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Abstract

This work examines a challenging extension of the conventional sentence fusion task

of merging two sentences into a single sentence. Here, instead of only two sentences,

we aim to fuse multiple related sentences into a cohesive text. We model this gen-

eration as an end-to-end learning task for sequence to sequence models. First, we

compile a novel and a large scale dataset from two multi-document summariza-

tion datasets. Next, we finetune a state-of-the-art text summarization model on

our dataset. Finally, we conduct extensive quantitative and qualitative evaluation

following best practices for evaluating automatically generated text.
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Chapter 1

Introduction

Nowadays most information is online. The web offers an unmanageable amount of

documents for the individual user. Therefore tools are required that support users

to navigate through the amount of documents, help them to seek the demanded

information and prevent information overload. Tools for Automatic Summariza-

tion can assist users in a variety of ways and can be used in many situations: For

instance in snippet generation for websites to provide a short overview of the con-

tent (Chen et al. 2020). It also can be used to get an overview about a scientific

topic (Yasunaga et al. 2019) or to combine information from multiple news sources

(Barzilay and McKeown 2005).

In this work we examine a mechanism that can support Automatic Summarization,

it is called sentence fusion. When Humans write summaries, they tend to highlight

important sentences and subsequently compress and connect them to new sentences

in a summary (Lebanoff, K. Song, et al. 2019). The automatic mechanism of merg-

ing sentences was studied in previous works and first mentioned as sentence fusion

by (Barzilay and McKeown 2005). Abstractive Summarization systems create new

sentences with the relevant information of the input documents. These sentences

do not appear in the original documents. The application of sentence fusion in ab-

stractive summarization systems has beneficial impact on the generated summaries

(Lebanoff, Muchovej, et al. 2020).

The task of sentence fusion is typically defined as combining few source sentences

to a single target sentence or a short paragraph. In this work we are going to

extend the fusion mechanism to apply it on multiple input sentences and create

fused output texts with either a single or multiple output sentences. Such a fusion

mechanism can increase the abstraction of the summary while preserving the gist of

the content in a succinct manner and therefore improves the quality of summaries

in terms of text cohesion and readability.
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As with the original sentence fusion task, there are also additional fields of appli-

cation, like retrieval based dialogue (Y. Song et al. 2018) or question answering (Li

et al. 2018).

Figure 1.1: Example: extended sentence fusion
(top: input sentences; bottom: cohesive output text)

In this work we differentiate the extended sentence fusion task from related work

(chapter: 2). We define several properties and present our approach to tackle the

task (chapter: 3). We generate a large scale dataset (chapter: 4) that is sufficient to

finetune a sequence-to-sequence neural network (chapter: 5). Finally we evaluate

the training corpus and the performance of the model on the basis of several criteria

(chapter: 6).
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Chapter 2

Related Work

Unsupervised Approaches

The task of sentence fusion introduced by (Barzilay and McKeown 2005) is de-

fined as connecting a bunch of sentences to a single sentence. Their presented

algorithm outputs a single sentence that contains common information among the

input sentences. Therefore it uses one of the input sentences as a centroid, an

initial syntactic structure which gets aligned with the other sentences. Afterward

the algorithm prunes superfluous parts of the syntactic structure and computes the

final sentence. The resulting sentence could contain alternative wording from the

other input sentences but is mainly based on the syntactic structure of the cen-

troid. (Barzilay and McKeown 2005) apply sentence fusion in the multi-document

summarization setting to provide the salient content in a single sentence.

(Marsi and Krahmer 2005) followed up on the proposed fusion algorithm and refined

the alignment process to tackle further tasks of application, like question answering

or information extraction.

The work of (Nayeem, T. A. Fuad, and Chali 2018) also picks up Barzialy et al.‘s

approach and extends it by adding paraphrases. The final sentence is selected

by respecting information coverage as well as abstractiveness. The here proposed

fusion algorithm is also applied in the multi-document summarization task.

Supervised Approaches

Next to unsupervised fusion algorithms also supervised approaches were described

in previous works to tackle the sentence fusion task.

(T. Fuad et al. 2019) trained a the sequence-to-sequence Transformer model (Vaswani

et al. 2017) on a machine generated dataset, constructed from the CNN/DailyMail
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Corpus (Hermann et al. 2015). Each highlight sentence is mapped to similar sen-

tences from the appropriate article, whereas the mapped source sentence are treated

as the model input and the highlight sentence as the fusion output.

(Geva et al. 2019) also utilized the Transformer model, but their training data is

generated in a different way. In their work they define several syntactic discourse

connectives within text segments. They seek these segments in text collections and

use a certain rule to resolve the connective and split the original segment into parts.

With this technique they generate a large scale parallel corpus of sentences with-

out discourse connectives and the connected counterparts. The described approach

aims for inserting connectives into two syntactical unrelated sentences. The output

consist of one or two sentences.

In (Lebanoff, K. Song, et al. 2019)’s approach for abstractive summarization also

a neural based fusion mechanism is utilized to merge sentence pairs into a single

sentence. They finetune a pretrained BERT (Devlin et al. 2019) on their sentence

fusion downstream task. To generate examples of fused sentences for the training

process, they exploit pairs of articles and summary. We use their described tech-

nique in our example generation pipeline as well. We go into this in more detail in

chapter 3. Table 2.1 gives an overview of the previously developed sentence fusion

models and their respective tasks.

model description model output data source

supervised

(Barzilay and
McKeown 2005)

Merge common infor-
mation from input sen-
tences into output

single sentence

(Marsi and Krah-
mer 2005)

Refined Version of
Barzilay et al.’s Algo-
rithm

single sentence

(Nayeem, T. A.
Fuad, and Chali
2018)

Additional Paraphrases single sentence

unsupervised

(T. Fuad et al.
2019)

Supervised Training,
Transformer

single sentence CNN/ DailyMail

(Geva et al. 2019) Insert Discourse Rela-
tions, Transformer

single sentence,
two sentences

Wikipedia, Web
articles about
sport

(Lebanoff, K.
Song, et al. 2019)

sentence fusion, BERT single sentence XSum, CNN/
DailyMail, DUC-
04

Table 2.1: Overview of sentence fusion models
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Differentiation from other tasks

We want to mention, that current abstractive summarization systems by them-

selves are also capable of producing output texts with several sentences. For in-

stance, BART (Lewis et al. 2019) is a massively pretrained language model and

can produce coherent and well structured text. If this model is finetuned on a sum-

marization task with long output summaries, it also performs text transformations

that result in a cohesive output text. However it combines this text transformation

with content selection. This means, in abstractive summarization, the output sum-

mary is a compound of certain parts of the original document(s) and the choice of

these parts is as important as the text transformation.

In this work we want to independently examine the text transformation that results

in a cohesive output text, without the selection of relevant content and the target

of compression.

Our extended sentence fusion task differentiates from all other tasks. Most previous

works fuse a bunch of sentences to one or two sentences. In our case we have multiple

sentences for input as well, but depending on the length of the input we expect an

output text with one or more sentences that are connected through cohesive ties.

In linguistics the term text refers “to any passage of whatever length, that does

form a unified whole.” Certain linguistic features allow a native speaker to easily

decide whether a sequence of sentences is a text or not. Given following example

from a cooking book: Peel the potatoes. Afterward put them in hot water. Here

it is certain, that them refers to potatoes. This relation is called Anaphora and it

ties both sentences together. All such linguistic features together help a sequence

of sentences to be a cohesive text. (comp. Halliday and Hasan 1990)
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Chapter 3

Task

This chapter defines several properties of the extended sentence fusion problem and

presents our approach to tackle the task: We train a sequence-to-sequence model on

a dataset, which consists of examples of the text transformation. In the following,

we explain our procedure to generate training data and also show techniques in

related work.

3.1 Definition

After performing sentence fusion on a sequence of sentences we expect that the

resulting text covers the major information of the input sentences. Text trans-

formations like reordering information, paraphrasing, insertion of new words or

removal of superfluous words can be used to generate the cohesive output text. We

define our fusion problem as follows:

• Input: Sentences that are not connected through cohesive ties and cannot

be understand as a ”whole”. In our work we experiment with inputs varying

between 2 and 11 sentences. The sentences can contain overlapping informa-

tion.

• Output: A cohesive text with one or more sentences that can be understand

as a ”whole”. The output text consists of the major information of the input

sentences.

• Input sentences: Omission of non-critical information of the input in the

output is tolerated. This means parts of the input sentences that only refer to

the original context of the sentences and are not relevant in the new context

of the compound of input sentences do not need to be conveyed in the output.

This form of compression is to be minimal and should serve to create cohesion
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rather than shortening the length of the input. Each individual input sentence

is semantically related to the output text.

• Output sentences: The output sentences do not have to mimic the structure

of the input sentences and can be abstract. The resulting text does not add

new meaning compared with the input. As a result, each individual sentence

of the output text is semantically related to the compound of input sentences.

We orientate us along the supervised approaches previously mentioned to accom-

plish our extended sentence fusion task.

3.2 Approach (Example Generation)

This section describes and justifies the general idea of the applied example gen-

eration procedure. As stated above is the task aiming for connecting multiple

sentences to a cohesive text. The required training examples are pairs of input and

output, also called source-target1 pairs. Those fit the text transformation in that

effect, that the source represents largely independent sentences and the target the

cohesive text consisting of the relevant content of the source (comp. section 3.1).

The hypothesis is that such source-target pairs can be identified in a set of doc-

uments (d1, d2, ..., dn) about the same topic. Let T be the sentences from one

document di (target-summary) and S all sentences from the remaining documents

(d(j1)6=i, . . . , d(jn−1) 6=i) (source articles) . Then a subset s ⊂ S as source and a subset

t ⊂ T as target together can be a potential source-target pair. If the conditions

are met, so if t is cohesive, the sentences in s are largely independent of each other

and t conveys the relevant information of s then (s,t) is a source-target pair.

