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Abstract

Generative text-to-image models have shown remarkable progress in recent
years, transforming textual prompts into intricate, high-quality images. How-
ever, the prevailing method of influencing image output, known as prompt en-
gineering, often results in an unpredictable and time-consuming trial-and-error
process of refining textual prompts to derive desired images. This thesis ad-
dresses the challenges associated with prompt engineering by developing and
evaluating three automated methods for manipulating prompt embeddings.
The first method, Metric Based Optimization, employs gradient optimization
techniques to automatically refine the text prompt embeddings towards a spe-
cific metric, eliminating the need for manual prompt modification. While ef-
fective in generalizing across various random seeds, it does face the limitation
of over-optimization for certain prompts. For the second approach, Iterative
User Interaction, the intention is to assist users in their creative endeavors by
enabling them to explore the image space. Rather than adjusting the textual
prompt directly, users navigate along selected directions of close prompt em-
beddings, providing a more intuitive and guided interaction. This method was
found to be user-friendly in a conducted study, although the need for greater
control mechanisms was expressed. Lastly, Seed-Invariant Optimization as-
pires for consistent image outputs across various random seeds, even if some
variation persists. Results showed that while all methods offer advancements
in user interaction with text-to-image models, certain limitations exist, neces-
sitating further refinement. Overall, this thesis contributes to enhancing the
user experience in text-to-image generation by providing more reliable and in-
tuitive control mechanisms, reducing the complexities associated with prompt
engineering.
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Chapter 1

Introduction

In the rapidly evolving landscape of machine learning and artificial intelligence,
text-to-image generative models have emerged. These generative models, such
as DALL-E 2 [Ramesh et al., 2022b], Imagen [Saharia et al., 2022] or Sta-
ble Diffusion [Rombach et al., 2022], bring forth the capability to transform
textual descriptions, termed as prompts, into intricately detailed images of
high quality, opening up new creative possibilities. However, despite these
advancements, affecting the image generation process continues to be a signif-
icant challenge, which is largely based on the discipline of prompt engineering.
This concept implies an iterative refinement of the prompt to achieve desired
results. Users primarily rely on trial-and-error methods, adjusting prompts
until a satisfactory output is found. This process can be time-consuming, hin-
dering the users to efficiently express their creative vision. Therefore, best
practices and design guidelines for the production of better text to image out-
comes have emerged [Liu and Chilton, 2022, Oppenlaender, 2022]. Even this
way by far not enough control can be provided. Despite these efforts, associ-
ated with prompt engineering, users have to face further considerable obstacles.
The model’s internal logic and understanding of prompts often appear incal-
culable, leading to unforeseen deviations between what the user intended and
the generated visual. With the inability to control specific granular details and
the unpredictability introduced by varying random seeds, users find themselves
evolving an approximate orientation but without actual control [Deckers et al.,
2023].

These challenges reflect an increasing demand to develop more flexible and
user-friendly approaches for image generation. The objective is to design sys-
tems and frameworks not only simplifying the image generation process but
also providing users a higher level of control without the sophistication of
prompt engineering. Hence, this thesis’ aim is to address this gap by propos-
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CHAPTER 1. INTRODUCTION

ing and investigating flexible approaches for user-driven image generation.

Rather than rephrasing textual description, the introduced techniques facil-
itate the refinement of a prompt’s embedding in targeted manners. Within
the workflow of text-to-image models, a prompt undergoes translation by a
text encoder into an embedding, which is a high-dimensional numerical rep-
resentation that the generative model can interpret. Subsequently, an image
can be generated based on this representation. The premise of these methods
rests on the principle that arbitrary subtle modifications to the embedding can
lead to arbitrary nuanced changes in the generated image. By adjusting the
embedding, the information encapsulated within the original prompt can be
refined. This approach alleviates the need for users to rephrase their inten-
tions verbally and to construct descriptions that the model interprets correctly,
thereby enhancing user satisfaction with the image generation process.

This research will focus on the following three strategies updating the text
embedding without revision of the text prompt:

1. Metric Based Optimization: To tackle the circumstances, where a
generated image aligns at a broader level with users expectations, while
missing specific nuances or a certain level of aesthetics, the thesis explores
a metric-oriented technique. This technique facilitates precise optimiza-
tion in the embedding space of the prompt by identifying prompts that
yield images complying with the chosen detail metrics. Simultaneously,
the original intent remains aligned.

2. Iterative User Interaction: For instances where users do not have an
exact visual image in mind, helping them find a satisfactory visual rep-
resentation becomes imperative. For that purpose an interactive image
generation mechanism is introduced. Beginning with images complying
with a base prompt, the approach refines the embedding of the prompt
through user interactions to converge on visuals aligning more closely
with user feedback.

3. Seed-Invariant Optimization: In order to address the inconsistency
introduced by varying seeds, which can often lead to divergent outputs
for a well-crafted prompt, a method is introduced to design seed indepen-
dent prompt embeddings. This ensures that the derived images remain
consistently, irrespective of the seed chosen. The reduction of random-
ness in image outcomes intends to provide users with a precise image
editing tool.
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CHAPTER 1. INTRODUCTION

For the implementation of these methods the model under consideration is
Stable Diffusion. However, it is important to emphasise that the methods and
results presented in this thesis are also applicable and relevant to other text-
to-image models.

The subsequent sections delve into a comprehensive evaluation of these tech-
niques, assessing their effectiveness through experimental analyses and a user
study. The structure of this thesis is as follows:

• Chapter 2 (Technical Background): Before continuing with the core
methodologies, it is crucial to have a foundational understanding of the
technical mechanisms driving image generation. This chapter clarifies the
underlying principles, thereby equipping the reader with the knowledge
necessary to comprehend the details of the proposed image guidance
techniques.

• Chapter 3 (Related Work): This chapter showcases studies and works
with a similar research focus. Specifically, it illustrates attempts in the
domain of influencing image generation and automated prompt engineer-
ing, providing context for the methodologies presented in this thesis.

• Chapters 4-6 (Methods): These chapters elaborate on the three im-
plemented methods, evaluating their effectiveness through both experi-
mental analysis and a user study.

• Chapter 7 (Conclusion): The conclusion offers a comprehensive sum-
mary of the results and insights gained throughout this research.

• Chapter 8 (Future Work): Lastly, the outlook chapter concludes this
thesis by outlining potential avenues for future research based on the
methods and findings presented.
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Chapter 2

Background

Stable Diffusion [Rombach et al., 2022], introduced in August 2022 [stability.ai,
2022] as an open-source image synthesis model on GitHub, holds significant
importance, as highlighted by this thesis’ title. Due to its broad scientific
recognition and open availability it has been employed in this research. In the
image generation system of Stable Diffusion, an embedding generated from a
text prompt forms a primary element. The developed image guidance methods
modify these embeddings to different extends, leading to a closer alignment of
user preferences with the visual output. To fully comprehend the adopted
methodologies, it is vital to enter in depth into the image generation technique
of Stable Diffusion itself, particularly corresponding to the type of Latent Dif-
fusion Models (LDMs) [Rombach et al., 2022].

Since these models fall under the broader category of Diffusion Models (DMs)
[Sohl-Dickstein et al., 2015], Variational Autoencoders (VAEs) [Kingma and
Welling, 2014] are initially covered as the foundational framework in this chap-
ter. Subsequently, follows the elaboration of DMs, including LDMs, laying the
groundwork for understanding Stable Diffusion’s image synthesis technique.
A comprehensive grasp of DMs, containing their components as well as their
training objective, is crucial for understanding the sampling process and the
gradient based approaches in this research. Accordingly, these key concepts are
addressed in this chapter with a concluding explanation of the image genera-
tion process itself providing the knowledge base for the realized image guidance
methods.
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CHAPTER 2. BACKGROUND

2.1 Variational Autoencoder

VAEs are a type of generative models that employ a probabilistic approach
to encode data into a compressed form within a latent space, a domain where
complex data patterns are represented in a simplified manner. Subsequently,
they enable the reconstruction or generation of new instances that bear sim-
ilarity to the original input. The architecture of a VAE typically comprises
two main components: an encoder that condenses the input into a compact
representation, and a decoder that reconstructs data from this compact form
[Kingma and Welling, 2014].

A DM can be understood as a type of Markovian Hierarchical VAE [Luo,
2022]. Within the context of continuous time, researchers such as Song et al.
[2021b], Huang et al. [2021], and Kingma et al. [2021] have shown that the pri-
mary training goal can be closely aligned with the Evidence Lower Bound of a
deeply structured VAE. This implies that optimizing a DM is akin to training
a very deep hierarchical VAE. Accordingly, this section serves as a thorough
explanation of VAEs, focusing on their training process. This includes the chal-
lenges of backpropagation in a directed probabilistic environment that deals
with continuous variables and complex posterior distributions. Finally, a brief
overview of hierarchical VAEs [Sønderby et al., 2016] is also provided.

2.1.1 Evidence Lower Bound
In the following the fundamental concepts underlying the training objective
of VAEs are concisely summarized, as detailed by Kingma and Welling [2014]
and Luo [2022]. This way a foundational understanding necessary for deriving
the corresponding loss function for DMs can be provided.

VAEs encode data into a latent space, resulting in latent variables z. The
data x, observable in the regular, high-dimensional space, is thus linked to z
through the joint probability distribution p(x, z). This relationship is funda-
mental to the VAE’s ability to not only reconstruct the original data from the
latent representation but also to generate new data that resembles the original
dataset [Kingma and Welling, 2014, Luo, 2022].

In order to optimize a VAE, a common approach is to maximize the likeli-
hood of the observed data p(x). However, a direct computation is complex.

5



CHAPTER 2. BACKGROUND

Either a simultaneous integration of all latent variables z is required in the
following equation [Luo, 2022]:

p(x) =

∫
p(x, z) dz

Alternatively, access to p(z|x) is demanded to calculate [Luo, 2022]:

p(x) =
p(x, z)

p(z|x)

The Evidence Lower Bound (ELBO) is introduced as a solution, referring to a
lower bound of the evidence, as the name suggests. The evidence corresponds
to the log likelihood of the observed data. By maximizing the ELBO, the exact
evidence or at least an approximation can be derived.

The relationship can be expressed in formal terms [Kingma and Welling, 2014]:

log p(x) ≥ Eqϕ(z|x)

[
log

p(x, z)

qϕ(z|x)

]
= ELBO

The optimization of ELBO aims to approximate the true latent posterior p(z|x)
with a variational distribution qϕ(z|x). Here, ϕ refers to the parameters of this
approximation. The ELBO can be deciphired into two terms [Luo, 2022]:

Eqϕ(z|x)

[
log p(x, z)

qϕ(z|x)

]
= Eqϕ(z|x)

[
log pθ(x|z)p(z)

qϕ(z|x)

]
= Eqϕ(z|x)[log pθ(x|z)] + Eqϕ(z|x)

[
log p(z)

qϕ(z|x)

]
= Eqϕ(z|x)[log pθ(x|z)]︸ ︷︷ ︸

reconstruction term

−DKL(qϕ(z|x)||p(z))︸ ︷︷ ︸
prior matching term

The reconstruction term evaluates how accurately the variational distribution
can regenerate original data from learned latents. Conversely, the prior match-
ing term equates to the KL divergence between qϕ(z|x) and p(z|x). It measures
similarity between the variational distribution and prior latent belief. Hence,
by maximizing the ELBO, the KL divergence between qϕ(z|x) and p(z|x) is
minimized, even when the true posterior is intractable and simultaniously the
reconsruction term is maximized.

6



CHAPTER 2. BACKGROUND

As displayed in Figure 2.1, a VAE contains an encoder and a decoder part.
The function p(x|z) acts as a decoder that translates latent variables z to the
data space, while qϕ(z|x) serves as an encoder that translates data to the latent
variable space. Thus, maximizing the ELBO serves as a reliable approxima-
tion for inference and learning in complex probabilistic models, encapsulating
both the data reconstruction term and a term that encourages the approxi-
mate posterior to align with the prior [Kingma and Welling, 2014, Luo, 2022].

Typically, the encoder of VAE models a multivariate Gaussian with diago-
nal covariance and the prior is a standard multivariate Gaussian [Luo, 2022].
Given these distributions, the reconstruction term is computed by employing
the Monte Carlo estimate, while the KL divergence in the ELBO can be ana-
lytically calculated by reparameterization, as described in Section 2.1.2 [Luo,
2022].

𝑞 𝓏|𝑥

𝑝 𝑥|𝓏

𝑥 𝓏

Figure 2.1: A VAE, with encoder q(z|x) over latent variables z for observation x and decoder p(x|z),
adapted from Luo [2022].

2.1.2 Reparameterization
In order to perform an efficient learning in directed probabilistic models in-
volving continuous variables with intractable posterior distributions, Kingma
and Welling [2014] introduced the method of reparameterization, which is il-
lustrated in Figure 2.2. It facilitates the application of backpropagation within
a stochastic process by expressing a random variable with a deterministic func-
tion of a noise variable. Essentially, samples from an arbitrary Gaussian dis-
tribution, x ∼ N(x;µ, σ2), can be recast as x = µ + σϵ, where ϵ ∼ N (ϵ; 0, I).
This means that any Gaussian is essentially a standard Gaussian that has been
scaled by its variance and shifted by its mean.

In the context of VAEs, the latent variable z is determined by the input x
and noise ϵ: z = µϕ(x) + σϕ(x) ⊙ ϵ, where ⊙ signifies element-wise multi-
plication. With this reparameterized format, it becomes possible to compute
gradients with respect to ϕ, aiding in the optimization of the model’s encoder

7



CHAPTER 2. BACKGROUND

means µϕ and deviations σϕ. Therefore, VAEs leverage both the reparameter-
ization trick and Monte Carlo estimates to optimize the ELBO over both ϕ
and θ.

