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Abstract
Near-duplicate documents are abundant in web corpora. Bernstein and Zobel have

shown earlier that this redundancy reduces search e�ectiveness under the novelty

principle, i.e., if subsequent duplicates in rankings are marked irrelevant or removed.

We examine the impact of near duplicates on learning to rank, nowadays the

standard approach for ranking web search results. Based on the LETOR benchmark

dataset and the ClueWeb09 corpus, we build duplicate-aware learning-to-rank

datasets and derive worst-case and average-case train/test splits for evaluation.

We study nDCG@20 performance impact, ranking bias, and fairness of exposure

across domains for common pointwise, pairwise, and listwise learning-to-rank

models from the RankLib open source library. Our study shows, that the presence

of duplicates in learning-to-rank training data induces severe bias to rankings

produced by models trained with redundancy. The implicit over�tting causes

performance under Bernstein and Zobel’s novelty principle to drop by up to 39 %.

We further introduce strategies for deduplicating training features to diminish bias

and improve retrieval performance.
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Chapter 1

Introduction
Learning to rank is the standard approach for ranking web search results in infor-

mation retrieval [Liu11, p. 5]. By using machine learning to combine prede�ned

document-based or query-based features, e.g., retrieval scores or click logs, learning-

to-rank techniques outmatch traditional ranking functions [CC11].

Web crawls can contain more than 20 % of pages that are content-equivalent to

others [Bro+97; FMN03]. Those near duplicates often consist of the same document

served at di�erent URLs or for di�erent accessors, like mobiles [Kop+10]. Figure 1.1

shows two identical web documents that—amongst 32 others—form a group of

near-duplicate documents.

This redundancy causes a decrease in retrieval performance for traditional rank-

ing functions, as Bernstein and Zobel �gure that users generally do not bene�t

of seeing the same document twice [BZ05], which was later con�rmed on many

other TREC benchmark datasets [Frö+20]. Their studies call out for better con-

sideration of near-duplicate documents in widely used metrics for ranking search

results (Chapter 3). Now that classical ranking has been superseded by learning to

rank, which optimizes those metrics, we ask whether the same conclusions can be

drawn for the performance of machine-learned rankings.

Imbalanced representation of classes is a common problem in machine learning

that can be tackled by a combination of oversampling, i.e., replicating examples

in the minority class, and undersampling, i.e., eliminating examples in the major-

ity class [Bar+04]. Though, oversampling prior to partitioning training and test

data leads to information leakage from test into training data, weakening ranking

reliability [Van+20]. We �nd that near-duplicate web documents are a form of

implicit oversampling that naturally happens before splitting training and test data.

Duplicate documents are overrepresented and thus learning-to-rank models are

likely to over�t.

The process of creating, crawling, sampling, and parsing a document into features

is biased [Bae18]. Sources of bias are diverse, some of which have been discovered in

web crawls already [VT04]. We focus on the subsequent step: sampling training data

and selecting feature vectors for ranking [Zad04]. With redundant data, partitioning

training and test data it is particularly vulnerable as those biases multiply.
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Chapter 1 Introduction

Figure 1.1: Example of two near-duplicate documents on Wikipedia. The docu-

ment on the left is returned when requesting The Beatles, the right-hand

one when requesting Beatles. Both documents are identical except for

the redirect message.

We conduct a study of the performance de�cit caused by over�tting near-

duplicate documents, the bias induced on rankings if duplicates are left untouched,

and fairness of exposure in machine-learned rankings. We build a new learning-

to-rank dataset from the commonly used ClueWeb09 web crawl, using relevance

judgements of TREC 2009–2012 Web Tracks (Chapter 4). For our dataset, we com-

pute a set of features similar to those of the LETOR 4.0 benchmark dataset. We

compare e�ects on our deeply judged dataset with the same e�ects on the more

shallowly judged LETOR 4.0 dataset, that is based on the GOV2 corpus [QL13].

We study train/test splits with varying redundancy and compare rankings for

di�erent strategies of handling near duplicates in the training data, as well as

for modelling in the subsequent evaluation (Chapter 5). For training, we either

remove near-duplicate documents and only keep one canonical document of each

group of near duplicates, or keep all duplicates but adjust the initial relevance

label and features of non-original documents. Before evaluation, we either remove

subsequent near duplicates or discount their relevance.

For our train/test splits and strategies of handling near-duplicate documents

during training, we compare nDCG@20 performance on the test set when taking

novelty into account to a BM25 [RW94] baseline ranking (Chapter 6). On both

benchmark datasets based on ClueWeb09 and GOV2, we therefore train a selection

of pointwise, pairwise, and listwise models. Beside retrieval performance, we evalu-

ate ranking bias on near-duplicate documents and fairness of exposure per domain.

Our experiments show that redundant documents in training cause a severe bias in
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Chapter 1 Introduction

ranking positions, and not handling them degrades retrieval performance. Even

though fairness is not signi�cantly a�ected on a domain level, we are concerned

about the rise of near-duplicate documents in ranking, as the most redundant

websites are also very popular.

Our experiments suggest that not handling near-duplicate documents di�erent

from original web documents threatens the performance of retrieval systems that

use learning to rank and induces additional bias to rankings. This threat should

concern particularly because many near duplicates in judged documents from the

Web and Million Query tracks stem from already popular websites, that could thus

abuse their supremacy. Performance under the more realistic novelty principle

decreases signi�cantly, as users are shown near duplicates more frequently. Training

with near-duplicate web documents does not only lead to redundant results in

ranking, but also produces biased rankings even for testing with deduplicated

data. We suggest that in a typical search engine one should handle near-duplicate

documents in the test data specially (Chapter 7), in order to �ght the vulnerability

in ranking stability caused by redundant documents.

3



Chapter 2

Related Work
Learning to rank still is a new �eld in information retrieval and machine learning

that emerged from heuristic ranking models and combination of prede�ned fea-

tures [Liu11, p. 5]. In the past years learning to rank shifted from using pointwise

to pairwise [CSS98; Fre+03; Wu+10] to listwise approaches [Cao+07; MC07; XL07],

and ranking models can be constructed to directly optimize evaluation measures

like MAP or nDCG [Xu+08]. Intuitively, learning to rank outperforms classical rank-

ing [CC11] and therefore has established as the standard approach to ranking web

search results [Qin+10]. Niu et al. [Niu+12] introduced a top-k adaption of learning

to rank. Specially designed benchmark datasets, like the MS MARCO [Ngu+16]

and LETOR [Qin+10; QL13] datasets, were released for comparing e�ectiveness

of new learning-to-rank models. Though, existing datasets only supply shallow

human-annotated relevance judgements or are based on proprietary corpora.

In machine learning, algorithms often su�er from imbalanced training data, that

causes over�tting [Bar+04; Die95]. The imbalanced training sample problem also

occurs in information retrieval, as typically the majority of judged documents is

irrelevant to a given query (see for example Table 4.2). Biased selection of training

data further threatens robustness of learning-to-rank systems [Zad04]. Fortunately,

it has been shown that well-directed oversampling or undersampling can decrease

over�tting in most cases [Bar+04; Cha+02; IC14]. Though, training data should not

be rebalanced too early, prior to splitting the dataset for training and testing, as the

caused label-leakage leads to overly optimistic thus misleading results [Van+20]. We

�gure that the implicit undirected oversampling caused by redundant documents

may pose a risk to machine-learned ranking, as it can worsen the imbalance in

training data.

In 1997, Broder et al. [Bro+97] �rst studied clusters of near-duplicate documents

on the Web. By comparing k-grams of words within documents, they discovered

that 18 % of all documents were near duplicates, i.e., documents with very high

syntactic similarity. Later, Fetterly, Manasse, and Najork [FMN03] con�rmed that

those groups of duplicate documents are stable in time and that 22 % of documents

are near duplicates. These early studies were mainly concerned about improving

crawler e�ciency and quality [MJS07]. Hashing [Mey+03] and �ngerprinting doc-
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Chapter 2 Related Work

uments [BZ04; MJS07] established as an e�cient way of clustering near-duplicate

documents. Alternative approaches like Ioannou et al.’s semantic-aware duplicate

detection [Ioa+10] or normalizing URL patterns [Kop+10] are limited in domain or

prone to false positives, unlike for example �ngerprinting. With all above methods,

it is ambiguous which representative document from each group of near duplicates

should be shown to users. While Dulitz et al. [Dul+11] suggest the most popular

document should be chosen, no standard approach has been agreed on in literature.