Since the target summary T is a closed text it is likely to find a target-text t ⊂ T

(t is also called anchor-text), that can be understood as a cohesive text segment.

Furthermore are sentences of S and sentences of T about the same topic, hence it

can be possible to find sentences in S that share information with t, in other words

they have common parts that are semantically similar.

Our approach to find source-target pairs contains three steps. At first we iden-

tify anchor-texts in the target summary. Then we use the anchor-texts to retrieve

source sentences in S. In the last step we seek a fitting combination among the

queried source sentences. As a result, we expect source-target pairs that meet the

criteria defined for our fusion problem (see section 3.1).

1In the following, we will sometimes refer to the input as the source and the output as the
target
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Example Generation Techniques in

Related Work

(T. Fuad et al. 2019) and (Lebanoff, K. Song, et al. 2019) use similar approaches

to generate their training examples. Both seek in pairs of articles and summary

for fusion pairs that fit their task (see table 2.1). We refer to those pairs as (S,T)

as described in the previous section. In the following, we name their approaches

sentence mapping and sentence scoring.

Sentence mapping: (T. Fuad et al. 2019) map each sentence of T to all sentences

of S with a Jaccard2 score higher than the threshold value of 0.25. They determine

this value by using a holdout set.

Sentence ranking: In (Lebanoff, K. Song, et al. 2019) a more elaborate tech-

nique is applied. They also map certain sentences of S to each sentence of T but

employ a different selection procedure. They use the mean of ROUGE-1, -2, -L3

as a similarity measure. Given an individual sentence t from T: (i) Find the most

similar sentence s of S to t and remove s from S. (ii) Remove all overlapping content-

words (tokens that are neither punctuation nor stop-words) between s and t from

t. (iii) Repeat from step (i) until the remaining sentences in S have less than two

common words with t.

The processing pipeline in this work is a combination of the two concepts of sentence

mapping and sentence ranking.

2Jaccard Index: Let A, B be two sets, then their Jaccard index is A∩B
A∪B (Wikipedia 2021b)

3ROUGE (Lin and Hovy 2002) is a frequently used package of metrics for automatic evaluation
in text generation. ROUGE-1 respects uni-grams, ROUGE-2 respects bi-grams, ROUGE-L re-
spects the longest common subsequence. In section 4.2.3.1 - metrics for containment, we describe
how we use ROUGE for our purposes.
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Chapter 4

Corpus Construction

In this chapter we introduce our sentence fusion corpus. It is created out of two

text collections, namely Multi-News (Fabbri et al. 2019) and WCEP1 (Ghalandari

et al. 2020). Both are tackling the task of multi-document summarization. In the

following we explain how we implemented the example generation procedure and

give details about the created corpus.

4.1 Data Sources

Since (T. Fuad et al. 2019) and (Lebanoff, K. Song, et al. 2019) just have a single

sentence as output instead of multiple target sentences, we need a source dataset

with more coherent sentences in the target. Although the CNN/DailyMail corpus

(Hermann et al. 2015) has multiple sentences in the summary it is not sufficient for

us, because these sentences are just bullet points and can hardly be understand as

a cohesive text. Hence we exploit two other text corpora, as already mentioned:

Multi-News and WCEP. The following sections describe those corpora and the

preprocessing before we fed instances into our pipeline.

4.1.1 MultiNews

Multi-News (Fabbri et al. 2019) is a large scale dataset for multi-document sum-

marization on news articles. It includes 56 216 instances, each of them consists of

multiple source articles and a human written summary. The source articles have

together on average 82.73 sentences, the summary has on average 9.97 sentences

and is a closed and cohesive text. Table 4.1 shows a record from the data.

1The dataset is from the Wikipedia Current Event Portal and is here referred to as WCEP
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source 1
Meng Wanzhou, Huawei's chief financial officer and deputy chair, was arrested in Vancouver on 1 December.
Details of the arrest have not been released...

source 2
A Chinese foreign ministry spokesman said on Thursday that Beijing had separately called on the US and
Canada to “clarify the reasons for the detention”immediately and “immediately release the detained person”.
The spokesman...

source 3
Canadian officials have arrested Meng Wanzhou, the chief financial officer and deputy chair of the board
for the Chinese tech giant Huawei,...Meng was arrested in Vancouver on Saturday and is being sought for
extradition by the United States. A bail hearing has been set for Friday...

summary
. . . Canadian authorities say she was being sought for extradition to the US , where the company is being
investigated for possible violation of sanctions against Iran. Canada’s justice department said Meng was
arrested in Vancouver on Dec. 1... China’s embassy in Ottawa released a statement.. “The Chinese side has
lodged stern representations with the US and Canadian side, and urged them to immediately correct the
wrongdoing”and restore Meng's freedom, the statement said...

Table 4.1: Multi-News example before preprocessing

4.1.2 Dataset from Wikipedia Current Events Portal (WCEP)

The second dataset WCEP (Ghalandari et al. 2020) contains 10200 article cluster,

a set of articles that have the same topic as context. Each of them also includes a

short ground truth summary, mostly a single or two sentence(s) text that summaries

the general topic of the articles. We use the WCEP-100 version which limits each

cluster to 100 articles, resulting in 650k articles in total.

4.1.3 Preprocessing

Multi-News: In our case short sentences are problematic, because they don’t

convey a lot of content and semantic similarity metrics wrongly score them as

similar to other texts. Therefore we filter all sentences with less than 6 words in the

preprocessing phase. We also avoid sentences that contain tokens like “Copyright”,

“AP”, “Photo”, “Image”, “Caption”. These tokens indicate sentences that are not

connected to their context, provide metadata of the respective article or refer to

images. We separate each text into its sentences and gather all sentences of source

articles in one list. We also tokenize each sentence and assign Part-of-Speech tags

which will be used later in the processing-pipeline. We finally pass the list of source

sentences paired with the summary sentences to our example generation pipeline.

WCEP: In order to prevent redundant computation later in the pipeline, we

eliminate duplicate sentences as early as possible. Therefore we remove all dupli-

cate articles in each cluster. Comparing all articles in a cluster can be quite time
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intensive. Hence we use the efficient LSH2 algorithm (Leskovec, Rajaraman, and

Ullman 2014) and map each article to its highly similar articles (approximated

Jaccard threshold of 0.95). We then construct a graph of articles with edges in-

dicating a duplicate relationship (Paullier 2020). We finally select one article of

each connected component. This allows us to resolve duplicates that only differ in

few characters. We further only use the unique articles and perform the following

steps for each cluster: As we have done for the Mutli-News dataset we separate all

articles into sentences, remove sentences with less than 6 words and critical tokens,

and apply tokenization and POS-tagging. In order to get as many combinations

of source sentences and target sentences, we pair each article with the remaining

articles of the cluster: Let (d1, ..., dn) be an article cluster with n documents. Then

we generate all pairs (d1, (d2, ..., dn)), (d2,(d1, d3, ..., dn)), ..., (dn, (d1, ..., dn−1)).

We handle the single article as the target and the remaining articles as source arti-

cles. We put all source sentences in one list and pass them together with the target

sentences to the pipeline. Table 4.2 shows a preprocessed instance.

source sentences

• Meng Wanzhou, Huawei's chief financial officer and deputy chair, was arrested in Vancouver on 1
December.

• Details of the arrest have not been released...

• A Chinese foreign ministry spokesman said on Thursday that Beijing had separately called on the
US and Canada to “clarify the reasons for the detention”immediately and “immediately release the
detained person”.

• Canadian officials have arrested Meng Wanzhou, the chief financial officer and deputy chair of the
board for the Chinese tech giant Huawei,...

• ...Meng was arrested in Vancouver on Saturday and is being sought for extradition by the United
States.

• A bail hearing has been set for Friday...

target sentences

• . . . Canadian authorities say she was being sought for extradition to the US , where the company
is being investigated for possible violation of sanctions against Iran.

• Canada’s justice department said Meng was arrested in Vancouver on Dec. 1 ...

• China’s embassy in Ottawa released a statement...

• “The Chinese side has lodged stern representations with the US and Canadian side, and urged them
to immediately correct the wrongdoing”and restore Meng's freedom, the statement said...

Table 4.2: Multi-News example after preprocessing

2Local Sensitive Hashing allows to quickly find similar articles - here based on Jaccard Simi-
larity - without comparing all documents
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4.2 Example Generation Pipeline

The processing pipeline consists of three stages. We call these stages cohesive-text-

detection, extract and select. As an abbreviation for cohesive-text-detection we

just write detection. Each of these are successively passed.

The detection stage (see stage 1 in figure 4.1) takes an original target text T of a

(S,T) pair as input and seeks for parts of T, that are valid target texts of a fusion

pair. This stage encapsulates the logic for detection of cohesive text segments and

returns the anchor-texts.

In the second processing step, the extraction stage (see stage 2 in figure 4.1) uses

each anchor-text to query sentences of S that are semantically contained in the

appropriate target text of T. The extraction stage guarantees that the extracted

source sentences are related to their target text. It prevents unbearable Information

loss in the final source-target pairs and regulates how sentences in the source are

related to the target.

The final selection stage (see stage 3 in figure 4.1) selects for each valid target text

a well suited set of source sentences among the previously extracted sentences of

S. Although all extracted source sentences are related with the target text, it is

still necessary to check whether the content in the target is covered by the source

sentences. It could be the case, that the source sentences have many redundancies

among them and only refer to one part of the target text.

