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Abstract

Clickbait in online news is a growing problem. Young people, in particular,
are consuming their news via social media, and the trend is rising. To fight
this problem, the concept of automated clickbait spoiling is introduced. In
the context of this thesis, the Webis-Clickbait-19 Corpus is constructed, which
contains 3,042 entries. Each entry consists of a clickbait post, a related article
and a spoiler. The spoilers are sentences that have been extracted from the
articles by human annotators on Amazon Mechanical Turk. With this data,
three simple clickbait spoiling approaches are developed and evaluated. Each
approach ranks the sentences of an article from highest to lowest based on a
maximum of two features.
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Chapter 1

Introduction

This thesis deals with the construction of the Webis Clickbait Corpus 2019 and
analyzes some characteristics in preparation of an automated clickbait spoiling
process.

As digitalization progresses, traditional media such as newspapers, maga-
zines, and tabloids have to venture into the online world. The entry into online
journalism offers a lot of advantages, like faster delivery, less to no printing
costs, and easy nationwide reporting. Nevertheless, it also makes the entry for
fresh news publishers easier. Today, consumers are able to choose between a
variety of different news websites, however, this means that the competition
between news publishers is even bigger than at the time of print media.

Other than traditional print media, online news are usually not sold to
the consumer, but are financed through advertising revenues. The pay-per-
click model (ppc) allows publishers to be paid per visit to their website (Fearn
[2017]). Since the competition is strong, publishers have to find ways to attract
attention in order to make profit.

This has led to a recent phenomenon that we call clickbait. Even though
there is no single way to define clickbait, it generally describes social media
posts designed to entice a reader to click on a related link, at the expense
of informativeness and objectiveness (Potthast et al. [2018a]). Usually this is
done by creating curiosity in the reader. Figure 1.1 shows that in many cases,
clickbait will exaggerate (1, 2, 3, 4), cut out important information (1, 2, 3, 4,
5), or mislead the reader (5). A typical clickbait post on Twitter may look like
the one shown in Figure 1.21. Even though readers might not be particularly
interested in Anne Hathaway, they could assume, for example, that she is
struggling with a drinking problem.

1https://twitter.com/HuffPost/status/1118702722793058305 [accessed May 13,
2019]
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CHAPTER 1. INTRODUCTION

(1) You Won’t Believe What Emma Roberts Has Done Now

(2) Prevent Your Kids From Playing Near This Dangerous Common Plant
That Can Kill Them

(3) Green Energy Surging and you’ll never Guess Why

(4) Skinny Jeans May Look Great But It Could Do This To Your Body.
Shocking!

(5) Melissa McCartney Says Her Goodbyes to The World!

Figure 1.1: Examples of clickbait from the new Webis Clickbait Corpus 2019.

To confirm or disprove their theory, they will then follow the link to the news
portal, where they find out that Anne Hathaway simply does not like the
length of her hangovers. This information can be found in the second sentence
of the article. Since most readers are probably not interested in details, they
will leave the website again immediately after.

According to a survey conducted by the Pew Research Center, the number
of U.S. Americans that get their news from social media on a regular basis is
rising. Especially among young people aged between 18 and 29, social media
is the main source of news (Shearer [2018]). Even though these studies were
conducted in the U.S. only, it is imaginable that this development will also
apply in other countries with similar social media behavior. In another article
by Matsa and Shearer, it was reported that 68% of Americans receive their
news from social media at least occasionally, although 57% of the respondents
also doubt their accuracy. While it seems that people like the convenience of
news on social media, they are also afraid of clickbait, fake news and unreliable
news sources (Matsa and Shearer [2018]). Additionally, it has been found
that 59% of all shared URLs on Twitter are shared without actually following
that URL to the related article (Gabielkov et al. [2016]). This leads to the
conclusion that many users did not actually read an article at all before sharing
it. As a result, many dubious articles with exaggerated or outrageous titles
can easily spread on social media.

Due to strong competition, even some reputable news publishers resort to
clickbait headlines to attract more readers. Although, the related article can
be of good quality, readers may not be able to differentiate them from articles
that are actually just baiting them for the ad revenue.

Avoiding clickbait makes it less lucrative to the publishers and forces them
to find different ways to reach their audience. However, as Loewenstein de-
scribes it in his information-gap theory, the less information is needed to gain

2



CHAPTER 1. INTRODUCTION

Figure 1.2: A typical clickbait post on Twitter.

full knowledge on a topic, the more an individual will try to fill that gap
(Loewenstein [1994]). As a result, we are still clicking, even though we know,
that an article will most likely not live up to our expectations.

A counter-movement of social media users like Jake Beckman (@SavedY-
ouAClick2) or Alex Mizrahi (@HuffPoSpoilers3) are actively spoiling clickbait
articles on social media platforms. Figure 1.34 shows a spoiler post to the
tweet seen in Figure 1.2. However, this does not help a user who is confronted

2https://twitter.com/savedyouaclick [accessed May 19, 2019]
3https://twitter.com/HuffPoSpoilers [accessed May 19, 2019]
4https://twitter.com/HuffPoSpoilers/status/1118703465398710273 [accessed May

19, 2019]
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CHAPTER 1. INTRODUCTION

Figure 1.3: A spoiler to Figure 1.2

with several clickbait posts and his social media timeline on a daily basis.
Instead of taking the bait or manually spoiling clickbait articles, there is

a need for automated clickbait spoiling. Spoiling a clickbait usually means to
provide the information that is missing in the clickbait, so users only have to
"click" if an article genuinely interests them. This thesis explores the possi-
bility of extracting a spoiler sentence or sentences from an article that is ref-
erenced by a clickbait, rather than using complex natural language processes
for answer generation. Chapter 2 presents research that has already been
done in the fields of clickbait detection and clickbait spoiling. Subsequently,
Chapter 3 discusses the creation of the Webis Clickbait Corpus 2019, which
consists of 3,042 clickbait posts, the related articles, and human-annotated
spoiler sentences extracted from those articles. Chapter 4 introduces three
simple clickbait spoiling approaches, that rank sentences based on the po-
sitions of sentences and their similarity to a clickbait. Each ranking shows
improvements in performance compared to the proposed baseline approach.
In the end, an outlook on future work is given in Chapter 5.

4



Chapter 2

Background and Related Work

This Chapter discusses research that has already been done in the field of click-
bait. It starts with an introduction of several clickbait detection approaches
and practical applications that have resulted from it. Afterwards, a thesis in
the field of clickbait spoiling is presented.