On the Web, canonical link relations [OK12] and HTTP redirects [BFN96; FR14]

indicate a preference from each website’s authors.

Bernstein and Zobel [BZ05] found, that of relevant documents from submitted

runs of the TREC 2004 Terabyte Track 16 % are near duplicates. In information

retrieval, normalized discounted cumulative gain nDCG [JK02] and mean aver-

age precision (MAP)—despite its discouragement [Fuh17]—are common ranking

evaluation measures. Those evaluation measures are not aware of near-duplicate

documents [BZ05; Frö+20]. Bernstein and Zobel suggest cleansing retrieval evalua-

tion by introducing the novelty principle: A document with a relevant judgement

is considered irrelevant if an equivalent near duplicate appears beforehand in the

ranking. Applying their novelty principle causes a decrease in MAP performance

by 20 % on average. Fröbe et al. [Frö+20] con�rmed Bernstein and Zobel’s analysis

on runs from all TREC Terabyte, Web, and 2017–2018 Common Core Tracks, pro-

moting an improved implementation of the novelty principle. In runs submitted to

the TREC tasks, nDCG@20 performance under the novelty principle dropped by as

much as 17 % [Frö+20]. Adaptions of nDCG and MAP that reward novel and diverse

content have since then been introduced [BZ05; Cla+08]. Though, no research has

yet been made on the e�ect of near duplicates on learning to rank for information

retrieval.

A current trend in machine learning in general and learning to rank in particular

is the concept of fair ranking [Cas18; CDS18]. Instead of technical quality measures

like retrieval performance, Biega et al. [Bie+20] suggest to focus on fair and diverse

representation and ranking of search results. Especially the inherent bias induced

in every step of a search engines pipeline needs to be tackled or regularized [Bae18].

Many learning-to-rank recommendation algorithms are biased towards popular

content [KSL20]. In learning to rank for information retrieval, user feedback is

skewed as well [Ai+18; JSS17]. This causes training data to be imbalanced, i.e.,

documents are being judged irrelevant much more frequently than relevant [IC14].

While a small set of biases have been studied in learning to rank [Ova+20; Wan+18],

Chapelle, Chang, and Liu [CCL11] still see bias as an ongoing research topic. Fair

ranking frameworks consider exposure weighted against relevance [Bie+20; GS20;

SJ18; SJ19; Zeh+17]. We question that practice, as near-duplicate documents being

judged relevant in isolation is an unfair assumption in the �rst place [BZ05].

Previous research either focuses on diversity irrespective of near duplicates or
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Chapter 2 Related Work

on retrieval performance impact when penalizing duplicates only. Yet, we do not

know how machine-learned rankings are biased by redundant web documents.

The selection bias caused by near-duplicate documents currently is unmitigated in

evaluation of learning-to-rank models. The risk of abuse and unfairness is mostly

undiminished as well, exposing many state-of-the-art learning-to-rank algorithms.

We motivate further research to prevent unfair ranking due to near-duplicate

documents in the �rst place.
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Chapter 3

Near-Duplicate Web Documents in
Test Collections
For building a duplicate-aware dataset (Chapter 4), we �rst need to denote groups

of near duplicates, i.e., content-equivalent documents, from our source web corpora,

i.e., ClueWeb09 and GOV2. Second, in order to be able to deduplicate learning to

rank feature vectors, we select representatives from each group of near-duplicate

documents. We identify prominent contributors of near duplicates and compare

their relevance.

3.1 Detecting Content-Equivalent Documents
Several techniques are used for �nding near duplicates in web corpora, but compar-

ing �ngerprints/hashes of documents is used most often [BZ04; Ioa+10; Kop+10;

Mey+03; MJS07]. To identify content-equivalent, near-duplicate document pairs,

Bernstein and Zobel propose the lossless S3 �ngerprint similarity [BZ04] that counts

common words normalized to both documents’ sizes. For each pair of documents

from the corpus, an S3 score of 0 indicates no overlap while an S3 score of 1 means

that both documents are exactly equivalent. Near-duplicate pairs transitively form

groups of content-equivalent documents. For our experiments and dataset, we use

document groups provided by Fröbe et al., who calculated similarity using word 8-

grams for various corpora, including ClueWeb09 and GOV2 [Frö+20]. They identify

a S3 score threshold of 0.84 for ClueWeb09 documents and 0.68 for GOV2 docu-

ments. Documents with S3 scores above this threshold are content-equivalent with

a precision of 0.95 [Frö+20]. Fröbe et al. con�rmed their thresholds by manually

reviewing 100 samples. Both corpora, GOV2 and ClueWeb09, contain large propor-

tions of near duplicates: of the Million Query Tracks 20 % are content-equivalent

and 25 % of judged documents from the Web Tracks.

In Tables 3.1 and 3.2, we list domains with the highest amounts of redundant doc-

uments from the TREC 2009–2012 Web Tracks and TREC 2007–2008 Million Query

7



Chapter 3 Near-Duplicate Web Documents in Test Collections

Table 3.1: Number of near-duplicate documents from the most redundant domains

in judged documents from ClueWeb09 / Web Tracks and proportions of

relevant documents (Rel.) for redundant (Red.) or all judged documents.

Domains without Alexa rank are not found within top 1 Million Alexa

ranks.

Domain Tag Alexa Red. Doc. All Doc.

Count % Rel. Count % Rel.

wikipedia.org Research 7 7225 32 % 10694 26 %

memoryx.net Technology 71949 166 0 % 175 0 %

supercrawler.com Technology — 98 29 % 130 25 %

meetup.com Social 514 82 0 % 247 4 %

acclinet.com Technology — 58 0 % 63 0 %

yahoo.net Search 4
∗

57 0 % 248 56 %

opm.gov Government 11294 57 33 % 101 21 %

newyork-hotels.tv — — 55 0 % 84 2 %

state.tn.us Government 23553 53 4 % 65 3 %

nih.gov Government 479 52 50 % 132 43 %

∗
The yahoo.net domain is listed by Alexa as yahoo.com with a rank of 4.

Table 3.2: Number of near-duplicate documents from the most redundant domains

in judged documents from GOV2 / Million Query Tracks and propor-

tions of relevant documents (Rel.) for redundant (Red.) or all judged

documents.

Domain Tag Alexa Red. Docs. All Docs.

Count Rel. Count Rel.

nih.gov Government 479 2557 32 % 6952 28 %

state.gov Government 1593 670 51 % 1666 38 %

noaa.gov Government 1023 625 29 % 3233 23 %

nasa.gov Government 787 607 32 % 4279 19 %

usda.gov Government 4080 531 34 % 2836 24 %

usgs.gov Government 1715 483 34 % 2279 28 %

tempe.gov Government 135152 392 6 % 1170 4 %

ca.gov Government 729 385 28 % 2688 19 %

michigan.gov Government 4560 378 29 % 547 26 %

nara.gov Government 227048 320 43 % 559 33 %
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Chapter 3 Near-Duplicate Web Documents in Test Collections

Tracks respectively. We denote Alexa ranks
1

derived from a list of the 1 Million

domains with the most average daily visitors and page views. We use Alexa top

ranks from 23 Jun 2010 as that is the closest snapshot to the GOV2 and ClueWeb09

crawls on the Internet Archive.
2

Additionally, we report domain tags which we

retrieved from OpenDNS.
3

The domains that contain the most near-duplicate documents also have compar-

atively high Alexa ranks, indicating high popularity. For example, the Wikipedia

encyclopedia is the 7th most popular domain shortly after the crawl, and makes up

for 42 % of all near-duplicate documents from the Web Tracks. In case of nih.gov,

the most popular domain of the corpus (i.e., the �rst GOV domain in the Alexa list)

is also the most redundant domain. Furthermore, near-duplicate documents are

relevant with a higher probability. Of the Web Tracks’ judged documents 22 % are

relevant but 29 % of near duplicates within. Similarly, 25 % of documents from the

Million Query Tracks are relevant but 34 % of near-duplicate documents. The same

e�ect can be seen for most individual domains, e.g., near-duplicate documents from

wikipedia.org contain 32 % relevant documents, 6 percentage points more than

all Wikipedia documents.

