between entities in a knowledge base, and not finding interesting entities. So,
the motivations for that paper and for our work overlap. But we want to
provide a most general model that does not rely on the RDF format on which
most knowledge base on, but as an extension for a simple model for faceted
navigation. Figure 2.3 shows the navigation of ’RelFacet’, Aso et al.’s imple-
mentation of their system.
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Figure 2.3: The interface of the RelFacet navigation. Image by [1].

Next to faceted navigation, annotations and improving their quality is
another pillar of our proposed system. We consider an annotation to be
some descriptor of a piece of data. This can be a named entity highlighted
in a text, or keywords added to an image. Many free and commercial
tools for annotating data exist. Most of these tools are meant for creating
annotated data to use in machine learning applications. Some examples are
the tools doccano[21], Labelbox[14] or Prodigy[12]. Usually such annotation
tools are meant to be used collaboratively to, for example, annotate named
entities in texts to use as training data. The data is not meant to be explored,
but only serves as input and texts to annotate are displayed one after the other.

The tool tagtog[31], while also providing features to annotate texts as ma-
chine learning training data, also offers some explorative capabilities by sup-
plying a concept search with which users can search the annotated corpus using
boolean queries for entities that filter documents that match that query.

Figure 2.4: The interface of the tagtog navigation with an active query and an
opened document
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For this reason, we consider tagtog to be the annotation tool that is
related the closest to our model and our prototypical implementation. Figure
2.4 shows an example. A document is opened with its annotations highlighted
and the search for specific entity type active.

When moving away from annotation tools with the purpose of creating data
for machine learning and to annotating with the purpose of corpus linguistics
in the domain of the digital humanities, the tool CATMA[15] needs to be
mentioned. Other than allowing users to annotate corpora, complex queries
using those annotations are possible as well as statistical analysis of corpora.
CATMA is a tool for statistical analysis and not for exploration, thus while
using some of the same concepts, CATMA and our system differ regarding the
type of research question one attempts to answer with it.

2.2 Theory of Faceted Search
To introduce a theoretical foundation, we will first formally describe a model
of faceted taxonomies. We follow the notation of Sacco’s and Tzitzikas’ model
for dynamic taxonomies[26] by defining:

Definition 1 A terminology is a finite set of abstract concepts, called terms

Definition 2 A taxonomy is a pair (T , ≤), where T is a terminology and
≤ is a reflexive and transitive relation over T , called subsumption

With a and b being terms of T and a ≤ b, we say that b subsumes a or, like-
wise, a is subsumed by b. Equivalently we also say that a is narrower than b,
or b is broader than a and that a is a child of b. For example, dog ≤ mammal.
Thus, a taxonomy describes a tree-like hierarchy between a set of abstract
terms. Given a set of taxonomies, they can be combined into a faceted taxon-
omy. We formally define a faceted taxonomy roughly after [33].

Definition 3 Let {F1, ..., Fk} be a finite set of taxonomies, where Fi = (Ti,≤i)
and the terminologies T1, ..., Tk are assumed to be pairwise disjoint. The pair
F = (T ,≤), where T =

∪k
i=1 Ti and ≤ =

∪k
i=1 ≤i is called the faceted

taxonomy generated by {F1, ..., Fk}. The taxonomies F1, ..., Fk are called the
facets of F .

Since the terminologies and subsumptions in a faceted taxonomy F are
assumed to be disjoint, it is in fact again a regular taxonomy, the only difference
being that the terminology and subsumption relation of F are partitioned.
Choosing the criteria for partitioning depends on the chosen methodology and
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the underlying domain. A domain describes a finite set of unique objects which
are indexed by a taxonomy. Combining a faceted taxonomy with a domain
results in a materialized faceted taxonomy, which we will also define roughly
after Sacco[26]:

Definition 4 A materialized faceted taxonomy F is a quadruple F = (T, O,
I, Q) where T is a taxonomy with the terminology T and the subsumption ≤.
O is the set of objects indexed by the taxonomy, I is a function I : T → 2O

called interpretation, and Q is the set of queries that can be formulated over
T using standard boolean operators.

A compound term is any subset of the terminology T . The interpretation
function I basically maps a compound term to a subset of objects in O. I(t)
only describes the shallow extension of the term t. While a shallow extension
of t includes only the set of terms directly subsumed by t, the deep extension
of t is defined as the set of all shallow extensions in the subtree with the root
t. So we define

Ī(t) =
∪
{I(t′)|t′ ≤ t}

as the interpretation of the deep extension of t. Considering an object
o ∈ O, the description following an interpretation I is a set of terms describing
the object. We denote the description DI(o):

DI(o) = {t ∈ T |o ∈ I(t)}

Consider the materialized faceted taxonomy given in Figure 2.5.
While DI(h2) = {Hamburg,< 100}, if we consider Ī we have
DĪ(h2) = {Hamburg,Germany,Europe,< 100, < 200}.

We see that the resulting compound term is either only the set terms whose
interpretation include the described object when using the interpretation I,
or the set of terms where the interpretation of any term in its deep extension
includes the object. We call the latter the complete description of h2. While we
can use interpretations to define descriptions as we did above, it is also possible
to define interpretations through descriptions. Using a function D : Obj → 2T ,
mapping objects in O to terms, we can define an interpretation ID:
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Figure 2.5: An example for a materialized faceted taxonomy F = {F1, F2, F3} com-
prised of three facets to describe an underlying domain of objects O = {h0, h1, h2, h3}
characterizing hotels.

ID(t) = {o ∈ O|t ∈ D(o)}

While both methods are possible, it seems more natural to consider
interpretations being defined by descriptions, since often objects are accom-
panied by a set of tags which serve as descriptions and can be used to define
interpretations.

Navigating the information space in a faceted taxonomy is done by the
notion of a users focus. A focus can be any query or compound term, although
we will here first concentrate on simple conjunctions of terms. The contents
of a focus f is the resulting set of objects Ī(f). While the initial focus can be
for example the empty compound term, resulting in an empty set of objects
from the interpretation function, it could also be the top term of a facet. The
focus of a user can be refined using the concept of zoom points. While there
are more types of zoom points, we limit ourselves to defining zoom − in and
zoom− out. Given a faceted taxonomy and a focus f we define the whole set
of zoom points regarding a facet Fi as AZi(f):

AZi(f) = {t ∈ Ti | Ī(f) ∩ Ī(t) ̸= ∅}

Thus, zoom points are all the terms in a terminology whose selection results
in a non-empty set. Usually, a zoom point tx is accompanied by the count of
objects that selecting the point would yield. This count is simply the cardi-
nality of the set Ī(f) ∩ Ī(tx). A focus may have contributions from different
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facets. Considering f to be simple compound term, we denote fi = f ∩ Ti as
the contribution of some facet Fi to the focus f , where Ti is the terminology
that facet. We define candidate zoom-in points of a facet Fi to be the direct
children of fi, or, the immediately narrower terms. Given a focus f and the
facet Fi, we denote candidate zoom-in points by CZi(f). Since we want to
avoid empty sets, the set of zoom-in points of a facet Fi is denoted as follows:

Zi(f) = {tx ∈ CZi(f) | Ī(f) ∩ Ītx ̸= ∅}

When a zoom-in point t is selected, the focus is updated as f = f∪{t}, and
all terms broader than t removed from f . In the case of zoom-out, a term t can
be deselected from the focus. The term t can then replaced by its immediately
broader term or simply removed. Since t was part of the focus and thus did
not produce an empty set, it is trivial that its broader term would also not
produce an empty set.
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Chapter 3

Approach

In the following sections, we will present the theoretical foundations for our
model. First, we will introduce a basic model as a modification for Sacco’s
model for dynamic taxonomies. Then, we extend that model for a specific use
case to be applied in the field of digital humanities.