4.2.1 Reasoning of Pipeline Architecture

The three pipeline stages can be ordered in multiple ways, because each stage in-

dependently deals with a certain task. The detection stage detects cohesive text

segments, the extraction stage uses a text to query related sentences and the se-

lection stage picks a well suited subset among the related sentences. This allows

three orders which all come along with advantages and disadvantages. Following I

argument why we decide on the above described architecture and point out the up-

and downsides. Since the selection stage requires the sentences from the extraction

stage, it has to be after the extraction stage. Beyond that, no further restrictions

are given. In table 4.3 all possible orders of pipeline stages are listed with a descrip-

tion.To compare the three orders we examine the properties in which the orders

differ.
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Figure 4.1: Pipeline Stages Overview

The first property is the computation of extracting source sentences. Order 1

detects cohesive target segments before they are used in the extraction stage. One

target sentence can appear multiple times in a cohesive text segments and therefore

can be part of multiple queries in the extraction. Thus source sentences could be

queried with the same target sentence multiple times. Order 2 and order 3 fuse

text segments after the extraction. Both use single target sentences to query source

sentences. This prevents extracting source sentences with the same target sentence.

This means that order 2 and 3 pass less redundant source sentences to the selection

stage as order 1 and are therefore more efficient regarding computation.
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Order Description

(1)

1. Detect

2. Extract

3. Select

1. Identify cohesive text segments (anchor-texts)

2. Use the anchor as query to select single source-sentences

3. seek well-suited set of source sentences that covers the target
(see section 3.1 - properties of fusion pairs)

(2)

1. Extract

2. Detect

3. Select

1. use individual sentences from the target text T as query to
extract sentences from S

2. Detect cohesive text segments among the target sentences.
If the target sentences get fused, unify their extracted source
sentences (and remove duplicates).

3. seek a well-suited set of source sentences that covers the
content of the target text (see section 3.1 - properties of
fusion pairs)

(3)

1. Extract

2. Select

3. Detect

1. use individual sentences from the target text T as query to
extract sentences from S

2. seek a well-suited set of source sentences that covers the
content of the corresponding target sentence

3. Detect cohesive text segments among the target sentences.
If target sentences get fused, unify their extracted source
sentences (remove duplicates) and check if the content of
the cohesive text segments is still covered (see section 3.1 -
properties of fusion pairs)

Table 4.3: Pipeline architecture - possible orders

The second property is the query extent in extraction. This refers to the opportu-

nity to extract relevant source sentences. Order 1 has a big query extent, because

it can use the complete cohesive text segment to query source sentences. This of-

fers the opportunity to extract sentences that are not related to individual target

sentences, but to the complete cohesive text segment. How such relations come to

pass is obvious to see, when we have a precise definition of semantic relations and

a metric that recognizes them. For instance we could use a variation of Jaccard

Index of words: the word-containment. This is quite similar to Jaccard Index, but

the calculation differs in the numerator. We don’t count the number of unique

words in both texts, just the number of the unique target words. Let a, b be texts
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and A, B the corresponding bag of words, then the word containment from A in

B is: word-containment(a, b) = |A∩B|
|B| . With this metric in use we can consider

two text segments as related if the word-containment score is higher than a certain

threshold. Table 4.4 shows an example.

• a: Anna is walking with her dog and telephones with her mother.

• b: This Saturday Anna goes for a walk, accompanied by her dog.

• c: During the walk she talks with her mother on phone.

⇒ a is related to the compound b-c, but not to the individual sentences c, b

Table 4.4: Sentence relation example

Order 2 and order 3 only have individual sentences in the query. Thus less sentences

could be extracted as in order 1. If the extraction stage delivers more sentences

it is more likely to find output-pairs in the selection stage. Furthermore are these

relations with cross-sentence relation interesting training pairs. The model could

also learn to distribute content of one sentence over multiple target sentences in

the output.

The third property is the process of selecting source sentences. Order 1 and 2 de-

tect cohesive target segments before the selection process. In their selection stage

well-suited sets of extracted sentences are picked for the final training pair. In

contrast order 3 selects extracted sentences for each individual target sentence.

Subsequently these target sentences get fused to cohesive text segments. In this

order an additional merge logic for already selected source sentences is necessary.

In order 1 and 2 such a logic is not required.

Order / Property extracting source
sentences

query extent in
extraction

process of selecting
source sentences

1) detect - extract
- select

inefficient Big query extent No additional logic

2) extract - detect
- select

efficient Small query ex-
tent

No additional logic

3) extract - select
- detect

efficient Small query ex-
tent

Additional logic

Table 4.5: Pipeline architecture - comparing orders
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In table 4.5 all advantages and disadvantages are listed: The first order benefits

from the big query extent and does not require the additional merge logic. Since

the pipeline can run on sufficient compute resources the inefficient computation of

extracting source sentences is bearable. Therefore we decide to build the pipeline

using the first order detect - extract - select.

4.2.2 Cohesive text detection

The detection stage (see algorithm 1) outputs cohesive text segments that will be

used as target in the final training pairs. As input it uses the complete target text

T of a (S,T) input tuple and computes multiple cohesive text segments varying in

the number of sentences. To identify cohesive text segments we utilize a straight

forward approach. We set a range of numbers m1,m2, . . . ,mn as desired numbers

of sentences in a cohesive segment. For each number mi we seek all consecutive

sentence pairs of length mi. As a result we get paragraphs with mi-sentences of

a human written text. These paragraphs are cohesive texts and contain linguistic

features that tie the sentences together. Since we just use parts of a text it could

happen that the segment is not closed. This means the segment could refer to parts

of the original text that are not within the segment. We ignore this effect because

it rarely results in an insufficient outcome.

Algorithm 1 detect-cohesive-text

1: Input
2: m1, ...,mn . number of desired sentences in segment
3: tgt-text . list of sentences from the target text in original order

4: Output
5: segments . list of cohesive text segments

6: procedure detect-cohesive-text(m1, ...,mn, tgt-text)
7: n-tgt-sents ← number of sentences in tgt-text
8: segments ← empty list
9: for mi ← m1, ...,mn do

10: upper ← n-tgt-sents - mi

11: for j ← 0, ... , upper do
12: new-segment ← tgt-text[j, j + mi] . indices: j, ..., j + mi − 1
13: push(segments, new-segment)
14: end for
15: end for
16: return segments
17: end procedure

We set the number of target sentences m1, . . . ,mn to 1, . . . , 5. We don’t use

longer paragraphs because this would also result in bigger computation efforts in
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the subsequent stages. Furthermore we think it is sufficient to test cohesive text

generation limited to 5 output sentences to recognize performance and identify

issues. Afterward experiments with longer target texts can be considered.

We discussed further approaches to identify cohesive paragraphs: (Lebanoff, K.

Song, et al. 2019) use the BERT model (Devlin et al. 2019), which was, among

other things3, trained on the next sentence prediction task to score the likelihood

that two sentences follow up on each other. We don’t utilize this technique because

the number of identified anchor texts is already high, as we observed in the stage

1 output. Furthermore it could be useful to exploit the annotation of a coreference

resolution tool. Such a tool identifies connectives in and between sentences. How-

ever the functionality is not flawless and the lack in precision could add further

errors (comp. Lebanoff, Muchovej, et al. 2020). Hence we decide to go without

those approaches, which would require further testing.

4.2.3 Extraction

Following let t be a cohesive text segment from the detection stage and S all source

sentences from the original input tuple (S,T). The Pipeline seeks in the extraction

stage all source sentences from S that are semantically related with the segment

t. Previously we already mentioned one way to determine semantic relations: the

word-containment with a threshold (see section 4.2.1). In this chapter we describe

our procedure for extraction and justify our chosen metric for semantic relations.

Code block 2 shows how the algorithm iterates over each source-sentence s of S and

compares it with the segment. If the resulting score of the containment-metric is

bigger than the threshold, s is considered as related. Additionally it is necessary

to check if s appears in the segment. To avoid plane copying from source-sentences

into the target we filter these sentences. The final model should rather learn new

wording than exact copying. In order to do so, we check for each sentence in the

anchor-segment, whether it is a duplicate of s or a subsequence (comp. algorithm

2, line 12). We go in more detail about this in the sections 4.2.3 Duplicate detection

and 4.2.3 Subsequence detection. We already removed duplicate input articles in

the preprocessing stage but many articles still contain the exact same sentences.

We don’t think that duplicate sentences in the input would fit any application

use case of our sentences fusion mechanism. Therefore we also filter duplicates in

related-sentences (comp. algorithm 2, line 13).

3BERT was also trained with masked documents to predict the missing words and learn the
word context.
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Algorithm 2 extract-sentences

1: Input
2: metric . metric containment measure
3: t . threshold value
4: segment . anchor text from extraction stage
5: source-sents . list of individual sentences from S
6: Output
7: related-sents . list of sentences that are related to anchor
8: procedure extract-sents(metric, t, segment, source-sents)
9: related-sents ← empty list

10: for s ← source-sents do
11: if metric(s,segment) ≥ t then
12: if (not s ∈ segment) and
13: (not s ∈ related-sents) then
14: push(related-sents, s)
15: end if
16: end if
17: end for
18: return related-sents
19: end procedure

Duplicate detection: To check if two sentences are equal we compute the edit

distance4 between them and compare the score against a threshold. We dynam-

ically set the threshold value as follows: Let s1, s2 be two strings and l1, l2 their

corresponding character length, then the dynamic threshold is l1+l2
20

. If the score

is below the threshold we consider the sentences as duplicates. This allows us to

find strings that only differ in single characters like whitespace, punctuation or

typos and through the dynamic threshold the tolerated number of equal character

positions is depending on the length of the input strings.

