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Abstract

People frequently use web search engines to find answers to health-related ques-
tions, but often receive incorrect or biased answers. Because users trust the top-
ranked search results, such misinformation can cause severe harm, especially if
medical questions are answered incorrectly despite lacking evidence. General search
engines lack effective measures to prevent misinformation and rarely display warn-
ings for health-related questions. A first step towards preventing misinformation is
therefore to identify health-related or medical questions. Countermeasures against
misinformation can then be applied to answer these health-related questions cor-
rectly. Both identifying and answering health-related questions are open problems
due to limited datasets, ineffective question classifiers or a lack of misinformation
prevention in retrieval systems.
In this thesis, we explore three directions to advance the identification and

answering of health-related questions: First, we collect a large, realistic dataset
of medical, health-related, and non-health-related questions from various sources.
We automatically label health-related and medical questions based on their source
and vocabulary, by applying labeling heuristics and weak supervision. Second, we
optimize feature-based and transformer-based classifiers to identify health-related
and medical questions with high effectiveness. Third, we investigate a modular,
evidence-based question answering and retrieval architecture for health-related
yes-no questions. Our approach first infers the correct answer to the question based
on trusted evidence from relevant biomedical literature, then retrieves topically
relevant web documents, and finally re-ranks the documents to favor documents
that support the correct answer.





v

Contents

Acknowledgments i

1 Introduction 1
1.1 Health-Related and Medical Queries and Questions . . . . . . . . 3
1.2 Health Misinformation and Biases . . . . . . . . . . . . . . . . . . 5
1.3 Research Questions and Outline . . . . . . . . . . . . . . . . . . . 6

2 Related Work 9
2.1 Health-Related Questions and Classification . . . . . . . . . . . . 9
2.2 Health-Related Information Retrieval and Question Answering . . 13
2.3 Claim Verification and Misinformation Detection . . . . . . . . . 14
2.4 Reducing Misinformation in Health-Related IR and QA . . . . . . 16
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Data Collection and Labeling 19
3.1 Collecting Health-Related Questions from Existing Datasets . . . 19

3.1.1 Health-Related Question Answering Datasets . . . . . . . 20
3.1.2 General Purpose Question Answering Datasets . . . . . . 25
3.1.3 Community Question Answering Platforms . . . . . . . . 26
3.1.4 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Automatic Labeling using Weak Supervision . . . . . . . . . . . . 29
3.2.1 Natural Language Questions and Yes-No Questions . . . . 30
3.2.2 Health-Related Questions . . . . . . . . . . . . . . . . . . 32
3.2.3 Medical Questions . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Manual Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Natural Language Questions and Yes-No Questions . . . . 39
3.3.2 Health-Related and Medical Questions . . . . . . . . . . . 41

3.4 Deduplication and Dataset Splits . . . . . . . . . . . . . . . . . . . 42
3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Identifying Health-Related and Medical Questions 47
4.1 Training Feature-Based Classifiers with Sentence Embeddings . . 48
4.2 Fine-tuning Transformer-Based Encoder Models . . . . . . . . . . 52
4.3 Fine-tuning Transformer-Based Text Generation Models . . . . . 54



vi Contents

4.4 Cascading Classification Strategies . . . . . . . . . . . . . . . . . . 59
4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Answering Health-Related Yes-No Questions 67
5.1 Evidence Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Answer Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Web Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4 Answer-Based Re-Ranking . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5.1 Manual Judgments for Evidence Retrieval . . . . . . . . . 76
5.5.2 TREC Health Misinformation Track . . . . . . . . . . . . 78
5.5.3 Optimizing Evidence Retrieval, Answer Prediction, and

Web Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5.4 Outlook: Answering Health-Related Questions with Large

Conversational Models . . . . . . . . . . . . . . . . . . . . 85
5.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Conclusion 95
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A Annotator Instructions 101
A.1 Yes-No Question Annotation . . . . . . . . . . . . . . . . . . . . . 101
A.2 Health-Related and Medical Question Annotation . . . . . . . . . 103
A.3 Evidence Relevance and Answer Annotation . . . . . . . . . . . . 105

B Used Models 107

Bibliography 109



vii

List of Figures

1.1 Screenshot of Bing showing an incorrect featured snippet for a
health-related query. . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 Screenshot of the Doccano annotation interface. . . . . . . . . . . 39
3.2 Histograms of the question length in our dataset splits for medical,

health-related or non-health-related questions. . . . . . . . . . . . 43
3.3 Confusion matrices of the automatic labels compared to manual

labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Parallel coordinates plots for different hyperparameter configura-
tions when training support vector machine or gradient boosting
models to classify health-related or medical questions. . . . . . . . 51
a SVM, health-related questions. . . . . . . . . . . . . . . . 51
b SVM, medical questions. . . . . . . . . . . . . . . . . . . . 51
c Gradient boosting, health-related questions. . . . . . . . . 51
d Gradient boosting, medical questions. . . . . . . . . . . . 51

4.2 Parallel coordinates plot for different hyperparameter configura-
tions when fine-tuning encoder models to classify health-related
or medical questions. . . . . . . . . . . . . . . . . . . . . . . . . . 53
a Health-related questions. . . . . . . . . . . . . . . . . . . . 53
b Medical questions. . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Parallel coordinates plot for different hyperparameter configura-
tions when fine-tuning language models to classify health-related
or medical questions. . . . . . . . . . . . . . . . . . . . . . . . . . 58
a Text-to-text language models, health-related questions. . . 58
b Text-to-text language models, medical questions. . . . . . 58
c Causal language models, health-related questions. . . . . 58
d Causal language models, medical questions. . . . . . . . . 58

4.4 Receiver operating characteristic (ROC) curves of our most effective
models to identify health-related or medical questions. . . . . . . 63
a Classifiers for health-related questions. . . . . . . . . . . . 63
b Classifiers for medical questions. . . . . . . . . . . . . . . 63
c Cascading classifiers for medical questions (using ground-

truth health-related labels). . . . . . . . . . . . . . . . . . 63



viii List of Figures

d Cascading classifiers for medical questions (using health-
related predictions). . . . . . . . . . . . . . . . . . . . . . 63

4.5 Precision-recall curves of our most effective models to identify
health-related or medical questions. . . . . . . . . . . . . . . . . . 64
a Classifiers for health-related questions. . . . . . . . . . . . 64
b Classifiers for medical questions. . . . . . . . . . . . . . . 64
c Cascading classifiers for medical questions (using ground-

truth health-related labels). . . . . . . . . . . . . . . . . . 64
d Cascading classifiers for medical questions (using health-

related predictions). . . . . . . . . . . . . . . . . . . . . . 64

5.1 Overview of our pipeline for answering health-related yes-no ques-
tions and retrieving helpful documents that support the answer. . 67

5.2 Flowchart of our evidence retrieval pipeline. . . . . . . . . . . . . 68
5.3 Flowchart of our answer inference pipeline. . . . . . . . . . . . . 70
5.4 Flowchart of our web retrieval pipeline. . . . . . . . . . . . . . . . 72
5.5 Flowchart of our answer re-ranking pipeline. . . . . . . . . . . . . 73
5.6 Influence of answer difference on the original retrieval score with

different score combination strategies. . . . . . . . . . . . . . . . . 74
5.7 Compatibility with helpful and harmful results on TREC 2022

Health Misinformation topics. . . . . . . . . . . . . . . . . . . . . 87
5.8 Receiver operating characteristic curves of our answer inference

approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.9 Histograms of predicted answer scores from our best TREC run

and grid search optimization for different true answers. . . . . . . 89



ix

List of Tables

2.1 Health-related question answering datasets in comparison to the
health-related questions of our dataset. . . . . . . . . . . . . . . . 10

3.1 Source datasets used in our question dataset. . . . . . . . . . . . . 28
3.2 Types of personally identifiable information removed from our

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Interrogative words. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Auxiliary verbs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Proportion of natural language questions in filtered question an-

swering datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Lookup table for labeling a question as health-related and medical

based on its source dataset and category or subset. . . . . . . . . . 34
3.7 Labels contributed by labeling functions for health-related questions

and medical questions. . . . . . . . . . . . . . . . . . . . . . . . . 37
3.8 Comparison of the label distributions of the gold and silver label

datasets, and automatic labeling effectiveness. . . . . . . . . . . . 42

4.1 Neural models used in our approaches for classifying health-related
and medical questions. . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Hyperparameter prior distributions for training support vector
machine, random forest, or gradient boosting classifiers to identify
health-related or medical questions. . . . . . . . . . . . . . . . . . 49

4.3 Hyperparameter prior distributions for fine-tuning encoder models
to identify health-related or medical questions. . . . . . . . . . . . 52

4.4 Hyperparameter prior distributions for fine-tuning text-to-text lan-
guage models to identify health-related or medical questions. . . . 55

4.5 Hyperparameter prior distributions for fine-tuning causal language
models to identify health-related or medical questions. . . . . . . 56

4.6 Classification performance of our most effective models trained to
identify health-related or medical questions. . . . . . . . . . . . . 61

5.1 Graded and binary relevance judgments derived from manual an-
notations of PubMed abstracts. . . . . . . . . . . . . . . . . . . . . 78