3.2 Representative Document Selection
For evaluating di�erent strategies of handling near-duplicate content in a learning-

to-rank pipeline (Chapter 5), we parse canonical link relations [OK12].
4

Canonical

links are a good way for web document authors to hint a representative document

that should be shown to users when there are alternate forms of that same original

document available. Compared to choosing the most popular document like Dulitz

et al. [Dul+11], canonical links resemble the web page author’s intent. We use thus

denoted representative documents as ground truth for later deduplication. From the

largest contributor of near duplicate documents in ClueWeb09, the wikipedia.org
domain, most near-duplicate documents (60 %) have an associated canonical doc-

ument. For example the The Beatles document in Figure 1.1 on page 2 contains

a canonical link to the Beatles article. If in a group of near-duplicate documents

di�erent canonical documents are linked, we choose the one that is linked the most

frequently as the most likely candidate. We review a sample of 100 ambiguous

cases. Most ambiguities are caused by missing canonical links that were added on

Wikipedia only halfway through the ClueWeb09 crawl.

1https://alexa.com/topsites/
2https://web.archive.org/web/20100623204449/http://s3.amazonaws.com/alexa-static/
top-1m.csv.zip

3https://domain.opendns.com
4https://en.wikipedia.org/wiki/Canonical_link_tag
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Chapter 4

Duplicate-Aware Learning-to-Rank
Datasets
For evaluation of learning-to-rank algorithms, there exists already a variety of

benchmark datasets:

• The �rst LETOR benchmark dataset from 2007,
1

• the Internet Mathematics 2009 dataset by Yandex,
2

• LETOR 3.0 datasets [Qin+10], an update on the initial LETOR datasets, based

on the OHSUMED and GOV corpora,

• WCL2R [Alc+10], crawled from a Chilean search engine,

• the Yahoo! Learning to Rank Challenge benchmark dataset [CC11],

• LETOR 4.0 [QL13], based on the GOV2 corpus, and

• MS MARCO [Ngu+16], crawled from query logs of the Bing search engine.

For most of these, we are unable to detect near-duplicate documents; duplicate

detection is only possible for the LETOR datasets and MS MARCO, as raw docu-

ments from the Yandex, WCL2R, and Yahoo! datasets are proprietary. We choose

the LETOR 4.0 dataset using TREC 2007–2008 Million Query Track judgements,

as that dataset is relatively large (2500 queries, 84834 documents) and because it

features a large amount of near duplicates. The judged documents from the GOV2

corpus, on which it is based, contain 23 % content-equivalent documents [Frö+20].

The LETOR 4.0 dataset contains feature vectors for four di�erent ranking settings:

supervised ranking, semi-supervised ranking, rank aggregation, and listwise rank-

ing [QL13]. We use supervised learning feature vectors normalized on a query level,

because that dataset can directly be used for training learning-to-rank models.

1https://www.microsoft.com/en-us/research/project/letor-learning-rank-information
-retrieval/

2https://web.archive.org/web/20100410222404/http://imat2009.yandex.ru/en/datasets
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Chapter 4 Duplicate-Aware Learning-to-Rank Datasets

Table 4.1: Learning-to-rank features generated for judged documents from the

ClueWeb09 corpus.

Query-dependent Query-independent

Description Count Description Count

Term frequency 4 URL length 1

TF · IDF 4 Number of slashes in URL 1

BM25 score 4 PageRank 1

F2 exp score 4 SpamRank 1

F2 log score 4 Number of inlinks 1

QL score 4 Number of outlinks 1

QLJM score 4

PL2 score 4

SPL score 4

Σ Total 42

To contrast the shallowly judged LETOR dataset (i.e., queries in Million Query

Tracks only contain few judged documents), we create a new learning-to-rank

dataset from the ClueWeb09 corpus with deep relevance judgements from the

TREC 2009–2012 Web Tracks. Though the ClueWeb09 corpus has been used in

previous learning-to-rank research [MSO12], no dataset has been published that

we could re-use for our experiments. Our new dataset aims to provide similar

features to the LETOR Million Query datasets to allow for a detailed comparison of

learning-to-rank performance on both, the GOV2 and ClueWeb09 corpus.

4.1 Feature Generation
Table 4.1 shows query-dependent and query-independent features that we computed

for judged documents from TREC 2009–2012 Web Tracks. All query-dependent

features are based on raw documents of the ClueWeb09 corpus that were indexed

with Anserini.
3

Each query-dependent feature was computed for document title,

main content, body, and anchor texts. The raw, non-normalized, query-dependent

features were kindly provided by the author’s supervisors. We supplement query-

dependent features with query-independent features that are based on each docu-

ment’s URL, as well as link analysis of the ClueWeb09 web graph:
4

First, we count a

document’s URL length and the number of slashes in the URL. Second, we include

3http://anserini.io/
4https://lemurproject.org/clueweb09/webGraph.php
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Chapter 4 Duplicate-Aware Learning-to-Rank Datasets

Table 4.2: Labeled documents in train/test splits, proportion of relevant documents

(Rel.), number of near-duplicate documents (Red.), and canonical docu-

ments amongst near-duplicates (Can.).

Train/test split Training Labels Test Labels

Count Rel. Red. Can. Count Rel. Red. Can.

C
lu
eW

eb
09

W
e
b

2
0
0
9
–

2
0
1
2 Worst-case scenario 16675 25 % 4996 1285 9994 8 % 2615 804

5-fold cross-validation 1 21337 19 % 6127 1666 5309 16 % 1441 414

5-fold cross-validation 2 21062 18 % 6054 1669 5584 20 % 1514 411

5-fold cross-validation 3 21960 18 % 6293 1702 4686 17 % 1275 378

5-fold cross-validation 4 21642 19 % 6084 1661 5004 16 % 1484 419

5-fold cross-validation 5 20583 18 % 5714 1622 6063 20 % 1854 458

G
O
V
2
/L

ET
O
R

M
Q

2
0
0
7

5-fold cross-validation 1 42147 25 % 10010 3971 13652 28 % 3020 1241

5-fold cross-validation 2 41947 25 % 10171 3991 14013 27 % 3119 1263

5-fold cross-validation 3 41309 26 % 9572 3828 14290 24 % 3619 1404

5-fold cross-validation 4 41478 27 % 9419 3787 13844 25 % 3272 1304

5-fold cross-validation 5 41955 26 % 9758 3908 13813 26 % 3280 1283

M
Q

2
0
0
8

5-fold cross-validation 1 9630 19 % 826 339 2874 19 % 246 97

5-fold cross-validation 2 9404 19 % 759 309 2933 21 % 272 112

5-fold cross-validation 3 8643 20 % 710 280 3635 15 % 295 126

5-fold cross-validation 4 8514 20 % 723 291 3062 21 % 259 101

5-fold cross-validation 5 9442 18 % 813 335 2707 21 % 205 82

PageRank scores by the ClueWeb09 creators,
5

as well as Cormack, Smucker, and

Clarke’s SpamRank score [CSC11]. Third, we calculate inlink counts and outlink

counts for documents in our dataset using Spark.
6

We do not include any query

features [MSO12] which are also absent from LETOR dataset [QL13]. In comparison

to LETOR, we do not compute query-dependent features on document URLs, as

we don’t know how Qin and Liu [QL13] tokenized the URL. Also, some features

that exist in LETOR 4.0 are missing from our generated features and we add similar

features for replacement. We normalize features in our generated dataset on a

query level for better performance with simple learning-to-rank models.

4.2 Dataset Partition
From the feature vectors for documents from the GOV2 and ClueWeb09 corpora, we

derive 16 train/test splits that we use for evaluating the bias caused by near-duplicate

5https://lemurproject.org/clueweb09/pageRank.php
6https://spark.apache.org/
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Chapter 4 Duplicate-Aware Learning-to-Rank Datasets

documents in learning to rank. Table 4.2 shows the six splits for the ClueWeb09

corpus and ten splits for the GOV2 corpus that we use for evaluation. The LETOR 4.0

datasets include prede�ned partitions for 5-fold cross-validation [QL13], �ve splits

for TREC 2007 Million Query Track and �ve for the TREC 2008 Million Query

Track. We keep Qin and Liu’s train/test splits on the GOV2 corpus and ignore their

validation splits, as we do not tune any model’s hyperparameters.

For experiments on the ClueWeb09 corpus, we de�ne six train/test splits by

selecting the most redundant 60 queries from the TREC 2009–2012 Web Tracks,

and compute learning to rank features for all documents within.

First, we construct a worst-case train/test split. We select the 40 most redundant

topics for training and use the 20 less redundant topics for testing. This train/test

split should allow for more extreme e�ects in evaluation, even for simple learning-

to-rank models. Thus, the worst-case split serves as an empirical upper bound for

the impact of near-duplicate documents on learning to rank. In the worst case,

25 % of the documents used for training are relevant, but only 8 % of the documents

used for testing.