Subsequence detection: Additionally we check if one string is almost a sub-

sequence 5 of the other. Therefore we compute the length of longest-common-

subsequence between them. Afterward we compare the portion of the subse-

quence in the sentences with the sentences themselves. We compare the big-

ger portion against a fixed threshold t: Let llcs be the length of the longest-

common-subsequence between two strings s1, s2, and l1, l2 the corresponding char-

acter lengths, then we compare max ( llcs
l1
, llcs

l2
) >= t. If this expression is true we

consider one of the sentences as a subsequence of the other. We set t to 0.9.

4The edit distance is a measure to quantify the difference between two strings. It is the minimal
number edit-steps to transform one string into the other (comp. Navarro 2001).

5A subsequence of a string can be produced by deleting elements without changing the order
of the elements (comp. Wikipedia 2021c)
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We manually observed the performance of both metrics, duplicate-detection and

subsequence-detection in various samples of data and get good results for both

decider in our situation.

4.2.3.1 Containment-Metric

In the extraction procedure the containment-metric returns a score indicating to

which degree the segment semantically contains the sentence. This task is similar

to sentence similarity. The latter is defined as follows: Given two sentences as

input then return a real number between zero and one that indicates the semantic

similarity between both sentences, whereas the order of these sentences does not

matter. In contrast, in sentence-containment the order of the argument impacts

the outcome - table 4.6 gives an example for this.

• a: Anna is walking with her dog while telephoning with her mother.

• b: Anna talks with her mother on phone.

⇒ b is-contained-in a, but not vice versa

Table 4.6: Sentence containment example

Therefore methods for sentence similarity can not be adopted to sentence-containment

without modification. The following part lists possible candidates for the contain-

ment metric. Afterwards we test each metric with various thresholds on a holdout-

set to select the best performing candidate.

ROUGE-1-2-L: (Lebanoff, K. Song, et al. 2019) use the average of ROUGE-1,

ROUGE-2 and ROUGE-L in their work. ROUGE (Lin and Hovy 2002) is a pack-

age of metrics used for automatic evaluation of generated text. It compares a

reference text with a generated candidate text. ROUGE-1 compares all uni-grams

(single words) of the reference and the candidate. The recall value of ROUGE-1

indicates which portion of uni-grams of the reference is covered by the candidate.

It is the same for ROUGE-2 only that it does not refer to uni-grams instead it re-

spects bi-grams. ROUGE-L computes the length of the longest sequence of common

words (LCS) between reference and candidate. The recall of ROUGE-L indicates

the portion of this LCS in the reference.

We test the arithmetic mean of recall values of ROUGE-1, ROUGE-2 and ROUGE-

L in our setting of sentence containment.
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Content-words: (Lebanoff, K. Song, et al. 2019) use content words to compare

sentences. They define them as tokens that are neither stopwords nor punctuation.

We use this definition in a bag-of-words approach. We compute the containment

score of a source sentence in a target segment as follows: Let wc be the common con-

tent words between source sentence and target segment and wt the content words

of the target segment, then the score is wc

wt
.

Sentence-embeddings Furthermore we experiment with BERT-sentence embed-

dings (Devlin et al. 2019). We compute the cosine similarity between a sentence

and a text, whereas the text can be a single sentence or sequence of sentences.

Further metrics: We also experimented with other metrics, like ROUGE-1-recall

and word/lemma-containment. These are very similar to content words described

above and have nearly the same scores. Specific use of named entities did not gave

us improvement. We also experimented with more elaborate approaches. (Dias

2007) do not use a bag of words approach but exclusive links between words of

source and target. Thus a word in the target can only be referenced by one word in

the source, even if there is another match. Since they only establish links between

lexical matching tokens we tried to adapt this concept on links that also represent

semantic similarity. In order to keep the links exclusive, we view the matching

possibilities as an assignment problem (Wikipedia 2021a). We employed an engine

that can solve the matching problem, but we note that the computation effort is

too high in the pipeline.

4.2.3.2 Holdout-set

The Holdout-set consists of sentence relations between individual sentences of a

target article and one or more sentences of several source articles. We observed

25 source-target article pairs in Multi-News as well as in WCEP and checked 345

target sentences in total. We count 249 target-sentences having relations to 775

source sentences.

For Multi-News one assessor manually checked 25 randomly chosen source-target

articles and identifies relations between source sentences and target sentences. To

do so for a given target sentence the assessor decided for each sentence of a source

article whether it is related or not. He sets a binary annotation, whereas yes indi-

cating that the major content of a sentence is contained in the target sentence and

no that the opposite is the case.
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For WCEP we selected 25 article clusters with a short summary of at least two

sentences. From each selected article cluster we ranked all articles of the cluster

with at least 8 sentences by Jaccard Index with the summary and take the top

5 best scored articles. Following the assessor annotates all prepared source-target

pairs as described for Multi-News. Table 8.1 in the appendix lists the detailed

information about data preparation and annotation. As a result we get a gold

reference for sentence relations between source sentences and single target sentence

texts with in total 194 (Multi-News) and 55 (WCEP) mappings6. Table 8.2 in the

appendix lists further statistics about the holdout-set. Table 4.7 gives an example

of a mapping.

source sentences

• Eight of the gubernatorial seats up for grabs are now held by Democrats; three are
in Republican hands.

• Republicans currently hold 29 governorships, Democrats have 20, and Rhode Island’s
Gov. Lincoln Chafee is an Independent.

• Polls and race analysts suggest that only three of tonight’s contests are considered
competitive, all in states where incumbent Democratic governors aren’t running again:
Montana, New Hampshire and Washington.

• While those state races remain too close to call, Republicans are expected to wrest the
North Carolina governorship from Democratic control, and to easily win GOP-held
seats in Utah, North Dakota and Indiana.

target sentence

• The GOP currently controls 29 of the country’s top state offices; it’s expected to keep
the three Republican ones that are up for grabs (Utah, North Dakota, and Indiana),
and wrest North Carolina from the Dems.

Table 4.7: Multi-News - annotation example

4.2.3.3 Extraction Experiments

The holdout-set allows us to compute precision, recall and f-measure. We test the

previously described metrics, ROUGE-1-2-L, content-words and sentence-embeddings

on a range of threshold values. For each reference pair of articles (source sentences)

and summary (target text) in the holdout-set we use all the containment metrics

paired with a threshold value to retrieve sentences from the articles for a single

6A mapping is the set of all relations between a single target text and respective source sen-
tences.
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target sentence. Following we compare the retrieved sentences with the respective

annotated sentences of the reference. We assess recall, precision and the f-measure.

These values are computed as follows: For a given target sentence, let sc be the

number of common sentences of reference and retrieved sentences, sref the number

of reference sentences and sm the number of retrieved sentences by the metric, then

is recall = sc
sref

, precision = sc
sm

and f-measure = 2∗recall∗precision
recall+precision

. We compute pre-

cision, recall and f-measure for each target sentence take the average of the total

holdout-set.

Figures 4.2 and 4.3 show precision, recall and f-measure separated for Multi-News

and WCEP holdout-set7. In both scenarios the content-word-containment metric

achieves the best results regarding the f-measure. We decide to choose the content-

word metric with a threshold of 0.5 because of the high precision. Since we have a

lot of input data, we can compensate the loss in recall.
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Figure 4.2: Multi-News - extraction experiments results; x-axis: threshold;
y-axis: left - precision (square) and recall (star); right - f-meausre;
blue: sentence-embeddings, green: content-words, red: ROUGE-1-2-L
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Figure 4.3: WCEP - extraction experiments results; same legend as in figure 4.2

7The exact values can be found in the appendix in table 8.3
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4.2.4 Selection

In the final stage, given a cohesive text segment and the corresponding related

source sentences, our algorithm selects a well-suited set among the related source

sentences. This selection process aims for fulfilling the criteria of a valid training

pair (see section 3.1). To achieve this we use the same method as proposed in

(Lebanoff, K. Song, et al. 2019). Afterward we filter all insufficient training pairs

by an additional check. Code-block 3 describes our approach.

Algorithm 3 select-sentences

1: Input
2: check-func . Validation function passed as parameter
3: max-n-sents . configuration value (see Limitations search space)
4: min-n-sents
5: segment . cohesive anchor text
6: related-sents . retrieved sentences from extraction stage

7: Output
8: selected-sents
9: procedure select-sentences(metric, t, segment, related-sents)

10: selected-sents ← sentence-ranking(segment,related-sents,max-n-sents)
11: n-selected-sents ← number of selected-sents
12: if (n-selected-sents ≥ min-n-sents) and
13: check-func(selected-sents) then
14: return selected-sents
15: else
16: return null
17: end if
18: end procedure

In the remaining part of the chapter we motivate and describe the selection method,

the configuration min/max-n-sents and the check-function.

4.2.4.1 Limitations search space (min/max-n-sents)

The arguments min-n-sents and max-n-sents limit the space of valid training pairs.

We only consider training-pairs with a number of source sentences in between those

two values. The values of min/max-n-sents depend on the number of sentences in

the segment. Let n be the number of sentences in the segment, then we define

min-n-sents := n+1 to foster the operation of sentence fusion. In order to allow

input sentences with information redundancies and fusion pairs that have more

extensive transformation involved, we set the upper bound max-n-sents to 2n+1.

In this range of input sentences, fusion pairs with all kind of operations can exist.
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4.2.4.2 Sentence ranking

Since the related sentences were individually chosen, but not in regard to the other

retrieved sentences, we still need to seek a subset among them, that fulfills the

requirements of the source sentences (see section 3.1). We use the technique of

sentence ranking that we already described in the section 3.2:

In the algorithm 3 (line 10) the ranking-mechanism is applied to sort the related-

sentences passed to the selection stage. In addition to the two-word-overlap con-

straint, the iterative ranking process stops if a certain number of sentences is

reached. Then the ranked-sentences get returned. We refer to this number as

max-n-sents, described in Limitations search space.