5.2 Hyperparameters for grid search optimization of our evidence re-
trieval stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



x List of Tables

5.3 Hyperparameters for grid search optimization of our answer infer-
ence stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Hyperparameters for grid search optimization of our web retrieval
stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Hyperparameters for grid search optimization of our answer-based
re-ranking stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Retrieval effectiveness on TREC 2022 Health Misinformation topics. 86
5.7 Answer inference effectiveness on TREC 2022 Health Misinforma-

tion topics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.1 Links to the model checkpoints used for the classification of health-
related and medical questions, claim verification, and question
answering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



xi

List of Algorithms

3.1 Rules for labeling natural language questions. . . . . . . . . . . . . 31
3.2 Rules for labeling yes-no questions. . . . . . . . . . . . . . . . . . . 32





1

Chapter 1

Introduction

Web search engines are nowadays commonly used as universal question answer-
ing systems to find answers to questions from a wide range of topics [Bro02;
CTS+21; KPR+19]. Many people search for health-related information (e.g., nutri-
tion, symptoms, or medication) online [BWS+03; CMW14], and consequentially,
a large part (5–24%) of the queries in web search are health-related [EK03; JS06;
SYJ+04]. Even though health-related questions can be relatively safe and non-
medical questions (e.g., “What is the best diet for weight loss?”), people also search
for more severe, medical topics (e.g., “Does garlic help with thrush?”) that require
professional advice. The COVID-19 pandemic has highlighted the risks of spread-
ing incorrect or biased information in search results and summarized answers,
especially in health-related and medical questions [BSD+21; CRS+20]. Generic
search engines are often unable to prevent such misinformation and rarely display
warnings or disclaimers for health-related questions or queries. An example is
shown in Figure 1.1 where the question “Does garlic help with thrush?” is in-
correctly answered by Bing,1 but no warning or suggestion to seek professional
medical advice is displayed. Because people often trust major search engines, this
misinformation can severely bias the searcher’s choice of treatment [ND22; WH15].
Following the harmful advice of such direct answers can also be dangerous, e.g.,
the use of garlic to treat thrush can lead to face burns [BCI07].
Health search engines often apply countermeasures against misinformation,

such as retrieving from trusted sources (e.g., biomedical literature) or verify-
ing claims [PMN+21; ZTA+22], to answer health-related questions correctly. In
a general search engine, however, most questions and queries are not health-
related [EK03; Eys04; JS06]. Because misinformation is most harmful in health-
related and medical questions (e.g., alternative treatments can be toxic or even
hinder conventional treatment [JPG+18; PMM+17]), we want to focus countermea-
sures primarily to the health-related questions. It is therefore necessary to first
identify which questions are health-related or medical. Training feature-based
machine learning models or fine-tuning language models is a common approach
for text classification that requires labeled training data [MKC+22]. But existing

1https://bing.com

https://bing.com
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Figure 1.1: Screenshot of Bing showing an incorrect featured snippet for the query Does
garlic help with thrush? The snippet claims that garlic is a helpful treatment for thrush,
but according to Bondarenko et al. [BSD+21], there is not enough evidence for that claim.
Garlic might even cause allergy, bleeding, or burns [BCI07].

health-related question answering datasets are either unlabeled, relatively small,
or do not cover the wide range of health-related questions that people ask in web
search (see Table 2.1). Consequently, there is a need for a large, labeled dataset of
medical, health-related and non-health-related questions.
The example in Figure 1.1 also demonstrates that yes-no questions about the

effectiveness of treatments or about diagnoses are particularly prone to misinfor-
mation and biases [BSD+21; WA14]. Such yes-no questions have therefore been the
focus of recent research on misinformation prevention in search, e.g., at the TREC
Health Misinformation tracks [ASL+19; CMS+22; CMS21; CRS+20]. After identify-
ing a health-related yes-no question, first the correct answer to the question needs
to be inferred from trusted evidence. This predicted “true” answer should then be
supported by web search results that agree with the evidence. In previous TREC
Health Misinformation tracks, often large language models were applied to answer
health-related questions, but such models are not explainable [PMN+21; WMR+21].
It is therefore questionable whether they should be used in real search engines to
answer medical questions that can cause serious harm if answered incorrectly.

Our contribution in this thesis is threefold: (1) We collect questions from various
sources to build a new, automatically labeled dataset of medical, health-related, and
non-health-related questions, (2) we propose newmethods to identify health-related
and medical questions, and (3) we build a modular search and question answering
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system using biomedical literature to infer the correct answer to a health-related
yes-no question and to find web documents that support this answer. We also
highlight a number of open research questions that remain to be addressed in the
future. In the remainder of this chapter, we first discuss the challenges that motivate
our work in more detail. We then formulate research questions and finally describe
the structure and contributions of this thesis.

1.1 Health-Related and Medical Queries and
Questions

People use web search engines every day to find a diet for their fitness program,
to search for symptoms of a disease, or even to ask for dosage of medication, that
is, to seek health-related information [BMS+19; PHM+16]. In a survey, Baker et
al. [BWS+03] showed that 40 % of 4,764 U.S. Internet users aged 21 years or older
have looked for health-related information online, and up to 32% reported that
health-related information on the Web influenced their decisions about health or
health care. A more recent study finds that more than 50 % of U.S. adults used web
resources to find health-related information, most often to find medical treatments
or help diagnose a health condition [CMW14]. Users also often ask for recommen-
dations on diets or recovery [Zha10]. The Web is increasingly used as the first
source of information when searching for health-related information, but results
are often not satisfactory [FBG+19]. This development is concerning because the
Web contains increasingly large amounts of misinformation (e.g., 55 % of tweets
about cures of cancer were identified as misinformation by Bal et al. [BSD+20]).
Nonetheless, people rely on search engines to find information about health-

related topics [JYX+23]. Questions such as “Can smoking prevent COVID-19?”, or
“What are the side effects of methadone?” are common in web search. Eysenbach
and Köhler [EK03] and Eysenbach [Eys04] looked at the prevalence of such health-
related searches and report that 4.5 % of the queries issued to web search engines
are health-related. Similar amounts were reported by Jansen and Spink [JS06] who
found that 7.5–9.5 % of search queries are about health or science. For question
answering systems, a study by Spink et al. [SYJ+04] reports that as much as 24 % of
the questions can be health-related, substantially more than in web search. Together,
these studies show that a substantial amount of information needs is health-related
and could thus benefit from improving health-related information retrieval.
White, Richardson, and Yih [WRY15] found that in real-world search engines

people often formulate information needs in the form of natural language questions.
3.2 % of the English queries in a query log from 2010 to 2011 were formulated
as questions. Recently, search engines like Bing and You.com have integrated
conversational language models that do not only process questions in natural

https://bing.com
https://you.com
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language but also answer in fluent sentences.2 This development suggests that
in the future, increasingly more information needs will likely be expressed in the
form of natural questions because asking questions is a more intuitive way for the
public and medical professionals to access health-related information [JYX+23].
Cambazoglu et al. [CTS+21] found that a large proportion of questions in web
search are yes-no questions, i.e., questions that can be answered with either “yes”
or “no” like shown in our example in Figure 1.1. Yes-no questions that are asked
in web search engines to support hypothesis-directed inference [CWH11] such as
verifying the effectiveness of a treatment or a (self-)diagnosis are particularly prone
tomisinformation and biases [BSD+21; WA14]. Hence, they are of particular interest
for this thesis. To automatically identify health-related questions is therefore the
first step towards improving health-related information retrieval. Previous health-
related question answering datasets usually do not contain non-health-related
questions to contrast health questions with (see Table 2.1), which makes it difficult
to use them for training classifiers to identify health-related questions.
A similar way to ask health-related questions online are community question

answering platforms like Stack Exchange3 or Yahoo! Answers,4 where users can
ask or answer questions in various categories, including medicine and other health-
related topics such as fitness and wellness. Zhang [Zha10] found that people often
turn to community question answering platforms because they either could not
see a doctor yet or, more concerning, because they felt that their questions were
not addressed completely by professionals they had previously consulted. Most
questions also express negative emotions such as worry and anxiety [Zha10]. Their
findings emphasize the need to actively encourage users to seek professional advice
on medical questions besides providing correct and explainable answers on all
health-related questions. However, most prior studies do not distinguish between
medical or non-medical questions [EK03]. Others distinguish questions by the types
of users, e.g., clinical questions from professionals and consumer health questions
from the public [JYX+23]. But for search engines it is more important to consider
the potential harm caused for questions that are either medical or not. Clearly, also
consumer health questions like “Does garlic help with thrush?” (see Figure 1.1) can
be medical and hence require a high level of verification. In this thesis, we therefore
propose definitions of health-related and medical questions, create a dataset of
questions labeled according to these definitions, and build models to identify health-
related and medical questions. We experiment with various feature-based machine
learning models and language model fine-tuning to approach this text classification
task [Bre01; CG16; CL11; DCL+19; PNL21].