3.1 Framework
In this section, we formalize the framework our for approach to fulfill the
previously illustrated requirements. Wei et al. proposed a general framework
for faceted search systems[37] which we will apply in a modified form. It
is illustrated in Figure 3.1. The original framework consists of three main
modules. Namely, the generation of a faceted taxonomy, query refinement and

Figure 3.1: The general framework for the faceted search system.
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CHAPTER 3. APPROACH

result ranking. These cover the key technologies facet term extraction,
hierarchy construction, compound term generation, and facet ranking. We
add the module of taxonomy modification to the framework as an additional
component. In the following sections we will describe those components and
how we utilize them in a tool for rapid prototyping.

3.2 Model
3.2.1 Basic Model
We use Sacco’s model for dynamic taxonomies, introduced in Section 2.2, as a
basis for our approach. Thus, we work with a materialized faceted taxonomy
consisting of a faceted taxonomy F with a taxonomy T having a terminology
T and a subsumption ≤, a set of objects O, an interpretation function I, and
a set of queries Q. Q is the set of queries that can be formulated over T using
standard boolean operators.

Following Sacco et al., a connection between the taxonomy and the un-
derlying set of objects is achieved by the description function D and the
interpretation function I. Objects are described by some terms in the tax-
onomy, and terms in the taxonomy can be interpreted to reach some ob-
jects. For our model, we now want to shift the focus from exploring ob-
jects to exploring the relationships between terms. Sacco introduced the the
base extensional inference rule to describe relations between terms and de-
fined it as follows:

Definition 5 Two terms A and B are related iff there is at least one object o
in the extension which is classified at the same time under A or under one of
A’s descendants and under B or under one of B’s descendants.

Thus, A and B are related if there is some object o with its description
DĪ(o) including both the terms A and B or some terms from their deep ex-
tensions. This definition of relations between terms has two major drawbacks.
First, it can only represent bidirectional relations between terms. Secondly,
it does not allow multiple different relations. Because our focus lies on the
exploration of those relations, a more nuanced representation is necessary to
also model unidirectional relations of different kinds between terms. Thus, we
break with the base extensional inference rule and introduce our own concept
of relationality between terms. For this, we consider the collection of objects
O in a materialized faceted taxonomy to consist of sets describing relations.
A relation is not inherently defined and can be any association between two
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terms. We introduce a new function to the model of dynamic taxonomies, the
reference function R. Each object references exactly one node and contains all
relations that the referenced term has with other nodes. The function R(o)
returns the node assigned to the object o. The set O can contain relations of
many different varieties. We denote the existence of a relation of the kind r
between two terms A and B as follows:

A ▷◁r B

Note here that A ▷◁r B does not imply B ▷◁r A. Relations are directed,
and just because A somehow relates to B does not necessarily mean that B
also relates to A in the same way. A ▷◁r A may hold true depending on the
relation, so a leaf node may relate to itself. Thus, the description of any object
o with respect to a relation r is denoted as follows:

DI,r(o) = {t ∈ T | R(o) ▷◁r t}

DI,r(o) only includes the specific nodes to which R(o) has a relation to.
We consider relations between terms to only exist between leaf nodes, so terms
that subsume no other terms. So, the terms in the description DI,r(o) of o are
exclusively leaf nodes. To extend the descriptions to include terms from the
entire set T , using DĪ is necessary to include each terms deep extension. We
denote the set of leaf nodes of the deep extension of any t as L(t):

DĪ,r(o) = {t ∈ T | L(t) ∩DI,r(o) ̸= ∅}

Thus, the description of any object comprises all those terms that the
referenced term has a relation to. In the other direction, we can define the
interpretation function for any term t with respect to the description D and a
relation r as follows:

ID,r(t) = {o ∈ O | t ∈ DI,r(o)}

ĪD,r(t) = {o ∈ O | t ∈ DĪ,r(o)}

Consider as an example the materialized faceted taxonomy presented in
Figure 2.5. To represent that taxonomy with our model, the previous set
of objects, which was composed of hotels described by the taxonomy, is now
included as a regular facet. The described representation is shown in Figure
3.2. Note that we removed the facet Facilities simply to reduce clutter.
Each leaf node is referenced by an object that describes relations between the
referenced term and other leaf nodes in the taxonomy. In this example, only
one type of relations exist between objects. The objects referencing hotels
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comprise those terms which were part of the description of the hotel objects
in Figure 2.5. But all other leaf nodes are referenced by an object as well
which is described by all terms to which the referenced term relates, which
in this case is only hotels. Consider the object R0 which references the term
Berlin. Since in Figure 2.5 the object H0 was described by Berlin, R0 includes
H0 in its description. Also R4, the object referencing H0, includes Berlin in its
description. So in this case, Berlin ▷◁ H0 and H0 ▷◁ Berlin, but directionality
is given due to each leaf node being referenced by an individual object.

Figure 3.2: Transforming Figure 2.5 to conform to the modified model. The facet
Facilities was removed for reasons of simplicity.

One can consider this model as applying some methodology from knowledge
graphs to classical faceted navigation. All is − a relations are organized in
a faceted taxonomy, while all elements in the leaf nodes are connected by
some relation, thus constructing an illustration of a knowledge graph. Our
contribution here consists mainly in using relation objects as the domain of
a materialized faceted taxonomy. This allows to apply all operations and
concepts from faceted navigation to explore relations between terms.

3.2.2 Extended Model
To fully utilize the possibilities of the basic model, we extend it further by
defining the concept of spans.

Definition 6 A span is a non-empty set ϕ of data points in an n-dimensional
space.
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So in the most general way, a span can be seen as any set of data points.
For our extended model of a faceted taxonomy, all but the narrowest terms of
T are simply described by labels, or abstract concepts. The narrowest terms,
or leaf nodes, are spans which belong to the set S ⊂ T . A term can subsume
either labels or spans, but not both. Since all spans are leaf nodes, they
have no children. For our extended model, we only consider the existence of
relations between leaf nodes in the taxonomy. All other terms are considered
to be abstract terms to simply divide the terms in a facet into meaningful
units. Thus, in our extended model, objects consequently only comprise
relations between spans. A relation can exist between any two spans whereas
the condition for a relation to exist is not inherently defined but relies on the
requirements and the underlying data.

As an example, let us consider the exploration of a textual corpus. When
working with textual data, a natural way to represent that data could be by
using character spans, describing segments in a textual data source. We define
character spans as follows:

Definition 7 A character span is a span ϕ = {S,E,R}, where S is the
start character, E is the end character, and R is the underlying data source.

There can exist many relations between character spans. In our example,
we consider intersections as relations. An intersection between two character
spans exists if they are fully or partially overlapping. Note here that the
following definition holds only for character spans on linear data sources like
traditional text or audio. Multidimensional data like images require a more
complex definition.