Deterministic Node

Stochastic Node

𝑓

𝒵

Φ 𝑥

𝜕𝑓

𝜕𝑧

?

~ 𝑞Φ 𝑧 𝑥)

Original Form

𝑓

Φ 𝑥 𝜖

𝑥

𝜕𝑓

𝜕𝑧

Backprop

𝜕𝑓

𝜕Φ

z = μΦ 𝑥 + 𝜖 ⨀ 𝜎Φ(𝑥)

~ 𝒩(0, 𝐼)

Reparametrized Form

Figure 2.2: Reparametrization, adapted from Sharma [2021].

2.1.3 Hierarchical Variational Autoencoder
A Hierarchical VAE (HVAE) [Sønderby et al., 2016] is displayed in Figure 2.3.
It is an extension of a standard VAE that has multiple layers of latent variables
instead of merely a single one. Each layer’s latent variables are influenced by
the layer above it. This hierarchy allows for more complex and nuanced repre-
sentations of data. The training objective of an HVAE is similar to a standard
VAE. Comparably, an ELBO can be derived.

In a special version called Markovian HVAE [Luo, 2022], each layer depends
only on the layer directly above it, simplifying the model. Diffusion processes
can be viewed as similar to the hierarchical layers in HVAEs, allowing the two
models to be related in their objectives and techniques for data representation
and generation.

𝓏𝑇

𝑞 𝓏1|𝑥

𝑝 𝑥|𝓏1

𝑥 𝓏1 𝓏2 . . .  

𝑝 𝓏1|𝓏2 𝑝 𝓏𝑇−1|𝓏𝑇

𝑞 𝓏2|𝓏1 𝑞 𝓏𝑇|𝓏𝑇−1

Figure 2.3: A HVAE using Markov Chain with T hierarchical latents. Each latent zt is derived solely from
its preceding latent zt+1, t ∈ {1, . . . , T}. Adapted from Luo [2022].
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CHAPTER 2. BACKGROUND

2.2 Diffusion Models

This section illuminates the technical intricacies of Diffusion Models (DMs),
laying the groundwork for understanding Stable Diffusion and, by extension,
the image-guiding methodologies explored in a subsequent section. Draw-
ing from foundational principles of non-equilibrium thermodynamics, Diffusion
Probabilistic Models, as proposed by Sohl-Dickstein et al. [2015], have been
fundamental for the development of Stable Diffusion.

DMs constitute a category of generative models that employ two Markov chains
to transform an initial data distribution, like Gaussian noise, into a target dis-
tribution. This transformation involves a forward chain that progressively adds
noise to the data and a reverse chain which is a learned denoising mechanism
that recovers the original data. Through this bidirectional process, DMs gen-
erate data samples closely approximating the target distribution.

In the following subsections, an in-depth exploration of the mechanics of DMs
is provided. This includes examination of both the forward and reverse chains
and an explanation of the training objectives of DMs. A comparison to VAEs
will also be drawn to highlight the shared aspects of these models.

Subsequently, the concept of conditional image generation is discussed, es-
tablishing the framework for integrating external variables like text into image
generation algorithms. This is followed by a focus on key components vital
for the functionality of DMs, namely the denoising U-Net [Ronneberger et al.,
2015] and the CLIP text encoder [Radford et al., 2021].

Attention will then be directed towards the computational challenges intrinsic
to DMs due to their operations in pixel space. To address these challenges,
the architecture of LDMs, a modified variant designed for computational effi-
ciency, is introduced.

Upon concluding this section, the reader will have a comprehensive techni-
cal understanding of DMs, laying the foundation for the exploration of Stable
Diffusion and its image generation capabilities.

2.2.1 Forward Process
In order to transform Gaussian noise into images, a DM initially disrupts the
original data incrementally with noise within the forward chain. The recon-
struction can be learned in the reverse chain. In the following the forward

9
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process is reflected based on the work of Sohl-Dickstein et al. [2015] and Ho
et al. [2020].

From a data distribution, denoted as x0∼q(x0), a sequence of random vari-
ables x1, x2, ..., xT can be generated by the forward Markov process. The
generation of each xt in the sequence is dependent on its immediate predeces-
sor xt−1, as depicted by q(xt|xt−1).

Employing the chain rule of probability along with the Markov property, sym-
bolized as q(x1, ..., xT |x0) or q(x1:T |x0), the joint distribution of x1, x2 ... xT
conditioned on x0, can be broken down into [Ho et al., 2020, Sohl-Dickstein
et al., 2015]:

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1)

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI)

𝑥0 𝑥𝑡−1
…

𝑞 ȁ𝑥𝑡 𝑥𝑡−1

𝑥𝑡 𝑥𝑇
…

Figure 2.4: Forward diffusion process, adapted from Ho et al. [2020].

Let αt = 1 − βt, ᾱ =
∏t

i=1 αi and ϵ0, ..., ϵt−2, ϵt−1 ∼ N (0, I). Application of
reparameterization (Section 2.1.2) results in [Ho et al., 2020, Luo, 2022]:

xt =
√
1− βtxt−1 +

√
βtϵt−1

=
√
αtxt−1 +

√
1− αtϵt−1

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵt−2

= ...

=
√
ᾱtx0 +

√
1− ᾱtϵ0

This allows to derive the following property of the forward process.

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)

10
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This property is instrumental in deriving an efficient training objective, as will
be detailed in Section 2.2.3.

2.2.2 Reverse Process
After the forward process, the reverse chain is employed to sample images
from Gaussian noise [Sohl-Dickstein et al., 2015]. Henceforth, this procedure
is summarized as detailed by Sohl-Dickstein et al. [2015] and Ho et al. [2020].

In order to reverse the forward process q(xt−1|xt), xT ∼ N(0, I) sampled from
the Gaussian distribution q(xt−1|xt) is not known and therefore intractable.
Accordingly, a model pθ must be trained to approximate the appropriate con-
ditional probabilities. This way a reversal of the diffusion process can be
obtained.

pθ(x0:T ) = p(xT )
T∏
t=1

pθ(xt−1|xt)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

𝑥0 𝑥𝑡−1
… 𝑥𝑡 𝑥𝑇

…

𝑝𝜃 ȁ𝑥𝑡 𝑥𝑡−1

𝑞 ȁ𝑥𝑡 𝑥𝑡−1

Figure 2.5: Reverse diffusion process, adapted from Ho et al. [2020].

During training the mean µθ(xt, t) as well as the covariance matrix Σθ(xt, t)
are approximated for each timestep t.

Notably, conditioning in addition on x0, the reverse process becomes tractable.

pθ(xt−1|xt, x0) = N(xt−1; µ̃(xt, x0), β̃tI)

11
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2.2.3 Training objective
To gain a comprehensive understanding of the forward process and the image
generation, it is beneficial to grasp the DM’s loss function which is defined for
the purpose of reconstructing the data within the forward chain. The approach
of establishing an objective function to learn the respective parameters is based
on the consideration that the integration of q and pθ mimics the structure of a
VAE. Hence, as described in Section 2.1.1, the ELBO can be implemented to
approximate the log-likelihood concerning the reference data sample x0 [Luo,
2022, Sohl-Dickstein et al., 2015]:

log pθ(x0) ≥ Eq(x1:T |x0)

[
log

pθ(x0:T )

q(x1:T |x0)

]
= ELBO

By multiplying with -1, the maximizing objective is transferred into a mini-
mizing objective [Ho et al., 2020, Luo, 2022]:

− log pθ(x0) ≤ Eq(x1:T |x0)

[
log

q(x1:T |x0)
pθ(x0:T )

]
= Eq(x1:T |x0)

[
− log p(xT )−

∑
t≥1

log
pθ(xt−1|xt)
q(xt|xt−1)

]

The objective can be further rewritten as follows [Ho et al., 2020, Luo, 2022]:

L = Eq(x1:T |x0)[DKL(q(xT |x0)||p(xT ))︸ ︷︷ ︸
prior matching term

+
T∑
t=2

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))︸ ︷︷ ︸
denoising matching term

− log pθ(x0|x1)︸ ︷︷ ︸
reconstruction term

]

The derived form of the ELBO can be interpreted in terms of its individual
components [Ho et al., 2020, Luo, 2022]:

• Eq(xT |x0)[DKL(q(xT |x0)||p(xT ))] acts as the prior matching term. It reaches
its lowest when the last latent distribution is in sync with the Gaussian
prior. Since this term does not have parameters that can be trained and
the assumption is that T is large enough for the ending distribution to
be Gaussian, its value practically reduces to zero.
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• Eq(xt|x0)[DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))] equates to the denoising match-
ing term. It aims to establish consistency in the distribution at xt from
both the preceding and the succeeding steps. This means that a de-
noising action on a more distorted image should correspond to the noise
introduction action on a clearer image at every intermediate stage. This
relationship is mathematically represented by the KL Divergence. Min-
imization occurs when pθ(xt|xt+1) aligns with the gaussian distribution
q(xt|xt−1).

• Eq(x1|x0)[log pθ(x0|x1)] serves as a reconstruction term. It predicts the log
likelihood of the initial data sample based on the initial latent step. This
is a familiar term also seen in a standard VAE and its training process is
comparable. Ho et al. [2020] employ a distinct discrete decoder stemming
from N(xt−1;µθ(xt, t),Σθ(xt, t)) to compute this component of the loss.

In order to parameterize the training loss of the denoising matching term, the
following steps must be traversed. During training, a neural network has to
approximate a conditional probability distribution.

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

Utilizing Bayes as well as the property derived in Section 2.2.1, the mean and
the variance can be expressed as follows [Ho et al., 2020]:

µθ(xt, t) =
1
√
αt

(
xt −

1− αt√
1− αt

)
ϵθ(xt, t)

σ2 = β̃t =
1− αt−1

1− αt

βt

Consequently, by assigning Σθ(xt, t) = σ2
t I the loss for the denoising matching

term can be formulated, accordingly [Ho et al., 2020]:

Lt = Ex0,ϵ

[
1

2σ2
t

∥µ̃(xt, x0)− µθ(xt, t)∥2
]

= Ex0,ϵ

[
β2
t

2σ2
tαt

√
1− αt

∥∥ϵt − ϵθ(√ᾱtx0 +
√
1− ᾱtϵ0, t)

∥∥2
]

= Ex0,ϵ

[
β2
t

2σ2
tαt

√
1− αt

∥ϵt − ϵθ(xt, t)∥2
]

Ho et al. [2020] have shown that the simplified version of this term is more
efficient as detailed below:

Lt = Ex0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
13
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In this context ϵθ(xt, t) is a neural network that aims to forecast the founda-
tional noise ϵ0 drawn from a standard normal distribution, which influences
the transformation from x0 to xt. This reveals that a reconstruction of the
initial image x0 is analogous to train a DM to estimate the noise.

Notably, this loss function was derived from the method of Denoising Dif-
fusion Probabilistic Models (DDPM), as introduced by Ho et al. [2020]. Draw-
ing from Diffusion Probabilistic Models [Sohl-Dickstein et al., 2015], Kingma
et al. [2021] analyze the DMs’ ELBO. In continuous-time settings, they present
an invariance of the generative model and its ELBO concerning the diffusion
process. They demonstrate that multiple DMs from various studies are essen-
tially the same, differing only in a time-dependent data rescaling. Utilizing
this knowledge, an equivalence between several models, previously introduced
in academic literature, can be proven including DDPM. Respectively, this ex-
pression of the loss can be considered as being universal across various DMs,
under the condition that they comply with the following constraints [Luo,
2022]. The DM has the same dimensions for data and latent space, uses a
pre-defined linear Gaussian model for its latent encoder at each timestep and
the Gaussian parameters evolve such that the latent distribution becomes a
standard Gaussian at the final timestep.

The underlying principle implies, while different formulations might be used,
their behavior in continuous-time will lead to equivalent results, as they con-
verge towards the same generative distribution. Hence, understanding the de-
tails of one model can provide insights applicable to a broader array of DMs.
This not only simplifies the field of diffusion-based generative models but also
provides a unified perspective [Kingma et al., 2021].

2.2.4 Conditional Image Generation
The methodology in this work involves guided image generation anchored by
an underlying textual prompt. Guided DMs aim to condition the sampling
process, enabling the generation of specialized sample types, often predicated
on an additional input C, such as class labels or textual embeddings. In
its mathematical essence, this conditional transformation evolves an uncondi-
tional DM pθ(x) into its conditional counterpart pθ(x|C) by incorporating the
conditioning information C throughout every diffusion step [Luo, 2022]:

pθ(x0:T |C) = pθ(xT )
T∏
t=1

pθ(xt−1|xt, C)

14
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The classifier-guided [Dhariwal and Nichol, 2021] approach leverages an aux-
iliary model, typically referred to as a classifier. This classifier serves the pur-
pose of providing gradients which steer the diffusion trajectory. This method
requires the additional step of training an independent classifier, increasing
computational requirements.

Classifier-Free Guidance [Ho and Salimans, 2022] is an approach designed to
improve conditional DMs by overcoming some of the limitations inherent in
Classifier Guidance methods. Unlike Classifier Guidance, which requires the si-
multaneous learning of a DM and a separate classifier, Classifier-Free Guidance
leverages both a conditional ϵθ(xt|C) and an unconditional ϵθ(xt|∅) denoising
model. For this purpose it is sufficient to train a singular entity. This is
achieved by replacing the conditioning information with constant values, ef-
fectively performing random dropout on the conditioners.