2Bing Chat: https://bing.com/chat, You Chat: https://you.com/chat
3https://stackexchange.com/
4https://answers.yahoo.com/ (discontinued in 2021)

https://bing.com/chat
https://you.com/chat
https://stackexchange.com/
https://answers.yahoo.com/
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1.2 Health Misinformation and Biases
In a study on frequent questions about alternative remedies for common diseases,
Bondarenko et al. [BSD+21] found that despite many people using search engines
for personal health issues, 32 % of Google’s top-10 snippets on popular medical
questions promote misbeliefs. That is, Google’s snippets contradict the scientific
consensus as annotated by a medical expert. Figure 1.1 shows an even more
concerning example where Bing displays a direct answer claiming that garlic helps
with thrush. But in medical literature there is not enough evidence to support that
claim. Worse yet, garlic can cause allergies, bleeding, or burns [BCI07; BSD+21]. As
claimed by Potthast, Hagen, and Stein [PHS20], such direct answers pose a dilemma
to search engines (and their users): Either show users direct answers with the risk
of wrong answers or show users a list of documents with the risk of users not
finding the right answer. A particularly concerning effect of misinformation is that
people often change their beliefs based on such featured snippets and over-estimate
the snippets’ credibility at the same time [BZE22]. Effectively, featured snippets and
other highly ranked search results are treated as if they were testimony, on which
users then base their decisions [AS19; ND22]. The same behavior can be observed
on question answering platforms where people over-estimate the quality of health-
related answers even compared to answers from domain experts [OYW12]. Great
care should therefore be taken when presenting direct answers to health-related
questions. Because many people (42 %) have difficulties to assess the reliability
of health-related information [DOM+21], such direct answers should therefore
not only be as correct as possible but also be explainable, e.g., by citing trusted
evidence. We use the PubMed corpus of biomedical literature5 as the basis for our
evidence-based answer prediction approach.
Furthermore, White and Horvitz [WH15; Whi14] also found a confirmation

bias in search results for medical questions: High ranked documents often report
treatments as helpful. Bondarenko et al. [BSD+21] found the same confirmation bias
in featured snippets. And because biased search results significantly influence our
beliefs and decisions about medical treatments [PGS+17], users tend to believe that
the treatment is helpful. White and Horvitz [WH15; Whi14] also found that search
results which claim that a treatment helps have higher dwell times, that is, search
engine users take more time to read affirming documents. A possible explanation
can be that queries are often positively framed [Azz21], e.g., “Does garlic help with
thrush?” instead of “Can treating thrush with garlic be harmful?” Abualsaud and
Smucker [AS19] and Azzopardi [Azz21] also found that people are more likely
to infer a correct answer if more correct search results are returned. Conflicting
search results, on the other hand, can lead to confusion and uncertainty [BFC22].
Besides answering the question correctly, search engines should therefore also

5https://pubmed.gov

https://pubmed.gov
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care about the ranking position of the individual documents to support the correct
answer [WH15; Whi14] and penalize incorrect beliefs, not only by treating them as
irrelevant but by assigning incorrect answers a negative gain [CRS+20; PGS+17].
Our re-ranking approaches consider the predicted correctness of web documents to
actively reduce the retrieval score of documents that are predicted to be incorrect.

1.3 Research Questions and Outline

Based on the problems described above and the related work, we formulate the
following seven research questions that should be answered in this thesis. Finally,
we outline the structure of the thesis.

RQ1 Can we build a dataset of millions of medical, health-related, and non-health-
related questions that is representative for real-world question answering and
search systems? A realistic dataset is necessary to study all health-related
information needs, not only questions regarding specific topics. Such a
dataset should also contain questions that are not health-related to pose as
negative examples to compare against health-related questions. Research
Question 1 is addressed in Chapter 3.

RQ2 Can we automatically label medical and health-related questions with close to
human-level accuracy? Manual annotations are expensive or even infeasible
for large datasets. Therefore, we need to investigate whether automatic
labeling approaches can be used to label millions of medical and health-
related questions. Research Question 2 is also addressed in Chapter 3.

RQ3 How are health-related or medical questions different from other questions?
Finding differences in health-related or medical questions aims at a better
understanding of how health-related questions can be identified but also
can provide insights into the information needs typically associated with
health-related questions. We address Research Question 3 in Chapter 3.

RQ4 Can we build a classifier that can effectively and efficiently identify health-
related and medical questions? In a search engine, health-related questions
should be identified as early as possible to show warnings (at least for medical
questions) and to apply countermeasures against misinformation commonly
found on the Web. Research Question 4 is addressed in Chapter 4.

RQ5 Does increasing the training dataset size with automatic labeling benefit the
classification of health-related and medical questions? Automatic labeling
allows us to substantially increase the size of the training dataset at the cost
of a lower annotation quality. Research Question 5 probes the benefit of
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automatic labeling approaches to build more effective classifiers by enlarging
the training dataset, which we address in Chapter 4.

RQ6 Can we answer health-related yes-no questions correctly, i.e., without spreading
misinformation? Yes-no questions about the effectiveness of treatments are
common in health-related search queries. Answering such questions correctly
is important to avoid amplifying cognitive biases commonly associated with
health-related questions. We address Research Question 6 in Chapter 5.

RQ7 Canwe effectively retrieve trusted biomedical abstracts as evidence for answering
health-related questions? Biomedical literature is a form of evidence that is
trusted by many users because scientific articles are often peer-reviewed
and therefore considered to be more reliable than other sources. Research
Question 7 aims at finding the best way to retrieve biomedical literature to
find suitable evidence for correctly answering health-related questions, and
is addressed in Chapter 5.

RQ8 Can we effectively retrieve web documents that support the correct answer to
a health-related question? In a web search engine, users expect to find web
documents that are topically relevant to their query. For health-related ques-
tions, we also have to ensure that the retrieved documents do not contradict
the correct answer to the question as this might induce biases. Research
Question 8 is addressed in Chapter 5.

To this extent, we first present a new dataset of 8.5 million automatically labeled
questions that contains 2.0 million health-related and 1.3 million medical questions.
We then propose new methods to identify health-related questions with an F1-
score [Rij79, p. 134] of up to 0.80 and medical questions with an F1-score of up
to 0.69. Finally, we build a modular search and question answering system that
can be used to answer health-related questions based on evidence. Our system is
able to answer health-related questions with an AUC score of 0.83 and finds web
documents supporting the predicted answer with a compatibility difference of 0.19
between helpful and harmful results [CSV20; CVS20].

The structure of this thesis roughly follows the steps to extend a general purpose
web search engine to identify and answer health-related natural language questions.
After we have introduced the requirements and potential biases of a health-related
search engine in Chapter 1, we review prior work on the labeling and classification
of health-related questions, existing components of health search engines as well
as misinformation detection in Chapter 2. In Chapter 3 we describe how we build
a large-scale, diverse dataset of health-related and non-health-related questions
and apply weakly supervised automatic labeling to tag each question as medical,
health-related, or non-health. Chapter 4 focuses on the design and training of
feature-based and neural classifiers for the task of identifying health-related and
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medical questions. Then, in Chapter 5, we build a modular search pipeline for
answering health-related yes-no questions and evaluate the effectiveness of our
retrieval system based on the TREC 2022 Health Misinformation track. Finally,
we conclude our findings with respect to the formulated research questions and
discuss future work in Chapter 6.
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Chapter 2

Related Work

The advances discussed in the subsequent chapters of this thesis build upon previ-
ous work in the fields of health-related information retrieval, question answering,
claim verification, and misinformation detection. In this chapter, we introduce the
background and related work in these fields. Section 2.1 continues the discussion
of findings regarding health-related questions that were introduced in Chapter 1
and summarizes approaches for identifying health-related or medical questions.
We then turn to recent work in health-related information and question answering
in Section 2.2. After introducing the early envisioned systems and tools to build
such systems, we compare current systems based on two benchmark collections.
Section 2.3 discusses the state of the art in claim verification and misinformation
detection. Finally, in Section 2.4, we discuss previous work that tackles misinfor-
mation when retrieving health-related web documents in the context of the TREC
Health Misinformation tracks.

2.1 Health-Related Questions and Classification

In Chapter 1, we have discussed that health-related questions require task-specific
processing such as misinformation detection in search engines. But only 5–24%
of all questions online are health-related [Eys04; SYJ+04], so a majority does not
require misinformation detection or specialized corpora. In the ad hoc retrieval
setting this means we first need to identify whether a query is a health-related
question. The second important distinction to be made is between non-medical
questions (e.g., questions centered around nutrition or fitness) on the one hand
and medical questions (i.e., where professional expertise is needed) on the other
hand. Medical questions often require answers from experts and can cause harm
if answered incorrectly. Being able to give greater care when answering medical
questions automatically requiresmethods to classify questions asmedical, otherwise
health-related, or not health-related at all.
In previous studies of query logs, health-related or medical questions were

mostly identified by manual annotation [EK03; SYJ+04]. But manual annotation
is expensive and time-consuming. It is therefore often not feasible to manually
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Table 2.1: Health-related question answering datasets in comparison to the health-related
questions of our dataset.

Dataset Task Size Year Reference

QA4MRE Alzheimer reading comprehension 80 2012–’13 [PHF+13]
QALD-4 Biomedical linked data 50 2014 [UFL+14]
BioASQ medical professionals 4,249 2014–’21 [BKK+15; BPN+14;

KNP+16; NBK+17;
NBK+19; NKB+18;
NKB+20; NKV+21]

HEAD-QA job application exams 6,765 2019 [VG19]
MeQSum summarization 1,000 2019 [BD19b]
MEDIQA 2019 RQE question entailment 9,120 2019 [BSD19]
Medication QA medication 674 2019 [BMS+19]
MedQuAD consumer health 47,455 2019 [BD19a]
PubMedQA biomedical literature 273,518 2019 [JDL+19]
TREC Health Misinfo. consumer health 201 2019–’22 [ASL+19; CMS+22;

CMS21; CRS+20]
BiQA consumer health 7,234 2020 [LSC20]
COVID-QA COVID-19 pandemic 2,019 2020 [MRJ+20]
Health Misbeliefs alternative remedies 15 2021 [BSD+21]
EPIC-QA COVID-19 pandemic 60 2022 [GDL+22]
Medical Safety medical risk assessment 3,777 2022 [AR22]

Ours only questions 1,990,406 2023 —

annotate larger datasets and impossible in an ad hoc retrieval system. Eysenbach
and Köhler [EK03] complemented their manual annotations with a co-ocurrence
threshold of search results found for the query and the same query with the added
term health. They achieve a comparably low F1-score of 0.50 at a co-occurrence
threshold of 0.65 [EK03; Rij79, p. 134]. Liu, Antieau, and Yu [LAY11] developed
classifiers for separating professional medical questions from consumer-health
questions using bag-of-words, statistical, and linguistic features. Their best classifier
achieves an F1-score of 0.89 on their test set. Though, their models rather decide
on the questioner’s background (professional or consumer) than on the required
expertise of a person or machine answering the question’s topic (medical or not
medical). Because consumer questions like “Can smoking prevent COVID-19?” are
still considered medical questions that should be answered carefully, we cannot use
the distinction between consumer and professional questions from Liu, Antieau,
and Yu [LAY11] to label questions as medical or not. Their work also does not
consider questions that are not health-related.