Definition 8 An intersection exists between two character spans A and B
iff AR = BR and BE ≥ AS and BS ≤ AE, or vice versa.

We denote the existence of an intersection between two spans A and B as
follows:

A ▷◁i B

Using the definition of intersections and given a set of character spans, we
now can construct a set of objects O consisting of relation objects which in
turn hold a reference to a span and its intersections. A schematic overview of a
faceted taxonomy using character spans is pictured in Figure 3.3. Notice that
the representation currently misses a domain O. The hierarchically organized
elements denoted with letters represent regular terms, while the highlighted
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areas on the bar serve as spans. The term A describes the root node. Note here
that despite using a root node and essentially merging different taxonomies,
we still consider the model to be a faceted taxonomy, partitioned into the
imminent descendants of the root node. The spans are actually part of the
taxonomy and subsumed by their respective parent. The visualization is cho-
sen to emphasize the concept of intersections between character spans. The
intersections, and thus relations, between spans become clearly visible and
exist wherever the highlighted areas overlap each other.

Figure 3.3: A faceted taxonomy with character spans as leaf nodes. The spans are
visualized as ranges on a linear data source to highlight intersections.

On the basis of this visualization, we can now construct the full material-
ized faceted taxonomy with intersections as relations which are represented
in the underlying set of objects O. Figure 3.4 displays this materialized
faceted taxonomy. Notice that the set of spans S is now integrated in the
taxonomy just as the regular terms. Each span is now referenced by an
object in O. All intersections between ranges visible in 3.3 are considered as
relations and added to the objects referencing the respective spans. Note here
that the relation in this case is commutative as well. The relation could be
easily transformed to being one-directional by removing or vice versa from
Definition 8. Now, a span only intersects another span if it is encompassed by
another span, the encompassing span does not intersect the other. Considering
for example, Figure 3.4, now E0 ▷◁i D0, but not the other way around.
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Figure 3.4: The materialized faceted taxonomy resulting from Figure 3.3. The set
of relations consists of all intersections between spans. Some relation objects are
empty, if the referenced span has no intersections.

The presented model offers the possibility of a domain which moves away
from actual objects described by the taxonomy being the area of interest, but
relations between terms. Considering available faceted search systems for the
exploration of textual corpora[16], conventionally, the explored set of objects
is static and usually consists of the set of the full documents. In the following
sections, we will continue to focus on the application of the model on textual
data sources.

3.3 Faceted Taxonomy Generation
The generation of a faceted taxonomy traditionally consists of two tasks. The
extraction of viable facet terms from the underlying data, and the construction
of a hierarchy. Our model requires additional steps, namely the extraction
of relevant spans and the identification of their relations. Depending on the
research goals and the underlying data, these steps may differ a lot. In this
section, we want to give an example for the faceted taxonomy generation
for collections of texts. Thus we consider spans to be character spans and
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the relation between spans to be commutative intersections. Textual corpora
are often separated into structured and unstructured data. By structured
we mean data that can be precisely assigned to a field. In the case of a
textual document collection, this includes metadata like author names and
publishing date. On the other hand, while being an imprecise term, we define
unstructured data as data that has not been clearly identified and is, as
such, not part of any field. In the case of a textual document, this is the
actual body of the text. Conventional faceted search interfaces allow faceted
navigation using the structured data to filter documents with an additional
tool to perform a full text search in the unstructured data [32]. Using the
concept of spans as leaf nodes in a taxonomy, we have the opportunity to
apply structure to the unstructured data.

At first, all relevant meta data describing objects from the corpus need
to be identified. Meta data consists of key-value pairs, with keys being i.e.
”Author” and ”Year”. All keys are added as a facet to a joint faceted taxon-
omy, with all unique values of a key being its shallow extension. For example,
a subsumption in the form of 1994 ≤ PublishingYear would be possible.
While extracting those meta information, the entire length of the underlying
data source is added as a span as a child of each value. So the previous
example of 1994 ≤ PublishingYear would receive another subsumption,
narrower than 1994 containing a span S with SR being the underlying text,
SS being 0, the start character, and SE being the last character of SR, thus
S spans the entire text. So, each meta value V subsumes a set of spans SV ,
each of those spans referencing the content of a data source described by that
meta value.

After extracting meta data, the actual content of the texts is analyzed
and added to the faceted taxonomy. As already mentioned, conventional
faceted exploration tools perform operations to filter a static set of underlying
data sources. To fully utilize all aspects of our model, text segmentation
is performed on every data source. Using different granularities, texts
are divided into meaningful units. These units can be for example entire
documents, pages, paragraphs or sentences. Note that the focus of this
work is not the automatic detection of meaningful units in texts. While the
area of detecting sentences or paragraphs in texts is well researched but not
without flaws[9][13], we assume a perfect division into the desired elements
for the theoretical model. Consider now the currently investigated unit to
be sentences. A facet sentences is added as a child to the root node of
the taxonomy. While iterating through the entire document collection, each
detected sentence is added as a term to the taxonomy, subsumed by the
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facet sentences. Now, the span describing the location of the sentence in
the data source is identified. This span is added as child of the newly added
term. Although the spans could be added directly as children of the facet
sentences, since they are spans describing sentences, adding the additional
layer of terms containing the individual sentences helps with repetitions. For
a reoccurring sentence, no new term would be added, but the already existing
term would gain the new span as child. This process can be applied for any
meaningful unit that covers entire documents, or for non sequential units, like
domain specific descriptions. These could be for example research reports
or abstracts, depending on whether a viable method for extracting those is
available.

A similar approach is taken in expanding the faceted taxonomy by areas
of interest for the researcher. Depending on the research question, relevant
facets need to be identified. If, for example, the corpus and the research
question are of medical nature, one additional facet could be Diseases, whose
subsumptions are different illnesses related to the research question. The
method of creating such hierarchies is not fixed, but they could be constructed
manually by the domain expert, or, for example, by using the means of
a semantic network like BabelNet[22]. Once this hierarchy is constructed,
relevant spans for each disease must be identified in the underlying corpus
to create leaf nodes in the taxonomy. Identification could be performed for
example by simple full text searches, regular expressions or machine learning
models. We call spans that do not describe any meaningful textual segments,
like sentences or paragraphs, semantic annotations.

In the next step, the indexable set of objects needs to be constructed. As
already mentioned, each span is referenced by an object describing the relations
of that span with other spans. So for each span, an object o is added to the
set O which references the respective span. In the case of our example, these
relations are intersections. Thus, following Definition 8, we identify all pairs of
spans a and b where a ▷◁i b, thus all pairs of spans between which there exists
a relation from a to b. Again, in our example the relations are commutative.
Now we identify the object o where R(o) = a and add b to its description.
The constructed set O now serves as the domain of a materialized faceted
taxonomy.
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3.4 Taxonomy Modifications
After constructing a faceted taxonomy, the entire underlying data is navigable
by means of faceted navigation. In the case of the example of a textual
corpus, this is achieved by extracting all desired types of text segments
and annotations. Thus, when reaching the layer of leaf nodes, one or many
character spans will be displayed. Spans are abstract concepts, and each type
of spans must have specific rules for displaying them. Since a character span
is made up of a start character, an end character and the reference to a data
source, the text segment referenced by the span will be shown. For example,
only all occurrences of a specific sentence are displayed. Naturally, depending
on the data and the chosen type of span, this representation differs.