During sampling, the following linear combination is used:

ϵ̂θ(xt, t, C) = s · ϵθ(xt, t|C) + (1− s) · ϵθ(xt, t|∅)

Here, the term s determines how the learned model accounts for the condi-
tioning information C during the diffusion mechanism.

• When s = 0: The model disregards the conditioning information, behav-
ing like an unconditional DM.

• When s = 1: The model fully internalizes the conditioning.

• When s > 1: The model gives precedence to the conditional data while
also deviating from the unconditional function. This yields samples
more congruent with the conditioning while simultaneously decreasing
the sample variety.

To summarize, while Classifier Guidance leverages auxiliary models to focus
diffusion towards specific objectives, Classifier-Free Guidance elegantly accom-
plishes this within a unified architecture. Given that this research aims to
generate images conditioned on specific textual prompts, the Classifier-Free
Guidance technique is the utilized approach. Therefore, the training objective
derived in Section 2.2.3 can be specified, including the conditional information:

Lt = Ex0,ϵ

[
∥ϵ− ϵ̂θ(xt, t, C)∥2

]
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2.2.5 Denoising Model Architecture
After covering the foundational functionalities of DMs in order to perform im-
age sampling, DMs require a neural architecture that can accept noised images
at specific time steps and output the corresponding predicted noise. Partic-
ularly, the predicted noise is a tensor that has the same size and resolution
as the input image. For that reason both the input and output must share
the same spatial dimensions over various timesteps. For this purpose Ho et al.
[2020] employed an architecture proposed by Ronneberger et al. [2015], namely
the U-Net.

In its design, the U-Net (Figure 2.6) embodies principles similar to those of an
autoencoder. As described in section 2.1, an autoencoder, traditionally used
in introductory deep learning contexts, compresses input data into a smaller
’bottleneck’ hidden representation and then decodes it back to its original
shape. The compression forces the model to retain only the most salient in-
formation. Similarly, the U-Net downsamples the input image, reducing its
spatial resolution and then upsamples it to restore its original dimensions.
What sets the U-Net apart from traditional autoencoders is its use of skip or
residual connections between encoder and decoder layers of matching feature
dimensions. These connections enhance the gradient flow and prevent the U-
Net from losing important information while downsampling, a design inspired
by the ResNet model [He et al., 2016]. In order to incorporate the diffusion
timestep t a positional embedding is added into each residual block [Ho et al.,
2020].

Figure 2.6: The U-Net architecture. Created by Ronneberger et al. [2015].

At this point, it is relevant to introduce the concept of schedulers. Schedulers
are algorithms operating alongside the U-Net component to regulate the de-
noising process [Patil et al., 2022]. These algorithms manage the denoising
process by adjusting the noise levels at each time step. This allows for a bal-
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anced approach between speed and quality in the image generation process.
Schedulers, also known as Samplers, are integral to shaping the characteristics
and aesthetics of the generated images.

Two common scheduler techniques are DDPM (Denoising Diffusion Proba-
bilistic Models) introduced by Ho et al. [2020] and DDIM (Denoising Diffusion
Implicit Models) by Song et al. [2021a]. Notably, DDIMs operate 10 to 50
times faster than DDPMs. Furthermore, the scheduling algorithm proposed
by Karras et al. [2022] significantly enhances training convergence speed and
produces images of superior quality compared to earlier methods. In this re-
search, the latter technique is employed for implementing the image guidance
methods.

2.2.6 CLIP Text Encoder
To facilitate image generation that is conditioned on textual descriptions, the
conversion of text into a suitable embedding space is imperative. Within the
framework of this research, the CLIP text encoder serves this role. Unlike
generic embeddings, CLIP (Contrastive Language-Image Pretraining) [Rad-
ford et al., 2021] offers a nuanced encoding that captures both the content and
style nuances articulated in the textual prompt.

CLIP simultaneously trains an image encoder and a text encoder, creating
a shared embedding space that dynamically links visual and linguistic data.
Trained on a vast dataset of around 400 million image-text pairs, CLIP’s ob-
jective is to maximize the alignment of authentic image-text pair embeddings
while minimizing it for non-matching pairs. Consequently, the models text en-
coder becomes a pivotal component in generating contextually-aware images.

Deciphering CLIP Embeddings for Image Generation

In the text-to-image process, a prompt is converted by a text encoder into
an embedding. Since Stable Diffusion is deployed, this research specifically
focuses on the CLIP text encoder for this purpose. By strategically modifying
the embedding, a more desirable image can be produced. Consequently, it is
crucial to gain insight into the structure of CLIP embeddings before develop-
ing the image guidance techniques.

Prior to the implementation of the proposed methods, an empirical analy-
sis was conducted to comprehend the embeddings generated by CLIP. This
analysis utilized the large_random_1k subset of prompts from the dataset
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described in Section 4.3. This investigation reveals that the tokenizer of the
CLIP model begins processing the input text by assigning a unique starting
token, identified by the number 49406, to the text input. This starting token
is pivotal as it signals the beginning of a text sequence to the model. Every
input sequence is transformed into an embedding with a uniform size of 77 ×
768 dimensions. It is important to note that the embedding for this starting
token remains invariant across different instances, ensuring that it consistently
conveys the initiation of a sequence. The embedding for the end-of-text token,
numbered as 49407, fills the role of a padding mechanism.

The sequential embeddings in the CLIP model are cumulative in nature. Specif-
ically, the second entry in the embedding sequence contains information re-
garding its corresponding and the first token. Each successive embedding
then incorporates the context from all previous tokens in addition to its own.
This cumulative embedding process ensures that each entry within the 77-
dimensional embedding array carries forward the contextual information of all
preceding tokens.

For the seed-invariant optimization technique introduced in Section 6, this
cumulative property is pivotal. It allows for a significant reduction in the pa-
rameter space. The embedding of the last token in the conditional sequence,
by virtue of encapsulating the context of all preceding tokens, is replicated 76
times following the start token. This creates a conditional embedding, which
can be utilized during the optimization process. The robustness of this method
is evident in the consistency of image outcomes. Images generated from em-
beddings of the last token in such a repetitive fashion remain contextually
aligned to those produced from the initial embedding.

The constancy of the start token’s embedding is crucial. Throughout the
optimization procedure, despite multiple updates, the embedding of the start
token must remain unchanged. This immutability is essential as any sub-
stantial modification to this embedding vector can introduce increasing noise
levels within the generated images. Such noise increase could culminate in the
production of images that are entirely noise. To prevent this, the embedding
vector of the start token is not subjected to modification during the update
process. This approach ensures the preservation of image integrity and allows
for the optimization of the upfollowing embedding’s segments.
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2.2.7 Computational Constraints of Diffusion Models
DMs have emerged as a powerful class of generative models, achieving state-of-
the-art results in image synthesis, but their operations directly in pixel space
have resulted in substantial computational resource demands. The training
process for these models often consumes hundreds of GPU days [Dhariwal and
Nichol, 2021] due to the high capacity allocated for capturing even impercep-
tible details in the data [Salimans et al., 2017]. Moreover, inference is also
resource-intensive. Generating a moderate number of samples can take up
to five days on advanced GPUs [Dhariwal and Nichol, 2021]. This not only
restricts the usage of DMs to those with access to extensive computational
resources, but also raises environmental concerns due to the high energy con-
sumption [Patterson et al., 2021, Strubell et al., 2020]. In addition, the inher-
ently sequential nature of these models, requiring multiple iterative steps for
both training and inference, further compounds the computational demands.

2.2.8 Latent Diffusion Models
Addressing the challenges with the computational constraints of DMs, Rom-
bach et al. [2022] proposed the approach of Latent Diffusion Models (LDMs) to
which Stable Diffusion adheres. LDMs introduce a shift by moving the train-
ing and operational processes from the pixel space to the more manageable
lower-dimensional latent space of pretrained autoencoders. Due to the fact
that most of the image’s bits contribute to perceptual details, the semantic
and conceptual composition remains intact even after significant compression.
LDMs effectively separate perceptual compression and semantic compression
through generative modeling learning. It begins by eliminating pixel-level re-
dundancy using an autoencoder and subsequently generates semantic concepts
through a diffusion process applied to the learned latent space.

Utilizing an encoder E , the input image x ∈ RH×W×3 is transformed into a
compact latent representation z = E(x) ∈ Rh×w×c with a compression rate
defined as f = H/h = W/w = 2m, where m ∈ N. Reconstruction of the image
is facilitated by the decoder D translating the latent representation back into
the image space, yielding x̃ = D(z) ∈ RH×W×3.

The loss computation for LDMs mirrors that of DMs but operates within
the more compact latent domain:

LLDM = EE(x),t,ε
[
∥ε− ε̂θ(xt, t, C)∥2

]
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Augmenting the architecture, the denoising U-Net now incorporates cross-
attention layers. This enables LDMs to adept at processing a range of condi-
tioning inputs, spanning from text descriptors to bounding boxes. This consol-
idation enables them to undertake sophisticated operations like high-resolution
synthesis.

2.3 Image Generation with Stable Diffusion

After laying the conceptual and technical foundations of DMs, including their
variant LDMs, the attention can be shifted to the image generation process fa-
cilitated by Stable Diffusion. This process is paramount to the image guidance
methodologies presented in this thesis. Grounded in the principles of LDMs,
Stable Diffusion integrates three key components: the CLIP text encoder, the
denoising U-Net and a VAE. The forthcoming approach on image generation
is depicted in Figure 2.7.

Given a set seed in the system, initial latents corresponding to a standard
normally distributed tensor of size 64 × 64 can be sampled. Simultaneously,
the prompt is transformed into a text embedding via a pretrained text encoder,
which is CLIP in this context. Both the Gaussian-distributed seed latent and
the text embedding function as inputs for Stable Diffusion. Using the latent
seed, an image representation is constructed in the latent space while retaining
the latent seed’s dimensions.

As previously explained, the responsibility of denoising these latent image
representations falls to the U-Net architecture. It conducts this task itera-
tively, conditioned on the text embeddings derived earlier by the CLIP text
encoder. The output from the U-Net is equivalent to the noise residual, which
aids in computing a less noisy image latent representation using scheduling
algorithms, including those described in Section 2.2.5.

After this denoising phase the latent representation is passed to the VAE de-
coder, culminating in the final image rendition.
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Figure 2.7: Image generation process with Stable Diffusion.

2.4 Interpolation

Finally, the concept of interpolation is thematized as a fundamental technique
for the methodologies realized in this thesis. Essentially, it serves as a mech-
anism to estimate values within a known range. In the context of the imple-
mented image guidance techniques, it is employed for prompt embeddings and
latents initialized from different seeds. This is followed by an exploration of its
application, specifically in the context of text embeddings and latent variables.

The role of interpolation techniques in this study becomes evident as they
are integrated into different approaches of the research. Their applications
include assuring a consistent continuity in embeddings for gradient-based op-
timizations in the context of metric-based image optimization (Section 4), fa-
cilitating expansive optimization steps as part of the user interaction method
(detailed in Section 5) and concluding with the seed invariant prompt em-
beddings (Section 6). In the latter, interpolation of the initial seed latents
introduces a measured degree of randomness, optimizing the process to pro-
duce seed-independent images.

2.4.1 Utilized Methods
Interpolation is a mathematical technique that allows the estimation of values
situated between two given points. Throughout the proposed image guid-
ance methods, three interpolation techniques are considered. These are: Lin-
ear Interpolation (LERP), Normalized Linear Interpolation (NLERP) and the
Spherical Linear Interpolation (SLERP) [Shoemake, 1985]. For a visual under-
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standing and comparison of these methods, Figure 2.8 graphically illustrates
the interpolation approaches covered in this section.

LERP determines intermediary values by tracing the direct path connecting
two endpoint vectors. Given two vectors vi and vj, representing the start and
end points and an interpolation parameter s ∈ [0, 1], the corresponding LERP
formula can be expressed as:

LERP(vi, vj; s) = (1− s)vi + svj.

For situations involving standardized data, NLERP comes into play. This
method begins by conducting a LERP operation. Afterwards, a normaliza-
tion of the resulting vector is performed, maintaining a uniform length. A
distinctive characteristic of NLERP is that, due to the consistent lengths of
the vectors, the interpolated points are not evenly spaced. When increasing
the interpolation parameter in constant step sizes, the interpolated vector is
moving more rapidly as it approaches the midpoint, given the increased dis-
tances it must traverse compared to the vector’s extremities [Kremer, 2008].

An alternative to the previous interpolation methods is SLERP. Unlike its
counterparts, SLERP interpolates by executing a rotational movement along
the shortest path on a unit sphere connecting two endpoints. The mathemat-
ical representation for SLERP, using the vectors vi and vj, is:

SLERP(vi, vj; s) =
sin((1− s)Ω)

sinΩ
vi +

sin(sΩ)

sinΩ
vj.

While SLERP might demand more computational resources compared to NLERP,
it is enabling a smoother interpolation [Kremer, 2008].
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Figure 2.8: Considered interpolation methods.
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2.4.2 Embedding Interpolation
In the context of image generation through Stable Diffusion, CLIP embed-
dings serve as indispensable tools for fine-tuning of textual embeddings. To
accomplish notable modifications in a single step, interpolation techniques are
applied between two distinct prompt embeddings.