This process outputs a subset of the related sentences that covers as much informa-

tion of the target segment as possible. In addition redundant information among

source sentences that also appears in the target gets minimized, but not prevented.

This optimization is designed to create examples that fit the necessary criteria of

fusion pairs.

We also experimented with other approaches. Once all the related-sentences from

the extraction stage are retrieved, various subsets ⊂ related-sentences can suit the

criteria. A brute force approach could be implemented with checking each possible

subset within the limitations search space through the validation metric (see sec-

tion 4.2.4.3). However it is not feasible to do this, because the resulting number

of subsets is too huge: Let n be the number of related-sentences, f the min-n-sents

value and c the max-n-sents value, then the number of subsets is
∑

k∈{f,...,c}
n!

(n−k)!
.

Therefore we dynamically constructed a tree-graph beginning from the root. We

employed a gain metric that decided which nodes to put in next. With this tech-

nique we were able to traverse the tree-graph in an efficient order. Any gain-metric

can be equipped, what allows to optimize regarding all kind of properties of the

fusion pairs. Nevertheless the implementation was far slower than that one of

sentence-ranking and does not give any benefits. Therefore we discarded this ap-

proach and continued with (Lebanoff, K. Song, et al. 2019)’s solution. Maybe this

idea can be used if the criteria to the subsets become more complex.

4.2.4.3 Sentence selection - validation metric

After the related-sentences get ranked and selected and pass the min-n-sents con-

straint we additionally validate the outcome with a specific function, here called

check-func (see algorithm 3, line 13).
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Up to this point each source sentence is related to the target and the sentence rank-

ing method returns a subset of the related sentences that is optimized regarding the

information coverage of the target segment. It is still necessary to validate whether

the target coverage is on a sufficient level and furthermore if the information cover-

age is distributed over the individual target sentences rather than just concentrated

in a certain part of the target segment.

We propose the following metric: First, we calculate the content-word-containment

score for each individual sentence in the cohesive segment (here: Stgt). In order

to do so we handle the compound of selected source sentences (here: Ssrc) as one

text. We then use the containment-metric (here: f c) to calculate the score of each

individual target sentence of the segment in the compound of source sentences.

We finally select the minimum containment score. We refer to this metric as min-

containment:

min-containment(Ssrc, Stgt) := min{f c(stgt, Ssrc)|stgt ∈ Stgt}

Afterward we compare the returned score against a threshold value to validate the

selected-source-sentences. The min-containment metric returns the minimal cov-

erage score of an individual target sentence in the compound of source sentences.

We utilize the previously described content-word metric that is also applied in the

extraction stage. The benefit of taking the minimal score rather than computing

the containment of the target-sentences as a whole, is that we prevent an unbal-

anced distribution of covered information in the target. In the latter case the

by-source-sentences-covered information could be concentrated in one part of the

target segment while in the remaining target-sentences no information is covered.

This could still result in a sufficient score, that would pass the threshold, but does

not meet the requirements of our fusion pairs.

4.2.4.4 Validation metric - threshold experiment

The min-containment function explained in the section before returns a score be-

tween 0 and 1. We use this score and compare it against a threshold value to

validate the selected-sentences. To determine this score we conduct an experiment:

We test with a sample of 100 instances of Multi-News and WCEP and pass the

units to the pipeline. We perform all stages until the selected-sentences reach the

check-func in the code excerpt above (see algorithm 3, line 13). Instead of filtering

selected-sentences we assign labels to them. Each label indicates whether the unit

would pass the check-function with a certain threshold. Afterward we compute

ROUGE-1, ROUGE-2 and ROUGE-L f-measures between the compound of source
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threshold #output-
units

rouge-1-f rouge-2-f rouge-l-f rouge-
mean

annotation
(good/
medium/
bad)

0.3 66 0.52 0.25 0.32 0.36

0.4 51 0.55 0.29 0.34 0.39

0.5 35 0.58 0.33 0.38 0.43

0.6 28 0.59 0.35 0.39 0.45 22 / 4 / 2

0.7 17 0.62 0.41 0.44 0.49 14 / 3 / 0

Table 4.8: Selection Threshold Experiment - Results

sentences and the target segment of each resulting pair. We compute the average

scores for each threshold-label. In addition we manually annotate examples with

one of three classes: good - the fusion pair requirements are fulfilled, medium - not

all fusion pair requirements are fulfilled, but the example seems bearable and bad

- the example is not sufficient.

Let t1, ..., tn be threshold values in strict order t1<. . .<tn, then the fusion pairs

with label tj will also have label tj−1 for j 6= 1. Therefore we have following order

of threshold-labeled sentences:

{pairs with label tn} ⊂ {pairs with label tn−1} ⊂ . . . ⊂ {pairs with label t1}

Since we believe that with a descending threshold value the quality of the fusion

pairs regarding their requirements decreases, we began annotating the examples

with high threshold values. We stopped when the mean quality of examples was

not sufficient anymore. Table 4.8 presents the results. We stopped annotating

examples at a threshold of 0.6 and decided on a threshold of 0.7 for min-containment

validation.

4.2.5 Corpus Processing

Finally we execute the pipeline on the preprocessed Multi-News and WCEP cor-

pora. Therefore we utilized an 64 core machine and parallelized the execution. The

detection stage (first stage) does not require much computation time, since it only

processes the sentences of one article. The extraction and selection stage deal with

sentences of more than one article, in case of WCEP even with up to hundred ar-

ticles. To cope these huge amounts of data, we tackle the extraction and selection

of source sentences of one cohesive segment as one job. We bundle these jobs in

equally sized batches and distribute the processing of these batches over the 64

cores. With this approach we achieve a good capacity utilisation.

31



We ran the pipeline on the complete Multi-News corpus, with a processing time of

about 1,5 days. For WCEP we only processed the first 1250 article-clusters with a

processing time of approximately 7 days.

4.3 Corpus Statistics

4.3.1 Distribution of fusion pairs

This section provides details about the generated fusion corpora. Table 4.9 and

4.11 count the number of occurring fusion pairs with different numbers of source

and target sentences. As we can see do many combinations of length in source

and target sentences exist. This means our dataset includes many sentence fusion

cases with varying numbers of source and target sentences. The target text length

is nearly equally distributed, the number of source sentences slightly fluctuates,

especially fusion cases with ten sentences in the input are less represented by the

datasets. All in all we do not think that further statistical adaptions regarding the

distribution of fusion cases (e.g. down-sampling) are necessary.

4.3.2 Content Containment Scores

To get a better understanding of the created examples we capture the coverage

scores, using our containment metric, between source and target of fusion pairs.

We check the containment of the bundled source sentences in the target text and

vice-versa, the coverage of the target text in the source sentences. We categorize

each example by its number of sentences in the target text and separately compute

the average containment score for each category. Table 4.10 and 4.12 present the

results.

The containment of source sentences in the target is decreasing in both corpora with

rising number of target sentences. It even drops below the extraction threshold

value of 0.5. Since the fusion pairs with more target sentences also have more

source sentences (see tables 4.9 and 4.11) the number of non-covered content words

of the source increases as well. Covered content words often redundantly appear

in multiple sentences, because their source sentences are all related to the same

target. Hence the portion of covered and non-covered words shrinks as we can see

in the tables 4.10 and 4.12. This could mean that in longer input texts our datasets

has a stronger focus on merging common parts of the source in the target.

The containment score of the target text in source sentences does not strikingly

fluctuates as strong as above and is close to the selection threshold.
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number of target sentences 1 2 3 4 5 total

frequency 12980 11877 10446 8968 7494 51765

relative 0.25 0.23 0.2 0.17 0.14

distribution of mapping
sizes (number of source
sentences)

2 9731 9731
3 3249 4784 8033
4 3634 2174 5808
5 3459 2520 1078 7057
6 2152 1450 512 4114
7 3600 1580 792 5972
8 1472 1031 2503
9 3388 1055 4443
10 960 960
11 3144 3144

Table 4.9: Multi-News - Distribution fusion pairs

n-tgt-sents src-tgt-containment tgt-src-containment

1 0.57 0.72

2 0.54 0.71

3 0.52 0.7

4 0.5 0.69

5 0.48 0.69

Table 4.10: Multi-News - containment scores

number of target sentences 1 2 3 4 5 total

frequency 81272 88821 84225 77951 71424 403693

relative 0.2 0.22 0.2 0.19 0.18

distribution of mapping sizes
(number of source sentences)

2 51639 51639
3 29633 26425 56058
4 25482 12359 37841
5 36914 16606 5766 59286
6 16177 9536 2981 28694
7 39083 10996 5111 55190
8 11082 6701 17783
9 40571 7732 48303
10 7880 7880
11 41019 41019

Table 4.11: WCEP - Distribution fusion pairs

n-tgt-sents src-tgt-containment tgt-src-containment

1 0.55 0.78

2 0.53 0.78

3 0.51 0.77

4 0.49 0.77

5 0.47 0.76

Table 4.12: WCEP - containment scores
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Chapter 5

Cohesive Text Generation

This chapter deals with the sequence-to-sequence model that we employ to learn

the extended sentence fusion task. We first describe the architecture of the under-

lying Transformer model. We then explain the procedure of pretraining and the

pretrained BART, a powerful language model. Finally we finetune BART on our

sentence fusion task.