Second, we derive �ve average-case train/test splits using 5-fold cross-validation.

Training and test data in this split contain equal proportions of near-duplicate

documents: 28.4 % of documents in the test sets and 28.3 % of documents in the train

sets are near duplicates. Additionally, we observe that cross-validation train/test

splits have balanced amounts of relevant documents.
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Chapter 5

Duplicate-Aware Learning-to-Rank
Pipeline
In a typical information retrieval system, learning to rank is used to rerank a top-k

subset of all documents that has been retrieved with respect to a baseline ranking

like BM25 [Niu+12; Qin+10]. For evaluation purposes, we rank all test documents

regardless of whether they were selected by a baseline ranking or not. Parsed

feature vectors from documents of the Web Tracks and Million Query Tracks are

split into sets for training and testing (Chapter 4). In the learning-to-rank pipeline

for evaluation [Liu11, pp. 18 sq.], as shown in Figure 5.1a, we then train a learning-

to-rank model with feature vectors and ground truth labels from the training split.

Afterwards all documents from the test set are ranked using the trained model.

Finally, the test ranking is being evaluated for performance, fairness, or bias.

We hook into the pipeline at two places to handle near duplicates, both for

training and for evaluation. In Figure 5.1b, we introduce a learning-to-rank pipeline

supplemented with steps for deduplication. First, after splitting feature vectors,

we use di�erent forms of deduplication on the training and test splits. Second,

we apply Bernstein and Zobel’s novelty principle for evaluation [BZ05]. While

deduplicating feature vectors has an active impact on training of learning-to-rank

models, the novelty principle is a postprocessing step that models user behavior,

but does not in�uence a learning-to-rank model’s decisions.

5.1 Deduplication of Feature Vectors
Using features parsed from imbalanced sources like the TREC Tracks directly

is prone to over�tting [Bar+04; Die95]. To counteract over�tting, it is common

practice to oversample underrepresented or to undersample overrepresented feature

vectors [Bar+04; Cha+02; IC14]. Vandewiele et al. [Van+20] warn that sampling

should occur after splitting feature vectors, as otherwise test labels may leak into

the training set. We therefore apply deduplication on training and test vector sets

individually. We introduce two distinct ways of handling near-duplicate documents

in learning to rank and contrast both methods with full redundancy.
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(a) Learning-to-rank pipeline for super-

vised learning [Liu11, pp. 18 sq.].
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(b) Novelty-aware learning-to-rank pipeline.

We highlight steps where novelty can be

addressed.

Figure 5.1: Learning-to-rank pipelines for evaluation.
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Chapter 5 Duplicate-Aware Learning-to-Rank Pipeline

Full Redundancy (100%) We use the original feature vectors for ranking and do

not remove any document from the training or test set. This scenario corresponds

to classic learning to rank, but does not take redundancy into account. A learning-

to-rank model thus has no speci�c information to classify whether a document

is redundant. The full redundancy strategy serves as a baseline to removing or

penalizing near duplicates.

No Redundancy (0 %) We remove all near-duplicate documents except for the

representative document of each group of content-equivalent documents in the

training set. To choose duplicates that should be removed, we parse each document’s

canonical link element [OK12]. A document is considered more canonical if more

documents link it as their canonical document. Per group of content-equivalent

documents, we choose only the document that is linked as canonical document

most often, and remove all other documents from that group. If a group contains

two documents with equally many canonical inlinks, we choose one document

at random to be the group’s representative document. This especially applies to

LETOR feature vectors, because no canonical links are de�ned in documents from

the GOV2 corpus. As an example of deduplication, the feature vector for the Beatles
article of Wikipedia (see Figure 1.1, page 2) would be removed from the training

set while the The Beatles vector would be retained. If a document has no near

duplicates it is considered canonical on its own.

In the 0 % scenario, learning-to-rank models only know that every document they

see is canonical, i.e., only canonical documents are contained in training/test feature

vectors. Though, with this strategy learning-to-rank models have no knowledge

about non-canonical documents, as they were �ltered out before training. It is thus

di�cult for ranking algorithms to identify canonical documents from the test set,

to rank them higher than their near duplicates. Additionally, in undersampling

near-duplicate documents, we remove up to 22 % of our initial training data for

learning (Worst-case scenario, Table 4.2). With much less training data available,

we also expect learning-to-rank algorithms to be less e�ective.

Novelty-Aware Penalization of Duplicates (NOV ) To not remove training

data but still give learning-to-rank algorithms the opportunity to learn about novelty

of documents, we propose a second deduplication strategy: We penalize relevance

judgements of non-canonical feature vectors and add a boolean feature indicating

canonical documents. Our goal is to achieve a total order of the following three

groups: relevant canonical documents �rst, relevant near-duplicated documents

second, and irrelevant documents last. We argue, that non-canonical near duplicates

are considered less relevant than canonical documents, but still more relevant

than irrelevant documents. This assumption has been suggested for evaluation

by Bernstein and Zobel [BZ05], but has not yet been modelled for ground truth
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labels that are a key input to learning-to-rank algorithms. Therefore, we penalize

relevant non-canonical near-duplicate documents by discounting their relevance

judgements by 90 %. We suppose, that the order of irrelevant documents regarding

their novelty does not matter, and thus leave irrelevant labels unmodi�ed.

We observe, that many learning-to-rank features, e.g., BM25, are similar or equal

for all documents in a group of near duplicates. The added boolean feature, indicat-

ing whether a vector’s represented document is most canonical (Section 3.2), could

be used by learning-to-rank models to discount scores according to a document’s

originality.

5.2 Deduplication of Search Engine Results
Apart from thoughtful sampling of feature vectors that a�ects the learned mod-

els, we need to model redundancy in evaluation. For modelling deduplication

from a user’s perspective, after ranking we adjust ranked runs according to the

novelty principle and strategies introduced by Bernstein and Zobel [BZ05]. They

suggest that a document, regardless of its original judgement, should be consid-

ered irrelevant if a near-duplicate document is ranked higher. We employ both,

Bernstein and Zobel’s original adjustment of relevance labels and removing near-

duplicate documents from ranked runs. Both strategies account for novelty in

search result representation. While for comparing performance (Section 6.1) that is

indispensable, we also adjust relevance labels for reporting bias (Section 6.2) and

fairness (Section 6.3) for more realistic estimations of both experiments.

Duplicates Unmodi�ed As a baseline, we keep near-duplicate documents in

ranked runs unmodi�ed, duplicates are included in search results. This would model

users to consider relevant near duplicates still relevant, even though they have seen

a content-equivalent document before. Evaluation of retrieval performance with

this baseline strategy could signi�cantly overestimate user experience [BZ05].

Duplicates Irrelevant Second, in each ranking we mark documents appearing

after another document from the same group of near-duplicate documents irrelevant,

regardless of their original relevance label [BZ05]. With this adjustment of relevance

labels, users would still be shown near-duplicate documents. Though, in evaluation

redundant documents are treated like irrelevant documents, accounting for users’

impression of not receiving new information from those documents, thus �nding

them irrelevant.

Duplicates Removed Often however, an information retrieval system would

hide duplicate results and only show one canonical document for each group of
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Chapter 5 Duplicate-Aware Learning-to-Rank Pipeline

near-duplicate documents [BZ05; CCL10; Dul+11]. We model that behavior in

a third strategy: if a content-equivalent document has been seen earlier in the

ranking, we remove subsequent near duplicates. With that strategy, users do not

see redundant content. We expect this model to be the most realistic scenario, and

evaluating runs with it should yield better results than marking near-duplicate

documents irrelevant.
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Evaluation
We use our learning-to-rank datasets for ClueWeb09 and GOV2 (Chapter 4) to train

common pointwise, pairwise, and listwise learning-to-rank models with features

from each train set. For training and ranking, we use the RankLib open source

library.
1

We discuss results for AdaRank [XL07], Coordinate Ascent [MC07], Lamb-

daMART [Wu+10], ListNET [Cao+07], RankBoost [Fre+03], and linear regression.

These models cover all three learning-to-rank approaches: linear regression is

a pointwise learning-to-rank model, predicting the ground truth label for each

single documents [Liu11, p. 20]; LambdaMART and RankBoost are pairwise models,

minimizing inconsistencies in pairwise preferences [Liu11, pp. 20 sq.]; AdaRank,

ListNET, and Coordinate Ascent are listwise ranking algorithms, that optimize a

loss function on a ranked list [Liu11, pp. 21 sq.].