While prior research has utilized LERP [Tevet et al., 2022] and SLERP [Ramesh
et al., 2022a] for smooth interpolation, LERP presents challenges when ap-
plied to CLIP embeddings. Specifically, due to their standardized distribution,
LERP can generate embeddings with norms that deviate from a initial range,
potentially leading Stable Diffusion to produce images containing undesirable
artifacts. This issue becomes particularly significant when the output of LERP
serves as an input for additional interpolation processes. A viable workaround
to this limitation is the use of NLERP to adjust the norms of interpolated em-
beddings. The usage of SLERP is also a prevalent option and acknowledged as
an effective interpolation technique for prompt embeddings [Han et al., 2023].

Figure 2.9 illustrates an interpolation example using SLERP between em-
beddings. The resultant images generated via Stable Diffusion convincingly
interpolate both style and content, underlining the efficacy and robustness of
both CLIP embeddings and Stable Diffusion.

Further, the Stable Diffusion model defines a continuous mapping from the
prompt embedding space to the image space. This continuity implies that
minor alterations in the embedding space yield correspondingly small changes
in the generated images, both in terms of pixel values and perceived aesthetic
qualities. To leverage this property, the proposed methods perform incremen-
tal adjustments to prompt embeddings. Marginal adjustments are executed
through gradient descent. For more substantial changes, direct SLERP inter-
polation between two prompt embeddings is employed. This offers fine-grained
control over modifications in the prompt embedding space.

Prompt 1 Prompt 2

Figure 2.9: Interpolation between two prompt embeddings. The prompts are contained in Appedix A.
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2.4.3 Latent Interpolation
In the context of computing seed invariant embeddings, interpolation within a
normally distributed latent space is conducted. As shown by White [2016] uti-
lizing LERP is inappropriate in such a high-dimensional normally distributed
environment. This is due to the consistent variances and equal lengths of the
two endpoints. Employing LERP would cause a reduction in vector length
as the interpolation approaches the center, thereby leading to a decrease in
variance. As a result the images become blurry as shown in Figure 2.10.
This image is generated based on linearly interpolated seed latents, leveraging
Prompt 3 as presented in Appendix A including the corresponding seeds. In
alignment with Section 2.4.2, NLERP offers an alternative by adjusting the
vectors’ length and simultaneously the variances. SLERP is advocated in this
context as the more effective technique, facilitating a smoother interpolation
process.

Figure 2.10: Resulting image after performing LERP on standard normally distributed initial seed latents.
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Related Work

In recent years, the automation of prompt engineering has seen widespread
application not only in image generation but also in the enhancement of tech-
niques across various tasks, for instance in the field of natural language pro-
cessing (NLP), including text generation and classification. Therefore, this
chapter covers two main areas. The first part covers the methods of auto-
mated prompt engineering in NLP, highlighting it as an additional field, where
the challenges of prompt engineering are addressed. The second part explores
strategies that steer the image guidance process of generative text-to-image
models.

3.1 Automated Prompt Search for NLP
Applications

A distinction within the area of automated prompts generally lies in their sep-
aration into two categories [Liu et al., 2023]. Discrete prompts correspond
to an actual text string, while continuous prompts refer to prompts that are
directly represented within the embedding space of the present language model.

In the area of discrete prompts, Wallace et al. [2019] introduced a method
employing gradient-based search over actual tokens to identify short sequences
that effectively guide pre-trained language models toward generating desired
target predictions. This iterative search process involves navigating through
tokens in the prompt, leading to the discovery of sequences that trigger specific
model outputs. Building upon this foundation, Shin et al. [2020] advanced the
concept of automated prompt engineering by proposing AutoPrompt. This
technique automatically generates natural language prompts for a variety of
NLP tasks, such as sentiment analysis, natural language inference, fact re-
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trieval and relation extraction. It exploits the knowledge embedded in pre-
trained masked language models (MLMs) by finding a sequence of discrete
trigger tokens that can induce the MLM to produce the desired output. These
trigger tokens are selected by a gradient-guided search that measures the sensi-
tivity of the MLM output to each input token. AutoPrompt shows that MLMs
have an innate ability to perform diverse tasks without requiring additional
parameters or fine-tuning.

Another work that optimizes discrete text prompts is RLPROMPT [Deng
et al., 2022], which uses reinforcement learning (RL) to explore the prompt
space. RLPROMPT employs a parameter-efficient policy network that gener-
ates the optimal discrete prompt after training with a reward signal. RL-
PROMPT evaluates its performance on both classification and generation
tasks, such as few-shot text classification and unsupervised text style transfer.
RLPROMPT differs from AutoPrompt in that it uses RL and does not rely
on label tokens to guide the prompt optimization.

Expanding on continuous prompts, Zhong et al. [2021] proposed a two-step
method that first uses a discrete search approach, such as AutoPrompt. This
step involves the establishment of virtual tokens based on the identified dis-
crete prompt, subsequently followed by the fine-tuning of embeddings to in-
crease task accuracy. This method leverages the effectiveness of manually
crafted templates, but may not be able to capture the context information of
the input.

Tang et al. [2022] proposed an approach called context-tuning, which aims
to fine-tune pretrained language models (PLM) for natural language genera-
tion. Unlike previous methods that use fixed or independent prompts, context-
tuning generates contextualized prompts that are derived from the input text
and encode its context information. These prompts can obtain useful knowl-
edge from PLMs for generation and adapt to different inputs dynamically. The
authors showed that context-tuning outperformed existing prompting methods
on several text generation tasks, such as summarization, dialogue and story
generation.

While these discrete and continuous approaches for automated prompt en-
gineering have been mainly applied to natural language generation tasks, this
thesis focuses on text-to-image guidance, which poses different challenges and
opportunities. In particular, the prompt is updated in a continuous manner to
manipulate the embeddings of Stable Diffusion prompts, enabling a more user
friendly experience, when using generative text-to-image models like Stable
Diffusion without the need for prompt based editing.
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3.2 Image Generation Guidance

In order to provide control in generative text-to-image models without relying
on prompt engineering, the diffusion process itself offers some control by in-
painting. This technique operates by reconstructing missing or damaged areas
in images. Its applications range from image restoration and object elimina-
tion to artistic creation. Image inpainting usually involves a generative model
that learns to fill in the missing regions with realistic and coherent content,
based on the surrounding pixels or some guidance signals.

Nevertheless, inpainting alone may not be sufficient when tasked with cap-
turing novel concepts or replicating specific appearances based on user input.
Therefore, in the recent years some techniques have been proposed to enhance
the guidance and personalization of the text-to-image process by using addi-
tional signals, such as Textual Inversion [Gal et al., 2022]. Leveraging this
concept, personalization is carried out by learning new words in the embed-
ding space of the text encoder from a few example images. To accomplish this,
a set of images displaying a target concept is inverted using a DM to obtain
a diffusion trajectory. Afterwards, it is reconstructed by optimizing the loss
function of the utilized DM, simultaneously the weights of both the denoising
model and the text encoder are preserved. Inspired by this approach, two
inversion techniques have emerged, enabling a precise editablity of images.

Similar to Textual Inversion, Null-text inversion [Mokady et al., 2023] re-
constructs the image through a DM to derive a diffusion path. Subsequently,
only the unconditional textual embedding is used as a classifier-free guidance
signal for optimization. The unconditional embedding is learned by employing
the exact same method as Textual Inversion. Finally, the inverted image can
be modified through a prompt based editing technique proposed by Hertz et al.
[2023], which will be outlined in the following.

Prompt Tuning Inversion [Dong et al., 2023] operates in two stages. In
the reconstruction stage the image is also inverted by applying a DM. This
time the conditional embedding is optimized during the reconstruction of the
image. In a subsequent editing stage the prompt embedding is modified by
interpolation with the target text embedding, obtained from the user defined
target prompt.

In response to the limitations of these methods, including the generation
of poor results in selected areas and unexpected modifications in untouched
regions as well as the need to provide detailed prompts, Li et al. [2023] intro-
duced StyleDiffusion as an enhanced concept, internalizing adventages of the
previous techniques. Despite its advancements, even StyleDiffusion does not
completely eliminate the need for prompt editing.
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An alternative way to achieve personalization is fine-tuning. DreamBooth
[Ruiz et al., 2023] fine-tunes text-to-image DMs for subject-driven generation
from a concise amount of reference images.

Since fine-tuning of DMs can lead to overfitting when handling several
subjects, Han et al. [2023] proposed SVDiff. By fine-tuning a compact amount
of a DM’s parameters they reduce the risk of overfitting and language drifting,
providing a multi-subject personalization technique. For this purpose they
perform a singular value decomposition on the weight matrices of the DM.

Black et al. [2023] adapt the DM’s weights by employing RL. The reward
function is defined based on an aesthetic metric, obtained by the usage of
human generated image rating pairs, assessing the aesthetic score of an image.

Likewise, Wu et al. [2023] presented a method utilizing an aesthetic metric.
Their technique aims to align the resulting images with human preferences.
Therefore, they fine-tuned CLIP leveraging a data set of human choices from
generated images by Stable Diffusion and determined an aesthetic metric based
on it.

The latter has a direct effect on the prompt embeddings but does not al-
low for individual adjustments of single prompts. Furthermore, the outcome
of fine-tuning is a static model without the flexibility to leverage other metrics.

In the realm of interactive methods incorporating user feedback, Hertz et al.
[2023] introduced Prompt-to-Prompt. This makes use of a cross-attention
mechanism that allows the model to control the relation between the spatial
layout of the image to each word in the prompt. They created a precise image
editing framework by performing modifications on the prompt only. This way
most of the original image can be preserved when performing small changes in
a prompt.

Brooks et al. [2023] pursue the DM InstructPix2Pix, which is able to update
images by following instructions. These are expressed independently of the
prompt. This can be accomplished by generating a large training set of image
editing examples utilizing Prompt-to-Prompt in combination with a language
model and a text-to-image model.

Another interactive approach is FABRIC [von Rütte et al., 2023]. This
technique is a training-free method aimed at improving the output of diffusion-
based text-to-image models by incorporating iterative human feedback. It uti-
lizes the self-attention layers common in many DMs to condition the image
generation process based on feedback images. This technique allows the model
to focus on certain features or details from a reference image during the de-
noising process, leading to more tailored and refined outputs.
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In order to guide DMs based flexibly on different input modalities, Zhang
and Agrawala [2023] proposed ControlNet, a neural network architecture de-
signed to add spatial conditioning controls to large, pretrained text-to-image
DMs. This essentially enables users to influence or guide the output of these
DMs using some conditions like edge, depth, segmentation or human pose.
To incorporate these additional conditional inputs often a reference image is
required, which can be considered as a drawback of this method.

Huang et al. [2023] persued a similar objective by proposing Collaborative
Diffusion, a method for generating faces from multiple additional input modal-
ities.

Lastly, the scope of influencing DMs has dramatically expanded, even includ-
ing the use of neural signals as inputs rather than traditional text prompts, as
demonstrated by Takagi and Nishimoto [2023].
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Chapter 4

Metric Based Optimization

Generating images that precisely align with envisioned concepts has always
posed challenges, particularly when striving for intricate details and specific
nuances. This divergence underlines the importance of making targeted ad-
justments, especially in scenarios where desired refinements are not easy to
express verbally, such as aiming for a specific aesthetic. As a consequence the
users add descriptors to the prompt like 4k high resolution to find a satis-
fying image. However, the effect of these descriptors does not provide enough
control. With appended phrases, not always a satisfying visual outcome can
be created. To address this, the proposed approach does not merely rely on
ad-hoc textual changes. Instead, it optimizes the underlying embedding of the
textual prompt based on a predefined differentiable metric computed in the
image space. If a user’s desired style can be programmatically described by
this metric, this methodology refines the embedded representation of the given
prompt to generate better images.

Therefore, this chapter delves into the approach of metric based image gen-
eration to overcome such challenges, aiming to refine the textual prompts for
more accurate results. The subsequent sections elaborate on the methodolog-
ical approach and the implementation specifics, followed by the setup of the
experiments and concluding with the results derived from the experiments.
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4.1 Methodological Approach

Prompt

 𝑃
Embedding

𝐶
Image 

𝐼
Score

Update by gradient ascent

CLIP Encoder 𝜓 Stable Diffusion

“beautiful painting 

of a peaceful lake”

5.82[-0.3887, 0.0229, ..., -0.3066]

Evaluation

5.82 6.59 6.81 7.02Aesthetic Score:

… … …
Metric optimization result:

Figure 4.1: Iterative improvement through a metric based optimization process. The aesthetic scores be-
neath each image serve as examples, showcasing the incremental enhancements in image quality as perceived
by a computational evaluation metric.

Traditionally, an image represented as I is derived from a prompt P by em-
bedding the prompt and subsequently applying the Latent Diffusion Model:

I = LDM(ψ(P ))

Leveraging a given metricm, the prompt embedding is optimized by employing
gradient descent.

C∗ = argmin
C

m(LDM(C))

Alternatively, gradient ascent is utilized if the metric optimization indicates
an improvement with rising values.

C∗ = argmax
C

m(LDM(C))

Here, the initial embedded prompt is C = ψ(P ). The resulting optimized im-
age is represented as I∗ = LDM(C∗).

It is crucial to highlight, that during this optimization the model’s weights
remain constant, preventing comprehensive model fine-tuning. The advantage
of this approach lies in its ability to make minimal adjustments to the prompt
embedding, ensuring that most characteristics of the resultant image remain
consistent, while still precisely meeting the predefined metric. For visualization
of the results’ reliability, a fixed seed is maintained throughout the procedure.
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4.2 Utilized Metrics

The metric based image optimization approach has been implemented using
the following metrics:

• Blurriness and Sharpness: The blurriness or sharpness of an image is
calculated by turning it to grayscale and applying the extended Laplacian
kernel, utilized to detect edges in images. After the convolution, the
variance of the resulting filtered image is computed. In this context, a
high variance indicates a sharp image with pronounced edges, while a low
variance suggests a blurrier image with fewer clear edges. Accordingly,
by performing gradient ascent the sharpness of an image increases, while
gradient descent leads to a more blurry result.