The aforementioned vocabulary-based approaches [EK03; LAY11] are also prone
to errors because most information needs are unique and sometimes use different
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vocabulary [BTD+12; DDH07]. Our goal is therefore to generalize classification to a
long tail of unseen health-related questions, e.g., using neural classifiers. Kilicoglu
et al. [KBM+18] collected a small sample of 2,614 health-related questions from
an online question answering system and tag the entities in each of the collected
questions. Their entity tags could serve as a good feature for machine learning
approaches to generalize to previously unseen questions. But due to the lack of
automatic entity tagging, it is unclear how to use entity-based features to identify
health-related questions in ad hoc applications.
We see the rise of neural networks and language models [DCL+19; RSR+20;

RWC+19; VSP+17] as a promising opportunity to generalize classification of health-
related questions to be used for web search and question answering systems. For
example, Schlatt et al. [SBH+22] used BERT models [BLC19; DCL+19; GTC+22] to
identify health-related cause-effect statements in the CauseNet [HSW+20] corpus,
with their best approach yielding an F1-score of 0.92. Even though their classifiers
cannot be directly applied to question classification due to the different syntax
of cause-effect statements, their work is motivation to use language models fine-
tuning for sentence classification. But training deep neural networks requires
large labeled datasets. Table 2.1 compiles an overview of existing datasets with
health-related questions released to date. Three reasons speak against directly using
these existing datasets to train classifiers for identifying health-related or medical
questions: (1) Most of the existing datasets are relatively small (all datasets except
for PubMedQA [JDL+19] consist of only a few thousand questions), (2) they often
purely focus onmedical questions and do not include non-medical but health-related
questions, and (3) they entirely lack examples of non-health-related questions.
Consequentially, the datasets from Table 2.1 themselves are not representative for
the actual distribution of health-related questions in real-world applications [Eys04;
SYJ+04]. Because of the lack of negative examples for classification, training on the
datasets would yield biased classifiers.
Community question answering platforms like Stack Exchange1 or Yahoo! An-

swers2 contain large numbers of real user questions and have previously been
used to analyze how users interact with question answering systems [PWD+12;
SCZ08]. Because these platforms feature diverse questions from real users, ques-
tion answering communities are a good way to complement the smaller med-
ical or health-related datasets from Table 2.1. Similarly, web-scraped general-
purpose question answering datasets like GooAQ [KNK+21], SQuaD [RZL+16],
or MS MARCO QA [NRS+16] can be supplemented. Combining questions from
curated medical datasets, community question answering platforms, and general-
purpose question answering datasets, can represent a realistic distribution of health-
related (and medical) questions, large enough to train neural models.

1https://stackexchange.com/
2https://answers.yahoo.com/

https://stackexchange.com/
https://answers.yahoo.com/
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For supervised learning, however, we need to label the questions for training.
Due to the large dataset size, hand-labeling all questions quickly becomes infeasible.
Ratner et al. [RBE+17] proposed the Snorkel framework for labeling large datasets
using weak supervision. In Snorkel, label preferences are expressed in the form
of simple heuristics, called labeling functions. By combining the output of several
labeling functions, the framework estimates each individual labeling function’s ac-
curacy and correspondingly returns a weighted combination of the labels [RHD+19].
Training a classifier on the resulting labeled dataset was shown to be similarly
effective as using manual annotations [RBE+17]. Yet, because manual annotation
of each instance in the dataset is no longer required, the manual labor required
to label larger datasets can be substantially decreased. The Snorkel framework
has already been successfully applied by Alexander, Kusa, and Vries [AKV22] for
large-scale labeling in information retrieval. They use Snorkel to label a sample
of 2 million queries from the ORCAS dataset [CCM+20] with the query intent.
The resulting labeled dataset was used to train neural classifiers for query intent
prediction. The task of labeling health-related questions is conceptionally similar.
With metadata about each question’s source and by applying simple text matching
of health-related terms, we can efficiently infer labels for millions of questions.

Another important aspect when training neural classifiers, is tuning the model’s
hyperparameters which often have adverse effects on model effectiveness [GBC16,
p. 420]. The Weights & Biases framework3 allows running large hyperparame-
ter optimization experiments on distributed clusters, and to track the results in a
web-based dashboard. Because neural models often feature a wide range of hy-
perparameters, running all configurations in a grid search is often not feasible.
Falkner, Klein, and Hutter [FKH18] combined Bayesian optimization and bandit-
based methods as a goal-directed parameter search to achieve strong anytime
effectiveness and fast convergence to optimal configurations. The efficiency of
Bayesian hyperparameter optimization can further be improved by employing the
Hyperband algorithm for selecting which hyperparameter configuration should
continue to be trained [LJD+17]. Because both aforementioned advances are avail-
able in Weights & Biases, Bayesian optimization with Hyperband is a promising
tool for hyperparameter optimization.

To summarize the related work on the classification of health-related questions,
previous approaches are mostly limited by vocabulary, use manual annotation,
or do not consider questions that are not health-related. Properly trained neural
classifiers can overcome these limitations but require a diverse dataset for training.
After combining many existing datasets, weak supervision can be used to label the
resulting dataset. For hyperparameter tuning, Bayesian optimization techniques
and the Weights & Biases platform seem promising.

3https://wandb.ai

https://wandb.ai
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2.2 Health-Related Information Retrieval and
Question Answering

Once a health-related question has been identified, question answering and in-
formation retrieval approaches are used to answer the question and find relevant
documents supporting the answer. Health-related question answering systems
have already been envisioned since the early 2000s. For example, in 2000, Baorto
and Cimino [BC00] proposed a patient health information system to link to relevant
web documents. And in 2006, Lee et al. [LCZ+06] suggested question answering
systems to be used by medical professionals and highlight the need of more effective
and efficient question answering and search systems for medical professionals.
Today, there is a wide range of health or medical search engines. For example,

OpenMD4 searches many government websites, journals and provides consumers
with definitions for over 12,000 medical terms. The Trip Database5 is a popular
clinical search engine for finding evidence-based clinical content such as system-
atic reviews and allows for filtering results based on their quality. Rekabsaz et
al. [RLS+21] released the TripClick click log consisting of 5 million user interac-
tions collected in 2013–2020. The click log is complemented with an information
retrieval benchmark collection of 692,000 queries that refer to documents from
MEDLINE.6 The TripClick log is the largest health-related benchmark collection
publically available to information retrieval researchers. Hofstätter et al. [HAS+22]
applied BERT-based re-rankers and dense ColBERT [KZ20] re-ranking to establish
stronger baselines for this benchmark. Their results improved upon the original
BM25 [RWJ+94] and ConvKNRM [DXC+18] baselines by a large margin. Zerveas
et al. [ZRC+22] further improved upon the state of the art for the TripClick bench-
mark with their CODER framework, using contrastive learning for transforming a
query to account for a list-wise context over multiple retrieved (i.e., non-random)
hard negative candidate documents. The TREC COVID challenge was a smaller
shared task focused on COVID-19-related literature search [VAB+20; WLC+20]. For
this benchmark, MacAvaney, Cohan, and Goharian [MCG20] proposed a two-stage
zero-shot pipeline using BM25 candidate retrieval and a SciBERT-based neural re-
ranker fine-tuned on MS MARCO [NRS+16]. Pradeep, Nogueira, and Lin [PNL21]
applied pointwise and pairwise re-ranking with text-to-text language models and
achieve the best effectiveness across all automatic submissions for the shared task.
For health-related question answering, the PubMedQA dataset has established

as the most influential benchmark [JDL+19]. Here, the goal is to correctly an-
swer yes-no questions mined from titles of medical abstracts from PubMed.7 On

4https://openmd.com
5https://tripdatabase.com/
6https://nlm.nih.gov/medline/
7https://pubmed.gov

https://openmd.com
https://tripdatabase.com/
https://nlm.nih.gov/medline/
https://pubmed.gov
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the PubMedQA benchmark, large causal language models even outperform hu-
man experts in answering health-related questions [JDL+19]. Liévin, Hother,
and Winther [LHW22] employed the 175 B parameter GPT-3.5 Codex model in
a few-shot chain-of-thought prompting setting, slightly outperforming the hu-
man expert answers. With the much larger instruction fine-tuned Flan-PaLM
model (540 B parameters), Singhal et al. [SAT+22] achieved the highest accuracy
on the benchmark (accuracy: 0.79) in a few-shot prompting setting. Other models
used on the PubMedQA benchmark include Galactica, a zero-shot language model
trained on multi-modal scientific prompts [TKC+22], and most recently BioMedLM,
which has been trained exclusively on the PubMed papers and abstracts from The
Pile dataset [BHY+22; GBB+21]. Khashabi et al. [KMK+20] built the pre-trained
UnifiedQA model to show that, fine-tuned text-to-text language models can effec-
tively answer questions from diverse datasets. Even though, their model has not
been evaluated on the PubMedQA dataset, their smaller model is a good baseline
to use for health-related question answering.