Up until now, there has already been a lot of work done in the field of click-
bait detection. In 2016 Potthast et al. introduced the first machine learning
approach to detect clickbait using Random Forest for classification and a first
evaluation corpus of 2,992 tweets, of which 767 were clickbait (Potthast et al.
[2016]).

Almost at the same time, Biyani et al. presented a clickbait detection
approach using Gradient Boosted Decision Trees with a data set of 4,073 news
headlines from different news publishers, of which 1,349 were clickbait (Biyani
et al. [2016]).

Later that year Agrawal proposed a clickbait detection approach that was
trained using a Convoluted Neural Network. Their corpus consisted of 2,388
headline samples from Twitter, reddit, and Facebook, where 814 of them were
clickbait (Agrawal [2016]).

Chakraborty et al. created a corpus of 18,513 non-clickbait and 8,069
clickbait headlines. They selected 7,500 headlines from each category to train
three different kinds of classification models: Support Vector Machines (SVM),
Decisions Trees, and Random Forests (Chakraborty et al. [2016]). Anand
et al. used the same corpus to train a Recurrent Neural Network (Anand et al.
[2016]).

In 2017 Rony et al. collected a media corpus of 1.67 million Facebook
posts for a large scale analysis by a set of mainstream and unreliable media.
They trained a neural network based on word-embeddings on their own data
and evaluated their approach by using the dataset of 32,000 headlines curated
by Chakraborty et al. mentioned above.

5



CHAPTER 2. BACKGROUND AND RELATED WORK

That same year, the Webis group1 started a continuously shared task to
evaluate clickbait detectors known as the Clickbait Challenge2, to build a com-
mon foundation to evaluate and compare the performance of clickbait detec-
tors. To evaluate the clickbait detectors, the Webis Clickbait Corpus 2017,
consisting of 38,517 human-annotated Twitter tweets, was constructed. In
contrast to the corpora from the other publications, which only distinguish
between clickbait and no clickbait, the tweets in this corpus were evaluated on
a 4-point scale from not click baiting to heavy click baiting (Potthast et al.
[2018b]). The paper related to the Clickbait Challenge evaluated all the ap-
proaches mentioned before. It shows that the performances in terms of F1-
measure were reported at about 0.75 (Agrawal [2016], Biyani et al. [2016], Pot-
thast et al. [2016]) and 0.95 (Anand et al. [2016], Chakraborty et al. [2016],
Rony et al. [2017]). Additionally, a total of 13 approaches were also submit-
ted to the Clickbait Challenge 2017, which achieved further improvements in
detecting clickbait (Potthast et al. [2018a]).

Generally, it can be said, that we are able to detect clickbait effectively in a
variety of ways. This led to a couple of browser extensions and other solutions
based on some of those clickbait detection models.

While the browser extension Downworthy3 does not really "detect" click-
bait, but rather works on a set of rules based on the syntax of clickbait, it is
still worth mentioning. Instead of blocking clickbait content, it takes popular
phrases known to be used in clickbait and turns the often exaggerated head-
lines into more "realistic" and satirical versions (Hooton [2014]). Figure 2.14

shows an example of a headline altered by the Downworthy extension.
Chakraborty et al. introduced their browser extension Stop Clickbait5 for

Chrome browsers. It gives users the opportunity to block certain types of click-
bait. The application will learn from the decisions and block similar clickbait
content in the future (Chakraborty et al. [2016]).

Rony et al. used their clickbait detector to build the BaitBuster 6 extension
to detect clickbait on Facebook. If a potential clickbait post is found on the
users’ timeline, the extension notifies the user and explains the decision. It also
calculates the cosine similarity between the headline and the article content
and extracts the summary from the article (Rony et al. [2017], Rony et al.
[2018]).

1https://webis.de [accessed June 5, 2019]
2https://www.clickbait-challenge.org/ [accessed June 5, 2019]
3https://downworthy.snipe.net [accessed June 6, 2019]
4https://theawesomer.com/downworthy/267348/ [accessed June 6, 2019])
5https://chrome.google.com/webstore/detail/stop-clickbait/

iffolfpdcmehbghbamkgobjjdeejinma [accessed June 6, 2019]
6http://dear.cs.olemiss.edu/baitbuster [accessed June 6, 2019]
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CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: Comparison between a clickbait headline and the altered version by
Downworthy.

In early 2019, Rubin et al. introduced their LiT.RL News Verification
Browser, that rates news headlines on a 4-point scale similar to the scale
introduced by Potthast et al. in 2018b and highlights them accordingly (Rubin
et al. [2019]).

Clickbait detection gives us the opportunity to deal with clickbait headlines
and articles in a lot of ways. As many of the existing extensions show, they
can actively highlight the problem to the user or block it from the users’ view
entirely. A survey conducted on Facebook suggests, that in 80% of cases the
respondents "preferred headlines that helped them decide if they wanted to
read the full article before they had to click through" (El-Arini and Tang
[2014]). Instead of keeping the users from taking the bait, the information to
complete a headline could be provided, so that users can decide for themselves
whether they want to continue reading or not.

As mentioned above, the BaitBuster extension already provides a summary
extracted from the article to the user. It uses the automated text summarizer
TextRank from the Gensim7 library for python. However, it is not guaranteed,
that this summary contains all the information a user would need to complete
the headline.

In his thesis Ter-Akopyan introduces a corpus consisting of clickbait-spoiler-
pairs and a semi-automated pipeline for clickbait spoiling based on named
entities. He distinguishes between fact-based and complex / narrative clickbait.

7https://radimrehurek.com/gensim/ [accessed June 13, 2019]
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CHAPTER 2. BACKGROUND AND RELATED WORK

(1) A cup of coffee will cost you 8$ in this city (fact-based)

(2) Here’s why summer in New York City smells so awful (complex)

Figure 2.2: Comparison of factual and complex / narrative clickbait.

Figure 2.2 shows two examples. While fact-based clickbait (1) asks for a specific
entity, complex clickbait (2) relies on a discourse in a context.

The corpus created as part of his work consists of 5,787 clickbait-spoiler-
pairs which originated from social media accounts that spoil clickbait on Face-
book, Twitter, and reddit. Additionally, the related articles were saved as
well.