5.1 Transformer-based

Sequence to Sequence Models

The Transformer model architecture (Vaswani et al. 2017) was originally used for

machine translation. It is very successful and is used more frequently than other

recurrent architectures, like LSTMs in (Peters et al. 2018). It consists of an encoder

and a decoder. The encoder transforms a sequence of input symbols to a sequence

of internal representations. The latter one is passed to the auto-regressive decoder

block which generates an output sequence by consuming the previously generated

output positions.

Both encoder and decoder are composed of multiple layers including stacked self-

attention. The self-attention mechanism measures the relationship for each word in

the sequence to other words in the sequence. This allows efficient word encodings

with contextual information, even if the dependent words have a high distance in

between.

Pretraining: The term pretraining refers to the process of training a neural net-

work on a general task. The subsequent finetuning is the specialisation of the

pretrained model on a certain end task, also called downstream task. Works have

shown that pretraining a model can improve the overall performance on various
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NLP tasks, like sentiment analysis (Dai and Le 2015), text classification (Howard

and Ruder 2018a) or Question answering and commonsense reasoning (Howard

and Ruder 2018b). In the pretraining phase the model acquires understanding

of the language through extensive unsupervised learning of a certain task, like

Masked Language Modeling or Next Sentence Prediction (Devlin et al. 2019) on

huge datasets1. Afterwards the model can be specialized on a downstream-task.

The finetuning strategy slightly adapts all parameters learned in the pretraining

phase to perform on the downstream task, but requires less specific end-task data

and compute resources to achieve remarkable results (Devlin et al. 2019).

5.2 BART

BART (short for Bidirectional Auto-Regressive Transformer) is a pretrained lan-

guage model that can be applied to many NLP downstream Tasks, in particular

to Natural Language Generation and Summarization (Lewis et al. 2019). Since

the extended sentence fusion task is similar to Summarization we use the same

finetuning procedure to optimize the model on our task.

Figure 5.1: BART - architecture (image source: (Lewis et al. 2019))

BART relies on the Transformer model architecture. The Encoder and Decoder

were both independently utilized for unsupervised pretraining: BERT applies the

Encoder in a pretraining setting with general learning objectives. Through that

process it acquires language representations that contains information about the

whole context, not just the previous tokens. Therefore the encodings are called

bidirectional (comp. Devlin et al. 2019). In contrast the GPT approach uses the

transformer Decoder to auto-regressively predict the next tokens. Therefore it can

be used for Language Generation Tasks. In the pretraining it only uses the previ-

ously appearing tokens and does not incorporate contextual information from both

directions (comp. Howard and Ruder 2018b).

1In case of GPT-3, one of the biggest language models, the training-set consists of about 500
billion tokens (Brown et al. 2020).
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BART uses the bidirectional Encoder as well as the auto-regressive Decoder. In

the pretraining phase the model is optimized to reconstruct the original document

in an auto-regressive fashion. As input the encoder is supplied with a corrupted

document, e.g. text spans are replaced with mask symbols.

BART achieved similar results as comparable bidirectional encoders (comp. Liu

et al. 2019) and is capable of language generation, like summarization. (Lewis

et al. 2019) experimented with two version of the BART model that differ in the

number of layers in the Encoder and Decoder block. Other works have shown that

large scale pretraining significantly improves the performance on downstream tasks

(Yang et al. 2019),(Lewis et al. 2019). Thus the larger BART model was pretrained

on “160Gb of news, books, stories, and web text.” Afterwards (Lewis et al. 2019)

finetuned the large model on the CNN/DM news summarization dataset (Hermann

et al. 2015). The resulting model outperforms many other models on this task. We

refer to this finetuned model as BART-Large-CNN.

Finetuning on sentence fusion: In order to optimize the BART-Large-CNN

on the extended sentence fusion task we finetune it again on the sentence fusion

corpora. We train two models independently on Multi-News and on WCEP fusion

pairs. We split both fusion pair datasets into train/val/test with a 80/10/10 distri-

bution. Afterward we employ the same finetuning scripts used for summarization2.

We executed the scripts on a GPU enabled machine. The finetuning procedure of

the Multi-News model happened on 40 000 training pairs within 2.5 hours. In case

of WCEP we had 320 000 training pairs and it took about one day.

2We utilized the finetuning scripts proposed in the Huggingface example repository (Hugging-
face 2021).
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Chapter 6

Evaluation

In order to survey the quality of the dataset and the performance of our trained

model we conduct a manual and automatic evaluation. In the following part we

explain our setup for both experiments and interpret the results.

6.1 Automatic Evaluation

ROUGE: To quickly get a better understanding of the data we computed several

metrics on the fusion pair corpus and the model prediction results. So that we can

quickly see the results of the training process, we compared the reference target-text

with generated text of the model. To do so we calculate the ROUGE-1,ROUGE-2

and ROUGE-L f-measures between reference and model output of records of the

training-splits for both corpora, Multi-News and WCEP.

We labeled each record of the training-splits with the number of sentences in the

target reference. Following we created bins for each label. For each of these bins

we separately compute the metrics. Table 6.1 and 6.2 present the results. Another

approach would be to differentiate by the number of input sentences. We preferred

the first one, because there are only 5 bins and additionally is the number of target

sentences also indicating the amount of content, whereas source compounds with

the same number of sentences can have different amounts of content, because of

redundancies.
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n-tgt-sents ROUGE-1 ROUGE-2 ROUGE-L
1 0.61 0.4 0.48
2 0.58 0.32 0.38
3 0.57 0.29 0.33
4 0.57 0.26 0.30
5 0.57 0.25 0.28

Table 6.1: Automatic Evaluation - Multi-News - ROUGE

n-tgt-sents ROUGE-1 ROUGE-2 ROUGE-L
1 0.57 0.35 0.46
2 0.54 0.29 0.37
3 0.53 0.26 0.32
4 0.52 0.23 0.28
5 0.52 0.22 0.27

Table 6.2: Automatic Evaluation - WCEP - ROUGE

As we can see is the f-measure in all cases relatively high. The f-measure is a

combination of recall and precision1. If the resulting f1 score is high, then both,

precision and recall are high as well; if it is low then recall or precision or both are

low. Furthermore we can see that the metric scores are descending with increasing

number of target sentences, where as the ROUGE-1 score is just minimally decreas-

ing, but ROUGE-2 and ROUGE-L show striking differences in varying number of

target sentences.

We conclude that the fine-tuning process worked quite well and the model per-

forms good on the test examples. We want to emphasize here that the examples

were generated by our pipeline. Since the pipeline could produce deficient source

target pairs regarding our definition of the sentence fusion task, the results of the

automatic evaluation only refer to the performance on the problem determined by

the generated dataset. Additionally we see that with increasing number of target

sentences the model output and the reference become more different. To evalu-

ate the model on the actual sentence fusion task we conduct an extensive manual

evaluation (see chapter 6.2).

1f-measure without weight: 2∗precision∗recall
precision+recall
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n-tgt-sents src-in-ref src-in-gen ref-in-src gen-in-src
1 0.57 0.68 0.72 0.82
2 0.54 0.63 0.71 0.79
3 0.52 0.58 0.7 0.78
4 0.5 0.56 0.69 0.78
5 0.48 0.54 0.69 0.78

Table 6.3: Automatic Evaluation - Multi-News - Containment

n-tgt-sents src-in-ref src-in-gen ref-in-src gen-in-src
1 0.55 0.53 0.78 0.73
2 0.53 0.53 0.78 0.73
3 0.51 0.5 0.77 0.72
4 0.49 0.47 0.77 0.71
5 0.47 0.44 0.76 0.70

Table 6.4: Automatic Evaluation - WCEP - Containment

Containment scores: Furthermore we calculated the containment-metric2 on

the model output. We compute the containment scores for both directions: source

sentences contained in the model output and vice-versa. We use the same labels

from above and bin the examples by their number of target sentences. For each of

these bins we separately compute the metrics.

As we can see in table3 6.3 and 6.4, the metric scores are descending with increasing

number of target sentences. We compared the values with the results from the

corpus statistics (we already computed the same metrics for training examples, see

section 4.3). In the case of Multi-News the model output has higher containment

scores than the pipeline generated examples. Interestingly the opposite is the case

for WCEP. Here the pipeline generated examples have higher containment values.

We conclude that the model properly processes the input sentences and that the

coverage of content is similar distributed as in the training data.

2we use the same containment-metric as in the extraction stage; comp. section 4.2.3.1 - content
words

3src: source compound, ref: reference target-text, gen: generated model text
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6.2 Manual Evaluation

6.2.1 Procedure/Setup of the Assessment

In the manual evaluation we simultaneously review training pairs and model out-

puts. We examine samples from test splits of both fusion-pair corpora and annotate

the examples according to an evaluation guide: we observe 4 categories: Omission,

Inaccuracy Intrinsic, Inaccuracy Extrinsic and Structure & Coherence. Table 6.6

explains the categories and the labels that get assigned to each record.

For both fusion pair corpora, 50 examples were randomly selected with 10 records

per occurrence of 1,2,...,5 sentences in the target segment. Following we applied the

model on the source compound of the records. The assessor can evaluate training

example quality and the model quality in one experiment. She only has to read the

source sentences of one example to evaluate both scenarios.

One assessor checked 200 records (two scenarios - corpus and model performance

- and two corpora - Multi-News and WCEP- with each 50 examples). After the

assessment we analyze the results in detail and give several examples that show

the performance of the pipeline and the trained model. The assessed records can

be analyzed along 4 dimensions: training pairs and model output (scenario), The

number of target sentences, Multi-News and WCEP (corpus) and the kind of er-

ror/quality and its severity. The next sections present our results.

We were guided by the evaluation setup of (Huang et al. 2020), who assessed the

quality of text summarization systems.

40



Kind of Er-
ror Quality

Description Severity Description

Omission
This error indicates how
much of the important in-
formation is missing.