The prior work on health-related information retrieval and question answering
demonstrates that large language models are often used to answer health-related
questions. For information retrieval, a multi-stage architecture with text-to-text
models pre-trained for pointwise and pairwise re-ranking is the most effective
approach. Question answering is dominated by large language models that out-
perform smaller language models pre-trained on scientific literature. However,
the prior work on health-related information retrieval and question answering is
limited to only a few datasets and models. Key challenges in the development of
health-related QA systems are the lack of large-scale benchmark datasets, under-
utilization of domain knowledge such as found in biomedical literature, and answer
explainability [JYX+23]. We aim to tackle those challenges by answering questions
based on evidence from the PubMed, a large collection of biomedical literature.
Modular information retrieval experimentation frameworks such as PyTerrier to
compose retrieval pipelines [MTM+21], ir_datasets to load information retrieval
benchmarks [MYF+21], and ir_measures to evaluate approaches [MMO22] nowa-
days allow us to combine existing retrieval models or datasets as well as to develop
new approaches, in order to come closer to the goal of a general-purpose health
information retrieval system.

2.3 Claim Verification and Misinformation
Detection

With the rising spread of misinformation, especially in health-related topics (see
Chapter 1), there is a growing need for systems that detect misinformation and
reveal false claims. For claim verification, the goal is to determine whether a claim
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can be supported or refuted by some evidence (e.g., news articles or scientific
papers) [VR14]. Misinformation detection emerged as the task to detect fake news
and disinformation on social media [SSW+17]. Srba et al. [SPT+22] pointed out
that misinformation can also include unintentional false information, not only
deliberate disinformation. Misinformation detection can thus be summarized as
the task of classifying sources as either correct/reliable or incorrect/unreliable.
Hence, the tasks of claim verification and misinformation detection are closely
related. In the following, we discuss how claim verification can be used to enhance
misinformation detection for health-related or medical questions.

The FEVER dataset is the first large scale dataset for claim verification [TVC+18].
It consists of 185,445 claims extracted from Wikipedia that are manually annotated
with a label indicating whether the claim is supported, refuted, or not enough
evidence is available. Wadden et al. [WLL+20] proposed the specialized task of
scientific claim verification that focuses on finding and using scientific literature as
evidence to support or refute a claim. Their baseline approach for this task, VeriSci,
retrieves literature with TF-IDF [Jon72] and then predicts the claim verification
label using BERT sentence embeddings. To facilitate the evaluation of scientific
claim verification, Wadden et al. [WLL+20] also released the SciFact dataset
with 1,409 expert-written scientific claims. Recently, Wadden et al. [WLW+22]
released the stronger MultiVerS model to verify claims based on the shared en-
coding of the claim and full document context. The model internally uses the
LongFormer model to avoid truncating longer scientific articles [BPC20]. The
MultiVerS model was trained and evaluated on various scientific claim verification
datasets. Wadden et al. [WLW+22] provide fine-tuned model checkpoints based
on a model trained on FEVER [TVC+18], PubMedQA [JDL+19], and an evidence
inference dataset [LDB+19]: (1) One checkpoint fine-tuned on the COVID-Fact
dataset [SCM21] focusing on COVID-19-related claims, (2) a checkpoint fine-tuned
on HealthVer [SBM+21] that also focuses on COVID-19, and (3) a checkpoint
fine-tuned on the SciFact dataset [WLL+20]. All variants include health-related
questions in the training data. Yes-no questions can also easily be reformulated as
claims. We therefore experiment with the three fine-tuned checkpoints and the
base MultiVerS model to answer health-related yes-no questions.
Misinformation detection has gained more attention recently due to the rapid

spread of unreliable news in the early phase of the COVID-19 pandemic [YZK+22].
Assessing the reliability and/or correctness of information sources has been ad-
dressed by several datasets and approaches, e.g., by creating health news datasets
with real and fake news [DSW20] or by mapping health-related claims to medical
articles from reliable and unreliable news sites [SPT+22]. Two directions have
emerged from this problem to favor reliable over unreliable sources: Estimating
the reliability or correctness of text or finding reliable sources. The former is ad-
dressed, e.g., by Fernández-Pichel, Losada, and Pichel [FLP22] who fine-tuned T5
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models [RSR+20] and apply sentence embeddings [RG19] similarity to estimate
the reliability of health-related passages. For the latter, Zhang [Zha10] employed a
logistic regression model to estimate a web domain’s trustworthiness, i.e., to find
reliable sources similar to Przybyla, Borkowski, and Kaczynski [PBK22]. In our
thesis, we propose a combined approach: After determining the true answer based
on evidence from PubMed, a trusted dataset of biomedical literature, we indirectly
assess the reliability of retrieved web documents by aligning the web documents’
answers with the true answer. We apply claim verification models to determine
the answers based on web documents and medical articles from PubMed. Recent
work also indicates that effective evidence retrieval (e.g., from PubMed) is one key
component for correctly answering health-related questions.

2.4 Reducing Misinformation in Health-Related
Information Retrieval and Question Answering

With advances in effective health search engines and question answering sys-
tems (Section 2.2) as well as in claim verification and misinformation detection
(Section 2.3), building information retrieval and question answering systems that
actively reduce misinformation is the consequential next step towards improving
the access to health-related information online.

The TREC 2019–2022 Health Misinformation tracks [ASL+19; CMS+22; CMS21;
CRS+20] provide a platform for evaluating information retrieval and question
answering systems with respect to robustness against misinformation for health-
related yes-no questions, e.g., about the efficacy of a treatment or medication.
The latest track [CMS+22] featured two tasks: (1) Inferring the correct yes/no
answer to a health-related question, and (2) retrieving documents that support the
correct answer, while preventing documents that support the incorrect answer.
Submissions to the answer prediction task were evaluated by their area under the
receiver operating characteristic curve (AUC). Retrieval submissions were evaluated
by their compatibility [CSV20; CVS20] to “helpful” (documents that give a relevant
and correct answer) and “harmful” (incorrect) retrieved results. The objective is
to maximize the compatibility score with helpful documents and at the same time
minimize the compatibility score with harmful documents [CMS+22].
Several approaches have been proposed to retrieve relevant web documents

and not spread misinformation. Abualsaud et al. [ACG+21] simply filtered the
document collection to include only health-related content using text classifiers and
website quality certifications, significantly improving the effectiveness over using
the whole test collection. Fröbe et al. [FGB+22] formulated keyquery-enhanced
query expansions based on simulated feedback from medical experts, in order to
retrieve most of the helpful documents at high ranks and at the same time reducing
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the number of harmful results. Their approach is limited by the availability of
(expensive) expert feedback, but they plan to extend the approach with automatic
feedback from semantic annotations. Applying argument mining techniques and
axiomatic re-ranking to health-related information retrieval has been unsuccessful
in the past [BFK+19]. But axioms can describe constraints on preferences between
documents [BFR+22] and, due to their inherent explainability, remain an important
direction to follow in the future.
Recent work on misinformation-preventing information retrieval at the TREC

Health Misinformation tracks has focused on re-ranking retrieved documents to
reduce misinformation. Following the same pattern as with their monoT5 and
duoT5 re-rankers [PNL21], Pradeep et al. [PMN+21] fine-tuned a T5 text-to-text
model [RSR+20] to predict a treatment’s effectiveness as either helpful, harmful, or
inconclusive given a question about the treatment and a retrieved document. This
re-ranking approach sets the state-of-the-art on the TREC 2020 Health Misinforma-
tion track (compatibility difference: 0.51) [CRS+20]. In a similar setting, Fernández-
Pichel, Losada, and Pichel [FLP22] re-ranked an initial set of passages retrieved
using BM25 [RWJ+94] by combining the scores of a monoT5 re-ranker [PNL21] and
the estimated document reliability, achieving a maximum compatibility difference
of 0.35 on TREC 2020 Health Misinformation topics. Zhang et al. [ZTA+22] also
fine-tuned a T5 model [RSR+20] to predict a yes/no answer and employ a logistic
regression model to estimate a web domain’s trustworthiness. To allow for longer
passages to be used for answer prediction, they use a heuristic to select sentences
that express a stance towards a yes/no answer. Both their approaches were com-
bined with a BM25 [RWJ+94] retrieval score to re-rank retrieved documents. This
trust- and answer-based re-ranking approach achieves a compatibility score differ-
ence of 0.13 on TREC 2021 Health Misinformation topics [CMS21]. Comparing the
effectiveness across different editions of the shared task is problematic because the
tasks used very different queries, e.g., the TREC 2020 Health Misinformation track
focused solely on COVID-19-related questions.