Another important aspect of our approach is to offer a user means to
actively engage in the modification of the taxonomy. Depending on the
research interest, the quality of the annotations is crucial. In our case, this
is equivalent to improving precision and recall of the faceted search system.
While precision describes how many of the retrieved items are relevant,
recall describes the ratio of all relevant items that is retrieved. Thus, when
improving precision and recall, one wants to reduce the number of false
positives and false negatives respectively. Depending on the chosen methods
during the initial generation of the faceted taxonomy, the quality of the
annotations may be not sufficient and a query would return too many false
negatives or false positives, if annotations are either wrongly detected or
missed. Improving the quality of queries is the incentive for including dynamic
taxonomy modifications in our faceted search system.

There are multiple modifications that can be performed in the taxonomy.
Terms and spans can be both added and removed. When adding a regular
term, it is simply inserted in the hierarchy. Note here that a term can
only either subsume other regular terms or spans, so the locations for
inserting terms is limited. When removing a term, not only the term itself is
removed from the taxonomy but also the entire deep extension of it. Should
spans be included in the deep extension, the set of objects O needs to be
recomputed since some objects may reference removed spans or relations
between spans may not exist anymore. The locations for adding spans are
also limited, since they can only be inserted as leaf nodes. In both cases of
either adding or removing spans the set of relations O needs to be recomputed.

As an example, we continue with a textual corpus as underlying data.
Consider a character span S with the reference SR ranging over the interval
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between SS and SE. Since the span is just a reference, it is necessary to create
an ordinary string out of it to display properly. We recognize this string to
have a start character 0 and a length of SE −SS. Consider now a substring of
this string to be a false negative annotation, so it should be annotated but is
not. Now the false negative substring can be marked and added as a span S∗

to its designated parent term. Trivially, SR = S∗
R since the newly added span

S∗ shares the underlying data source with the original span S. Consider is to
be the start character and ie to be the end characters of the actual substring
in the string. Now S∗

s = is+SS and S∗
E = ie+SS. The span is now part of the

faceted taxonomy and it is possible to reference it in its data source and access
it by means of faceted navigation. Now, all intersections between S∗ and the
entire set S are determined and the set of objects O updated. This technique
can be used to improve the quality of the annotation on while exploring the
taxonomies and increase the precision of future queries. False negative results
can simple be removed from the taxonomy on encountering to improve the
recall.

3.5 Query Refinement
As described in Section 3.2, in our model, the set of objects O in a materialized
faceted taxonomy consists of objects referencing a span and being described by
relations of that span to other spans. The result of the interpretation function
of any term t in a materialized faceted taxonomy is the subset of objects in
O that share at least one span with any span in the deep extension of t. One
part of the faceted taxonomy is the set of queries Q that can be formulated
over T using standard boolean algebra. Thus, it contains all queries described
by the grammar q ::= t | q ∧ q′ | q ∨ q′| ¬q | (q) | ϵ, where t is a term in T and
ϵ the empty query. Since our model uses the same notions of interpretation
and description as Sacco’s original model, the interpretation I can easily be
extended to queries. So, queries can be interpreted just like regular terms and
produce a set of objects as follows:

I(q ∧ q′) = I(q) ∩ I(q′)

I(q ∨ q′) = I(q) ∪ I(q′)

I(¬q) = O − I(q)

Note that the − in the last equation denotes set difference. Thus, the
answer of a query q is the set of objects that is produced by Ī(q). The way in
which the resulting set is used is dependant on the kind of objects and often
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trivially deducible when using conventional objects, like articles or products.
In Sacco’s model, the set of objects is not inherently defined but only their
connection to the taxonomy by the description and interpretation. Other
attributes of the object are irrelevant for the navigation, only for displaying
them and further interaction. In our model, the objects are fully defined.
Other than their description, the only attribute they have is the reference
back to their respective span. Now the resulting set of a query is a collection
of objects that have no attributes that can trivially be used for displaying
them or interact with them further.

When considering a set of objects O, we can use the references R(o) for each
object o ∈ O to produce a usable result. Consider a query q which acts as a
focus in the materialized faceted taxonomy, r as some relation that is explored
and Ir(q) as the set of objects in which the interpretation of the query results.
Thus we denote the set of terms TI,r(q) that are referenced by Ir(q) as follows:

TI,r(q) = {R(o) | o ∈ Ir(q)}

Thus the result of a query can be interpreted as a set of spans. It is
worth to note that when considering a materialized faceted taxonomy with
relations between spans, the set of terms TI,r(q) can be used to construct a
new taxonomy that can be utilized to access the results of the query. In other
words, the result of a query are simply all terms in the taxonomy to which the
query relates. Formally, we define the terms T̄I,r(q) that are included in the
new taxonomy as follows:

T̄I,r(q) = {t ∈ T | L(t) ∩ TI,r(q) ̸= ∅}

Where L(t) are all the leaf nodes in the deep extension of t, thus only
spans, and TI,r(q) the set of terms that are referenced by the query q with
respect to the relation r.

As an example, we consider a simple query applied to the schematic visu-
alization in Figure 3.4. The application of the query is visualized in Figure
3.5. Highlighted in green are the query term and those spans whose relations
are considered in the query. Highlighted in pink are the relations that result
from the interpretation of the query and the terms that are included in the
set T̄I,i(q) with respect to the intersection relation which we denote by i. Con-
sider a query q consisting solely of the term D. Now, Īi(q) utilizes all spans in
the deep extension of D, so D0, D1 and D2. Ergo, Ī(q) = {R0, R1, R2, R3, R5, R8}
and TĪ,i(q) = {D0, D1, D2, E0, F0, H0}. To construct a new taxonomy, we consider
the set T̄I,i(q) with respect to the query q consisting of the term D. With
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T̄I,i(q) = {D0, D1, D2, E0, F0, H0, D, E, F, H, B, C, A} and their respective relations in
the taxonomy T = (T ,≤), a reduced taxonomy can be constructed that only
includes terms in whose deep extension are spans to which the spans in the
result of the query q relate to.

Figure 3.5: The query consisting only of the term D is applied. Highlighted in pink
is the resulting taxonomy which is created in addition to the selection in green.

The resulting taxonomy can now be used to find the answer to a research
question posed as a complex query.

3.5.1 Query Language
When formulating a research question, one often has not a full taxonomy in
mind as a result but a specific term and how other terms relate to it. For this
reason, each query has to include a so called target. A target describes the
term that is investigated by a query. While it is possible to apply any boolean
query to the materialized faceted taxonomy, desired results are often only
achieved by using a specific pattern. Consider a taxonomy with the terms
A, B, C, D and E each with any number of spans, relations of type r between
them and a research question that wants to find all instances of A to which
instances of B and C are related to. Now it is an important notion that even
though there may not be any relation between B and C, the query B∧C returns
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all those spans s ∈ S where s ▷◁r a and s ▷◁r b for any a ∈ A and b ∈ B. In the
newly created taxonomy from the filtered spans a focus is set to examine the
subtree with the target as a root, so the target becomes the focus of the new
taxonomy. In other words, the target is added as an additional clause to the
query, so the full query is now A ∧ (B ∧ C). Note that using standard boolean
operators, we have to assume a definitive relation between terms without the
ability to specialize it further.