The approach for clickbait spoiling proposed in his thesis focused on spoil-
ing factual clickbait by using named-entity recognition. He determines the
named-entity that is referenced by a cataphora in the clickbait. Afterwards,
the text is analyzed for named-entities of that type and spoiler candidates are
extracted and ranked. Unfortunately, his work only concentrates on named-
entities that either depict a person or a location. Of the 5,787 clickbaits saved
in his corpus, only 559 fit this profile. My thesis is supposed to bypass the
problem by extracting a sentence from the text that serves as a spoiler. Thus,
fact-based and complex clickbait do not have to be distinguished anymore.

8



Chapter 3

Corpus Construction

The following chapter explains the creation of the Webis Clickbait Corpus
2019. In the first section, the preprocessing of the data to create a new base
corpus is stated. The second section discusses the crowdsourcing process in
order to annotate that base corpus data. Finally, the third section elaborates
on the creation of the annotated Webis Clickbait 2019 corpus.

3.1 Preprocessing
In order to create the Webis Clickbait Corpus, existing data from the Webis
Clickbait Corpus 2017 1 and also from the Webis Clickbait Corpus 2018 2 was
used.

Webis-Clickbait-17 consists of 38,517 annotated Twitter tweets that were
sampled from the 27 most retweeted news publishers on Twitter (Potthast
et al. [2018b]). The articles have been rated on a 4-point scale from "not click
baiting" (0.0) to "heavily click baiting" (1.0) in a crowdsourcing campaign by
5 annotators each. By averaging the opinion of the annotators for each article
the truthMean results. Since the task is to spoil clickbait posts, we chose only
those articles for which the truthMean was higher than 0.8. This way only
articles are considered that are clickbait. With this restriction, 1,845 articles
have been adopted from Webis-Clickbait-17.

Additionally, all 5,787 articles from Webis-Clickbait-18 are used. The ar-
ticles and spoilers of Webis-Clickbait-18 were crawled from the social media
platforms Twitter, Facebook, and reddit where certain users are actively spoil-
ing clickbaits by revealing the missing information of a clickbait. Other than
the articles in Webis-Clickbait-17, these articles were only classified as clickbait

1Webis-Clickbait-17
2Webis-Clickbait-18
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CHAPTER 3. CORPUS CONSTRUCTION

Table 3.1: Distribution of social media platforms in the base corpus.

Number of Articles

Twitter reddit Facebook
∑

Count 3706 2427 1081 7214

by the user that posted the spoiler to the article.
This results in a base corpus of 7,632 articles. However, some of the articles

were missing either the postText, i.e. the clickbait, or the article text and were
therefore discarded. It would not make sense to spoil an article without the
actual clickbait or vice versa. Finally, the base corpus consists of 7,214 clickbait
articles and is saved in the JSON lines text file format3. Table 3.1 shows the
distribution of articles over the three social media platforms.

3.2 Crowdsourcing
Amazon Mechanical Turk 4 (Mturk, for short) is a crowdsourcing marketplace
were requesters can outsource processes to a distributed user workforce, the
so-called workers.

Requesters will post Human Intelligence Tasks (HITs) that are then as-
signed to workers. Each HIT can be assigned to multiple workers, which
means that the same task will be annotated by more than one worker.

Since the goal is to automatically find a sentence or sentences in an article
to spoil a related clickbait post, all of the 7,214 articles need to be annotated
to gather as much data as possible. This task was outsourced to workers via
MTurk.

The MTurk project was created using the MTurk Manager 5. The Mturk
Manager is a graphical user interface that simplifies tasks like creating, viewing,
and annotating Amazon MTurk projects. Projects in the MTurk Manager
consist of four different templates.
First of all, the requester has to create a worker template, which is the HTML
view that is displayed to the worker. It contains the instructions, the task,
and a submit button. Variables used by the requester are be replaced by data
from the batch that is uploaded as a CSV-file.

3http://jsonlines.org [accessed May 31, 2019]
4https://www.mturk.com [accessed April 19, 2019]
5https://github.com/webis-de/mturk-manager [accessed April 19, 2019]
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Figure 3.1: Worker view of a clickbait and its related article in a HIT.

Afterwards, an assignment template is necessary to process the input and
output data. The requester chooses the relevant HIT attributes and creates a
view that makes it easier to review the worker data.

In addition, the HIT template prevents overhead if a HIT is assigned mul-
tiple times by grouping assignments to a HIT. This means that data from a
HIT will only be shown once, while without it the HIT data would be shown
for each of its assignments. For example, if a clickbait is annotated twice, the
clickbait is shown only once, while each of the annotated spoilers is shown.

Finally, a requester can create a global template, which saves code snippets
that are relevant for all templates, e.g., CSS styles.

After all templates have been created, the requester adds a batch profile.
A batch profile saves important data like the title, rewards, the duration, the
lifetime of the batch, the number of assignments per HIT, and worker qualifi-
cations. Additionally, the templates that are used in the batch are assigned.
Then, the batch data is uploaded as a CSV file along with its batch profile so
workers can accept the HITs.

3.2.1 Clickbait Spoiling HIT

The HIT asked workers to extract sentences from clickbait articles to spoil a
related clickbait headline. To do this, the worker template was split into four
different sections. The first section displayed the introduction and instructions
to the task, the second section showed the clickbait post, while the third section
presents the headline and text of the article. Figure 3.1 shows an example
clickbait and its related article displayed in a HIT for a worker. In the last
section, workers could either copy a sentence or sentences into the submission
box, or decide that they did not find a spoiler in the article. If they did not
find a spoiler, a set of checkboxes would appear to specify the reason why they

11
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Figure 3.2: Annotation possibilities of a worker in a HIT.

thought the article could not be spoiled (see Figure 3.2). Afterwards, a worker
submits the answer.

Each worker had 15 minutes to complete the task. Afterwards, the task
would be returned and would be assigned to a different worker. The completion
of an assignment by a worker was rewarded with 0.10$ per assignment. Workers
were allowed to work on 10 HITs each. After that, the limit had to be reset
or unlocked in order for them to work on more. This procedure ensured that
workers whose work did not meet our quality standards, would not be able to
take HITs away from good workers.

To qualify for the HITs, workers had to have at least 95% approved assign-
ments and at least 100 approved HITs. It was also decided to restrict the HIT
to workers from specific locations. Only workers from the US, Great Britain,
Canada and Australia were allowed to work on them. This had two reasons.
On the one hand, workers from those locations are most likely native speakers,
which makes it easier for them to understand and skim articles in the English
language. On the other hand, the articles were mostly targeted towards a
western audience, particularly North Americans.