From our learning-to-rank dataset, we �rst �lter training feature vectors accord-

ing to each train/test split. We deduplicate feature vectors, train the learning-to-rank

model, rerank documents from the test set, and evaluate reranked runs.

We only train with and rerank judged documents, in order to be able to use feature

vectors directly for learning. To prevent the selection bias in LETOR discovered by

Minka and Robertson [MR08], we prune training vectors with zero BM25@body.

We deduplicate only training vectors; novelty-aware penalization of near duplicates

is done on both the training and test set individually (Section 5.1). We do not tune

any model’s hyperparameters, but instead keep them at RankLib’s default values.

Also, we do not regularize our data to prevent over�tting.

We compute baseline runs ranked by descending BM25@body, because the

BM25 model [RW94] is independent of the presence of near duplicates. It is thus a

good comparison for the bias induced by near-duplicate documents to learning-

to-rank models. Also, we should be able to see similar e�ects like Fröbe et al.

for adjustment of relevance labels (Section 5.2), as they studied deterministically

ranked runs [Frö+20]. We expect all learning-to-rank algorithms to outperform the

BM25@body baseline.

Each experiment is run �ve times, to account for non-deterministic behaviour of

most of the trained models. In Sections 6.1, 6.2, and 6.3, we report averages of all

1https://sourceforge.net/p/lemur/wiki/RankLib
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Table 6.1: nDCG@20 performance on test splits for the ClueWeb09 corpus. Super-

scripts indicate e�ect size, signi�cant changes are highlighted bold.

Algorithm nDCG@20 Performance

Duplicates Unmodi�ed Duplicates Irrelevant Duplicates Removed

100 % 0 % NOV 100 % 0 % NOV 100 % 0 % NOV

W
or
st
-C

as
e

Sc
en

ar
io

BM25 0.063 — — 0.056 — — 0.072 — —

AdaRank 0.128 0.139
↑0.1

0.164
↑0.3

0.125 0.150
↑0.2 0.161↑0.3

0.156 0.164
↑0.1

0.164
↑0.1

Coor. Ascent 0.153 0.152
↓0.0

0.163
↑0.1

0.129 0.149
↑0.1 0.177↑0.3

0.169 0.174
↑0.0

0.177
↑0.0

LambdaMART 0.113 0.151↑0.3
0.145

↑0.2
0.110 0.154↑0.3 0.159↑0.4

0.142 0.182↑0.3
0.159

↑0.1

ListNET 0.124 0.132
↑0.1

0.125
↑0.0

0.120 0.135
↑0.1

0.131
↑0.1

0.141 0.150
↑0.1

0.142
↑0.0

RankBoost 0.155 0.171
↑0.1

0.183
↑0.2

0.144 0.161
↑0.1

0.181
↑0.3

0.178 0.176
↓0.0

0.195
↑0.1

Regression 0.109 0.142
↑0.2

0.117
↑0.1

0.098 0.139
↑0.3

0.128
↑0.2

0.127 0.159
↑0.2

0.130
↑0.0

5-
Fo

ld
C
ro
ss
-V
al
id
at
io
n BM25 0.143 — — 0.112 — — 0.143 — —

AdaRank 0.217 0.210
↓0.0

0.213
↓0.0

0.199 0.196
↓0.0

0.198
↓0.0

0.223 0.211
↓0.1

0.212
↓0.1

Coor. Ascent 0.259 0.249
↓0.0

0.231
↓0.1

0.158 0.197↑0.3 0.247↑0.6
0.226 0.240

↑0.1
0.247

↑0.1

LambdaMART 0.267 0.222
↓0.2

0.204
↓0.3

0.190 0.181
↓0.1 0.215↑0.2

0.237 0.218
↓0.1

0.216
↓0.1

ListNET 0.185 0.189
↑0.0

0.172
↓0.1

0.156 0.160
↑0.0

0.166
↑0.1

0.186 0.188
↑0.0

0.176
↓0.1

RankBoost 0.278 0.254
↓0.1

0.260
↓0.1

0.198 0.204
↑0.0

0.220
↑0.1

0.255 0.256
↑0.0

0.261
↑0.0

Regression 0.233 0.215
↓0.1

0.184
↓0.3

0.145 0.189↑0.3 0.183↑0.3
0.204 0.218

↑0.1
0.195

↓0.1

�ve runs. We also aggregate results of both sets of Million Query cross-validation

splits by reporting averages of the 2007 and 2008 tracks.

6.1 Performance Impact on Learned Models
For all three relevance adjustments (Section 5.2), we evaluate nDCG@20 [JK02]

per topic of each reranked test set, and report the average performance for all

topics per experimental con�guration. We compute each run’s performance us-

ing RankLib’s nDCG implementation. For each relevance adjustment, we report

performance for the three deduplication strategies described in Section 5.1. We

compare the 0 % and NOV strategy’s e�ect in relation to full redundancy by re-

porting Cohen’s d [Coh88, p. 20], and highlight signi�cant changes for the t test

with p 6 0.05.

ClueWeb09 Table 6.1 shows nDCG@20 retrieval performance on the test set

for ClueWeb09 train/test splits. The upper half contains results for our worst-case

train/test split and the lower half contains averaged results for the average-case

5-fold cross-validation splits. In our worst-case scenario, most learning-to-rank

algorithms perform slightly better or equally good when either near-duplicate doc-

uments are removed from the training set or a duplicate non-canonical documents’
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Table 6.2: nDCG@20 performance on test splits for the GOV2 corpus. Superscripts

indicate e�ect size, signi�cant changes are highlighted bold.

Algorithm nDCG@20 Performance

Duplicates Unmodi�ed Duplicates Irrelevant Duplicates Removed

100 % 0 % NOV 100 % 0 % NOV 100 % 0 % NOV

5-
Fo

ld
C
ro
ss
-V
al
id
at
io
n BM25 0.384 — — 0.378 — — 0.402 — —

AdaRank 0.451 0.451
=0.0

0.453
↑0.0

0.432 0.432
=0.0 0.481↑0.2

0.467 0.467
=0.0 0.483↑0.0

Coor. Ascent 0.500 0.501
↑0.0

0.478
↓0.1

0.477 0.478
↑0.0 0.511↑0.1

0.514 0.515
↑0.0

0.511
↓0.0

LambdaMART 0.467 0.467
=0.0

0.451
↓0.0

0.452 0.452
=0.0 0.481↑0.1

0.483 0.483
=0.0

0.481
↓0.0

ListNET 0.490 0.490
↓0.0

0.483
↓0.0

0.469 0.469
↓0.0 0.492↑0.1

0.505 0.505
↑0.0

0.504
↓0.0

RankBoost 0.503 0.503
=0.0

0.494
↓0.0

0.480 0.480
=0.0 0.507↑0.1

0.517 0.517
=0.0

0.517
↓0.0

Regression 0.496 0.496
=0.0

0.496
↑0.0

0.476 0.476
=0.0

0.472
↓0.0

0.510 0.510
=0.0

0.511
↑0.0

relevance is discounted. Only the LambdaMART algorithm improves signi�cantly

with the 0 % strategy. This e�ect is probably caused by LambdaMART over�tting

the training data more than any other modelaw when training with full redun-

dancy, and thus cannot generalize to the test set. Without redundancy, it does not

over�t as much, resulting in a performance improvement relative to training with

redundancy.

All models trained on the cross-validation train/test split perform better than

models trained on the worst-case split. Though, deduplication of training vectors

no longer has a signi�cant e�ect on nDCG@20 performance. The rankers are not

over�tting redundant documents as much as in the worst-case training set, that

includes much more duplicates. Expectedly, most learning-to-rank models perform

slightly worse when removing training data, like we do in the 0 % redundancy

strategy. However, adding new information in the NOV strategy seems to confuse

all algorithms except Coordinate Ascent. We see a minimal decrease in performance

when not adjusting relevance labels after ranking.

We also con�rm Bernstein et al.’s and Fröbe et al.’s �ndings, that under novelty-

aware rejudgement not handling near-duplicate documents other than original

content causes decreased performance throughout all algorithms [BZ05; Frö+20].

In the worst-case scenario, this e�ect is worse than in the average case, because

the majority of relevant documents are used for training. The wost-case train

set contains 39 % relevant documents, whereas the test set only contains 7 %. All

learning-to-rank models perform better than the BM25@body baseline ranking

and better than linear regression, for both train/test splits.