Our participation at the TREC 2022 Health Misinformation track [CMS+22] used
pre-trained question answering and claim verification models to answer the yes-
no questions of the 50 health-related topics, based on top-ranked abstracts from
PubMed [BFG+22], we then retrieved relevant documents that support the predicted
answer. Pugachev et al. [PAB+23] continued this approach and include Wikipedia
as a source of information for the question answering systems. They fine-tune
a RoBERTa [LOG+19] model on BoolQ [CLC+19] and BioLinkBERT [YLL22] on
PubMedQA [JDL+19] and BioASQ [TSP+12]. Their best approach using Wikipedia
articles as context and their RoBERTa-large BoolQ to infer an answer achieves
an AUC of 0.82 on 113 health-related yes-no questions [ASL+19; BSD+21; BTS12;
CMS21], though we cannot directly compare their results to the TREC Health
Misinformation tracks because they use different topics.
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2.5 Summary
We have summarized the prior work on three important directions in health-related
information retrieval and question answering that we build upon in this thesis. First,
we have looked at different approaches to identify health-related questions and their
limitations. After reviewing the development and state-of-the-art in health-related
information retrieval and question answering systems based on two well-known
benchmarks, we then described the challenges of misinformation. Here, we have
found similarities in claim verification and misinformation detection and reviewed
recent advances in both fields. Finally, we have discussed how misinformation
can be prevented in health-related information retrieval and question answering
systems by applying claim verification and misinformation detection techniques.
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Chapter 3

Data Collection and Labeling
In this chapter, we describe how we combine existing question answering data-
sets and questions from community question answering platforms to build a large
dataset of health-related and medical questions (Section 3.1). Simple yet effective
heuristics are proposed to filter non-question texts from this collection. We then
propose an approach to automatically label the questions as either being health-
related or not, and further distinguish health-related questions on whether they are
medical or not (Section 3.2). The overall purpose of this large dataset of questions
labeled as non-health, health-related, or medical is to train classifiers to distinguish
between these three classes of questions (see Chapter 4). It is therefore essential
to approach a label distribution similar to the distribution of questions in online
searches [Eys04; SYJ+04]. To facilitate the evaluation of our automatic labeling ap-
proach, we therefore manually label a subset of the questions (Section 3.3). Based on
the manual and automatic labels, we contribute a dataset of 7,444 manually labeled
questions (17 % health-related, 7 % medical) and a larger dataset of 8,544,089 auto-
matically labeled questions (23 % health-related, 15 % medical) and create predefined
dataset splits to be used for classification (Section 3.4). Evaluation of the quality
of automatic labels compared to manual annotations reveals that our approach
achieves a high recall but often falsely labels questions as medical (Section 3.5).

3.1 Collecting Health-Related Questions from
Existing Datasets

Three sources of questions are used for our dataset: (1) Curated health-related
or medical question answering datasets, (2) general-purpose question answering
datasets, and (3) archived posts from community question answering platforms.
The curated datasets serve as a source of high-quality questions that are guaranteed
to be health-related or medical as the datasets have been created by experts. To
approach a realistic distribution of health-related and medical questions in online
searches, the curated datasets are complemented with general purpose questions
from larger datasets and community platforms which represent a mix of health-
related and non-health-related questions. In total, we collect 9,717,648 questions
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from 15 curated medical question answering datasets, 4 general-purpose question
answering datasets, and 2 community question answering platforms.

3.1.1 Health-Related Question Answering Datasets

A plethora of health-related question answering datasets has been published in
recent years. Refer to Table 2.1 for an overview of the 15 datasets we use in this work.
These datasets are usually created by manually extracting questions from a specific
source, such as frequently asked questions [BSD19] or medical exams [VG19]. Many
of the manually curated datasets contain only a few thousand examples due to the
high cost of sourcing and labeling the questions. The only larger medical question
answering datasets, MedQuAD and PubMedQA, are based on titles of biomedical
websites or literature [BD19a; JDL+19]. In the following, we describe each dataset’s
characteristics in more detail and explain how we collect 348,973 questions from
health-related question answering datasets.

QA4MRE Alzheimer’s The QA4MRE challenge was a shared task focussing
on question answering and machine reading comprehension [PHF+13]. Their
2012 and 2013 editions featured a task on machine reading of biomedical texts with
questions about the Alzheimer’s disease. Peñas et al. [PHF+13] created the question
dataset by first selecting 4 English documents on Alzheimer’s disease. Then up
to 15 multiple-choice questions were manually created for each document and
simplified versions of the full questions are added for some questions. We load the
QA4MRE 2012–2013 dataset from the Hugging Face Hub1 and remove all questions
not from the Alzheimer’s category, leaving 80 medical professional questions like
“What regulates the production of neprilysin?”.

QALD-4 Biomedical QALD is an open challenge focusing on question answering
over linked data where participants aim to correctly answer a natural language
question given a structured web dataset in RDF format.2 The challenge has been
held annually since 2011 [UFL+14]. In 2014, Unger et al. [UFL+14] introduced a
task on biomedical question answering with 50 manually curated questions like
“Which are possible drugs against rickets?”, that were designed to be answerable
only by linking information from two pages in the given structured dataset. We
download the questions of the QALD-4 challenge’s task on biomedical question
answering from their website3 and include all 50 questions.

1https://huggingface.co/datasets/qa4mre
2https://w3.org/RDF/
3https://qald.aksw.org/index.php?x=task2&q=4
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BioASQ The first series of shared tasks primarily focusing on biomedical ques-
tion answering is BioASQ [TBM+15; TSP+12], held annually at CLEF and other
conferences since 2013. Each year, the organizers collaborate with biomedical
domain experts to build a closed domain corpus of English questions and reference
answers. The 20,200 question-answer pairs from the shared task’s 2014–2021 edi-
tions [BKK+15; BPN+14; KNP+16; NBK+17; NBK+19; NKB+18; NKB+20; NKV+21]
can be categorized as either boolean, factoid, list, or summarization questions.
They are mostly targeted at medical professionals, for example: “Which CYP gene
polymorphism is a well-known predictor of efavirenz disposition?” We download
the questions from the task’s website4 and deduplicate the questions because they
are often included in multiple editions of the task. From the 4,249 deduplicated ques-
tions, we remove sentences that are not formulated as questions (see Section 3.2.1),
leaving a total of 3,646 medical questions.

HEAD-QA Vilares and Gómez-Rodríguez [VG19] created the HEAD-QA dataset
bymanually extracting 6,765multiple-choice questions from Spanish job application
exams. The exams used were designed to test the knowledge of highly trained
professionals in the areas of medicine, pharmacology, psychology, nursing, biology,
and chemistry. Thus, the questions are of high quality and likely to be asked
online by medical professionals. We use the HEAD-QA dataset’s English translated
version, which is available on the Hugging Face Hub.5 Sentences not formulated
as questions are removed (see Section 3.2.1), leaving 2,522 professional medical
questions like “What is estimated with the measurement of skin folds?”, that often
require professional medical knowledge to answer.

MeQSum Ben Abacha and Demner-Fushman [BD19b] found that while users
often formulate long, more complex questions, question answering systems are
often better at answering shorter summarized questions that do not include periph-
eral information. The MeQSum dataset is aimed at the summarization of medical
questions which could then be used to improve question answering systems. To
create the dataset, three medical experts were asked to summarize 1,000 longer,
semantically annotated email requests received by the U.S. National Library of
Medicine (NLM) customer service [KBM+18] into shorter questions like “What are
the side effects of methadone?” We download the dataset from GitHub6 and only
use the 1,000 summarized questions.

MEDIQA2019RQE Anothermedical question answering dataset by BenAbacha,
Shivade, and Demner-Fushman [BSD19], from the MEDIQA 2019 shared task on

4http://participants-area.bioasq.org/datasets
5https://huggingface.co/datasets/head_qa
6https://github.com/abachaa/MeQSum
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recognizing question entailment (RQE), consists of 9,120 question pairs. For each
pair, the second question either does or does not entail the first question. The
dataset’s test set was created by using questions from previous NLM datasets and
by mapping frequently asked questions like “What does the prenatal care checklist
include?” from NLM websites to manually retrieved short questions from the
NLM website [BD16]. Subsequently, the question pairs were manually validated by
medical experts. We use only the 9,120 frequently asked questions from the pairs in
the test set because the remaining questions are very long and consist of multiple
sentences. One empty question was removed, leaving 9,119 questions in total.

Medication QA To address health questions about medications, Ben Abacha
et al. [BMS+19] proposed the Medication QA corpus, consisting of 674 question-
answer pairs. The dataset is based on anonymized questions from the query log
of the MedlinePlus, a U.S. government-maintained health information website
targeted at consumers.7 From the query log, Ben Abacha et al. [BMS+19] selected
questions that focus on a drug name as identified using named entity recognition.
Questions were also filtered for understandability and answerability. Thus, the
dataset contains natural language questions like “how long are you protected after
taking the hep b vaccine” alongside the question’s annotated reference answer, type,
and focus. We download and parse the 690 questions from the author’s GitHub
repository,8 that contains 16 questions more than reported in the paper [BMS+19].

MedQuAD Following their previous work on medical question answering data-
sets, Ben Abacha and Demner-Fushman [BD19a] constructed the larger MedQuAD
dataset by crawling topic overview websites from the U.S. National Institutes of
Health [BD19a]. They applied manually created patterns to extract questions and
answers from the website content, structure, and titles. In total, they extracted
47,455 questions and answers from 12 trusted websites. Most questions were parsed
from theMedlinePlusMedical Encyclopedia (17,348 questions, e.g., “What is the out-
look for Cobalt poisoning?”) and the MedlinePlus Drugs database (12,889 questions,
e.g., “What to do in case of emergency or overdose of Acarbose?”), the remaining
questions stem from sites that focus on specialized medical fields. We download
the dataset from GitHub9 which contains 47,441 questions, 14 less than reported by
Ben Abacha and Demner-Fushman [BD19a].