In the beginning of gathering the data, it was decided to assign each HIT
twice. However, after uploading the first two batches, it was noticed that
two annotations per HIT would only increase the amount of data that had to
be reviewed in the end. In many cases, the reviewer would have needed to
decide between two possible spoiler candidates. That is why each HIT was
only assigned once for the remaining batches.

The overall lifetime, i.e., the time the HIT would be accessible to workers,
was set to two days. However, most batches were already fully processed after
a few hours.

12
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To split the base corpus into batches, the 7,214 articles in the base corpus
were divided into 15 files. Unfortunately, the script that was used to randomize
the order of the articles, assumed each file to be 500 and the last one to be
214 lines long. However, the table head also counts as a line, which is why 15
articles are missing from the further process. This was noticed only after the
first two batches were uploaded. Recreating the CSV files would have caused
a new randomized order of the articles in a batch. Besides, filtering those
articles that were already annotated would have been too much effort for 15
articles. So, in the end, only 7,199 articles were annotated through MTurk.

While adding the batches to the MTurk Manager, it was noticed that emojis
and control characters were not allowed with Amazon MTurk. Luckily, a
workaround exists to include emojis in MTurk projects written by charman
on GitHub6, so there was no need to filter out any emojis. The workaround
replaced the emojis by javascript snippets in the batch files. Later, they were
changed back to unicode characters in the worker template. Since the control
characters are invisible to the reader and removing them did not change the
actual content of the article, they were not filtered and not included in the
batches.

3.2.2 Annotation Review

Reviewing the data turned out to be a much harder task then expected. Of
the 7,199 articles, the HITs of the first and the fifteenth batch7 were annotated
twice. This means that there were 499 additional annotations for the first batch
and 213 additional annotations for the last one. Overall, 7,911 annotations
were made by the workers.
As seen in Table 3.2, of 7,911 annotations in total, 4,298 (54.32%) were

approved8 and 3,613 (45.67%) were rejected9.
A spoiler was found for 5,864 assignments. Of those 5,864 assignments, 3,477
spoiler annotations were approved and 2,387 annotations were rejected. If
spoiler sentences were rejected, it was mostly because workers tried to find a
sentence that summarized the important information rather than a sentence
that actually completed the headline. 821 of the assignments were approved,
because they correctly classified an article without a spoiler. The content of
articles without a spoiler sentence usually did not relate to the headline, e.g.

6https://github.com/charman/mturk-emoji [accessed April 21, 2019]
7The fifteenth batch was actually annotated first, because it created the least amount of

HITs.
8"Approved" means all annotations that have been approved by the reviewer. No anno-

tations have been "internally approved".
9"Rejected" means all annotations that have either been "internally rejected" or "re-

jected" by the reviewer.
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Table 3.2: Review of the 7911 assignments issued via MTurk.

Worker assignment review

Approved Rejected
∑

Spoiler found 3477 2387 5864
No spoiler found 821 1204 2025
Empty submissions 0 22 22∑

4298 3613 7911

because the actual article text was missing or the article turned out to be an
ad instead. In some cases the content was overly complex or the article was
a listicle10, where workers would have needed to copy sentences from different
sections of the article. On the contrary, 1,204 assignments in which no spoiler
was found were rejected, because the reviewer believed that an article most
likely did contain a spoiler. Unfortunately, 22 assignments had to be rejected,
because the workers did not give any information. They did not copy a spoiler
sentence, nor did they say there was no spoiler.

Generally, it was noticed that this task seemed to be more difficult to some
workers. Of course there are articles that are more complex than others, but it
also appears that some workers had a better understanding for clickbait than
others. Many of the rejected workers did not seem to understand what part of
the clickbait actually needed to be spoiled. Figure 3.3 shows an annotation a
worker has done on a clickbait (1). While the annotated sentence (2) does say
that "a different answer is beginning to emerge", a reader cannot be really sure
whether this answer is for or against the claim that was made in the clickbait.
A better answer sentence from the article is shown in sentence (3).

Nowadays, lurid headlines are part of our everyday life, some people may
not even realize that certain articles are baiting them. This is also why the
review process had to be changed after the first batch. Instead of actually
rejecting the workers, they were only "rejected internally", that means they
were still rewarded, but their data was rejected. It’s also important to mention
that workers on MTurk are used to work on fast and simple tasks. Most of
them worked on the task in less than a minute which was not enough time to
read through some of the articles in the HITs.

10A "listicle" describes an article that follows a the structure of a list, e.g., "The 25 most
expensive ZIP codes in America"
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CHAPTER 3. CORPUS CONSTRUCTION

(1) Does Marijuana Make You Stupid? (Clickbait)

(2) But now a different answer is beginning to emerge, thanks to an au-
thoritative new study led by Robert Tait at the Australian National
University. The scientists looked at the long-term cognitive effects of
marijuana use in nearly 2,000 subjects between the ages of 20 and 24.
(Worker annotation)

(3) In other words, the amount of pot consumed had no measurable impact
on cognitive performance. (Possible spoiler)

Figure 3.3: Rejected example annotation from the crowdsourcing task.

3.3 Postprocessing
After all batches were reviewed, the gathered data was used to create an anno-
tated version of the Webis-Clickbait-19. This corpus only consists of articles
for which a spoiler has been found and approved. Other annotations were left
out.

Even though the instructions clearly stated that full sentences should be
copied, many workers only submitted sentence fragments. Therefore, the com-
plete matching sentence in the article had to be found. To do this, a string
containing the article title and the article paragraphs was constructed. Then,
both the given spoiler and the article string were split into lists of sentences
with the help of the Natural Language Toolkit11, a python library. Afterwards
the sentences from the spoiler were each compared to the sentences from the
article. If an exact match was found, the spoiler sentence given by the worker
was replaced by the actual article sentence. This way we also made sure that
the annotated sentence actually appears in the article. Nevertheless, some
challenges were faced while the annotation results were processed.

Blacklisting assignments

Sometimes annotated spoiler sentences could not be matched to a sentence in
the article. After closer examination, it was found that a few workers used
the given source of the article, which was referenced in the HIT, to spoil the
clickbait. However, some articles in the corpus were missing the proper article
content. In other cases, only part of the content was saved because the source
content was split into several subpages.