While logical operators are a great tool to mathematically display these
queries, they are tedious for non-expert users to interact with and it is virtu-
ally impossible to handle multiple different relations in a single model using
only standard boolean operators. Thus for any user to be able to formulate
such complex queries, we introduce a small query language. Common query
languages like SQL[7] or SPARQL[35] or expression languages like XPath[36]
offer many possibilities to formulate complex queries to access data organized
in specific structures. Due to the variability of the possible relations in
combination with the small amount of necessary operations, a new and small
query language is a viable option which adopts some established concepts
while introducing its own necessary complexity.

First of all, let us replace logical operators with their natural language
equivalents AND, OR and NOT respectively, modifying our example query as
follows:

A AND (B AND C)

In the previous examples we always only used a single relation between
spans in a model. Now it is possible that multiple different relations are in-
cluded in the same model, so each span referenced by multiple objects, in which
case one would have to identify the one relation between terms one is interested
in examining. Now the keyword for the desired relation is dependant on the
requirements and not inherently defined. Considering a model with character
spans and intersections as relations, the query can look as follows:

A INTERSECTING (B AND C)

Note that between B and C the keyword AND remains, but the relation
keyword describes how the query executes. It now returns all spans of A with
which any spans of B and C intersect. This keyword could be replaced by any
relation included in the model. The keyword describing the relation can be be
prefixed by a NOT, to include all instances of A which do not intersect with any
instance of B and any instance of C. Other operators do not make sense at this
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point. We call any construction of a relation in combination with a regular
boolean query, like INTERSECTING (B AND C) a sub-clause. Any number sub-
clauses can now be appended to the query to further filter the amount of target
spans. While the first sub-clause can only have the keyword NOT prepended,
all others can also be prefixed by AND or OR to specify the desired operation
to filter the target spans. Consider an additional relation in the model called
SIMILAR TO. It constructs a relation between all spans which are, according to
some definition, semantically similar. We can now extend the previous query
by introducing a new sub-clause as following:

A INTERSECTING (B AND C) OR SIMILAR TO (D NOT E)

This now rather complex query would return all those spans in A that
intersect both any span B and any span in C, are similar to a span in D but
not to any span in E, or both. Since the result of such a query is again just a
set of spans, one can use a complex query as part of a sub-clause in another
query. We can construct an example for a nested query as follows:

A SIMILAR TO (B) AND INTERSECTING (C INTERSECTING (D OR E))

This complex query would now return all those spans in A which are similar
to any span in B and intersect any span in C which intersect any span in D or E.

How any query is applied now defined, but not how the returned result
should be handled. An example could be a simple get-command which is
comparable with SQL’s SELECT keyword. But since the operation describes
from a user’s perspective less of a select but more of a search operation,
we call the standard get-command FIND. Thus, to transform all previously
defined queries into get-operations, they simply need the keyword FIND as a
prefix. Many other operations are possible. For example, a COMPARE . . . WITH
operation could take two queries as input and return some statistics that show
differences between the results of the queries, like the amount of the results
or their ranking.

Using these tools, a great number of complex queries can be constructed,
or, possibly, research questions formulated as such queries.
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3.6 Result Ranking
After applying a query and receiving some result, those results must be
ranked in some way depending on their relevance to allow users to find those
results that are most relevant to their current query and more generally their
research question.

After applying a query that has a term as target which does not directly
subsume leaf nodes, it returns a taxonomy. In this case, one the most trivial
way to rank those facets is by using the notion of the object count. The
remaining terms in the new taxonomy can be considered simply as zoom points
tx and as such are accompanied by the count of objects that selecting the point
would yield. This count describes the imminent children, so, the amount of
directly subsumed regular terms or directly subsumed spans. Thus it would be
the cardinality of the set of terms in the shallow extension of tx in the newly
created taxonomy. It would also be accompanied by an additional count refer-
ring to the total count of direct children in the original, unfiltered taxonomy.
This way, both a relative and an absolute ranking of the terms can be achieved.

Result ranking is the process of ranking the individual spans that are
returned by a query. Depending on the investigated relation, different ap-
proaches are possible. An obvious method that can be applied irrespective
of the type of relation is to investigate the amount of spans that each span
in the target facet is related to and use that for scoring. Such a score for an
object o ∈ O with respect to a query q ∈ Q and an inspected relation r can be
computed as follows:

Scq,r(o) = |{s ∈ L(q)|s ∈ DI,r(o)}|

Thus, the score of a relation object o is the cardinality of the set including
all those spans that describe the leaf nodes of the query, thus, all those spans
that are considered for relations between terms, which also are part of the
the description of the inspected relation object. So, this score would rank
objects, and in turn spans, higher, depending on the amount of terms which
are related to it. This score can of course be computed for any term in the
newly constructed taxonomy in a query, counting the relations that any spans
in the deep extension of the term have with other terms. Thus, for some term
t ∈ T̄I,r(q), the terms of the resulting taxonomy after a applying a query, the
score can be computed as follows:

Scq,r(t) =
∑

o∈ĪD,r(t)

Scq,r(o)
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While simply counting the relations between objects is a method of scoring
that is universally usable for any kind of relation, depending on the type of
relation, the measuring of a score can be adjusted to fit the requirements of that
relation. For example, intersections between character spans can be regarded
as boolean relations. Either an intersection exists between two spans, or it does
not. The previously defined score may already suffice for ranking. Another
measure for relation already mentioned was the similarity between spans. The
similarity could be also regarded as a boolean relation when considering a
threshold above which a span is considered similar to an other. But similarity
can also be considered to be a numeric value depicting not if two spans are
similar, but how similar they are. Of course, still only relations above a certain
threshold must be considered. The score Scq,r(o) of an object o could now not
only count the relations but may consist for example of the sum of similarities,
the average similarity or the highest singular similarity. Thus, each relation
may offer its own possibilities for ranking the results of a query.
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Evaluation

In the following sections, we will introduce a prototype implementing the pre-
sented model in a basic form. Then, we will evaluate the prototype and present
the results of a small user study concerning the usability and user experience.

4.1 Prototype
For the implementation of a prototypical application, we want to include the
main building blocks of a faceted search system described in Section 3.1. These
building blocks are the generation of a faceted taxonomy, with the extraction
of facet terms and the construction of a hierarchy, applying modifications to
the materialized faceted taxonomy, and provide the possibility to conduct
complex queries and rank the received results.

Figure 4.1: A simple data flow diagram describing the exchange of data between
the components of the prototype.
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We split the prototype into multiple components. First, a database
provides long term storage for terms, spans and relations. Next, an API
as backend provides means to interact with the stored data. Both a web
application as frontend and a jupyter notebook can interact with said API.
While the notebook provides easily accessible tools for developers or more
experienced users allowing the importing of different data sources and the
means to perform facet term extraction and hierarchy construction on a larger
scale, the web application provides an interface for users to interact with the
materialized faceted taxonomy. This interaction includes navigation, con-
structing complex queries, and applying basic modifications to the taxonomy.
Figure 4.1 provides a schematic overview of the data flow.

We implemented the prototype to work exclusively with textual data. The
focus of this thesis is still the application of the model to the field of digital
humanities, thus even though the model offers more possibilities, we consider
the work with textual data the main focus. Accordingly, the prototype uses
character spans as the only kind of span which serve as leaf nodes, and the
intersections between them as the sole relation.