GOV2 Table 6.2 shows nDCG@20 performance on reranked test runs for the

GOV2 corpus. We present averaged results for the 5-fold cross-validation splits

included in the LETOR dataset [QL13] for the TREC 2007–2008 Million Query Tracks.
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On this corpus we do not see any signi�cant e�ect when removing near duplicates

from training vectors, and only minimal e�ect when discounting duplicate vector’s

relevance. Instead, rankings are equally good for all deduplication strategies. We

expectedly observe similar e�ects to the ClueWeb09 cross-validation train/test splits,

and further con�rm that nDCG@20 performance decreases under application of the

novelty principle [BZ05; Frö+20]. Additionally, performance is overall higher than

for the ClueWeb09 corpus. This can be caused by two reasons: First, near duplicates

from the GOV2 corpus have a higher probability of being relevant than near

duplicates from ClueWeb09 (Chapter 3). Irrelevant documents are thus less likely to

appear on top ranks, which might be another reason for the nDCG@20 performance

to be unin�uenced by deduplication. Second, LETOR train/test splits contain much

more training vectors and are more shallowly judged, of which learning-to-rank

algorithms bene�t [YR09].

Though we cannot measure an improvement in search e�ectiveness when re-

moving near duplicates during training in the average case on both corpora, we

see deduplication as an opportunity for optimizing a search engine’s e�ciency.

Duplicate documents can safely be removed from the train and test sets without

degrading e�ectiveness, which should speed up learning to rank because we now

need to calculate features for fewer documents.

6.2 Bias on Learned Models
We contrast our evaluations on general retrieval performance with studying the

bias in rankings that redundant documents in training data pose to learning-to-rank

models. On both corpora, we evaluate ranks of irrelevant near-duplicate documents.

We add a more detailed study of the wikipedia.org domain as an exemplary, very

popular domain. As domains of GOV2 documents are much less popular, and

because no documents from wikipedia.org are included, we limit the latter study

to ClueWeb09 splits

For both studies, we report the �rst rank of irrelevant documents per topic,

and report averages over all test topics. For a perfect ranker, we expect irrelevant

documents to be ranked lower, at the end of the ranking. Relevant documents

should be ranked higher, at the start of the list. We reason, that a system which

ranks irrelevant near-duplicate documents higher is biased towards redundant

documents, especially when irrelevant duplicates appear on very high ranks. We

report absolute ranks, not reciprocal ranks, as that would disallow us to report

averages and signi�cance [Fuh17].

Similar to the previous evaluation, we report �rst ranks for all learning-to-rank

models and deduplication strategies. We compare the e�ect size in relation to full

redundancy by reporting Cohen’s d, and highlight signi�cant changes for p 6 0.05.
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Table 6.3: First rank of irrelevant near-duplicate documents on test splits for the

ClueWeb09 corpus. Superscripts indicate e�ect size, signi�cant changes

are highlighted bold.

Algorithm First Rank of Irrelevant Duplicate Documents

Duplicates Unmodi�ed Duplicates Irrelevant Duplicates Removed

100 % 0 % NOV 100 % 0 % NOV 100 % 0 % NOV

W
or
st
-C

as
e

Sc
en

ar
io

BM25 14 — — 13 — — 14 — —

AdaRank 8 13↑0.5 16↑0.7
7 12↑0.5 14↑0.6

9 16↑0.4 18↑0.6

Coor. Ascent 5 8↑0.5 9↑0.6
3 7↑0.7 9↑0.8

4 9↑0.5 9↑0.6

LambdaMART 4 5
↑0.2 6↑0.3

4 5
↑0.2 6↑0.4

4 5
↑0.2 6↑0.4

ListNET 11 13
↑0.1

8
↓0.2

9 11
↑0.1

8
↓0.1

11 14
↑0.2

9
↓0.2

RankBoost 6 7
↑0.2

7
↑0.2

4 5
↑0.2 6↑0.4

7 8
↑0.1

8
↑0.2

Regression 5 5
↓0.0 11↑0.6

5 5
↓0.1 10↑0.7

6 6
↑0.0 11↑0.6

5-
Fo

ld
C
ro
ss
-V
al
id
at
io
n BM25 19 — — 13 — — 19 — —

AdaRank 24 24
↑0.0

24
↑0.0

15 15
↓0.0

15
↓0.0

24 25
↑0.0

24
↑0.0

Coor. Ascent 12 14
↑0.1 18↑0.3

5 7↑0.3 18↑0.8
10 13↑0.2 18↑0.4

LambdaMART 13 13
↓0.0 16↑0.2

7 7
↑0.1 16↑0.6

11 12
↑0.1 16↑0.3

ListNET 17 16
↓0.0

18
↑0.1

11 11
↑0.0 15↑0.2

16 16
↓0.0

18
↑0.1

RankBoost 15 15
↓0.0

15
↓0.0

7 7
↑0.0

8
↑0.1

14 16
↑0.1

15
↑0.0

Regression 12 12
↑0.0 17↑0.3

6 9↑0.3 15↑0.7
10 13↑0.2 17↑0.4

Ranks of Near-Duplicate Documents Tables 6.3 and 6.4 show the �rst rank

of irrelevant near-duplicate documents for models trained on the ClueWeb09 and

GOV2 corpus respectively. For both corpora, we see that most models rank ir-

relevant near-duplicate documents at high ranks if feature vectors are not being

deduplicated. It concerns, that for learning with LETOR feature vectors and for

learning with the worst-case ClueWeb09 split, we often see top-10 ranks, highlight-

ing that any ranking algorithm is prone to misuse by redundant documents. On

the average case, all learning-to-rank models rank near duplicates higher than the

BM25@body baseline.

Of our deduplication strategies, we see the NOV strategy to be most e�cient in

ranking irrelevant near-duplicate documents lower for cross-validation splits. With

that strategy, Coordinate Ascent pushes irrelevant near duplicates signi�cantly

down by 6 positions on ClueWeb09 and 1 position on GOV2, when duplicates are left

unmodi�ed after ranking. If subsequent near duplicates are marked irrelevant after

ranking, we see Coordinate Ascent ranks increasing 13 positions on ClueWeb09

and 4 positions on GOV2; if duplicates are removed ranks increase by 41 positions

on ClueWeb09 and by 1 position on GOV2.

While we see all learning-to-rank algorithms to rank irrelevant near duplicates

lower with both deduplication strategies, we do not see proportional improvement

in nDCG performance (Section 6.1). We assume, that in ranked lists, as near-
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Table 6.4: First rank of irrelevant near-duplicate documents on test splits for the

GOV2 corpus. Superscripts indicate e�ect size, signi�cant changes are

highlighted bold.

Algorithm First Rank of Irrelevant Duplicate Documents

Duplicates Unmodi�ed Duplicates Irrelevant Duplicates Removed

100 % 0 % NOV 100 % 0 % NOV 100 % 0 % NOV

5-
Fo

ld
C
ro
ss
-V
al
id
at
io
n BM25 7 — — 7 — — 7 — —

AdaRank 7 7
=0.0 8↑0.1

6 6
=0.0 10↑0.3

6 6
=0.0 7↑0.1

Coor. Ascent 7 7
↑0.0 8↑0.1

6 6
↓0.0 10↑0.4

6 6
↓0.0 7↑0.1

LambdaMART 6 6
=0.0 8↑0.1

6 6
=0.0 10↑0.4

6 6
=0.0 7↑0.1

ListNET 7 7
↓0.0 7↑0.0

6 6
↓0.0 8↑0.2

6 6
↓0.0 7↑0.0

RankBoost 7 7
=0.0 7↑0.1

6 6
=0.0 8↑0.3

6 6
=0.0 7↑0.0

Regression 7 7
=0.0

5
↓0.3

6 6
=0.0

4
↓0.2

7 7
=0.0

4
↓0.3

duplicate documents are pushed down, non-duplicate irrelevant documents could

move further up the ranking. This seems plausible, because most domains that

contribute redundancy also contain large numbers of relevant documents.

Comparing the two deduplication strategies, we also see the NOV strategy to

outmatch the 0 % strategy for the average case. This con�rms again that removing

information from which a ranking algorithm could learn decreases its e�ectiveness,

even though we remove information, that would otherwise tend to confuse learning-

to-rank models.