All articles for which the spoiler match did not work, were reviewed again.
11https://www.nltk.org [accessed April 20, 2019]
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If the article content was insufficient, the assignment_id was added to a black-
list, so the annotation would not be taken into account, even though it was
approved. Should a similar annotation process be repeated, it could be spec-
ified that the spoiler should be copied from the HIT and not from the source
material. Alternatively, if the sources are still available, the content could be
downloaded in the future.

Multiple assigned HITs

As mentioned before, the HITs of two batches were assigned twice. Unless both
workers chose the same spoiler, the HIT had to be re-annotated manually by
the reviewer who chose the most fitting spoiler of the two annotations. If it was
decided that the spoiler of the second annotation was the better match, the
corresponding assignment_id was saved in a list. As the articles were written
to the corpus, it was checke whether the same entry with a different spoiler
already existed. The spoiler was overwritten if the entry already existed and
if the assignment_id of the second annotation was saved in the list.

Non-consecutive spoiler sentences

It was decided that the data should only contain consecutive spoiler sentences.
That means that at least the listicle spoilers which were approved in the be-
ginning had to be filtered again. Additionally, discovering non-consecutive
sentences while reviewing the data was not a simple task. In order to filter
those sentences, the spoiler positions were checked before actually writing them
to a file. If the first character of the second sentence did not follow the last
character of the first sentence, the entry was discarded. The same applied to
the following sentences in a spoiler.

Re-annotation of modified sentences

Even if the content of an article was complete, some spoiler sentences still
could not be matched to a sentence in that article. After reviewing those
annotations again, it was noticed, that some sentences were altered. Most of
those sentences differed from their counterparts because a worker added a full
stop or a quotation mark, even though originally there would not have been
one. Punctuation was mostly added in the end of a sentence, either to create
symmetry or to indicate the end of the spoiler. Fortunately, this meant that
this problem was easy to fix. The punctuation in the end of a spoiler was
removed while it was matched to the sentences from the article.

Some additional modifications were also found in spoiler sentences. For
instance one worker left out the sub-ordinate clause in the middle of a spoiler
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Table 3.3: Distribution of social media platforms in the annotated corpus.

Number of Articles

Twitter reddit Facebook
∑

Count 1428 1085 529 3042

sentence. Assignments that were not easily fixed by adding a small improve-
ment to the processing script, were re-annotated manually.

In the post-processing step it was also noticed, that some spoiler sentences
were not part of the article at all. They were most likely summary sentences
written by the workers themselves. The assignment_ids of those articles were
also added to the blacklist mentioned before.

Finally, the Webis Clickbait Corpus 201912 consists of 3,042 articles and
their annotated spoilers. Of those 3,042 entries, 367 were adopted from Webis-
Clickbait-17. The remaining 2,675 articles were originally part of Webis-
Clickbait-18. Table 3.3 shows the distribution of the social media platforms
the entries originated from. Of all spoilers in Webis-Clickbait-19, 80.80% con-
sist of only one sentence. An additional 14.07% of all spoilers consists of two
sentences. Even though this means that nearly 95% of all annotated spoilers
consist of a maximum of two sentences, a spoiler sentence in the corpus may
contain up to seven sentences in total.

3.3.1 Corpus Structure

The overall structure of the corpus is oriented towards Webis-Clickbait-17
and is shown in Listing 1. Additionally, the article_imgs, article_url and
cb_spoiler keys were adopted from Webis-Clickbait-18. These keys were later
renamed to targetMedia, targetUrl and humanSpoiler to adjust them to the
new naming.

Each article has been given a unique uuid and the corpus from which the
article orginated from has been saved in the originalCorpus key.

Keys that include the word post relate to the clickbait that was posted on
a social media platform. In this case the postText describes the clickbait text
that is to be spoiled. On the contrary, a key that includes the word target
describes attributes of the linked article. The article content is stored in a list
of paragraphs as targetParagraphs.

12Webis-Clickbait-19
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{
"uuid": "8ceed760-2fdb-49ec-b8a9-cd08ddd83426",
"originalCorpus": "webis-clickbait-17",
"postId": "810551255659585536",
"postPlatform": "Twitter",
"postMedia": ["media/photo_810551253520551936.jpg"],
"postText": ["Washington Capitals' \u2018Social Night ..."],
"targetTitle": "Washington Capitals' \u2018Social Night ...",
"targetDescription": "The Washington Capitals messed up ...",
"targetKeywords": "",
"targetMedia": null,
"targetParagraphs": ["A very smart woman once advised ..."],
"targetUrl": null,
"humanSpoiler": null,
"spoilerSentences": ["An interaction with one fan got ..."],
"spoilerSentencePositions": [[2, 0, 150], [2, 151, 240]]

}

Listing 1: Example excerpt of an entry from Webis-Clickbait-19.

The humanSpoiler is an exclusive attribute of articles fromWebis-Clickbait-
18. It stores the spoiler that was posted by a social media user on either Twit-
ter, reddit, or Facebook and was adopted in the new corpus to help with the
annotation. Since the reviewer could not skim every article, the humanSpoiler
was a good indication whether the annotated sentence was a spoiler or not.

As mentioned before, the spoiler was cut into sentences, which were then
stored as spoilerSentences in a list. For each sentence, the paragraph in which
it can be found and the position in that paragraph was determined. The posi-
tion can be found as spoilerSentencePositions, where the index of the position
corresponds to the index of the sentence in spoilerSentences. In the example
shown in Listing 1, a spoiler position can be interpreted as follows: the first
index describes the paragraph index, the second index represents the starting
character of the sentence in that paragraph, similarly, the third index repre-
sents the end character of the sentence. A paragraph index equal to -1 means
that the sentence can be found in the targetTitle. It is worth mentioning that
the paragraph index starts counting from 0. In the example, the paragraph
index 2 therefore refers to the third paragraph in the list.
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Chapter 4

Clickbait Spoiling

This Chapter introduces three clickbait spoiling approaches and compares their
results in Section 4.5. It starts by setting a baseline. Afterwards, a ranking
on the basis of the similarity between sentences and clickbait is explained.
Lastly, a logistic regression classifier based on sentence similarity and position
is presented.

4.1 Measures
This section briefly explains the measures that are used to evaluate the intro-
duced clickbait spoiling approaches in the course of this chapter. The goal of
the approaches is to rank the sentences of an article in the corpus based on
different features. A sentence in the first position of a ranking is considered
the highest ranked sentence.