• Deep-learning based Aesthetic Metric: The LAION aesthetic pre-
dictor [Schuhmann, 2022a,b] is a multi-layer perceptron, trained on 176.000
image rating pairs. The ratings range from 1 to 10. An image’s aesthetic
score is computed by embedding the image with the CLIP model and
afterwards feeding it to the linear model trained on human ratings.

For all implemented metrics their gradients can be computed, making them
appropriate candidates for this optimization technique.

4.3 Dataset

The DiffusionDB [Wang et al., 2023], with particular emphasis on subsets
large_random_100k and large_random_1k, provides the data foundation for
this assessment. DiffusionDB stands as the first large-scale dataset for text-to-
image prompts, encompassing 14 million images. These images are produced
by Stable Diffusion, guided by prompts and hyperparameters determined by
actual users. The images showcased in the figures are obtained based on the
initial prompts sourced from Lexica1, a repository known for its well designed
prompts and corresponding images.

1https://lexica.art
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4.4 Implementation

This section outlines the practical aspects involved in implementing the method
described in Section 4.1. While the theoretical approach serves as the founda-
tion, several adaptations were necessary during the transition to actual imple-
mentation. These adaptations were driven by computational constraints and
empirical findings. Subsequently, this section includes the choice of software
frameworks utilized for all three approaches in this research, modifications
made based on empirical data and the findings that influenced the final imple-
mentation.

For the implementation of this method, as well as the two methods presented
in the subsequent chapters, Stable Diffusion 1.4 was deployed along with the
K-LMS [Karras et al., 2022] scheduling algorithm, recognized as one of the
standard schedulers mentioned on the Huggingface blog related to Stable Dif-
fusion [Patil et al., 2022].

For simplification purposes, the methodological description of the metric-based
optimization approach (Section 4.1) exclusively considers the conditional part
of the embedding for an update through the gradient. This approach was
tested using the aesthetic metric on a sample of the first 15 prompts from the
dataset derived in Section 4.3, containing 150 prompts in total. This procedure
was executed for 500 iterations for each prompt. While the aesthetic score for
the complete embedding increased on average by 1.05 points, a significantly
smaller increase of 0.29 was observed when only the conditional part of the
embedding was used. According to this observation, the complete embedding,
including the conditional and unconditional, was leveraged for this procedure.

It is essential to note that, due to hardware constraints, the gradient was
computed only for the first denoising step. An initial hypothesis had been es-
tablished that the gradient should ideally be calculated for the final denoising
step, the 70th in the present implementation to be precise. The underlying
assumption was that computing the gradient for this last step would exert a
more pronounced influence on image optimization, which would in turn yield
a higher average aesthetic score compared to calculations made for the initial
denoising step. This was tested employing the same 15 prompts as described
above. Contrary to this supposition, the results were not as anticipated. The
average score was considerably lower, corresponding to 0.32. Consequently, for
evaluating this method, the gradient was formed exclusively for the very first
denoising step.
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As described in Section 2.2.6 the first vector of the CLIP embedding must re-
main consistent. This characteristic should be retained throughout the updates
made by the gradient. If the encoded start token undergoes increasing changes,
the images generated start showing increasing levels of noise, eventually cul-
minating in purely noisy images. Therefore, this part of both the conditional
and unconditional sections of the embedding will never be updated.

4.5 Evaluation

The primary objective of this evaluation is to investigate the efficacy and prac-
ticality of the proposed metric-based approach in optimizing prompt embed-
dings. Figure 4.2 showcases a series of images generated from these optimized
prompts, demonstrating the transformative effect of the method on the initial
images. The utilized metric is the aesthetic score. On the leftmost side, images
derived from the initial prompts are displayed. Moving rightward, there is a
noticeable evolution in the images due to the increased optimization of the
prompt embeddings towards the aesthetic scores.

To provide a comprehensive understanding of the different aspects of metric
based optimization, Figure 4.3 details the changes for further applied metrics,
more accurately for blurriness and sharpness metrics.

While the initial observations suggest promising outcomes, a comprehensive
assessment is essential to validate the robustness of the method. This evalua-
tion commences with a foundational examination of the metric-based approach,
utilizing the DiffusionDB. Subsequently, a notable concern is addressed: the
potential for over-optimization, which could lead to a divergence from the de-
sired outcomes. Finally, the evaluation will consider the method’s ability to
generalize across various seed values.
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Initial Prompt Optimized Aesthetic Score

Figure 4.2: Aesthetics metric refinement utilizing selected prompts. The corresponding Prompts are
located in Appendix B (Prompt 1 - Prompt 3).

Initial Prompt Optimized Bluriness Score

Initial Prompt Optimized Sharpness Score

Figure 4.3: Sharpness and blurriness metric refinement using a selected prompt (Prompt 4, Appendix B).
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4.5.1 Empirical Assessment
150 prompts are randomly chosen from the referring dataset, described in
Section 4.3. The iterative process, essential for the method’s evaluation, was
modulated based on the metric in focus. For instance, 500 iterations are ded-
icated to optimizing the aesthetic score, while the sharpness and blurriness
metrics are addressed over 50 iterations each.

Figure 4.4 provides an overview of the optimization process for the three im-
plemented metrics and traces the progression of the metric scores. As the
evaluation unfolds, the observations align with expectations. The aesthetic
score and the sharpness metric values exhibit an upward trend, whereas the
blurriness metric registers a decline.

Initially, the median aesthetic score starts at 5.3 and ascends to 6.3 follow-
ing 500 iterations, implying an increase of 18.9%. In contrast, the sharpness
metric, despite its fewer iterations, witnesses a stronger increase compared to
the aesthetic score. The median begins at 0.24 and post-optimization, ascents
to 2.8 — an increment over ten times its original value. Moreover, the sharp-
ness metric exhibits a significant growth in variance, evident in the increasing
size of its boxplots. Lastly, the blurriness metric is under consideration. For
visualization reasons, two outliers in a range from 2.5 to 5.0 were removed from
Figure 4.4c to prevent an excessive reduction in the size of the boxplots and
thus ensure a clear identification of the trend. The blurriness metric presents a
converse trend to the sharpness metric. The median recedes from 0.23 to 0.11
and is half the size of the initial value. Furthermore, the variance decreases
throughout the iterations, as illustrated by the shrinking boxes.

These significant changes in variance across the iterations of the optimiza-
tion process indicate that both blurriness and sharpness metrics are acutely
responsive to the unique features of each prompt. This implies that a consis-
tent specification to the number of iterations may be ineffective, necessitating
individualized optimization strategies. Moreover, the potential influence of a
prompt’s distinctiveness on the aesthetic score cannot be disregarded. A thor-
ough visual analysis of the generated images is essential to fully grasp these
effects. This phenomenon is examined in greater detail in the subsequent sec-
tion.
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Figure 4.4: Optimization progress for the implemented metrics.
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4.5.2 Metric Over-Optimization
During this extensive process of examining the generated images, it was ev-
ident that certain prompts were prone to being over-optimized. This over-
optimization manifests in varying extents across different prompts. To offer a
visual understanding of this phenomenon, Figure 4.5 showcases some examples
of over-fitted prompts towards the aesthetic score. In this figure, the first im-
age in every row represents the visualization based on the initial prompt. The
second image corresponds to the representation with the highest aesthetic score
among still congruent images with the original prompt’s conceptual framework.
The concluding is most optimal with respect to the aesthetic score, often de-
viating from the original intent.

A close inspection of the optimization process corresponding to the first row re-
veals a trend of divergence from certain details initially defined by the prompts.
The description initially included “chrome and gold” directly at the beginning.
Throughout the optimization, it was observed that these elements gradually
lost their prominence, until they disappeared altogether.

The second set of images presents an even more pronounced case. Not only
did the motif undergo significant changes but the color scheme of the image
also shifted dramatically. The blue component in the image is now more dom-
inant than it initially was. Surprisingly, this trend of increased blue tones was
observed in other sets as well, even when the motif remained closer to the
provided prompt, the increase is clearly visible.

This increasing appearance of blue tones raises questions about the nature of
the training data employed for the aesthetic prediction model. It potentially
points towards a low diversity of particularly high-ranking images within the
dataset of the aesthetic predicting model. The training set might lack a suffi-
cient representation of such high-ranking images. Such an imbalance and low
diversity might have potentially biased the model towards generating images
with blue components.

The investigation continued with the analysis of the blurriness and sharp-
ness metrics. Several instances of over-optimized prompts were observed, as
depicted in Figure 4.6a and Figure 4.6b. Figure 4.6a provides an example for
the blurriness metric, where the snow globe, the primary component of the
prompt, entirely dissolves into a cloud-like structure. Conversely, Figure 4.6b
displays the outcomes from an over-optimized prompt for the sharpness metric,
where the primary motif vanishes entirely, replaced by increasingly fine lines.
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Interestingly, the tendency towards over-optimization was more frequently
identified in the sharpness metric, as opposed to the blurriness metric. Many
of the images generated exhibited only a marginal level of blurriness, suggest-
ing that the effect could possibly be enhanced with an increasing number of
iterations amplifying the blurriness optimization.

Initial Prompt Optimal Over-optimized

chrome and gold wolf, glossy, metallic, neon, symmetrical, tribal patterns, realistic, unreal engine, octane, redshift,
artstation, behance

giant nordic hell dragon attacking a victorian town during a parade, highly detailed, digital illustration, artstation,
concept art, matte, sharp focus, illustration, dramatic, full moon, art by artgerm and greg rutkowski and alphonse

mucha

Figure 4.5: Overfitting during aesthetic score optimization.

Initial Prompt Optimal Over-optimized

a rainstorm inside a snowglobe. Beautiful colorful clouds in moody greys and blues. High quality award winning
detailed!!! oil painting, trending on artstation

(a) Overfitting during blurriness optimization.

Initial Prompt Optimal Over-optimized

a coffee cup filled with magma, digital art, highly detailed, sparks in the background, out of focus background

(b) Overfitting during sharpness optimization.

Figure 4.6: Examples of overfitting during image optimization.
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These findings underscore the potential risk of over-optimizing image prompts,
where the resultant images may drift away from the original intent or descrip-
tion. A pivotal consideration involved setting a threshold which, when met,
would signal the end of the metric optimization. The cosine similarity served as
the chosen metric for this purpose. Throughout the optimization process, the
similarity between the initial image and every subsequently generated image
was calculated. Contrary to expectations of a steady course, the cosine similar-
ity did not consistently decrease. There were moments when significant rises
were noted. Consequently, the images generated often complied more with the
target metric. The trajectory of the metric optimization was not consistent
either, especially the aesthetic score showed periodic decreases. The blurriness
and sharpness metrics were not entirely monotonic as well. These irregulari-
ties, paired with the inconsistent behavior of the cosine similarity, complicated
the task of establishing an universally applicable stopping criterion. Therefore,
determining the optimization’s adequacy is at the discretion of the user. For
future aspirations, it might be more insightful to explore discrepancies on a
contextual level rather than merely on a visual scale. One such approach could
involve leveraging models like CLIP to assess whether the generated images
remain semantically consistent with the original prompt.

4.5.3 Generalization
The ability to alter the seed can be a valuable tool for adjusting image at-
tributes like composition or sparking creativity. When utilizing or creating
new prompt modifiers, users often desire consistent effects regardless of the
chosen random seed. It is beneficial to identify prompt modifiers that operate
irrespective of the seed. A similar outcome was expected for this method: Even
with optimization limited to one seed, the altered prompt embedding should
enhance the metric compared to the initial prompt when tested on various
seeds. Using the implemented metric, the adaptability and seed independence
of the method are explored. This consideration is especially evident, since
users often desire prompt modifiers exhibiting the intended effects across var-
ious random seeds.

In this context, the embedding for the specified prompt highly detailed
photoreal eldritch biomechanical rock monoliths, stone obelisks,
aurora borealis, psychedelic is optimized over 300 iterations towards the
aesthetic score and for 50 iterations for both, the blurriness and sharpness
metrics. Subsequently, images for these optimized embeddings are generated
across 65 unique seeds and the metric scores are computed. The aim is to
investigate whether the modified prompt embeddings, optimized for a single
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seed, can also improve the metric when applied to different seeds. This strat-
egy measures the method’s generalization ability by assessing the consistency
of the metric values’ trend.

As depicted in Figure 4.7, the results not only indicate a general improvement
in the metrics but also reveal a progressively narrowing confidence interval for
the aesthetic and blurriness metrics. The confidence interval for the sharpness
scores becomes slightly wider while still maintaining the most narrow interval
as well as the strongest metric optimization compared to the others. These
observations suggest that the modified prompt embeddings possess a degree
of seed independence, aligning with the hope that the metric-optimization
method will have a similar effect across different seeds. While more intricate
optimization strategies incorporating multiple seeds during runtime can cer-
tainly be envisioned, these initial findings affirm the method’s robustness in
the face of varying seed values.
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Figure 4.7: Metric-based optimization for 65 different seeds.
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Iterative User Interaction

Generative text-to-image models serve as useful tools for a range of creative
endeavors. Often there are scenarios, where a general thematic guideline exists
but no specific target image has been determined. Adjusting the seed can offer
a certain level of variation and inspiration, yet this approach has its limitations
and provides minimal control. In light of prompt engineering, this can often
descend into a tedious cycle of trial and error, as users grapple with differ-
ent prompt modifiers aiming to enhance their results. The objective of this
method to significantly improve upon this limitation is adopting an iterative
approach. By presenting users with a series of related images, generated from
subtly varying the underlying prompt embeddings, creative possibilities can
be expanded providing structured and iterative inspirations to users. In the
following this approach is precisely illustrated and a thorough evaluation is
detailed. Afterwards, the limitations are addressed with a concluding analysis
of the method’s generalization ability.