As another e�ect—independent from deduplication of the training set—we ob-

serve a decrease in ranks of irrelevant near-duplicate documents under the novelty

principle, especially when subsequent near duplicates are marked irrelevant. We see

this e�ect to be much stronger on the ClueWeb09 corpus than on the GOV2 corpus,

and in general irrelevant near-duplicate documents are ranked higher by models

trained on GOV2. Irrelevant near-duplicate documents being ranked much lower if

consecutive duplicates are removed before evaluation makes a strong argument

to support the �ndings of Bernstein et al. and Fröbe et al. [BZ05; Frö+20]. The

di�erence in top ranks between the Million Query Tracks and Web Tracks may

stem from di�erent topic selection or crawling strategies.

Ranks of Documents fromWikipedia In addition to measuring ranks of near-

duplicate documents, we add a supporting study of the wikipedia.org domain on

rankings of ClueWeb09 documents. Wikipedia contributes by far the most near-

duplicate documents and furthermore is a very popular domain (Alexa Rank: 7).

As domains contributing redundancy in the GOV2 corpus are much more lev-

eled, but also because government websites are generally less popular (Alexa rank

of nih.gov: 479), we limit this study of ranks for documents from popular domains
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Table 6.5: First rank of irrelevant Wikipedia documents on test splits for the

ClueWeb09 corpus. Superscripts indicate e�ect size, signi�cant changes

are highlighted bold.

Algorithm First Rank of Irrelevant Wikipedia Documents

Duplicates Unmodi�ed Duplicates Irrelevant Duplicates Removed

100 % 0 % NOV 100 % 0 % NOV 100 % 0 % NOV

W
or
st
-C

as
e

Sc
en

ar
io

BM25 83 — — 79 — — 74 — —

AdaRank 37 54↑0.4 115↑1.3
37 54↑0.4 114↑1.3

33 52↑0.5 107↑1.3

Coor. Ascent 12 46↑1.0 40↑1.0
11 45↑1.0 40↑1.0

10 40↑1.0 40↑1.1

LambdaMART 17 15
↓0.1

19
↑0.1

13 12
↓0.1 19↑0.3

14 13
↓0.1

19
↑0.3

ListNET 64 66
↑0.0

44
↓0.4

62 64
↑0.0

44
↓0.4

57 60
↑0.0

42
↓0.3

RankBoost 28 41↑0.3
31

↑0.1
24 38↑0.4

29
↑0.2

23 34↑0.3
27

↑0.1

Regression 14 16
↑0.1 25↑0.5

13 16
↑0.1 25↑0.5

11 14
↑0.2 25↑0.7

5-
Fo

ld
C
ro
ss
-V
al
id
at
io
n BM25 83 — — 72 — — 69 — —

AdaRank 72 68
↓0.1 83↑0.2

65 63
↓0.1 76↑0.2

65 63
↓0.0 77↑0.2

Coor. Ascent 26 40↑0.4 37↑0.3
18 30↑0.4 37↑0.6

20 34↑0.5 37↑0.6

LambdaMART 27 28
↑0.0

29
↑0.1

19 20
↑0.0 28↑0.3

24 24
↓0.0

29
↑0.2

ListNET 55 54
↓0.0

57
↑0.0

47 47
↑0.0

53
↑0.1

47 47
↓0.0

53
↑0.1

RankBoost 42 48
↑0.2

45
↑0.1

31 42↑0.3
37

↑0.1
34 43↑0.3

39
↑0.1

Regression 26 38↑0.3 44↑0.5
18 32↑0.5 42↑0.7

19 32↑0.5 42↑0.7

to ClueWeb09 documents.

In Table 6.5, we report average �rst ranks of irrelevant documents from the

wikipedia.org domain for models trained on the ClueWeb09 across topics. If

all irrelevant documents from Wikipedia were near duplicates, we would expect

very similar results to Table 6.3, especially if near duplicates are removed after

ranking. Although, even with that assumption being false, we see similarities to

�rst ranks of irrelevant near-duplicate documents (Section 6.2). By all learning-

to-rank models, Wikipedia documents are ranked at much higher positions than

in the BM25@body baseline ranking. Without deduplication of search engine

results, documents from wikipedia.org are ranked 42 positions higher on aver-

age than the baseline ranking. This is cause for alarm, as all rankers are clearly

biased towards ranking near-duplicate documents higher. Additionally, we ob-

serve that wikipedia.org, besides other domains that contribute high amounts

of near-duplicate documents (e.g., yahoo.com, meetup.com, and nih.gov), is very

popular (Tables 3.1, 3.2, page 8). Redundant websites such as Wikipedia are often

popular, thus resulting in a bias towards documents from popular domains.

Deduplication of feature vectors for learning to rank helps to reduce that bias.

We see irrelevant Wikipedia documents to be ranked at lower positions by all

ranking models for at least one of the 0 % or NOV deduplication strategies. In-

terestingly, some learning-to-rank algorithms rank fairer with the 0 % strategy
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(RankBoost), and some with the NOV strategy (AdaRank, LambdaMART). Though,

in general the NOV strategy is better able to reduce the ranking bias. Training

the AdaRank model with NOV deduplication fully compensates the bias on the

average case and irrelevant Wikipedia documents are ranked on similar positions as

with BM25. For our worst-case scenario AdaRank even ranks irrelevant documents

from wikipedia.org lower, i.e., fairer, than the BM25@body baseline ranking.

Our results constitute additional motivation to handle near-duplicate documents

specially when learning to rank. Both evaluations of irrelevant near duplicate

ranks and irrelevant Wikipedia ranks highlight a severe bias in representation

of redundant documents. The ranking bias for Wikipedia documents concerns

particularly, as in that case a very popular domain is overrepresented by ranking

algorithms. Models vulnerable to this kind of bias are prone to SEO abuse and can

be tricked especially by popular domains.

6.3 Domain-Based Fairness of Exposure
As a third means of evaluating bias induced in learning-to-rank models by near-

duplicate documents, we study fairness of exposure, as de�ned by the recent

TREC 2019 Fair Ranking Track [Bie+20]. Similar to the Fair Ranking Track’s

organizers, we want to examine, whether some content providers are preferred

by a learning-to-rank model, and if deduplication of feature vectors could help to

improve fairness.

For our evaluation, instead of arbitrary groups of authors, we compute fairness

based on each document’s normalized domain name. We extract the hostname

from each document’s URL, and strip subdomains until only one non-top-level

subdomain is left. We use the Mozilla Foundation’s Public Su�x List
2

to determine

a top-level domain, but fall back to the last domain part if no matching su�x is

found in the Public Su�x List. For instance the domain m.en.wikipedia.org is

reduced to wikipedia.org, but data.gov.uk stays unmodi�ed.

We compute domain-based fairness per topic, and exclude topics without any

relevant document in the ranking. All parameters of Biega et al.’s fairness measure

are kept to TREC defaults [Bie+20]. In Tables 6.6, and 6.7, we report average fairness

for all topics, e�ect size (Cohen’s d) compared to 100 % redundancy, and highlight

signi�cant changes for p 6 0.05.

For both corpora, ClueWeb09 and GOV2, we see little changes with di�erent

deduplication strategies. However, in the average-case scenario with full redun-

dancy and no adjustment of relevance labels after ranking, most rankers generate

slightly less fair rankings, compared to the BM25@body baseline. Conversely, when

the most redundant topics are used for learning in the worst-case scenario, fairness

2https://publicsuffix.org/

26

http://wikipedia.org
http://m.en.wikipedia.org
http://wikipedia.org
http://data.gov.uk
https://publicsuffix.org/


Chapter 6 Evaluation

Table 6.6: Fairness of exposure across domains on test splits for the ClueWeb09 cor-

pus. Superscripts indicate e�ect size, signi�cant changes are highlighted

bold.