PubMedQA PubMedQA is a dataset containing 273,518 biomedical yes-no ques-
tions derived from titles of PubMed abstracts [JDL+19]. Jin et al. have extracted

7https://medlineplus.gov
8https://github.com/abachaa/Medication_QA_MedInfo2019
9https://github.com/abachaa/MedQuAD
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62,249 questions from structured abstracts which contained a question mark in
the title and a conclusion in the abstract’s text. The remaining 211,269 questions
were created based on abstracts with a conclusion, where the title follows a part-of-
speech tagging structure of NP-(VBP/VBZ),10 by moving or prepending auxiliary
verbs. By analyzing the MeSH11 topic distribution of a sample of labeled questions
from the PubMedQA dataset, Jin et al. [JDL+19] found that the questions mainly
cover studies about human adults in variety of topics. Due to being sourced from
biomedical literature, the questions mainly target medical professionals (e.g., “Does
network correlate of the cognitive response to levodopa in Parkinson disease?”)
but some questions could also be asked by consumers (e.g., “Is Friday the 13th bad
for your health?”). We download all 273,518 questions of the PubMedQA dataset
from the Hugging Face Hub.12

TREC Health Misinformation The TREC Health Misinformation tracks focus
on answering health-related yes-no questions for which online misinformation is
prevalent [ASL+19; CMS+22; CMS21; CRS+20]. For the shared task’s four editions
from 2019 to 2021, the organizers formulated a total of 201 topics, each consisting
of a natural language question (in the topic’s description field), a keyword query,
and the correct answer. The topics cover questions about the efficacy of health
treatments that consumers could ask online, e.g., “Can vegan diets be healthy?”
The 2020 edition has specialized on the COVID-19 pandemic with 50 topics about
treatments and vaccines (e.g., “Can smoking prevent COVID-19?”) collected from
the World Health Organization’s and Harvard Medical School’s fact-checking
websites [CRS+20]. We download all 201 topics from the task website13 and use
the description field of each topic as the question for our dataset.

BiQA Lamurias, Sousa, and Couto [LSC20] automatically extracted health-related
questions in the fields of biology, medical sciences, and nutrition from community
question answering platforms (Stack Exchange and Reddit). They first selected
the top-voted posts as questions from both platforms (only considering post titles
that contain a question mark for Reddit). Answers to the selected questions were
extracted from the community answers that (directly or indirectly) contained links
to PubMed abstracts. We download their first dataset version from GitHub,14 which
contains a total of 7,234 questions and 13,794 question-answer pairs. We subse-
quently remove sentences that are not formulated as questions (see Section 3.2.1)
and use the remaining 4,835 questions in our dataset. Of these filtered questions,
10Penn treebank notation [MSM93].
11https://nlm.nih.gov/mesh
12https://huggingface.co/datasets/pubmed_qa
13https://trec-health-misinfo.github.io
14https://github.com/lasigeBioTM/BiQA
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2,766 are about biology (e.g., “What exactly is a centimorgan?”), 1,104 are about
medical sciences (e.g., “Does fasting improve your immune system even when
you are already having some infection?”), and 965 are about nutrition (e.g., “What
cooking oil do you use?”).

COVID-QA Following the outbreak of the global COVID-19 pandemic, Möller
et al. [MRJ+20] created a dataset of 2,019 question-answer pairs that were manually
formulated by 15 biomedical experts based on 147 COVID-19-related scientific
articles. As an additional layer of quality assurance, the questions were also sub-
sequently verified by a medical doctor. We download the dataset from GitHub15
and use the full 2,019 questions, which are mostly about current developments
regarding the COVID-19 pandemic at the time of the dataset’s creation (e.g., “What
are potential vaccines based on?”).

Health Misbeliefs In their study of common health-related misbeliefs and how
they are answered by major search engines, Bondarenko et al. [BSD+21] derived
15 questions from the Yandex query log. For their study, they selected the 15 most
frequent yes-no questions that (1) contained pairs of medical conditions and treat-
ments, and (2) mentioned medicinal plants or alternative remedies (as crawled from
Wikidata). After having selected the questions from the Russian query log, Bon-
darenko et al. [BSD+21] manually translated them into English, and let a medical
professional annotate the true answer based on evidence from three medical litera-
ture databases, e.g. “yes” for the question “Can green tea reduce blood pressure?”.
Access to the English questions alongside their expert answer was given by the
authors of the study, and we use all 15 questions.

EPIC-QA Goodwin et al. [GDL+22] also motivate their Epidemic QA (EPIC-QA)
dataset with the problems that emerged during the COVID-19 pandemic: (1) The
fast pace at which new information be generated and (2) the rapidly changing
information needs. The EPIC-QA dataset contains 30 expert-annotated questions
based on discussions with government officials and clinicians (e.g., “When should
an employee suspected or confirmed to have COVID-19 return to work?”). The
expert questions were complemented with 30 questions that were extracted from
user interactions on MedlinePlus and represent consumer questions (e.g. “How
long after I feel better from COVID-19 can I go back to work?”). As the examples
show, many of the 60 questions appear similarly in both the expert and consumer
subset, leaving the opportunity of comparing the question style across both groups.
We download the full dataset from the dataset’s official website.16

15https://github.com/deepset-ai/COVID-QA
16https://bionlp.nlm.nih.gov/epic_qa#questions
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Medical Safety The most recent health-related question dataset in our collection
is an automatically extracted dataset of 3,777 questions with a focus on medical
risk assessment [AR22]. Abercrombie and Rieser [AR22] used post titles from the
r/AskDocs community on Reddit to extract questions about medical decisions, ex-
cluding posts with multimedia content. The answers given by conversational agents
to the extracted questions were then assessed by crowd workers (861 questions) or
domain experts (1,417 questions) for the medical risk of the answer. The dataset
was complemented with 1,499 non-medical questions randomly sampled from all
Reddit posts. These non-medical questions can be useful as negative examples for
training classifiers for health-related questions. We include all 3,777 questions in
our dataset, as downloaded from GitHub.17

3.1.2 General Purpose Question Answering Datasets

To include negative examples in our dataset, we also include questions from 4 gen-
eral purpose question answering datasets. We select 4 large datasets that are
commonly used for question answering research and that are publicly available. In
total, the datasets contain 4,182,463 questions and can therefore fill in missing non-
health-related questions for our dataset. Additionally, 2 of the 4 general question
answering datasets are tagged with question type or source, which we can use as a
signal for labeling questions as health-related or medical (see Section 3.2).

SQuAD Rajpurkar et al. [RZL+16] created a large question answering dataset by
first selecting passages from 536 articles sampled from the top-10k of the English
Wikipedia, then asking crowdworkers to formulate questions based on the passages,
and again recruiting crowd workers to answer questions given the corresponding
paragraph from Wikipedia. The question-answer pairs were tagged with the article
title they stem from. For example, the source of the question: “When was the
Suez Canal nationalized?”, is tagged as British_Empire. The source tags allow for
efficient automatic labeling of the questions. We download the SQuAD v1.1 dataset
from the Hugging Face Hub18 and include all 98,169 questions in our dataset.

MS MARCO The MS MARCO dataset [NRS+16] is a popular information re-
trieval benchmark collection often used in current research, e.g., at the TREC Deep
Learning tracks [CMY+21]. It contains 1,010,916 anonymized questions from Bing
query logs, associated with 1,026,758 answers curated by crowd workers from
passages retrieved from Bing’s web index. Because the questions were derived
from a search engine query log, they are often not phrased as natural language
17https://github.com/GavinAbercrombie/medical-safety
18https://huggingface.co/datasets/squad
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questions (e.g., “what are the two types of wind”), but rather as search queries
(e.g., “radico share price”). The questions from MS MARCO were also annotated
with a label describing the query type: description, entity, numeric, person, or loca-
tion. For our dataset, we download the questions from the MS MARCO question
answering dataset using the ir_datasets library [MYF+21],19 and use only the
651,412 questions that we classify as natural language questions (see Section 3.2.1).

Natural Questions Kwiatkowski et al. [KPR+19] mined a dataset of 315,203 ques-
tions from anonymized Google search queries. Questions were collected from
queries with a minimum length of 8 words that were searched by multiple users
during the crawling, and are subsequently filtered heuristically to remove queries
that are not questions. Kwiatkowski et al. [KPR+19] then associate each question
with a Wikipedia article in the top-5 results of the Google search engine. Ques-
tions for which no Wikipedia article was found were discarded. We download all
315,203 questions using the ir_datasets library [MYF+21].20

GooAQ By collecting questions from Google’s auto-completion log, Khashabi
et al. [KNK+21] created a large dataset of popular questions from Google users.
They automatically extracted answers from Google’s quick-answer box and tagged
the questions based on the answer box type as explanatory (e.g., “do fistulas always
require surgery?”), list (e.g., “how to get marriage license ontario?”), knowledge (e.g.,
“what age is mark zuckerberg?”), or conversion (e.g., “50ml is how many ounces?”,
sub-categories: unit, time, or currency). We download all 3,117,679 questions from
the Hugging Face Hub21 for our dataset. The question types are retained to facilitate
automatic labeling of the questions (see Section 3.2), e.g., because time conversion
questions are unlikely to be health-related.

3.1.3 Community Question Answering Platforms

We complement our collection of questions from health-related and general ques-
tion answering datasets with 5,186,212 questions mined from the 2 largest commu-
nity question answering platforms, Stack Exchange22 and the now discontinued
Yahoo! Answers.23 Both platforms categorize questions into topic-specific sub-
communities, that we can use to automatically label the questions (see Section 3.2).