5.1 Methodological Approach

The framework starts by initializing the current prompt embedding, denoted
as C = ψ(P ), where initially P corresponds to the prompt provided by the
user and is updated by interpolation throughout the process.

Generation of Candidate Prompt Embeddings

Starting with iterative image suggestion through prompt embedding modifi-
cation, the methodology unfolds as follows. Offering a range of options for
the users, candidate prompt embeddings Ĉi are generated according to the
equation:

Ĉi = SLERP(C, C̃i, γi)
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Figure 5.1: Workflow of the User Interaction method.

Accordingly, C̃i are embeddings of random prompts P̃i, constructed primarily
by combining random alphanumeric characters. Among a large pool of such
candidates, a subset is determined based on maximizing the pairwise cosine
distance, ensuring diversity in the candidate prompt embeddings.

The interpolation parameter γi is methodically selected to maintain a constant
and equal cosine distance between C and Ĉi, aiming for perceived uniformity in
the choices presented to the user. Through an empirical verification, utilizing
the dataset described in Section 4.3, the standardization of CLIP embeddings
could be determined. As a result, the cosine distance remains equivalent to
the euclidean.

Derivation of the Interpolation Parameter γi

The derivation for γi starts by considering a completely random prompt em-
bedding C∗

i . Initially, LERP was used throughout the procudure. Since Ĉi is
an interpolated version of C and C∗

i , the relationship can be represented as:

Ĉi = (1− γi)C + γiC
∗
i = C + γi(C

∗
i − C)

Therefore, by introducing a fixed, predefined distance d0 the Euclidean distance
between Ĉi and C becomes:

d0 = ||Ĉi − C||2
= ||γi · (C∗

i − C)||2
= γi · d(C∗

i , C)
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This implies that γi is the ratio of the distance between C∗
i and C to the fixed

predefined distance d0:

γi =
d(C∗

i , C)

d0

It is important to note that despite this derivation, SLERP is the interpolation
method of choice. The individual interpolation parameter is not necessarily
tuned to SLERP. Yet, since the random embeddings were generated to maxi-
mize distances between them, the diversity of C∗

i is inherently present. Testing
suggested that the initial derivation of the parameter d0 from LERP did not
negatively affect the perceived distances of the resulting images from the cur-
rent prompt embedding. Thus, the calculation for d0 remains unmodified.

Refinement of Candidate Embeddings

In a crucial refinement step, each Ĉi is further modified towards the original
prompt P . Similarly to the random prompts P̃i creation, this is achieved by
applying other randomly chosen modifiers to P from the same predetermined
list of effective modifiers. This step ensures the preservation of aesthetic quality
and prevents undue divergence from the original prompt’s intent.

Update by User Selection

The system then generates images Îi from the refined embeddings:

Îi = LDM(Ĉi)

Users are invited to select an image, denoted by the choice j, and assign an
interpolation parameter α ∈ [0, 1]. This α is used to update C for the next
iteration as follows:

C = SLERP(C, Ĉj, α)

Finally, the new current image I is displayed, computed as LDM(C). Through-
out the iterative process the seed is kept constant to heighten the predictability
of the results. By executing this method, the system facilitates a more directed
optimization of user satisfaction, offering a balanced combination of creative
freedom and targeted results.

45



CHAPTER 5. ITERATIVE USER INTERACTION

1. Initialization 2. Image Selection 3. History

Generate

2

0,37Interpolation Value

1 2 3 54

t-SNE
Current

Current

0

40

40-40 0

1
5

3

4

Figure 5.2: User interface of the user interaction system. The interface prominently displays the current
image selection at the lower left. The options available for user selection are arrayed across the top. On
the bottom right, a t-SNE [van der Maaten and Hinton, 2008] plot visualizes the dimensionality reduction,
placing the current embedding at the center with the five selectable options distributed around it.

To provide a comprehensive overview of the entire process, Figure 5.1 illus-
trates the workflow for the user interaction method and Figure 5.2 showcases
the actual user interface utilized. The process initiates with the user entering
an initial prompt, which the system uses to calculate the current embedding.
The resultant image, displayed at the bottom left in Figure 5.2, stems from
this embedding. This initial image and its corresponding prompt embedding
are iteratively refined to yield a more satisfying visual result. To facilitate
this, N = 5 random prompt embeddings, along with the original one, are
augmented by incorporating specific, predetermined prompt modifiers. These
modified embeddings are then interpolated to generate N = 5 candidate im-
ages for user selection, displayed at the top of Figure 5.2. Note that the prompt
augmentation step is omitted from the figures for simplicity. The user then
chooses their preferred image (for example, image 4) and specifies an interpo-
lation value in the interface, determining the degree of influence the selected
image will have on the subsequent image outcome. Based on this input, a new
current embedding is computed, from which the next iteration’s image and
selection options are derived, advancing the user-guided image evolution.
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5.2 Dataset

For assessing the user study, a selection of initial prompts from DiffusionDB
and Lexica was employed. Most of the incorporated prompt modifiers in these
were eliminated. A complete list of the prompts used during the user study
can be found in Appendix C.2.

5.3 Implementation

This section details the specifics of realizing the User Interaction method il-
lustrated in Section 5.1. Although the methodological foundation offers a
theoretical roadmap, certain adjustments were demanded.

In the User Interaction method, interpolation is applied solely to the con-
ditional embedding. No modifications were carried out on the unconditional
part.

As described in the methodological approach (Section 5.1), SLERP is uti-
lized. The sum of the coefficients derived for linear interpolation in this method
does not add up to 1. Consequently, as discussed in Section 2.2.6, special atten-
tion must be paid to ensure that the start token of the conditional embedding
remains unaltered and is excluded from the interpolation process, accordingly.

5.4 Evaluation

This section provides an in-depth analysis of the proposed user interaction
method, comparing it to the conventional prompt engineering technique. By
incorporating feedback from real participants, this section draws distinctions
between the advantages, challenges and areas of enhancement for the proposed
approach. Topics discussed include the user segment most likely to benefit from
the user interaction approach, the scope of its generalizability provided by the
user interaction implementation and notable limitations within the experimen-
tal setup.
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5.4.1 Comparative Analysis
A user study experiment was conducted with eight participants. The corre-
sponding questionnaire specified within this study is presented in Appendix
C.1. They were instructed to generate images from given prompts using the
proposed user interaction technique, adjusting these images based on their
preferences. As a means of comparison against traditional prompt engineer-
ing, an equivalent system with a similar interface was utilized as a reference
point. Each participant had 20 iterations to craft their ideal image using both
methods. Figure 5.3 presents a selected subset of image outcomes, generated
during the user study.

Initial Prompt Favourite

Initial Prompt: Mountain with a sunset and a river

Initial Prompt Favourite

Initial Prompt: No Man’s Sky space ship

Figure 5.3: Selected illustrations from the user study: A comparison between the user interaction method
(first line for each prompt) and prompt engineering (second line for each prompt).
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To maintain objectivity in the assessment and to consider the possible in-
fluence of sequence, the starting method was alternated among participants.
Therefore, half of them began with the interactive technique, while the others
started with prompt engineering. During the experiment, participants shared
the strategies they adopted. In addition to the images, the associated em-
beddings were stored for a subsequent evaluation of the proposed method’s
generalizability, which is further detailed in section 5.4.3. Concluding the ac-
tivity, participants were requested to comparatively rank the images derived
from both strategies.

The user study results highlight the potential advantages of the user inter-
action method over traditional prompt engineering, particularly for those who
had limited experience with prompt engineering. A majority of participants
found the user interaction method to be intuitive and favorable.

Moreover, the interactive technique offers an exploratory avenue for users to
generate images, particularly when they do not have a fixed visualization in
mind. This approach facilitates a brainstorming phase in a creative process,
where users can be inspired by the presented options and then iteratively re-
fine their ideas. Traditional prompt engineering, in contrast, may require users
to have a clearer vision right from the start, which can be limiting in some
contexts.

While there is room for improvement in terms of runtime efficiency, the ex-
tended wait was generally considered an acceptable trade-off for the benefits
offered by the user interaction method. The approach was described as less
cumbersome and more enjoyable compared to prompt engineering. Notably,
six out of eight participants favored the images derived from the user interac-
tion procedure over their results obtained by prompt engineering.

The user interface for the interactive method utilized an intuitive slider for
setting the interpolation parameter. A value of 0, when the slider was fully
set to the out most left, implied dependence solely on the optimized prompt
embedding. In contrast, a value of 1, when moved fully to the right, ensured
total reliance on the chosen image and its linked prompt embedding.

Figure 5.4 visualizes participants’ preferences also using such a slider. Sim-
ilarly, a slider value of 0 denoted a complete preference for the interactive
method over the top image from prompt engineering, accordingly a value of
1 refers to absolute affinity for the prompt engineering result. Each blue dot
corresponds to individual participants’ ratings, while the red dot represents
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the average rating of the group, offering a holistic view of the users’ prefer-
ences. The group’s average rating of 0.37, has a tendency towards the user
interaction method.

0 10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
UI PE

Figure 5.4: User preferences between methods: Blue dots for individual ratings, with the left end (UI)
favoring user interaction and the right (PE) prompt engineering. The red dot marks the average rating.

5.4.2 Limitations
Due to the temporal constraints, the experimental design presents certain re-
strictions. One notable limitation of the study’s design lies in the inability to
initiate the process with differing prompts for each of the two methods. Con-
sequently, a direct comparison between the techniques is somewhat restricted.
This limited comparability arises because the sequence in which a participant
begins with a method can introduce bias towards the succeeding one. For ex-
ample, users beginning with prompt engineering already have a mental picture
while engaging in the user interaction method, which operates mainly through
inspiration. This process makes the user reliant on receiving suggestions that
align with their envisioned target, which may not necessarily match the image
they initially had in mind. In contrast, users who commenced with the user
interaction method found it easier to articulate a prompt, afterwards, as the
suggestions already offered them a directional framework for their creativity.

Other constraints also emerged. Participants expressed a desire for a back-
track feature, which might be a feasible addition in forthcoming iterations.
Occasionally, the updated image was less preferable than its predecessor, urg-
ing participants to reconsider their choices or make minor interpolative adjust-
ments.

Two of eight participants also expressed the need for a feature controlling
image diversity. While some prompts led to noticeably varying suggestions,
others produced rather similar outputs. This might be attributed to the inter-
polation parameter γi which is not ideally tailored for SLERP. An adjustment
of the parameter’s computation could lead to a higher diversity for the candi-
date images of these two specific prompts.
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Lastly, the non-optimized runtime serves as a major impediment. Image gen-
eration occurs in a sequential manner, and even parallelized generation of can-
didate embeddings incurs additional time. This leads to considerably extended
waiting periods as compared to traditional prompt engineering. Considering
that only 25% of the present GPU resources were used operationally, future it-
erations could employ enhanced parallelization strategies to drastically reduce
runtime without compromising on performance for comparable hardware.

The limitations presented provide useful insights for future research. Address-
ing the issue of sequence bias can lead to evaluations with higher comparability.
Implementing features like backtracking, adjusting for diversity, and improv-
ing runtime efficiency can elevate the user experience. Especially, the desire
for backtracking and image diversity emphasizes the users’ need for control
and variety when using such tools in creative endeavors.

5.4.3 Generalization
Similar to the metric-based method discussed in Section 4.5.3, the ability to
generalize using the user interaction method was also evaluated. Through-
out the user study, embeddings resulting from both the user interaction and
prompt engineering methods were saved.

For each of the preferred images selected from both techniques, additional im-
age outputs were generated using 5 distinct seeds for the associated prompts.
As outlined previously in Section 5.4.1, participants were providing their rat-
ing using the slider mechanism.

Figure 5.5 illustrates the ratings for the five seeds using a slider-based visual-
ization. In contrast to Section 4.5.3, the prompt embeddings did not generalize
across different seeds demonstrated in this analysis. The mean rating across
the seeds hover around a value of 0.5. This might suggest that while the im-
ages generated during the initial exploration are well-received, the underlying
prompt embeddings do not consistently translate to favorable images across
different seeds.
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

UI PE

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

UI PE

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

UI PE

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

UI PE

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

UI PE79942

90214

471454

2229467

9373462

Figure 5.5: User preferences for different seeds: Blue dots represent individual ratings, with varying
thickness indicating repeated values (thicker for duplicates, thickest for triplicates), and the red dots signify
the mean ratings. Each slider is marked with a scale from 0.0 to 1.0. The left end (UI) favors user interaction
and the right (PE) indicates prompt engineering.
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Seed-Invariant Optimization

The role of seeds in the prompt engineering process is both intricate and in-
fluential. While they offer a way to introduce randomness or unique styles
into the generated images, they also introduce challenges. When paired with
certain prompts seeds can drastically affect the outcome, leading to outputs
that may deviate considerably from the user’s intent. In some cases, a good
prompt only produces satisfactory results with specific seeds, highlighting the
prompt’s inadequacy in capturing all essential details. Furthermore, minor
changes to the prompt can bring about unexpected and substantial alterations
to the generated image, even when the intent was to change only a specific
detail.