No No information is missing.
Low Less Information is missing:

adjectives, second tier nouns,
verbs, etc. - the output still
conveys all of the main con-
tent.

Moderate Clearly a part of the content is
missing, but in favor of coher-
ence the omission is bearable.

High Clearly a part of the content
is missing.

Inaccuracy In-
trinsic

Is information from the
source wrongly modified?

No No information is wrongly
modified.

Minor The proportion of wrongly
modified information impacts
only small, minor part of the
output.

Critical The wrongly modified infor-
mation affects bigger parts of
the output and results in non
bearable change of meaning.

Inaccuracy Ex-
trinsic

Is new Information added
in the output?

No No new information is added.
Verifiable The added information can be

verified via websearch or other
sources or assessed from the
context of the input sentences
as relevant.

Not verifiable The added information nei-
ther can be verified via web-
search or other sources nor as-
sessed from the context of the
input sentences as relevant.

Incorrect The added information can be
assessed as factually incorrect
after websearch or use of other
sources.

Structure and
Coherence

How well-structured is the
output?

Very Good
Range of statements about
linguistic quality of the out-
put text with gradation in
Structure and coherence.

Good
Barely Accept-
able
Poor
Very Poor

Table 6.6: Manual Evaluation - annotation guide - description of labels
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6.2.2 Corpus: Error Analysis

In this part of the analysis we examine the errors/quality of the training-pairs

independently for each fusion pair corpus.

Omission: As we can see in table 6.7 is the omission in both corpora quite high.

54 of 100 records are labeled with high omission of information from source sen-

tences in the target segment. Table 6.8 indicates that the omission level increases

with the number of sentences in the target segment. The latter effect could be ex-

plained with the rising inaccuracy of the content-word metric used in the extraction

stage for longer text. Since this metric is based on the bag of words approach, it

is more accurate if the words only appear in individual sentences. It is more likely

that multiple words of a single sentence refer to the same context, than multiple

words in more than one sentence do. The general high omission rate could be en-

countered with a higher threshold in the extraction stage. The utilized holdout set

in the extraction stage only uses binary annotation to indicate that the major part

of the sentence is contained in a single sentence. Such a relation still allows fur-

ther parts missing in the target. Since the containment task is different regarding

varying number of sentences in the target the holdout-set is less meaningful for the

containment task with multiple target-sentences. Figure 6.2 gives an example with

a high level of omission in the target-text and figure 6.1 gives an example without

omission in the target-text

Figure 6.1: Example - corpus - WCEP - Omission - No

corpus No Low Moderate High
Multi-News 3 8 16 23

WCEP 1 9 9 31
both 4 17 25 54

Table 6.7: Manual Evaluation - corpus - Omission
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Figure 6.2: Example - corpus - WCEP - Omission - High

n-tgt-sents No Low Moderate High

1 2 2 6 10

2 1 7 4 8

3 1 4 6 9
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Table 6.8: Manual Evaluation - corpus - Omission by n-tgt-sents

Inaccuracy Intrinsic: This error is in both corpora relatively low in all but a few

cases (see table 6.9). In case of Multi-News the target text segments are extracted

from human written summaries. These summaries provide the relevant information

of the source articles and contain less mistakes. Our pipeline could extract related

parts for summary and source articles without many mistakes. Even for WCEP

the generation approach keeps the inaccuracy error low. The original clusters of

the WCEP corpus contain articles about the same topic. In theory our approach

works well as long as the articles contain less contradictory information. Also

here our pipeline is able to process target article and source articles without many

mistakes. The Inaccuracy Error is low for all numbers of target sentence as we can

see in table 6.10. Figure 6.3 shows an example with critical erros, including many

problems with numbers.
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corpus No Minor Critical
Multi-News 48 2 0

WCEP 46 2 2
both 94 4 2

Table 6.9: Manual Evaluation - Inaccuracy Intrinsic

n-tgt-sents No Minor Critical
1 18 1 1
2 20 0 0
3 19 0 1
4 19 1 0
5 18 2 0

Table 6.10: Manual Evaluation - Inaccuracy Intrinsic by n-tgt-sents

Figure 6.3: Example - corpus - WCEP - Inaccuracy Intrinsic - Critical

corpus No Verifiable Not verifiable Incorrect
Multi-News 23 27 0 0

WCEP 31 19 0 0
both 54 46 0 0

Table 6.11: Manual Evaluation - corpus - Inaccuracy Extrinsic

Inaccuracy Extrinsic: Table 6.12 shows that 46 of 100 examined records add

new Information to the target segment. Since the target segment is extracted

from an human written article in the web we can see all new information as verifi-

able. The effect of adding information seems independent to the number of target
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n-tgt-sents No Verifiable Not verifiable Incorrect
1 10 10 0 0
2 11 9 0 0
3 12 8 0 0
4 13 7 0 0
5 8 12 0 0

Table 6.12: Manual Evaluation - corpus - Inaccuracy Extrinsic by n-tgt-sents

Figure 6.4: Example - corpus - Multi-News - Inaccuracy Extrinsic - Verifiable

sentences in the segment (comp. table 6.12). In order to decrease the added infor-

mation we could increase the threshold in the selections stage. Figure 6.4 gives an

example for Inaccuracy Extrinsic.

Structure and Coherence: We observe that the linguistic quality as well as the

coherence of the target segments is good (comp. table 6.13). That confirms our

hypothesis to find coherent text segments in a closed text (see section 3.2. Further-

more we can see that the simple technique (see section 4.2.2) to use consecutive

sentences as target segments works properly in the majority of cases. This is true

for single sentences as well as for segments with more sentences (see table 6.14).

Figure 6.5 shows an problematic example.

Figure 6.5: Example - corpus - Multi-News - Structure and Coherence - Barely
Acceptable
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corpus Very Good Good Barely Acceptable Poor Very Poor
Multi-News 39 9 2 0 0

WCEP 39 8 3 0 0

Table 6.13: Manual Evaluation - corpus - Structure and Coherence

n-tgt-sents Very Good Good Barely Acceptable Poor Very Poor
1 18 2 0 0 0
2 16 3 1 0 0
3 14 5 1 0 0
4 14 5 1 0 0
5 16 2 2 0 0

Table 6.14: Manual Evaluation - corpus - Structure and Coherence by n-tgt-sents

6.2.3 Model: Error Analysis

In this part of the evaluation we examine the model performance. We utilize the

same criteria as in the training pairs analysis. In addition we compare the results of

the training pair evaluation and the model performance to see whether the training

process has impact on the quality. We want to point out that we have two models,

one trained on Multi-News fusion-pairs, the other trained the WCEP fusion-pairs.

We use the test split of Multi-News fusion-pairs to evaluate the Multi-News model,

analog for WCEP. We gather the results of the assessment from both fusion pair

corpora to make conclusions and handle them separately when needed. If no dis-

tinction is made between the corpora in the following tables, then labeled records

from both are combined.

Omission: Table 6.15 shows that 37 of 100 examined records contain a high level

of omission. Compared with the training data this error is far lower (see table

6.16). We can see that the training process has positive influence on the intake of

information from the source sentences in the generated target segment. As well as

in the training pairs, we can observe, that an increase of information loss comes

along with a higher number of target sentences in the output (see table 6.17).

corpus No Low Moderate High

Multi-News 6 18 13 13

WCEP 4 9 13 24

both 10 27 26 37

Table 6.15: Manual Evaluation -
model - Omission

Scenario No Low Moderate High

corpus 4 17 25 54

model 10 27 26 37

Table 6.16: Manual Evaluation -
comparison (corpus/model) -

Omission
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Figure 6.6: Example - Multi-News - model - Omission - Low

n-tgt-sents No Low Moderate High
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Table 6.17: Manual Evaluation - model - Omission by n-tgt-sents

Inaccuracy Intrinsic: The examined sample show a high portion of critical in-

accuracy: 46 of 100 records contain inaccuracy errors (see table 6.18). Many times

parts of the sentences get stitched together that are not to be connected. This

shifts the meaning of the statements conveyed in the source sentences. Table 6.20

indicates that this phenomenon happens more often in longer target segments with

more sentences. Table 6.19 shows that this error is a result of the generation tech-

nique of the model and is not part of the training data - the sample of the training

pairs does not contain this issue. Figure 6.7 shows a critical example.

Furthermore the model tends to insert random news provider. This is a result

of the domain of the initial datasets Multi-News and WCEP. Articles from both

datasets often contain information about the news-provider of the article. Because

the same information can be provided by multiple news-sources, sentences exist

with the same content but different news-providers. So it can happen that a wrong

news provider gets inserted in the output or a completely new one. Because this

seems to be a structural problem the assessor did not weigh this error strongly.
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corpus No Minor Critical

Multi-News 24 7 19

WCEP 19 4 27

both 43 11 46

Table 6.18: Manual Evaluation -
model - Inaccuracy Intrinsic

Scenario No Minor Critical

corpus 94 4 2

model 43 11 46

Table 6.19: Manual Evaluation -
comparison (corpus/model) -

Inaccuracy Intrinsic

n-tgt-sents No Minor Critical

1 10 2 8

2 13 0 7

3 9 4 7

4 6 4 10

5 5 1 14

Table 6.20: Manual Evaluation - model - Inaccuracy Extrinsic by n-tgt-sents

Figure 6.7: Example - corpus - wcep - Inaccuracy intrinsic - critical

Inaccuracy Extrinsic: As table 6.21 reveals, the model adds new information

in 44 of 100 cases. Cause of the pre-training the model is enriched with information

from many other text documents. Therefore it can add true content, as verified in

12 records, but in 30 cases it is not verifiable. In isolated cases the new content is

proven to be incorrect. This phenomenon seems to be independent from the number

of target sentences (comp. table 6.22). Table 6.23 shows that the model adds new

content as frequently as this happens in the training examples. This means that

the model adapts this bad property from the training data, which could perhaps

be avoided with better training sources (comp. section 6.2.2). Figure 6.8 gives an

example, where new true content is added.

corpus No Verifiable Not verifiable Incorrect

Mutli-News 36 3 10 1

WCEP 20 9 20 1

both 56 12 30 2

Table 6.21: Manual Evaluation - model - Inaccuracy Extrinsic
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n-tgt-sents No Verifiable Not verifiable Incorrect

1 13 1 6 0

2 8 3 9 0

3 14 4 1 1

4 13 1 5 1

5 8 3 9 0

Table 6.22: Manual Evaluation - model - Inaccuracy Extrinsic by n-tgt-sents

Scenario No Verifiable Not verifiable Incorrect

corpus 54 46 0 0

model 56 12 30 2

Table 6.23: Manual Evaluation - comparison (corpus/model) - Inaccuracy
Extrinsic

Figure 6.8: Example - model - Multi-News - Inaccuracy extrinsic - Verifiable

Structure and Coherence: In all but a few cases (95/100) the linguistic quality

as well as the coherence of target segments is very good or good (see table 6.24).