Algorithm Fairness of Exposure Across Domains

Duplicates Unmodi�ed Duplicates Irrelevant Duplicates Removed

100 % 0 % NOV 100 % 0 % NOV 100 % 0 % NOV

W
or
st
-C

as
e

Sc
en

ar
io

BM25 0.560 — — 0.558 — — 0.554 — —

AdaRank 0.565 0.570
↑0.0

0.579
↑0.0

0.559 0.563
↑0.0

0.572
↑0.0

0.545 0.561
↑0.0

0.572
↑0.1

Coor. Ascent 0.606 0.572
↓0.1

0.579
↓0.1

0.632 0.570
↓0.2

0.580
↓0.1

0.575 0.563
↓0.0

0.580
↑0.0

LambdaMART 0.570 0.576
↑0.0

0.559
↓0.0

0.579 0.592
↑0.0

0.562
↓0.0

0.557 0.556
↓0.0

0.562
↑0.0

ListNET 0.586 0.579
↓0.0

0.580
↓0.0

0.585 0.579
↓0.0

0.583
↓0.0

0.566 0.571
↑0.0

0.564
↓0.0

RankBoost 0.599 0.582
↓0.0

0.600
↑0.0

0.600 0.578
↓0.1

0.601
↑0.0

0.587 0.564
↓0.1

0.597
↑0.0

Regression 0.575 0.555
↓0.1

0.539
↓0.1

0.597 0.570
↓0.1

0.550
↓0.1

0.533 0.563
↑0.1

0.550
↑0.0

5-
Fo

ld
C
ro
ss
-V
al
id
at
io
n BM25 0.689 — — 0.628 — — 0.619 — —

AdaRank 0.688 0.695
↑0.0

0.688
↓0.0

0.628 0.634
↑0.0

0.626
↓0.0

0.627 0.630
↑0.0

0.622
↓0.0

Coor. Ascent 0.642 0.676
↑0.1 0.700↑0.2

0.665 0.641
↓0.1

0.653
↓0.0

0.625 0.631
↑0.0

0.653
↑0.1

LambdaMART 0.650 0.646
↓0.0

0.661
↑0.0

0.640 0.640
↑0.0

0.630
↓0.0

0.626 0.627
↑0.0

0.631
↑0.0

ListNET 0.675 0.687
↑0.0

0.670
↓0.0

0.622 0.638
↑0.1

0.622
↓0.0

0.615 0.625
↑0.0

0.620
↑0.0

RankBoost 0.692 0.719
↑0.1

0.711
↑0.1

0.659 0.659
↓0.0

0.658
↓0.0

0.649 0.652
↑0.0

0.655
↑0.0

Regression 0.644 0.681
↑0.1

0.674
↑0.1

0.639 0.635
↓0.0

0.623
↓0.1

0.606 0.628
↑0.1

0.617
↑0.0

Table 6.7: Fairness of exposure across domains on test splits for the GOV2 corpus.

Superscripts indicate e�ect size, signi�cant changes are highlighted

bold.

Algorithm Fairness of Exposure Across Domains

Duplicates Unmodi�ed Duplicates Irrelevant Duplicates Removed

100 % 0 % NOV 100 % 0 % NOV 100 % 0 % NOV

5-
Fo

ld
C
ro
ss
-V
al
id
at
io
n BM25 0.352 — — 0.347 — — 0.344 — —

AdaRank 0.314 0.314
=0.0

0.309
↓0.0

0.309 0.309
=0.0

0.304
↓0.0

0.305 0.305
=0.0

0.304
↓0.0

Coor. Ascent 0.296 0.295
↓0.0

0.291
↓0.0

0.290 0.289
↓0.0

0.287
↓0.0

0.285 0.284
↓0.0

0.287
↑0.0

LambdaMART 0.296 0.296
=0.0

0.295
↓0.0

0.290 0.290
=0.0

0.290
↓0.0

0.286 0.286
=0.0

0.290
↑0.0

ListNET 0.294 0.295
↑0.0

0.289
↓0.0

0.289 0.289
↑0.0

0.284
↓0.0

0.286 0.285
↓0.0

0.283
↓0.0

RankBoost 0.294 0.294
=0.0

0.289
↓0.0

0.288 0.288
=0.0

0.284
↓0.0

0.283 0.283
=0.0

0.284
↑0.0

Regression 0.301 0.301
=0.0

0.295
↓0.0

0.293 0.293
=0.0

0.293
↓0.0

0.291 0.291
=0.0

0.288
↓0.0

27



Chapter 6 Evaluation

improves upon the baseline ranking, even though all rankings in the average-case

cross-validation train/test splits are fairer. Either marking consecutive near dupli-

cates irrelevant or removing them worsens fairness of exposure in all train/test

splits for all ranking algorithms. In both cases, learning-to-rank models perform

better than the BM25@body baseline ranking on the deeply judged Web Track doc-

uments, but worse on shallowly judged Million Query Track topics. The decreased

fairness of novelty-aware rejudged rankings concerns and questions its use, as

currently the focus in information retrieval evaluation drifts from pure relevance-

related measures to novelty, diversity, and fair representation. Unfortunately, we

are unable to show signi�cant changes regarding di�erent deduplication strategies,

except for a small improvement of the NOV strategy on the Coordinate Ascent

model with no adjustment of relevance labels.

A deeper analysis of di�erent measures of fairness, including tuning Biega et al.’s

parameters for trading o� fairness versus relevance [Bie+20], is required to show

signi�cantly, how redundancy in training labels a�ects the fairness of search result

representation in learning-to-rank models.

28



Chapter 7

Conclusion and Future Work
Near-duplicate documents in web crawls a�ect retrieval performance [BZ05] and

are present in learning-to-rank datasets. Our experiments, using the LETOR bench-

mark dataset and the ClueWeb09 corpus, approach three di�erent e�ects of near

duplicates on learning to rank: nDCG@20 performance, ranking bias, and fairness

of exposure across domains. We �nd that popular learning-to-rank models are

a�ected by near-duplicate web documents.

Average performance of ranked runs decreases by as much as 39 % (Coordinate

Ascent, ClueWeb09) when novelty is modeled by marking already seen near du-

plicates irrelevant, compared to keeping near duplicates’ labels unmodi�ed. We

evaluate two strategies to counteract this performance impact. First, we mutate

training feature vectors to introduce novelty based on canoncial links to learning-

to-rank models. Second, subsequent near duplicates are removed after ranking,

as was proposed by Bernstein and Zobel [BZ05]. Both strategies help to reduce

the performance de�cit from marking near-duplicate documents irrelevant. All

studied learning-to-rank models bene�t from novelty-aware feature mutation, often

signi�cantly and with medium e�ect.

Additionally, we measure bias in ranks of near-duplicate documents. Irrelevant

near-duplicate documents are ranked on top ranks by nearly all learning-to-rank

algorithms, indicating a clear bias towards duplicate content. The observed bias is

particularly strong for documents from the popular wikipedia.org domain. We

�nd that nearly all learning-to-rank models in our study pro�t from novelty-aware

feature mutation. Feature mutation counteracts ranking bias by helping learning

to rank models to rank irrelevant near duplicates signi�cantly lower in almost all

considered learning-to-rank models.

Conversely, fairness of exposure per domain does not change with any dedu-

plication strategy we studied. Though, we observe a minimal decrease in fairness

if relevance labels are adjusted according to Bernstein and Zobel’s novelty strat-

egy [BZ05]. We �gure that Biega et al.’s fairness measure might penalize the

removal of relevant duplicates.

We conclude, that introducing novelty information to learning-to-rank training

features is a good strategy for improving a retrieval system’s performance and
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robustness against redundancy. Not handling near duplicates especially poses a risk

on search engines, as performance decreases and rankings are biased. We therefore

encourage further research in the �eld and call out for systematic evaluation of

biases caused by redundancy in learning to rank.

FutureWork We encountered several research directions during our studies that

we see as important questions to be considered for future research. Some learning-

to-rank models can directly optimize performance metrics [Xu+08; Zeh+17]. Train-

ing those models with metrics that are novelty-aware could counteract bias towards

redundant documents. Existing research on learning diversity may be adjusted

to take novelty in terms of duplication into account as well [SJ18; SJ19; Zeh+17;

Zhu+14]. A popular approach for detecting bias and measuring fairness in informa-

tion retrieval is scoring exposure in relation to relevance [Bie+20]. Our experiments

show, that this approach does not accurately model fairness in terms of redun-

dancy. For other pointwise and pairwise learning-to-rank models, the e�ect of

near-duplicate documents on their loss functions for learning to rank should be

considered. Similarly, each feature’s importance in trained models is an interesting

future research direction. We advocate studying empirically and theoretically the

direct bias induced to a learning-to-rank model, without observing their e�ects

indirectly like we did. If particularly vulnerable features are found, those could

be discounted or removed from training data. Alternatively, similar to query fea-

tures [MSO12], some learning-to-rank algorithms could be improved to generate

better rankings within a group of near-duplicate documents, to ensure the best

document within a group is always ranked �rst.

Source code We release the source code for reproduction of our results under a

free license, to incubate future research in the �eld.
1

The open source repository

includes instructions for downloading and using the free datasets we derived from

ClueWeb09 documents and the LETOR 4.0 dataset.

1https://github.com/webis-de/sigir20-sampling-bias-due-to-near-duplicates-in-lear
ning-to-rank
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