Average Rank The average rank describes the average position of an an-
notated spoiler in a ranking. To calculate the average rank, each sentence in a
ranking is matched to the determined human-annotated spoiler sp, the ground
truth, for every article d in a corpus D. Afterwards, the sum of the ranks in
the corpus is calculated and divided by the overall number of articles in the
corpus |D|. As all of the introduced approaches only rank single sentences, the
rank of a spoiler consisting of several sentences is determined by finding the
first match with one of the spoiler sentences.

average_rank =

∑|D|
d=1 ranksp,d
|D|

Precision@n To get an overall idea of the performance of an approach, the
number of annotated spoiler sentences that are ranked in the range between

19



CHAPTER 4. CLICKBAIT SPOILING

Table 4.1: Distribution of annotated spoilers in the first ten ranks of the Naive
Ranking approach.

Precision@n

Precision@ 1 2 3 4 5

Spoiler count in % 6.28 22.22 35.04 45.30 53.52

Precision@ 6 7 8 9 10

Spoiler count in % 60.82 67.19 72.42 76.92 80.60

rank 1 and n is determined.

precision@n =
n∑

i=1

|{sp ∈ D : rank(i)}|.

4.2 Naive Ranking
In this section, the Naive Ranking approach is introduced as a baseline tech-
nique. The approach takes the natural ranking, i.e., the order in which the
sentences appear in an article, and assumes the first sentence to also be the
highest ranked sentence. Since a clickbait cannot spoil itself, sentences that
are exact duplicates of a clickbait are not considered as a spoiler candidate in
the ranking. As a result, the second sentence is the highest ranked spoiler if
a title repeats the clickbait. Table 4.1 shows that about 6.3% of the highest
ranked sentences are matching the human-annotated spoilers. About 53.5% of
all human-annotated spoilers are found in the first five ranks. 80.6% of spoilers
from the corpus can be found in the first ten ranks. The average annotated
spoiler is ranked in the 7.73-th rank. Since an average rank of 1.0 would mean
that all human-annotated spoilers were also highest ranked by an approach,
the goal of the following approaches is to reduce the average rank to 1.

4.3 Clickbait-Sentence-Similarity
As a first feature, the similarity between a sentence and its related clickbait is
evaluated. The assumption is, that sentences which do not share any similari-
ties with the clickbait are most likely not spoiling it. On the contrary, sentences
that do share many similarities with a clickbait may have a higher probability
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of spoiling that clickbait. This approach creates a ranking of sentences based
on the cosine-similarity between that sentence and the clickbait.

4.3.1 TF-IDF

Before the similarity between two sentences can be calculated, the sentences
have to be converted into a vector representation. This is done by using the
term frequency-inverse document frequency measure (TF-IDF).

TF To determine the term frequency, the number of occurrences of a term t
in a document d is counted. Common English stop words that do not increase
the information content, are filtered before hand.

tft,d = |{t ∈ d}|

It should be mentioned that the order of terms in a sentence is not relevant in
this approach. Therefore, two equal word vectors do not necessarily describe
the same sentence (Manning et al. [2008]).

IDF Since all terms in the raw term frequency are equally important, the
inverse document frequency is a measure for the information content a term
provides in the context of a corpus. Terms that are rarer in the context of
a corpus may be more important to a sentence than those which occur more
often. The document frequency is defined as the number of documents d ∈ D
that contain a term t

dft,D = |{d ∈ D : t ∈ d}|.
The inverse document frequency is then calculated as follows

idft,D = log
|D|
dft,d

.

This results in a high idf weight if the term is rare, and a low idf weight if the
term is rather common. Finally, the TF-IDF can be computed by multiplying
the tf and idf values (Manning et al. [2008]).

tf.idft,d,D = tft,d · idft,D
Instead of calculating the inverse document frequencies of terms in the

corpus, they were calculated from all of English Wikipedia1 to ensure a natural
distribution of terms. The data that was used for this process was downloaded
from Wikimedia Dump2. The resulting word vectors can be used to calculate
the corresponding similarity between those vectors.

1https://en.wikipedia.org/ [accessed June 1, 2019]
2https://dumps.wikimedia.org/enwiki/ [accessed June 1, 2019]
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Table 4.2: Distribution of annotated spoilers in the first ten ranks of the Cosine
Similarity Ranking approach.

Precision@n

Precision@ 1 2 3 4 5

Spoiler count in % 12.89 27.94 40.04 49.28 58.71

Precision@ 6 7 8 9 10

Spoiler count in % 64.50 70.45 75.12 78.96 81.95

4.3.2 Cosine Similarity

A popular way to measure the similarity of two sentences is to calculate the
cosine similarity, which is calculated as the normalized dot-product between
two sentences ~s1 and ~s2 in vector space (Sidorov et al. [2014]).

cos(θ) =
~s1 · ~s2

||~s1|| ||~s2||
.

The resulting cosine can take values between 0 and 1, where a cosine of 0
means that the two sentences are completely independent, while a cosine of 1
indicates a high similarity in content.

To see how the cosine similarity performed as the only feature, the cosine
similarity between a clickbait and the sentences from the related article are
computed. The sentence with the highest cosine similarity is also ranked high-
est by the approach. If multiple sentences have the same cosine similarity, the
sentence that appears first in the article is chosen. As mentioned in Section
4.2, sentences that are copies of the clickbait are not considered as spoiler
candidates.

To calculate the word vectors and the cosine similarity, the machine learn-
ing library scikit-learn3 was used.

Table 4.2 shows that about 12.9% of the highest ranked sentences match
the annotated spoilers. Among the first five ranked sentences, 58.7% of spoilers
are found. Finally, 81.95% of spoilers are also predicted by the approach within
the first ten ranks. The average annotated spoiler is found in the 7.06-th rank.
While the average cosine similarity of the annotated spoilers is only 0.167, the
average cosine similarity of the highest ranked sentences by this approach is
0.249.

3https://scikit-learn.org/ [accessed June 2, 2019]
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Figure 4.1: Graphical recording of all sentences in Webis-Clickbait-19 according to
sentence position and cosine similarity. Red points represent sentences that do not
spoil an article. Green points represents sentences that do spoil an article.