This result proves that the trained model is able to connect sentences in a coherent

and cohesive matter. As other works have shown (see section 5.1), has the pre-

training massive benefits on the linguistic quality of the downstream task, as we

can also see in our results. Tables 6.25 and 6.26 are included for completeness and

show structure & coherence with regard to the number of target sentences and in

comparison with the training data. In figure 6.9 is a problematic case with time

coherence issues shown.
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corpus Very Good Good Barely Acceptable Poor Very Poor

multiNews 41 7 2 0 0

wcep 37 10 3 0 0

both 78 17 5 0 0

Table 6.24: Manual Evaluation - model - Structure and Coherence

n-tgt-sents Very Good Good Barely Acceptable Poor Very Poor

1 18 2 0 0 0

2 17 3 0 0 0

3 17 3 0 0 0

4 15 4 1 0 0

5 11 5 4 0 0

Table 6.25: Manual Evaluation - model - Structure and Coherence by n-tgt-sents

Scenario Very Good Good Barely Acceptable Poor Very Poor

corpus 78 17 5 0 0

model 78 17 5 0 0

Table 6.26: Manual Evaluation - comparison (corpus/model) - Structure and
Coherence

Figure 6.9: Example - model - WCEP - Structure and Coherence - Barely
Acceptable

6.3 Discussion

On our evaluation we assess the quality of our generated training examples and the

performance of the trained model. We examined four categories Omission, Inaccu-

racy Intrinsic, Inaccuracy Extrinsic and Structure and Coherence.

Corpus: After the analysis of the data we see that the training examples often

omit information in the target that appears in the source sentences (54/100 - High

Omission). An increase of the extraction threshold could descend the level of omis-

sion. We also observe that the information from the source compound, that appears

in the target, is not changed - so the target preserves the meaning of the source.
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Furthermore many times new information is added in the target, that does not ap-

pear in the source (46/100). Since the target-segment is part of a news article, the

statements can be verified through the respective news article. The Structure and

Coherence of the target segment is good in the majority of cases. We can conclude

that the simple detection mechanism in our example generated pipeline works well.

Model: In case of the model output the omission rate of information that appears

in the source and not in the target is lower than in the training examples (37/100

- High Omission). We can see that the training process has positive influence on

the intake of information. We note a high level of wrongly transformed sentences

in the target segment (46/100). This means that the learned text transformation

often changes meaning of statements from the source in the target. In addition it

also adds new information many times (44/100), that mostly can not be verified

(30/100). The model adapts this property from the training data. The resulting

output is a well structured and coherent text in the majority of cases (95/100).

We see that our approach fits the extended sentence fusion task, nevertheless it

struggles with typical issues of abstractive text generation.
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Chapter 7

Conclusion

This work extends the task of sentence fusion from single output sentences to longer

text segments. Previous work applies sentence fusion only on few input sentences

and combines them to a single fusion sentence or a short paragraph. We examined a

fusion mechanism that allows combining up to eleven input sentences to a cohesive

text, which consists of multiple sentences. Instead of inserting single connectives in

or between sentences our model performs an abstractive text transformation that

reassembles the information from the source in the target text.

We follow up on a deep-learning approach and train a neural network on a task

specific dataset. In order to do so, we build an extensive data-processing pipeline

and exploit two text document corpora with it. To configure the pipeline we conduct

several experiments to find proper metrics and threshold values.

After the processing of the dataset, we finetuned a state-of-the-art sequence-to-

sequence model on our downstream task. Finally we evaluate the data-processing

pipeline and the finetuned model. The manual evaluation gives us indications that

further adjustment of the pipeline parameters could improve the quality of the

training examples.

We conclude that our approach was successful and our model is capable performing

the task. Nevertheless it struggles with typical issues of abstractive text transfor-

mation, it tends to change meaning and adds new information. In addition some

information of the input sentences is not covered by the output text and therefore

the compression ratio seems to high. Further optimization of the pipeline could

find remedy.

The performance of the model depends on the context of application and further

research is necessary to figure out the requirements of application use cases. The

approach taken here can reassemble information in a complete different way and

achieves good results regarding the structure and coherence of the resulting text.

But other sentence fusion techniques, that just insert connectives and go without
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such intensive text transformation are not confronted with issues named above.

Though, they ignore noise in the input and process all content without further

distinguishing of relevant, redundant or irrelevant information. Multiple techniques

with different ad- and disadvantages exist, but it is not clear which method need

to be applied in a certain application use case as long as the requirements are not

consolidated.

As a result we have proved our approach as working and can point out advantages

and disadvantages. We see further research as necessary to tackle the task of

sentence fusion to cohesive text in a certain application use case.
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Chapter 8

Appendix

Multi-News WCEP

1. clean documents: removal delimiter
symbols, etc. (like NEW LINE)

2. remove duplicates of input articles
(editdistance(doc0, doc1) ≤ 150)

3. attend linguistic features; separate sen-
tences

4. Clean sentences: removal of sentences
with number of tokens < 2 and
number of characters < 10

5. manual annotation of relations between
article and summary sentences

1. attend linguistic features; separate sen-
tences (articles, summary)

2. filter instances with single sentence as
summary, filter articles with less than
8 sentences

3. remove duplicates of input articles
(editdistance(doc0, doc1) ≤ 150)

4. rank articles by jaccard score with sum-
mary; take the top 5 input articles

5. Clean sentences: removal of sentences
with number of tokens < 2 and
number of characters < 10

6. manual annotation of relations between
article and summary sentences

Table 8.1: Extraction holdout-set - annotation procedure
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Property / Corpus Multi-News WCEP

#instances 25 25

#mappings (all/not-
empty)
(not-empty: mappings without

non-related sentences)

288 / 194 57 / 55

#relations
(number of relations among all

mappings)

381 394

max size of mapping
(size: number of relations in map-

ping)

5 21

avg. number of rela-

tions all/not empty

1.32 / 1.96 6.91 / 7.16

distribution of mapping
size
(number of relations : number of

corresponding mappings)

0:94, 1:79, 2:61 3:41, 4:8, 5:5 3:6, 2:6, 9:6, 8:6, 6:4, 11:4, 5:4,

4:4, 16:3, 1:3, 7:3, 0:2, 13:2,

14:1, 15:1, 21:1, 10:1

Table 8.2: Holdout-set statistics
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metric threshold precision

(Multi-

News)

recall

(Multi-

News)

f-measure

(Multi-

News)

precision

(WCEP)

recall

(WCEP)

f-measure

(WCEP)

sentence- 0.1 0.17 0.63 0.27 0.09 1.00 0.17

embeddings 0.2 0.17 0.63 0.27 0.10 1.00 0.18

0.3 0.17 0.63 0.27 0.10 1.00 0.18

0.4 0.17 0.63 0.27 0.10 0.99 0.18

0.5 0.17 0.63 0.27 0.10 0.98 0.18

0.6 0.17 0.63 0.27 0.11 0.98 0.19

0.7 0.17 0.63 0.27 0.11 0.96 0.20

0.8 0.18 0.63 0.29 0.15 0.91 0.26

0.9 0.26 0.53 0.35 0.43 0.50 0.46

content- 0.1 0.20 0.70 0.31 0.17 0.97 0.29

word 0.2 0.26 0.66 0.37 0.33 0.79 0.47

0.3 0.40 0.51 0.45 0.52 0.51 0.51

0.4 0.61 0.33 0.43 0.69 0.32 0.44

0.5 0.75 0.19 0.31 0.81 0.15 0.25

0.6 0.80 0.13 0.22 1.00 0.05 0.10

0.7 0.82 0.10 0.17 1.00 0.02 0.04

0.8 0.80 0.07 0.13 1.00 0.00 0.01

0.9 0.78 0.06 0.10 1.00 0.00 0.00

ROUGE- 0.1 0.23 0.57 0.32 0.23 0.70 0.34

1-2-L 0.2 0.37 0.36 0.37 0.48 0.37 0.42

0.3 0.57 0.22 0.32 0.68 0.16 0.25

0.4 0.76 0.14 0.24 0.72 0.07 0.13

0.5 0.81 0.10 0.18 0.83 0.03 0.06

0.6 0.82 0.08 0.15 0.88 0.01 0.02

0.7 0.86 0.06 0.12 1.00 0.01 0.01

0.8 0.86 0.05 0.09 1.00 0.00 0.01

0.9 0.87 0.03 0.07 1.00 0.00 0.00

Table 8.3: Extraction experiment - results
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