4.1.1 Notebook
For the facet extraction and hierarchy construction, the notebook is used to
access the API. Basically, the procedure presented in Section 3.3 is applied.
The text corpus that should be explored is first split into meaningful segments.
For most cases, we used entire documents, paragraphs and sentences as gran-
ularities. First, we create a term for each used granularity and append them
to the root node. For each unique document, paragraph or sentence, a term
is created and subsumed by its respective designated parent. Thus, for exam-
ple, a sentence is subsumed by the sentence term. Now, for each segment, a
span is constructed that contains its start character, the end character, and
a reference to the document of its origin. This span becomes the child of the
term that was created for the same segment, or to the term that describes an
identical segment, should they not be unique. During this segmentation, we
also construct spans for the meta data for each document. Each of these spans
also have a range that covers the entire document between their start charac-
ter and end character. For each unique meta key a child of root is created and
for each meta value a child representing the respective key. After iterating all
documents in the underlying corpus and constructing their spans, all intersec-
tions between all spans are calculated. Using these intersections, the objects
of the faceted taxonomy are generated. Each span is referenced by an object,
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that stores which other spans intersect the referenced span. An example for a
layout of such a faceted taxonomy is displayed in Figure 4.2. Note that in the
illustration the set of spans and the set of relation objects is only presented
schematically, so the displayed relations and references between the two sets is
just for illustration purposes. Notice also that terms that are meta values sub-
sume multiple spans, while each document and paragraph only subsume one
span. When an author has multiple works or multiple works were released in
the same year, these meta values would subsume multiple spans. Documents,
in some cases, can be considered unique, in which case each only subsumes one
span. Due to the fact that sentences may very well be repeated in different
works, a sentence term can subsume many spans. This taxonomy serves as
a base for the system and is usable in its state. Although, for the answering
of research questions that extend meta data, domain specific annotations are
necessary.

Figure 4.2: An example for a taxonomy constructed by the facet extraction and
hierarchy creation of our model.

For our prototype, we decided to only implement the discovery of possible
annotations by using regular expressions (regex). Using regex, it is usually
easier to achieve a high precision with a low recall, thus it is easy to ensure
that the returned results are relevant, but many relevant results may not
be returned. We deemed this preferable for a prototype to at least work
with mostly relevant data, even though many false negatives may exist. Any
elaborate machine learning algorithm may be employed here, but none is
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implemented thus far since that would be beyond the scope of this work.
Regular expressions provide a sufficient amount of results to use as domain
specific annotations.

Also, the construction of the additional taxonomy elements is conducted
manually. While it is possible to use some knowledge base to generate terms
and subsumptions, the resulting taxonomies were bloated and often not usable.
To not be dependant on the quality of some knowledge base, and since specific
research questions may not need too large a taxonomy, we decided to only
create terms and subsumptions manually. First, one would add a term as a
child of the root. Now it is already possible that this one term is sufficient,
or maybe a deeper hierarchy has to be constructed. For each added term, the
wikipedia page ID for the closest found match is identified. It can be later used
to display some basic information and provides thumbnails in the taxonomy.
The page ID for each term can be manually modified. When the desired depth
of terms is reached, one can build a regular expression to describe occurrences
of a current leaf node. All occurrences of the regular expression in any text are
used to construct spans which are added as children of the current term. Then,
all intersections of the newly added spans with any already existing spans are

Algorithm 4.1: findIntersections
1 findIntersections(S,SA,R)

Input : Set of all spans S, set SA ⊂ S of spans that were newly
added as annotations, the set of all relations R

Output: A modified set of relations R
2 begin
3 for each a in SA do
4 ra := element r in R where R(a) == a
5 for each b in S do
6 rb := element r in R whereR(b) == b
7 if aR == bR then
8 if ((bE ≥ aS & bS ≤ aE) | (aE ≥ bS & aS ≤ bE)) then
9 ra.addRelation(b)

10 rb.addRelation(a)

11 end
12 end
13 end

Figure 4.3: A simple depiction of the algorithm to find intersections between some
newly added spans and the entire set of spans.
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calculated and relation objects constructed. The newly added terms
and spans are now fully integrated components of the materialized faceted
taxonomy. Figure 4.3 shows a simple algorithm used to calculate all the
intersections between some newly added spans and the entire set of spans.
Note here that due to the bidirectionality of intersections, relations are added
to both spans in one iteration.

This concludes the description of the generation of a faceted taxonomy.
Since the notebook communicates directly with the API and thus with the
underlying database, requests may be posed at any time and any extension re-
garding facet term extraction, hierarchy construction and annotation discovery
can be implemented here.

4.1.2 Web Application
After generating the basic taxonomy, the web application is used to navigate,
modify and conduct queries. Several issues arise regarding how to implement
opportunities for interaction that fulfill all requirements of the underlying
model, especially for how to construct complex queries.

The faceted taxonomy itself is presented in a temporal layout[27]. So, when
navigating the taxonomy, the previously displayed terms are fully replaced by
new ones. A user starts navigation with the focus on the root node, thus all
immediate descendants of the root node are visible. Terms are displayed as
a list, accompanied by their total count of children and the count of children
remaining with some query applied to it. If no query is applied, both values are
the same. Each non-leaf node also has an interaction element that allows to
change the focus to that term, thus zooming into that term. Upon reaching leaf
nodes, or spans, one naturally can not zoom in further. Since we use character
spans in the prototype, they can easily be displayed by simply showing the text
they reference. A history of the steps taken deeper into the hierarchy is shown
which can be used to navigate back to previously used foci. As an navigational
aid and for simply putting spans into context, all intersections each span has
are displayed. These can be used to navigate to the respective intersected
term. An example navigation is shown in Figure 4.4. If a wikipedia page ID
for a focused term is defined, a short excerpt of the article can be displayed.
A single taxonomy itself can be filtered already by using a search bar which
accepts regular expressions. Three different modes for searching are available.
In the default mode, all terms and spans that match the search query remain
in the taxonomy.
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(a) The first elements of the initial state of
a taxonomy.

(b) The state of the taxonomy after changing
the focus to the ”Sätze” facet.

(c) The first element in the list after zoom-
ing into some sentence, displaying spans. In-
tersections of a span with other segments are
displayed.

Figure 4.4: A sample navigation from the initial state of the taxonomy to the
spans. The history of the navigation is displayed next to a search bar to return to
a previous focus.

That means, if a regular term matches the query, all its children remain
in the taxonomy and even if a term does not match the query, if one of its
children does, it remains. For more search modes, we used prefixes inspired by
XPath[36]. If a search is prefixed by ./, the query is only applied to currently
visible terms and does not affect children at all. If prefixed by .//, the query
is only applied to leaf nodes and ignores regular terms. While this simple
search already allows to filter the taxonomy, it misses the ability to formulate
complex queries using the query language defined in the previous chapter.