This chapter shifts the focus towards seed-invariant prompt embeddings. By
directly modifying the prompt embeddings, the goal is to eliminate the inher-
ent vagueness and unpredictability in prompts [Hutchinson et al., 2022]. This
way, a consistent and predictable output can be maintained across a range of
seeds. The implementation of seed-invariant embeddings aims to reduce the
random factors that seeds introduce, offering a more precise, user-friendly and
adaptable approach for generating images.

Prompt engineering often involves users experimenting with various seeds to
discover creative ideas. Upon encountering a particularly intriguing element,
such as a unique object or style, they attempt to articulate this feature to in-
corporate it into the prompt, which can be quite challenging. As demonstrated
in Figure 5, the seed can significantly impact the image generation when paired
with specific prompts. Dependence on the seed for user satisfaction suggests
that the prompt lacks comprehensive details.
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The ultimate goal of this method is to derive a highly accurate description for
the prompt. It is envisioned to convert this description into text form, allowing
for targeted modifications at the textual level, such as altering the color of an
object, while maintaining the surrounded areas. Moreover, in the future, there
is an aspiration to allow for the preservation of preferred sections in the image
and the ability to regenerate the neighboring regions. This way, the method
aims to enable flexible and targeted editing on both smaller and larger re-
gions within the image. Significantly, with this approach desired modifications
are intended to be executed instantly, bypassing the often tedious process of
iterative prompt refinement to achieve the desired image outcome.

6.1 Methodological Approach

Given a target image I derived from a prompt P and a primary latent zT , the
aim is to identify an optimal prompt embedding C∗ that ensures:

LDM(ψ(P ), zT ) = LDM(C∗, ẑT ) = I

for any feasible initial latents ẑT . This process is detailed in Algorithm 1 and
Figure 6.1a.

The algorithm operates by refining the prompt embedding C through gra-
dient descent, aiming to ensure it closely aligns with the target image across
different seeds. This is achieved via the interpolation parameter α, which in-
creasingly incorporates varying seeds. Here, the loss computation is performed
in the latent space.

Furthermore, ϵθ represents the denoising U-Net. Initially, the loss is deter-
mined based on latents after just a single denoising operation. This involves
considering both the original seed and seeds that are incrementally diverging
from the original. As the algorithm evolves, the latents are subjected to further
denoising steps. Throughout, α ensures the consistent introduction of seeds
that progressively deviate from the primary seed.

In the end, the algorithm aims to compute an optimized prompt embedding
by applying gradient descent that reliably corresponds to the target image,
regardless of the chosen seed.

Figure 6.1b illustrates the intended outcomes following the algorithm’s ap-
plication. Each row contains images crafted from the progressively refined
embedding C. The top row showcases images generated from a seed aligned

54



CHAPTER 6. SEED-INVARIANT OPTIMIZATION

perfectly with the designated prompt, resulting in no noticeable changes during
the prompt optimization. This is because the prompt consistently becomes a
more accurate representation of the target image. Conversely, the second row
uses a seed for validation. As the prompt is optimized, this image converges to-
wards the top row’s ideal image, ultimately yielding identical results regardless
of the initial seed used.
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(a) Illustration of the seed-invariant embedding generation approach. Images created merely for validation
purposes based on the latents above. Due to interpolation, the resultant image outcomes based on z̃t−1 and
zt−1 turn out nearly identical.

optimized promptinitial prompt

Seed 

𝑠target

Seed 

𝑠𝑟𝑎𝑛𝑑𝑜𝑚

(b) Representation of the resultant images, obtained from the seed-invariant embedding generation approach.
During prompt optimization, the outcome generated from random seeds converges towards the target image.

Figure 6.1: Overview of the seed-invariant prompt embeddings generation. The displayed images are
obtained by interpolation and do not equate to true results.

Despite the incremental incorporation of random seeds via SLERP, it is pos-
sible to limit the computation of ϵ̂θ(ẑt, t, C) to the randomly sampled initial
latents ẑT merely without using interpolation. This will be conducted in the
following ablation study in Section 6.4.
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Algorithm 1 Seed-Invariant Prompt Embeddings
1: C ← ψ(P )
2: Cbase ← ψ(P )
3: for i← 1, . . . , N do
4: for j ← 1, . . . ,M do
5: α← j

n

6: Sample ẑT as a batch of random initial latents
7: z̃T ← SLERP(zT , ẑT , α)
8: for t← T, . . . , T − i do
9: zt−1 ← ϵ̂θ(zt, t, Cbase)

10: z̃t−1 ← ϵ̂θ(z̃t, t, C)
11: end for
12: L← − zt−1·z̃t−1

∥zt−1∥2·∥z̃t−1∥2
13: C ← C − η∇CL
14: end for
15: end for
16: return C
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Figure 6.2: Exploring the prompt embedding space with a progressively adjusted seed. The parameter α
represents the SLERP interpolation between Seed 683395 (left) and Seed 417016 (right). On the vertical
axis, the prompt embedding space is depicted, where sigmoid(β) signifies the SLERP interpolation between
Single Color Ball (bottom) and Blue Single Color Ball (top). The plotted orange curve captures the
evolution of β at each increment of α.
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To further illustrate the method under consideration, an overly simplified ex-
ample is employed. The images displayed in Figure 6.3 are generated from 5
different random seeds s1, . . . , s5. Using these seeds the aim is to compute a
prompt embedding that generates images being visually as close as possible to
the first of Seed s1, even when prompted with any of the further seeds s2, . . . , s5.

The algorithm is simplified by confining the parameter space to one dimen-
sion. Hence, the gradient is not computed aiming to update the embedding C
but the interpolation parameter β. The interpolation process utilizes SLERP
between the prompt embeddings of Single Color Ball and Blue Single
Color Ball. The latter equates to a more precise description for the target
image, containing an additional information. According to the underlying hy-
pothesis, as the method advances, it is expected that the embedding C will in-
creasingly incorporate details of the target image, leading the resultant prompt
to align closer with the more specific Blue Single Color Ball prompt.

Before performing SLERP, the sigmoid function is applied to β. This restricts
the resulting embedding space to those embeddings, which lie exactly between
the two involved in this interpolation, ensuring the traceability of the result.
This setup is depicted in Figure 6.2.

If the method functions as hypothesized, C will increasingly align with the
more detailed prompt Blue Single Color Ball. This would be evidenced
by an upward trend of the curve towards a positive β as α rises, implying an
ascending curve in Figure 6.2. Experimental findings confirm this expectation.

Seed s1: 683395 Seed s2: 574035 Seed s3: 370813 Seed s4: 777765 Seed s5: 437945

Figure 6.3: Images generated using the prompt Single Color Ball across five distinct selected seeds.

6.2 Implementation

This section elaborates on the practical aspects of implementing the method
discussed in Section 6.1. While this technique serves as a theoretical founda-
tion, some modifications were required during implementation for various rea-
sons, including computational limitations and optimization for performance.
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Delving into the specifics of Algorithm 1, it undergoes a total of 250 itera-
tions, with this number derived from M = 50 updates to the interpolation
parameter α for a maximum of N = 5 denoising steps. To clarify, the parame-
ter N was set to 5, indicating the procedure calculates the cosine similarity for
the latents incrementally, starting from the first denoising step and culminat-
ing at the fifth, each step being repeated 50 times. n equates to 200, implying
an increase of α by 0.05.

The value for M was determined based on the similarity computation solely
for the once-denoised latents, z̃T−1 = ϵ̂θ(z̃T , T, C) and zT−1 = ϵ̂θ(zT , T, Cbase).
This ensured that the resulting embeddings from the chosen three prompts
were robust against overfitting. Initially, z̃T−1 and zT−1 were the only latents
compared, which led to overfitting after about 50 iterations, resulting in in-
creasingly deviating images for employed validations seeds.

In addition, Algorithm 1 illustrates a simplified version of this methodology, as
it suggests drawing only one random seed (line 6). Later it became evident that
leveraging batches of seeds significantly enhances the outcomes. Due to exist-
ing hardware constraints, the gradient for a batch could encompass at most
three seeds. Similar to the specifications mentioned in Section 4.4, the gradi-
ent is calculated for only one denoising step of the latents, particularly for the
last computed (T−i), as defined by the outer for loop of the algorithm (line 3).

As highlighted in Section 2.2.6, it is imperative to maintain the embedded
representation for the start token unaltered, rather than updating it via gra-
dient descent. Furthermore, the parameter space for gradient descent was
intentionally limited. Solely the numerical representation of the last token
of the conditional embedding was taken into account. Given that this token
intrinsically carries information regarding preceding tokens, as expounded in
Section 2.2.6, it was repetitively appended 76 times behind the start token
within this procedure. Consequently, the resulting embedding was utilized as
the conditioning element during the denoising phase of the latents.

6.3 Evaluation

To assess the methodology for generating seed-independent embeddings, the
three prompts and five seeds showcased in Figure 6.4 are referenced. For each
of the three prompts, the far-left image, produced using the initial prompt
embedding and seed s1, serves as a reference. This reference image should
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also be generated for seeds s2, . . . , s5 using the optimal prompt embedding.
The outcomes are depicted in Figure 6.5. The far-left image corresponds to
the target and was again generated using the original prompt and seed s1 for
comparability, whereas seeds s2, . . . , s5 were all produced with the optimized
prompt embedding. Analyzing the results, it is evident that images within a
row resemble each other more than in Figure 6.4, which were generated using
the original prompt. However, the images created with the validation seeds
and the optimal prompt are not identical to the target.

Seed s1: 510675 Seed s2: 417016 Seed s3: 683395 Seed s4: 297009 Seed s5: 23916

Prompt: Single Color Ball

Prompt: Glass cube, sharp focus, highly detailed, 3 d, rendered, octane render

Prompt: super detailed color art, a sinthwave northern sunset with rocks on front, lake in the middle of perspective
and mountains at background, unreal engine, retrowave color palette, 3d render, lowpoly, colorful, digital art

Figure 6.4: Images generated by using the unmodified initial prompts below based on the seeds s1 − s5.
s1 (most left) represents the target seed, yielding the image, towards which gradient descent is performed.
s2 − s5 correspond to validation seeds.

The results of the optimized embedding for the prompt Single Color Ball
have significantly approached the reference in terms of color. Yet, unlike the
reference, the depicted balls are not uniformly colored, and the background,
while similar, is not identical. Nevertheless, there is a clear resemblance to the
reference. A similar trend is observed for the final prompt. The middle images
represent the results of the optimized embedding for the prompt Glass cube,
sharp focus, highly detailed, 3D, rendered, octane render. Here,
the deviations from the reference are more pronounced compared to the other
prompts, especially in terms of color. Still, all four cubes, based on the op-
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timized embedding and validation seeds, have gained a frame and internal
objects, akin to the corresponding reference.

In order to further refine these outcomes, it might be necessary to increase
the number of iterations. Additionally, more criteria can be incorporated for
determining the initialization parameters of the algorithm, beyond just com-
paring the originating latents z̃T−1 and zT−1. Instead of increasing i and thus
the denoising steps after a fixed number of M iterations, an option would be to
dynamically check, if the resulting prompt is overfitting and add a further de-
noising step based on this. Consequently, this process would be aligned much
more precisely to the optimized prompt embedding. Further, the introduction
of random seeds might not be conducted with the appropriate velocity. Rais-
ing the parameter n to a greater value would cause the increase of randomness
of the initial latents to progress with reduced speed. Lastly, increasing the
parameter space could increase the similarity to the target. For this purpose
the conditional or even the entire embedding can be considered during this
procedure.

Seed s1: 510675 Seed s2: 417016 Seed s3: 683395 Seed s4: 297009 Seed s5: 23916

Prompt: Single Color Ball

Prompt: Glass cube, sharp focus, highly detailed, 3 d, rendered, octane render

Prompt: super detailed color art, a sinthwave northern sunset with rocks on front, lake in the middle of perspective
and mountains at background, unreal engine, retrowave color palette, 3d render, lowpoly, colorful, digital art

Figure 6.5: Images (except the most left) generated using the optimized prompt with validation seeds
s2, . . . , 25. The first image is generated with the initial prompt embedding and the target seed s1.

60



CHAPTER 6. SEED-INVARIANT OPTIMIZATION

6.4 Ablation Study

To investigate whether a simplification of Algorithm 1 could yield similar or
even superior results, this ablation study was conducted. In particular, it per-
tains to the simplification referenced in Section 6.1. Rather than incrementally
enhancing the randomness of the seeds via interpolation, the initial latents are
now denoised based solely on entirely random seeds. This described simplifi-
cation is illustrated in Algorithm 2 in Appendix D.

The validation setup is identical to the one described in Section 6.3. The
seeds s2, . . . , s5 from Figure 6.4 are once again employed for validation, aiming
to determine if the images produced by the updated prompt embeddings align
with the designated target image.

Seed s1: 510675 Seed s2: 417016 Seed s3: 683395 Seed s4: 297009 Seed s5: 23916

Prompt: Single Color Ball

Prompt: Glass cube, sharp focus, highly detailed, 3 d, rendered, octane render

Prompt: super detailed color art, a sinthwave northern sunset with rocks on front, lake in the middle of perspective
and mountains at background, unreal engine, retrowave color palette, 3d render, lowpoly, colorful, digital art

Figure 6.6: Images (except the most left) generated using the optimized prompt with validation seeds
s2, . . . , s5 utilizing the simplified approach. The first image is generated with the initial prompt embedding
and the target seed s1.