4.4 Logistic Regression Model
To increase the classification performance, the position of a sentence in the
text is added as a feature. The idea is that, as Table 4.1 suggests, most
spoiler sentences can be found in the beginning of an article already. For
comparison, Table 4.3 shows that the average length of an article is about
28 sentences. Since outliers can have a great influence on the average, the
median and mode are also displayed, as well as the least and highest amount
of sentences in the articles from Webis-Clickbait-19. Additionally, Figure 4.1
shows all sentences from Webis-Clickbait-19 by their position and their cosine
similarity to their related clickbait. Sentences that are annotated spoilers, are
drawn in green (4,028 points), while the sentences that are not, are drawn in
red (80,809 points). Even though the amount of points is massive, we can still
gather some information from the visualization. While it cannot be said that
a sentence is a spoiler, it might be possible to tell which sentences are not
spoilers. The assumption is that the higher the position of a sentence, the less
likely it will be a spoiler. Even though, this assumption should still be taken
with a grain of salt, since the average length of an article is only about 28
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Table 4.3: Mean, Median and Mode values of the number of sentences of an article
from Webis-Clickbait-19. Min displays the least amount of sentences in an article,
Max displays the highest amount of sentences in an article.

Number of Sentenes in an Article

Mean Median Mode Min Max

27.9 20.0 13.0 2 545

sentences, but the visualization shows sentence positions up to 500.
To construct a classifier that discriminates between spoiling sentences and

non spoiling sentences, a logistic regression is used. A logistic regression is a
supervised learning method, that is trained on set of input-output-observations
and calculates a sigmoid function to estimate an output for a set of test inputs.
In this case the logistic regression gets two input observations x(p), the sentence
position, and x(c), the cosine similarity. Additionally, the related output y is
given, where y = 1 means the sentence is a spoiler, and y = 0 means the
sentence is not a spoiler.

The logistic regression starts by learning a vector of weights an a bias term
from a training set. Afterwards, it calculates the weighted sum of evidence
z by calculating the dot product between the weight vector and the feature
vector and adds the bias term.

z = w · x+ b

This is passed to the sigmoid function σ(z), which maps the input into the
range [0, 1].

y = σ(z) =
1

1 + e−z
Finally, a test instance x can be classified by calculating the probability P (y =
1|x). The decision boundary of a logistic regression is 0.5 (Jurafsky and Martin
[2018]).

ŷ =

{
1 if P (y = 1|x) > 0.5

0 otherwise

To calculate the logistic regression in Python the scikit-learn library was
used. Since there are only 4,028 spoiler sentences and 80,809 sentences that do
not spoil, the weights were adjusted inversely proportional to class frequencies
in order to compensate for the disproportion in classes. The training process
takes all 84,837 observations as input and produces the weights −0.0492 for
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Table 4.4: Confusion matrix produced by the Logistic Regression that used all data
points for both training and testing.

Confusion Matrix

actual positve actual negative
predicted positive 3406 34163
predicted negative 622 46646

the sentence rank and 0.9262 for the cosine similarity feature vectors. The bias
term is 0.633. Afterwards, ŷ is predicted on the same set of features to see
how good the classification can get.

The confusion matrix is displayed in Table 4.4. It shows the True Positives
in the upper left cell, the False Positives in the upper right cell, the False
Negatives in the lower left cell and the True Negatives in the lower right cell.
These values can be used to calculate the precision, recall and f-measure, which
are displayed in the classification report in Table 4.5.

Precision "Precision measures the percentage of the items that the system
detected that are in fact positive" (Jurafsky and Martin [2018]).

P =
True Positives

True Positives+ False Positives

Recall "Recall measures the percentage of items actually present in the input
that were correctly identified by the system" (Jurafsky and Martin [2018]).

R =
True Positives

True Positives+ False Negatives

F1-measure The F-measure incorporates aspects of both precision and re-
call. Both values are balanced equally in the calculation (Jurafsky and Martin
[2018]).

F1 =
2PR

P +R

The system does predict 85% of all spoiler sentences right. It should be
taken into account that it also predicts 37,567 spoilers in total, even though
it was only trained with 4,028 spoiler sentences. In order to allow a better
comparison with the previous approaches, the sentences are ranked by their

25



CHAPTER 4. CLICKBAIT SPOILING

Table 4.5: The classification report produced by the Logistic Regression Model.

Classification Report

Precision Recall f1-score

Spoiler 0.09 0.85 0.16
No Spoiler 0.99 0.58 0.73

Table 4.6: Distribution of annotated spoilers in the first ten ranks of the Logistic
Regression Model approach.

Precision@n

Precision@ 1 2 3 4 5

Spoiler count in % 13.91 32.58 46.25 55.06 62.46

Precision@ 6 7 8 9 10

Spoiler count in % 68.61 73.93 78.11 81.79 84.29

probability of being a spoiler. The decision boundary will not count for the
selection of the spoiler candidates.

On average, the probability of the highest ranked sentences is 60.73% and
their cosine similarity is around 0.198. Approximately 13.9% of the annotated
spoilers are also ranked highest by the logistic regression model. 62.5% of the
annotated spoilers are found within the first five ranks and 84.3% within the
first ten ranks. The average rank is 6.71.

4.5 Evaluation
In order to provide a stronger basis for the evaluation, the precision values of
a random ranking were calculated in addition to the baseline. On average, an
annotated spoiler can be found in the 12.99-th rank in the random ranking.
Figure 4.2 shows the Precision@n values that have been computed in the pre-
vious sections. It shows that the random ranking does perform better in the
highest rank than the naive ranking approach. This is probably due to short
articles that only consist of very few sentences, which means the probability
of ranking the right sentence at random is quite high. This is why the random
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Figure 4.2: Comparison of the precision@n values of the introduced approaches in
this chapter.

ranking performs much worse than the other approaches in the following ranks.
As a result, all introduced spoiling approaches create a better ranking than a
random ranking does.

Moreover, the figure shows that the logistic regression approach performs
the best predictions for every rank of the ten precision values, and that the co-
sine similarity approach still beats the naive ranking approach. These results
are also supported by the average ranks (see Table 4.7). At 6.71, the logistic
regression is on average one rank better than the naive ranking, which has an
average rank of 7.73. The clickbait spoiling approaches proposed by this thesis
are still very simple and, as the precision@1 values of each approach show,
the annotated spoilers are only predicted in very few cases. However, the per-
formance shown by the precision@10 values show promising results compared
to the performance of a random ranking. Each of the introduced approaches
ranks at least 80% of the spoilers sentences within the first ten ranks, while
only 58% of spoilers can be found within the first ten ranks of the random
ranking. One should keep in mind that these approaches use a maximum of
two features, and that additional features may improve the clickbait spoiling
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Table 4.7: Comparison of the average ranks of the different approaches.