To let the user formulate complex queries combining multiple terms, we
decided on using a setup that utilizes the same taxonomy multiple times,
once for each query term. So, each query term, or set of query terms, is
selected by navigating the temporal taxonomy. At the start of a session, a
user is presented with the basic layout for a query. This includes a changeable
name for the query, the FIND keyword, the root facet as query element, and
the INTERSECTING keyword. Since we only implemented the intersection
relation and the find operation, the keywords are static and shown for the
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sake of displaying a complete query. The query element, that is currently
the root element, is the target facet, thus the taxonomy that will be used
for displaying the results. So the actual term that one wants to examine is
selected by navigating the taxonomy. The current focus of the taxonomy
is displayed in the query element. Now, any number of query terms can be
added to the query. Each query term consists of two things; an operator
and a focus in a taxonomy. A user can choose between the operators AND,
NOT and OR, while the first additional query term has only the options NOT
and no operator at all. In a displayed taxonomy, terms can be selected
to be added to the focus of the current query term. When multiple of the
available zoom-in points are selected, they are chained with OR operators.
One aspect of faceted navigation is the condition that each query produces
a non-empty set of results, since available features are updated after adding
a query term[34]. So optimally, the current query in our system would be
executed after adding a new term and the taxonomy for selecting the new
query term should display only those element which selection would lead to
a non-empty result. Due to expensive calculations for executing a query, we
decided to allow empty sets as results. Only when selecting the target ele-
ment the current query is executed. While not optimal, frequent executing of
the query and the wait as a consequence thereof impaired the workflow heavily.

(a) The initial state of each query. The root facet of the taxonomy is the focus
and selected.

(b) The query after multiple elements were added to it to filter the results.

(c) A new query is constructed using the results of the previous query to build a
nested query.

Figure 4.5: Queries of different complexities for filtering results.
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A problem with this method is the construction of nested queries. To
solve this, a user can create any number of simple queries and use the results
of a query as a query term of another one. Since each query returns a set
of relations, and as a result a set of spans, they can easily be reused. In
the taxonomy to choose the focus for any query term, all other queries are
simply available for selection and can then, after selection, be treated as any
query term and are provided with an operator. See Figure 4.5 for examples
of queries of various complexities. This way of constructing nested queries
brings additional benefits. Queries are constructed iteratively, and one can
always easily return to previous results. Also, the same query can be a used
as a query term in any number of other queries, which allows for simple
comparison between multiple questions regarding similar topics.

Algorithm 4.2: executeQuery
1 executeQuery(t, Q)

Input : A target facet t and a list of query terms Q. Each q ∈ Q is a
pair of an operator qo and the set of spans qs that is
described by the query terms or the query.

Output: A set of spans tSpans
2 begin
3 tSpans = L(T )
4 for each q in Q do
5 qSpans := set()
6 for each span in qs do
7 if span.intersects(L(t)) then
8 qSpans.add(span)
9 if qo == OR then

10 tSpans = tSpans+ qSpans
11 else if qo == NOT then
12 tSpans = tSpans− qSpans
13 else
14 tSpans = intersection(tSpans, qSpans)

15 end
16 end
17 return tSpans

18 end

Figure 4.6: A simple depiction of the algorithm to execute a query. For simplicity,
we use the spans that are in the deep extension of each query term to include both
regular terms and entire queries in one step.
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A simple depiction of the algorithm to execute a query is shown in
Figure 4.6. First, all spans of the target facet are determined. For each
query parameter, the spans described by the query terms or the full query
are detected. It is then determined, which of the query spans intersect
the full set of target spans. The resulting query spans are then used
to filter or extend a set of target spans, depending on the used operator.
Note that the arithmetic operations ins lines 10 and 14 describe set operations.

For each query term, a set of options can be modified by the user. The
set of options can be seen in Figure 4.7. First, the sorting mode can be set.
Sorting can be seen as the ranking of the results, with the displayed elements
in the taxonomy sorted according to the selected ranking. All sorting modes
can be applied in ascending or descending order. The first three sorting modes
are trivial. Elements can be sorted according to their absolute count, relative
count, and alphabetical. The absolute count describes the amount of children
any term has, and the relative count of a term in this instance measures

Figure 4.7: The set of options available at all times.

the amount of children of a term remaining after a query divided by its
total amount of children. The fourth sorting mode, annotations, sorts terms
according to their score Scq,i(t) for each term t, with i being the intersection
relation. Thus, the rank of term t is described by the amount of spans in
the deep extension of the applied query q that intersect spans in the deep
extension of the the term t. Another option for user to apply is the visible
context. Often times, character spans depend heavily on the surrounding
context. When viewing annotation spans for example, the user would only
see the exact text the annotation references. Often, this is only a single word.
Thus the user is given the option to display any number of characters before
and after each span, to see each span in its surrounding context. During the
modification of the taxonomy, the user is given the opportunity to delete
certain terms and spans. These are not fully deleted, but rather hidden and
removed from consideration. A user can select the option to show deleted
terms, after which those hidden elements are visible again and fully viable for
further use. As a last option, users can select if the current query element
should contribute to the ranking. Ranking in this case means exclusively
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the ranking using the number of annotations. It is possible that a user is
interested in the contribution of a specific query element to the resulting
target taxonomy, in which case the contribution of non-relevant elements can
be simply hidden.

We call navigating through the taxonomy and the formulating of queries
exploring. The explore mode is the default setting of the system with the goal
to find some information through exploratory search. To achieve the possibility
for a user to perform taxonomy modifications, we introduce an additional edit
mode. Two different edit modes are available to a user, depending on which
term is currently focused in the taxonomy, since the operations for regular
terms and for spans differ. The two modes can be seen in Figure 4.8. If
the visible zoom points in a taxonomy are terms with their own children, the
available operations for a user are to add a term as a child of the currently
focused term, or to remove any number of visible terms tx from the taxonomy.

(a) The edit mode when terms are available zoom-in points.

(b) The edit mode when spans are displayed.

Figure 4.8: The two different states of the edit mode.

When a term is added as a child, the wikipedia page id of the closest
match with respect to the name of the term is determined and a thumbnail
and description text created. Should the id be wrong, it can be manually set
by the user. If deleted terms are set to be visible in the options, they can
be selected and restored to the taxonomy to be again regularly usable. If
the visible zoom-in points tx are spans, other operations are available in the
edit mode. Since spans are leaf nodes by definition, no new facet term can
be created. But now the user has the opportunity to create new annotations
in two ways. As the first way, the user can perform an operation to search
all underlying documents for a regular expression. For all matches, spans are
created and added as children of the currently focused term. This is the same
operation that is usable in the notebook and the algorithm depicted in 4.3 is
applied as well. The second way is a purely manual operation in which single
spans can be added or removed. Since character spans are used, the user
sees the actual referenced text for each span. Next to the list of intersections
underneath the spans, all existing annotations are highlighted in the text
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itself. See Figure 4.9 for an example. An existing annotation can simply be
selected and then removed, should it be a false positive. Deleted annotations
can also later be restored. If the user detects a false negative, thus a missing
annotation, the respective range of characters needs to be highlighted by the
user. In the available operations for the edit mode, the user can select of
all available terms whose spans describe annotations. So, terms describing
regular units of text or metadata, like sentences or years, are not available
here. While an argument could be made to include at least some of those
terms to counteract potential faulty segmentation, we decided to only keep
annotations to reduce clutter since the visualization of available terms is
achieved in a simple drop-down menu. After highlighting a text segment and
selecting the desired term, the highlighted text can be added as an annotation
candidate. Any number of annotation candidates can be added by the user
in any of the currently visible spans, as children of any of the available
annotation terms. All candidates can now be confirmed to be added as regular
spans to the taxonomy, as children of their respective term. Then, all in-
tersections of the newly added spans are determined using the algorithm in 4.6.