The results of this ablation study are visualized in Figure 6.6. Notably, while
the images demonstrate consistency across different seeds, they diverge sub-
stantially from their respective reference images, signaling a potential over-
optimization. This substantial deviation highlights the critical role that the

61



CHAPTER 6. SEED-INVARIANT OPTIMIZATION

stepwise integration of seed randomness via interpolation plays, as described
in the original Algorithm 1. Such interpolation seems to be instrumental in
preserving the key features of the reference image throughout the denoising
process. Concludingly, removing the interpolation steps does not present a
straightforward solution. Enhancing this technique demands a more nuanced
approach.

6.5 Connection with Textual Inversion

The inversion methodology introduced by Gal et al. [2022] was outlined in
Section 3.2. This concept, namely Textual Inversion, closely aligns with the
technique presented in this chapter.

In the approach of Textual Inversion, utilizing the forward chain of a DM,
images are systematically distorted until only Gaussian noise remains (Section
2.2.1). In contrast, the reverse chain’s responsibility coincides of reconstruct-
ing these images, a process detailed in Section 2.2.2. Throughout this phase,
the word embedding, represented as v∗, is progressively learned. Notably, this
entire procedure ensures that the weights of both the denoising model and
the CLIP text encoder remain static, devoid of any adjustments. To capture
a new word representation v∗, a dataset comprising 3 to 5 images displaying
the same concept is essential. These images correspondingly align with their
respective pseudo word, symbolized as S∗. With this pseudo word at disposal,
textual prompts can be crafted, for example: A photo of S∗. Gal et al. [2022]
showcase a variety of image renditions corresponding to prompts formulated
in this style, as illustrated in Figure 6.7.

Input 
Samples

Textual 
Inversion

Skull Mug Teapot Aladdin Lamp

„A Photo of 𝑆∗“ „A Photo of 𝑆∗“ „A Photo of 𝑆∗“ 

Figure 6.7: Conduction of Textual Inversion based on the displayed input samples. The results correspond
to the image variations generated for the provided prompt. Created by Gal et al. [2022].
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Drawing parallels, just as the seed-invariant embeddings rely on gradient-based
calculations for embeddings, the Textual Inversion methodology also harnesses
similar gradient-based embedding computation. Additionally, both method-
ologies optimize only a single vector of an embedding. However, rather than
employing the resulting vector to derive the conditional part of the embed-
dings, the technique by Gal et al. [2022] maps this vector to a specific entity,
such as an object.

Furthermore, the gradient in the seed-invariant optimization methodology is
determined solely for a single denoising step, whereas this restriction is not
stated anywhere for Textual Inversion. Therefore, the reasonable assumption
can be applied that the gradient of each denoising step is utilized to update
the embedding. In order to guarantee this, a close inspection of the code must
be conducted.

The primary objectives of these two methods are distinct. The seed-invariant
optimization seeks to stabilize entire images or regions within them, while Tex-
tual Inversion aims to internalize a concept visualized by a set of images and
express this concept verbally within a prompt. The resultant prompt might
still harbor underspecifications. Therefore, leveraging Textual Inversion, mul-
tiple image variations for a single prompt can be generated (Figure 6.7). This
feature contrasts with the goals of seed-invariant text optimization, which aims
to generate identical images regardless of the seed.

Moreover, the seed-invariant optimization method does not align directly with
the concept of inversion as no images are obscured and subsequently recon-
structed. The emphasis is solely on the image’s denoising process. Seed-
invariant optimization may result in the convergence of two fundamentally
different images, whereas the approach by Gal et al. [2022] focuses on predict-
ing the noise residual and thus, learning to gradually add details to the noise
within the forward procedure.

In summary, despite the similarities, which lie in the gradient-based optimiza-
tion of an embedding vector, both methods exhibit significant differences in
their approaches. Nevertheless, closely examining the code behind Textual
Inversion could prove instructive in terms of efficiency for gradient-based opti-
mization techniques. It may offer valuable insights not only for seed-invariant
embedding generation but also for metric-based optimization, as a further
gradient-based approach implemented in the scope of this thesis.
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Conclusion

In the field of generative text-to-image models, significant advances could be
observed in the recent years. However, effectively influencing this image gen-
eration process remains a challenge due to the practice of prompt engineering.
This involves iteratively refining prompts to get the desired output, which of-
ten relies on a time-consuming trial-and-error approach. Users struggle with
the unpredictability of the models and have difficulty obtaining exact results,
especially when adjusting for specific details and accounting for random seed
variations.

Addressing these challenges associated with prompt engineering in the scope
of this thesis, three methods are established for automated manipulation of
prompt embeddings.

Metric Based Optimization focuses on automatically refining the prompt
embeddings towards a specific metric by applying gradient optimization. The
algorithm iteratively updates the embeddings until the generated image closely
matches the desired outcome, avoiding the trial-and-error process of prompt
engineering. Proving the ability of generalization the pronouncement of this
metric could be preserved for seeds that were not included during the proce-
dure. Unfortunately, over-optimization occurred for certain prompts resulting
in images deviating from the prompt’s description. This condition occurred to
an individual extent. A criterion for termination could not be assigned and
remains under obligation for future research. The cosine similarity did not
represent an adequate indicator for the deviation from the textual description.
A technique exploring contextual discrepancy rather than visual might be ben-
eficial. For instance, CLIP could be applied to verify if the image still reflects
the prompt.
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Iterative User Interaction aims to support users without a visual image
in mind. By offering variations closely related to the user prompt, the system
refines the initial prompt embedding based on interactions with the user. Most
participants in the user study considered this technique less demanding and
more enjoyable compared to adjusting textual descriptions. In addition, the
resulting image was mainly preferred over the outcome of prompt engineer-
ing. However, this mechanism is not offering a sufficient level of control. The
possibility to enhance the diversity of the proposals as well as a backtracking
feature were frequently requested during the user study. With regard to the
feedback expressed, appropriate improvements can be conducted accordingly
in the future.

Seed-Invariant Optimization confronts the underspecification of well de-
signed prompts resulting in entirely different image outcomes. By means of
this gradient-based algorithm, only an approximation to the objective image
was obtained. At this point, the resultant images still differ evidently for
various seeds. Nevertheless, prominent characteristics of the reference were
adopted. As a potential answer to this challenge, further parameterizations of
the procedure could be explored, omitted due to temporal constraints. Thus,
the iteration amount can be further extended. Secondly, the gradient is deter-
mined iteratively up to a maximum of the fifth denoising step. The number
of these steps may be incremented in addition. A dynamic solution is conceiv-
able. Lastly, the parameter space might be increased by considering up to the
entirety of the embedding

Following the realization and critical assessment of the introduced image guid-
ance techniques, their applicability has been convincingly substantiated, while
acknowledging existing limitations. In conclusion, this research contributes to
enhancing user experience in interacting with text-to-image models by granting
users greater freedom and flexibility in their interactions with these generative
models without the challenges connected with prompt engineering.
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Chapter 8

Outlook

The research presented in this thesis opens several avenues for future work,
aimed at refining and expanding the existing methodologies. One of the im-
mediate areas of focus is enhancing the efficiency of the optimization process.
Specifically, future work could aim to reduce the number of iterations required
for embedding optimization, whether for metric-based or seed-invariant image
generation.

In the area of seed-invariant embeddings, there lies the potential for substantial
advancements. The ultimate aim would be to evolve the method to a point,
where it can generate embeddings that are genuinely independent of the initial
seed. Likewise, a refinement of the user interaction methods would enhance
user control and satisfaction when utilizing this approach.

Metric-optimized embeddings offer another promising direction. Future work
could leverage these for the possibility of deriving and sharing continuous
prompt modifiers in a manner similar to conventional prompt modifiers. By
utilizing interpolation techniques, further modifiers can be established effi-
ciently based on the initially derived.

An integrative approach that combines multiple techniques offers another layer
of potential. For instance, a seed-invariant embedding can be derived. Once
this optimized embedding is in place, it could be transformed into a textual
prompt. When combined with established methods as Prompt-to-Prompt by
Hertz et al. [2023], an opportunity to develop a comprehensive and precise im-
age editing tool might be enabled. Additionally, the derived continuous prompt
modifiers can be integrated as an additional feature. A sufficient benchmark
for validation could be SVDiff by Han et al. [2023].
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CHAPTER 8. OUTLOOK

Further user studies centered on the user interaction method would provide
valuable insights into optimizing existing methods. Such studies could reveal
new perspectives and offer an inspiration for the development of approaches
that comply more profoundly with user needs and expectations.

Lastly, as focused in Section 3, the challenges associated with prompt engi-
neering are not restricted to image generation. There is potential to transpose
the methodologies conceptualized in this thesis to other modalities like audio,
video and text generation, amplifying the scope of application fields.
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Appendix A

Interpolation

Performing interpolation in Section 2.4.2, particularly as illustrated in Figure
2.9, two distinct prompts were leveraged to execute interpolation. Detailed
below are the exact text specifications for each prompt:

1. Prompt 1: A dream of an apple tree, stormy sky, high detail,
concept art, matte painting, trending on artstation and
deviantart, 8 k, high resolution.

2. Prompt 2: Epic landscape with a lake, golden hour, misty
ground, rocky ground, distant mountains, hazy, foggy,
atmospheric perspective.

In order to perform an interpolation between initial latents, based on the seeds
61582 and 9168745, the following prompt was employed in Section 2.4.3:

3. Prompt 3: a cybernetic samoyed and beagle, concept art, de-
tailed face and body, detailed decor, fantasy, highly detailed,
cinematic lighting, digital art painting, winter, nature, run-
ning
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Appendix B

Metric Based Optimization

Based on the prompts 1 - 3, Figure 4.2 was created, displaying the resulting
images during the aesthetic score optimization. In order to illustrate the evo-
lution of the sharpness and blurriness metrics in Figure 4.3, Prompt 4 was
chosen.

1. Prompt 1: sun rising in digital art

2. Prompt 2: Realistic spaceship rocket design.

3. Prompt 3: an armchair made from an avocado

4. Prompt 4: Dreadfort asoiaf, dreadfort castle, house Bolton,
sinister, Game of Thrones, volumetric lighting, fantasy art-
work, very beautiful scenery, very realistic painting effect,
hd, hdr, cinematic 4k wallpaper, 8k, ultra detailed, high res-
olution, artstation
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Appendix C

Iterative User Interaction

Henceforth, the questionnaire as well as a list of short prompts leveraged within
the user study are illustrated. This user study was performed for the conduc-
tion of a comperative analysis of prompt engineering and the user interaction
method (Section 5.4.1).

C.1 Questionnaire

Name:
Time:
First approach:

Introduction for the Prompt Engineering method:
You are given the text "—" and your task is to create an image that fits
this description and follows your individual preferences. You are given a tool
that converts a textual description into an image, starting with the image
shown here, coming from the description shown here. You have 20 attempts to
generate your optimal image and will afterwards be able to choose the preferred
image from all images that you generated.
Statements that were given by the user during the experiment:

-

Questions after executing the Prompt Engineering method:

1. What experience did you have with prompt engineering in the context
of generative text-to-image models before (e.g., DALL-E, Midjourney,
Stable Diffusion)?
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-

2. When developing your image, did you have a specific target image in
mind? Did this develop while iterating or was it fixed from the beginning?

-

3. Did you feel in control when trying to specify the direction in which the
image should be adjusted?

-

4. Was there a strategy or finding for the method?

-

Introduction for the User Interaction method:
You are given the text "—" and your task is to create an image that fits this
description and follows your individual preferences. You are given a tool that
helps you improve your image step by step. Each step starts with the current
image in the bottom left. You are now given five suggestions on the top. You
need to choose one of them, which will then be used to adjust your current
image. For the next step, the current image will be modified towards the
selected image. The slider is used to specify to what extent the selected image
should be part of the newly generated image, i.e., an interpolation between the
bottom left and the selected image is used. A slider value of 0 means: Take
only the image on the bottom left. A slider in the middle means: Mix both
images. A slider value of 1 means: Take only the selected image. You have 20
attempts to generate your optimal image and will afterwards be able to choose
the preferred image from all images that you generated.
Statements that were given by the user during the experiment:

-

Questions after executing the User Interaction method:

1. When developing your image, did you have a specific target image in
mind? Did this develop while iterating or was it fixed from the beginning?

-
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2. Did you feel in control when trying to specify the direction in which the
image should be adjusted?

-

3. Was there a strategy or finding for the method?

-

Evaluation:

For each method, choose the image that follows your individual pref-
erences best.

• For PE: -

• For UI: -

Please give a rating between these two images by adjusting this slider. Slider
full to the left means: You 100% prefer the left image. Slider full to the right
means: You 100% prefer the right image.
What did you like specifically better for each image?

• For PE: -

• For UI: -

Please again assign a rating for the following image pairs:

• Seed 2: -

• Seed 3: -

• Seed 4: -

• Seed 5: -

• Seed 6: -
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C.2 User Study Prompts

The following prompts were utilized within the conducted user study, as de-
scribed in Section 5.2.

• 3d colorful steampunk robot

• portrait of a lion

• dark night, full moon

• hummingbird with colorful flowers

• Mountain with a sunset and a river

• building cyberpunk night

• No Man’s Sky space ship

• scary and horror old house
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Appendix D

Seed-Invariant Optimization:
Simplified Algorithm

Algorithm 2 Seed-Invariant Prompt Embeddings
1: C ← ψ(P )
2: Cbase ← ψ(P )
3: for i← 1, . . . , N do
4: Sample ẑT as a batch of random initial latents
5: for t← T, . . . , T − i do
6: zt−1 ← ϵ̂θ(zt, t, Cbase)
7: ẑt−1 ← ϵ̂θ(ẑt, t, C)
8: end for
9: L← − zt−1·ẑt−1

∥zt−1∥2·∥ẑt−1∥2
10: C ← C − η∇CL
11: end for
12: return C
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