Average Rank

Approach Average Rank

Naive Ranking 7.73
Cosine Similarity 7.06
Logistic Regression 6.71
Random Ranking 12.99

process further. Section 5.2 proposes possible ways to continue this work in
the field of clickbait spoiling.
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Future Work and Conclusion

This chapter discusses possibilities to pursue this work in the future. First,
possible improvements to Webis-Clickbait-19 are explained. Afterwards, an
outlook is given on how to continue the work in the field of clickbait spoiling.

5.1 Webis Clickbait Corpus 2019
Since the corpus was merged from two data sources, there are still some in-
consistencies to resolve. Entries that originated from Webis-Clickbait-17 are
missing data in the targetMedia and the targetUrl keys. These keys were
adopted from the Webis-Clickbait-18 corpus. Additionally, the targetMedia
that does exist in the corpus is only referenced by hyperlinks and is not stored
locally, yet. To preserve the data, these images should be downloaded in the
future.

Entries which originated fromWebis-Clickbait-18 are missing the postMedia
key. This is mostly due to the fact that their postIds’ do not reference the actual
clickbait post like entries from Webis-Clickbait-17, but the post containing the
humanSpoiler. Unfortunately, it may not be able to link posts from Facebook
or reddit to original social media posts. Manly because they do not exist in
many cases and the clickbait has been found in an ad for example. Some of
the spoilers saved from Twitter were retweets, which makes it very simple to
find the actual social media posts. However, after a little bit of investigation
it turned out that many of the posts on Twitter were actually not retweeted.

While the data of Webis-Clickbait-18 has been cleaned during the merging
of the corpora, there are still some fragments in the targetParagraphs left.
These fragments include advertisements that interrupt the text flow, verbose
information about sharing the article on social media, and sometimes sentence
duplicates. All these things do not contribute to the actual article content
and should be removed so that they are not considered in a possible machine
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Figure 5.1: Phases of an Open Domain Question Answering process (Jurafsky and
Martin [2018]).

learning process.

5.2 Clickbait Spoiling
This work has only started to explore a small amount of features that might
be used in a machine learning approach to automate clickbait spoiling.

The cosine similarity in Section 4.1.2 just measures exact similarities. This
means that synonyms or words that are related in meaning are not considered
in the scoring of the similarity. For example, words like "game" and "play"
could be rated more similar than "work" and "play". Sidorov et al. proposed
a soft cosine measure, which has the potential to improve the performance of
cosine similarity as a feature in natural language (Sidorov et al. [2014]).

The work that has already been done by Ter-Akopyan in 2017 could also be
used as a possible extension to this approach. Instead of ranking all sentences,
a possible spoiler type could be determined. Afterwards, only those sentences
that contain entities of that spoiler type could be taken into consideration.

Before working out completely new structures for clickbait spoiling, it might
be worth taking a look at another large field of research that could also be
linked to the problem of clickbait spoiling. Open Domain Question Answering
takes natural language questions and turns them into queries to retrieve a
potentially relevant text snippet from a set of documents (Harabagiu et al.
[2003]). The application is quite similar in a sense that a clickbait can be seen
as a question to which an answer, the spoiler, is sought. Figure 5.1 shows the
three stages of a question answering process. Similarly to the approach by Ter-
Akopyan, an answer type is determined through named-entities and question
words. Afterwards, the potential documents and passages are retrieved. This
step could be shortened, since we already know the answer to our clickbait
has to be in the related document. In the end, an answer sentence can be
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(1) What Happened to Frank Ocean’s Staircase? (Direct)

(2) How Angelina Jolie Told Brad Pitt She Wanted a Divorce (Indirect)

(3) This is the worst Arab state for women (No question word)

Figure 5.2: Questions in clickbait.

extracted.
Nonetheless, only a fraction of clickbaits are actually questions. Figure 5.2

displays three different types of clickbait. The first clickbait shown is phrased
as a question (1). While the second clickbait is not a question, it contains the
question word how and can be rephrased to the question "How did Angelina
Jolie tell Brad Pitt she wanted a divorce?" (2). Even the last clickbait, which
does not contain a question word at all, can easily be rephrased by replacing
the word this with the question word which (3). Generally, it can be said, that
the problem of clickbait spoiling is very much related to question answering.
Instead of engineering a whole new process, it may be easier to adapt already
existing structures in question answering to spoil clickbait. Clickbait is still
a big problem in social media. This thesis has created Webis-Clickbait-19, a
corpus of clickbait-spoiler-pairs, and has shown promising results in clickbait
spoiling, which can be expanded by further work in the future.
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Appendix A

Source Code and Data

Since there have been some problems with the whereabouts of a data set at
the beginning of this thesis work, I want to make sure that it is clear where
all my data can be found. As part of this bachelor thesis, three different
repositories were created in the Webis GitLab in order to separate the content
of different subject areas. The thesis, all references and figures can be found
in the wstud-thesis-puschmann1 repository.

The source code to recreate and modify Webis-Clickbait-19 can be found
under wstud-webis-clickbait-corpus-19 2. Since the required corpora are quite
big, they are not part of the repository. Webis-Clickbait-17 is divided into two
sets, the data for training is available on the website of the Clickbait Challenge3.
The validation set is only available internally for now. Webis-Clickbait-17 and
Webis-Clickbait-18 can also both be found in my folder on webis204.

The spoiling experiments from Chapter 4 are saved in wstud-webis-clickbait-
spoiling-19 5. More detailed information about the contents can be found in
the respective repositories. A final version of all repositories will be available
in my webis20 folder and on the data medium submitted with this thesis. I
hope that my work will be used for further advances in the field of clickbait
spoiling.

1https://git.webis.de/webisstud/wstud-thesis-puschmann [accessed June 14, 2019]
2https://git.webis.de/webisstud/webis-clickbait-corpus-19 [accessed June 14,

2019]
3https://www.clickbait-challenge.org/#data [accessed June 14, 2019]
4webis20/data-in-progress/wstud-thesis-puschmann/webis-clickbait-corpus-19/corpora
5https://git.webis.de/webisstud/webis-clickbait-spoiling-19 [accessed June 14,

2019]
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