Figure 4.9: Annotations highlighted in a span. Annotations can be selected to
delete them or to change to focus to its respective term.

With these presented features we implemented all relevant aspects of our
theoretical approach, namely the faceted taxonomy generation, the modifica-
tion of the taxonomy, the query refinement using the custom query language,
and the ranking of the results according to the amount of relations using a
notebook and a web application, each specialized for a group of tasks.

4.2 User Study
To evaluate our implemented prototype, we conducted a small user study
with 10 participants. All participants are either from the fields of humanities
or computer science. With the study we wanted to discover how potential
users approach problems, if they are able to solve sample tasks covering the
entire range of the functionalities provided by the prototype, how much time
the users require to solve these tasks, and how they rate the interface and
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interaction using different metrics.

As an underlying dataset, we used a corpus consisting of transcripts of
≈5000 German political speeches[3][4]. Due to that fact, all participants cho-
sen for the study were fluent in German. We chose this dataset for the reason
that all participants show at least some interest in politics, and interest in
the provided data is desirable for evaluation[17]. These speeches stem from
different speakers of different branches of the German government, so they
cover the meta data branch, speaker, and year. For the generation of the
faceted taxonomy, all speeches were split into segments using different gran-
ularities, namely the entire speeches, paragraphs and sentences. In addition
to the segmented units of text, we prepare a small set of annotations for the
user to interact with. We created facets which describe spans from the fields
of renewable energies, mentions of several countries, and describing different
terms related to refugees. We presented the users with the same five following
tasks, of which four were of exploratory nature and one required modification
of the taxonomy:

1. How many speeches has speaker A between the years Y1 and Y2?

2. How many paragraphs contain annotations from facet F1 or F2, and from
facet F3?

3. Which speaker wrote most of the paragraphs from the previous question?

4. Which sentence, used exclusively by author A, is the most common?

5. Manually annotate two spans for facet F4. Candidate spans are in direct
vicinity of spans of F5

We provided the participants with information about what what the sys-
tem is able to do and what elements for interaction exist, but no information
about how to precisely use the provided interface to complete the posed tasks.

All participants in the study were able to complete all five tasks. After
the completion of each task, we recorded the required time a user needed and
asked the participant to estimate how difficult it was to solve the task with the
provided interface[40], with 1 being very easy and 5 being very difficult. The
table in Figure 4.10 shows the average time in seconds a participant needed to
complete the tasks and the average estimated difficulty. Figure 4.11 displays a
boxplot showing the ranges of the required durations participants spent solving
each task. We first note that while the participants required on average 167
seconds to complete the first task, the fourth exploratory task required only
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137 seconds on average, despite its heavy increase in complexity. This leads
to the consideration that a learning process takes place for exploratory tasks
and the understanding of the interface increases with each use. For reference,
an experienced user required around 30 seconds for each explorative task and
60 seconds for task 5.

Task avg. Time avg difficulty
1 167 3.3
2 124 1.7
3 133 2.3
4 137 2.5
5 235 4.3

Figure 4.10: A table presenting the average time each user required for each task
and the average estimated difficulty.

Figure 4.11: Annotations highlighted in a span. Annotations can be selected to
delete them or to change to focus to its respective term.

This assumption is supported by the estimated difficulty. While the
participants rated the first task on average with a difficulty of 3.2, which is
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rather high, the second task has only an average estimated difficulty of 1.7.
So, despite still requiring a relatively large amount of time of ≈ 2 minutes
for the second task, the participants deemed it easy to solve. The other
exploratory tasks were of higher complexity than the first two, which explains
the slightly longer required time and higher estimated difficulty. Task 5,
requiring the detection of missing annotations and their manual addition,
proved to be the most difficult task, which is shown by requiring the largest
amount of time, 235 seconds on average, and being rated by far the most
difficult task to complete with an estimated difficulty of 4.3 on average. In
Figure 4.11, one can also see a large spread between the fastest and slowest
participant. Solving exploratory tasks can be assumed to not prepare users
for the task of performing taxonomy modifications. It is unfortunate that
we did not prepare a second task for taxonomy modifications because the
possibility exists that a similar learning effect like for exploratory tasks would
be introduced. All in all we can make the assumption that a learning effect
can be observed after performing multiple exploratory tasks, while modifying
the taxonomy in a complex way proved to be a very difficult task to complete
successfully without any introduction.

As another measure, we used the User Experience Questionnaire(UEQ)[18]
to evaluate the interaction with the interface itself. We limited ourselves to the
shorter version of the questionnaire UEQ-S[29] which participants in the study
filled out after completing all tasks. The short questionnaire consists of four
pragmatic and four hedonic dimensions of quality which a participant should
evaluate with values from 1 to 7, with 1 being the most negative and 7 the
most positive estimation. A boxplot showing the results of the questionnaire

and the ranges of all 8 dimensions is shown in Figure 4.12. One first
notices that the system on average feels complicated and confusing for the
users. While there is a large spread with some participants rating the system
rather easy than complicated, even after completing all tasks one participant
rated the interface both very complicated and very confusing. A frequently
voiced point of critique and source of confusion was that the construction
of a query starts with selecting a target facet to which a user has to return
after adding query terms to see the actual results. On the other hand, the
system is deemed to be rather efficient. Thus, the proposed system can be
assumed to be a complicated tool which is efficient in solving the problems
it was designed for. Users also rate the system to be rather inventive and
leading edge, which leads to the assumption that the tool provides interaction
techniques which are new to users.

The user study gave valuable insight to evaluate how well the prototypical
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Figure 4.12: Annotations highlighted in a span. Annotations can be selected to
delete them or to change to focus to its respective term.

implementation of the system can be used to answer simple research questions
using the proposed model. Since users were given no instructions for how
to use the given interface and all participants managed to solve all tasks, we
consider the study and the prototype to be successful. But due to the fact that
the time required to answer the research questions was still rather high and
the user experience questionnaire showed that the system was deemed fairly
confusing and complicated, the interface itself has room for improvement to
make interaction more intuitive.
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Chapter 5

Conclusion

In this thesis, we introduced a model for a faceted search system that allows
the exploration of different relations between concepts. We specified the model
further to enable its application to large text corpora to answer research ques-
tions in the digital humanities. We proposed a query language to construct
arbitrarily complex requests to represent such research questions. Thus, a
framework for iteratively constructing a research environment to answer tai-
lored research questions from the field of the digital humanities was introduced.

We presented a prototypical implementation of the model for the explo-
ration of texts. Other than allowing a user to navigate a text corpora and
construct nested queries using one relation between concepts, users have
the ability to manually and semi-automatically add or remove semantic
annotations to construct the research environment themselves and also
improve the quality of the search results. We evaluated the prototype in a
small user study using different metrics, namely the required time to complete
a task, the estimated difficulty of solving the task, and an assessment of the
interface using the user experience questionnaire.

The conducted user study showed that the prototype has a steep learning
curve and several flaws, but is still an effective tool for solving tasks using our
proposed model. We believe that our contribution can be effectively used for
future work. First, the interface of our prototype can be improved to increase
the intuitivity and general user satisfaction. In addition, our implementation
only covered a small part of the proposed model. Future works could im-
plement multiple different relations between concepts and extend the query
language to be able to pose more complex research questions.
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