19https://ir-datasets.com/msmarco-qna
20https://ir-datasets.com/natural-questions
21https://huggingface.co/datasets/gooaq
22https://stackexchange.com
23https://web.archive.org/web/20210419164027/https://answers.yahoo.com
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Stack Exchange The Stack Exchange platform24 is an active community ques-
tion answering platform that, at the time of writing, hosts 173 domain-specific
communities on various topics such as technology, sciences, social life, and finance,
but also health and medicine.25 The maintainers openly release a regularly updated,
anonymized database dump of all posts on the Internet Archive.26 We use the dump
from May 11, 2022, which contains 8,109,135 posts from 177 community question
answering sites (3 were added, 2 removed, and 6 renamed since our download).
After downloading the dump, we extract the 2,567,261 post titles that were identified
as natural language questions (see Section 3.2.1). For most of the network’s commu-
nities, the web domain can be used to identify the community’s main topic, making
post titles from Stack Exchange a valuable addition to our dataset of health-related
and non-health-related questions.

Yahoo! Answers Before its dissolution in 2021, Yahoo! Answers27 has been one of
the largest question answering communities. Users could ask questions in 27 differ-
ent categories to be answered by other users. In 2009, Yahoo! released the Yahoo! An-
swers Comprehensive Questions and Answers dataset to be used by researchers via
their WebScope Program.28 This large corpus contains all 4,483,032 questions and
corresponding answers that were posted on Yahoo! Answers as of October 2007.
It has been used to improve and evaluate question answering systems and text
classification approaches [SCZ08; ZZL15]. We extract 2,618,951 questions from
the Yahoo! Answers dataset by removing posts that were not natural language
questions. Similarly to the Stack Exchange dataset, we can use the category in
which a question was posted for automatic labeling.

3.1.4 Data Cleaning
After collecting 348,973 questions from health-related question answering datasets,
4,182,463 questions from general question answering datasets, and 5,186,212 ques-
tions from community question answering platforms, we merge all collected ques-
tions to form a large dataset of 9,717,648 questions (see Table 3.1). Heuristic filters
are applied to only retain English, query-like, and anonymized questions.

First, we remove questions that are likely to be spam: Questions with excessive
punctuation (i.e., at least 4 punctuation characters in a row) and “yelling” text (i.e.,
more than 50 % of all characters are uppercase). The remaining questions are then
split into sentences andwords using tokenizers from the NLTK library [BL04; Por80].
24https://stackexchange.com
25For example, these communities: health.stackexchange.com, fitness.stackexchange.com,

vegetarianism.stackexchange.com, cogsci.stackexchange.com
26https://archive.org/details/stackexchange
27https://web.archive.org/web/20210419164027/https://answers.yahoo.com
28https://webscope.sandbox.yahoo.com/catalog.php?datatype=l&did=11
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Table 3.1: Source datasets used in our question dataset, original size, questions used, and
remaining size after dataset cleaning. The last two column groups denote distributions of
positive (Ë) and negative labels (é) from automatic labels of the cleaned corpus.

Dataset Original Used Cleaned Health-rel. Medical
(see § 3.1) (see § 3.1) (see § 3.1.4) (see § 3.2.2) (see § 3.2.3)

Ë é Ë é

QA4MRE Alzheimer’s 80 80 74 100 % 0% 80% 20%
QALD-4 Biomedical 50 50 49 100 % 0% 98% 2%
BioASQ 4,249 3,646 3,510 100 % 0% 75% 25%
HEAD-QA 6,765 2,522 1,213 92 % 8% 55% 45%
MeQSum 1,000 1,000 930 100 % 0% 93% 7%
MEDIQA 2019 RQE 9,120 9,119 7,704 100 % 0% 78% 22%
Medication QA 674 690 678 100 % 0% 82% 18%
MedQuAD 47,455 47,441 46,550 100 % 0% 90% 10%
PubMedQA 273,518 273,518 204,692 100 % 0% 94% 6%
TREC Health Misinfo. 201 201 199 100 % 0% 83% 17%
BiQA 7,234 4,835 4,224 85 % 15% 60% 40%
COVID-QA 2,019 2,019 1,912 100 % 0% 59% 41%
Health Misbeliefs 15 15 15 100 % 0% 80% 20%
EPIC-QA 60 60 52 100 % 0% 83% 17%
Medical Safety 3,777 3,777 2,988 66 % 34% 42% 58%

SQuAD 98,169 98,169 93,729 15 % 85% 4% 96%
MS MARCO 1,010,916 651,412 647,081 25 % 75% 19% 81%
Natural Questions 315,203 315,203 312,816 12 % 88% 8% 92%
GooAQ 3,117,679 3,117,679 3,109,801 28 % 72% 23% 77%

Stack Exchange 8,109,135 2,567,261 2,132,629 9 % 91% 2% 98%
Yahoo! Answers 4,483,032 2,618,951 2,086,576 20 % 80% 7% 93%∑
Total 17,490,351 9,717,648 8,657,422 23 % 77 % 15 % 85 %

We remove questions that consist of more than 2 sentences (i.e., more sentences than
99 % of all unfiltered questions), fewer than 3 words (to still allow short definition
questions like “What is cancer?”), or more than 17 words (i.e., more words than
90% of all unfiltered questions). Our choices for the limits on the question length
are also motivated by commonly reported average lengths for question-like queries
in web search engines [BKK+03; PBW07; WRY15; YOA+19]. Furthermore, because
mathematical (LaTeX-style) equations andmulti-word parentheses are very unlikely
to occur in real user queries, we also remove questions that contain such expressions.
We then apply a fastText language identification model [JGB+16; JGB+17] that

was trained on Wikipedia, Tatoeba, and SETimes to recognize 176 languages.29

29https://pypi.org/project/fasttext-langdetect
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Table 3.2: Types of personally identifiable information removed from our dataset.

Country Types

Global credit card numbers, crypto wallets, email addresses, IBAN codes, IP addresses,
phone numbers, medical licenses

USA bank numbers, driver licenses, tax IDs, passports, social security numbers
UK national health service numbers
Australia business numbers, company numbers, tax file numbers, medicare numbers

Questions that are tagged with a language other than English with a probability
score higher than 50 % are removed from our dataset.

Lastly, because health-related questions often contain privacy-sensitive informa-
tion, we anonymize the dataset by filtering out questions that contain personally
identifiable information. The questions are analyzed for personally identifiable
information using Microsoft’s Presidio library.30 Presidio first identifies personally
identifiable information using regular expressions and named entity recognition
and then validates the identified matches using the surrounding context. The library
can be customized for various types of personally identifiable information and has
already been used to anonymize medical records with high precision [KSF+22]. We
remove questions where the types of personally identifiable information listed in
Table 3.2 have been found with a confidence score of at least 0.75.

The resulting dataset contains 8,657,422 anonymized, English, and query-like
questions of which 274,790 originate from health-related question answering data-
sets, 4,163,427 from general question answering datasets, and 4,219,205 from com-
munity question answering platforms, as shown in Table 3.1. Even though the
two community question answering platforms were the largest source datasets,
they contain only a limited amount of questions and large amounts of spam or
non-English questions. Consequently, the GooAQ dataset is the largest contributor
to our final, cleaned dataset.

3.2 Automatic Labeling using Weak Supervision

We have described how we collected a large-scale dataset of health-related and
non-health-related questions from various sources. In this section, we first explain
our approach for automatically labeling whether a text is formulated as a (closed)
question or not. This heuristic is used to filter out non-questions from our dataset
as explained in Section 3.1. Then, we describe how we create heuristic labeling
functions and apply weak supervision to label all questions in our dataset as medical

30https://github.com/microsoft/presidio
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Table 3.3: Interrogative words. Each can be combined with suffixes: –ever, –so, –soever, or
be preceded by helper words: after, as, at, for, if, in, on, with.

what
when

where
whether

which
who

whom
whose

why
how

Table 3.4: Auxiliary verbs. Each can be preceded by helper words: after, as, at, for, if, in,
on, with.

am
are

aren’t
is

isn’t
was

wasn’t
were

weren’t
do

don’t
does

doesn’t
did

didn’t
can
can’t
could

couldn’t
have

haven’t
has

hasn’t
had

hadn’t
may
might
must

mustn’t
need

needn’t
shall
shan’t
should

shouldn’t
will

won’t
would

wouldn’t

(i.e., requiring answers from medical professionals), otherwise health-related (e.g.,
about fitness or nutrition), or not related to health. The resulting labeled dataset
of questions can serve as training data to identify health-related questions from
queries in a search engine (see Chapter 4).

3.2.1 Natural Language Questions and Yes-No Questions

Not every post title on question answering platforms such as Stack Exchange or
Yahoo! Answers is formulated as a question. Instead, users often title their posts
with a claim, to start a discussion (e.g., the post “On similar concepts in mathe-
matics whose similarity is a non-trivial fact”, from Stack Exchange31), or with a
subject, to ask for inspiration (e.g., the question “Appetizers or desserts. . . I need
your ideas [. . .]”, from Yahoo! Answers). Our work focuses only on natural language
questions that can appear as search queries. From some included question answer-
ing datasets, we therefore filter out sentences that are not formulated as questions,
if it is not clear whether the dataset might contain non-question sentences.

Another important question type to label are yes-no questions, that is, questions
that can be answered only with “yes” or “no”. In health-related contexts, such yes-
no questions are often used to ask for the effectiveness of a treatment, e.g., “Does
aspirin prevent heart attacks?” Because in Chapter 5 we evaluate our approach on
the TREC Health Misinformation track’s questions which are yes-no questions, we
also develop a labeling approach for yes-no questions. In future work, we plan to
build an integrated health search engine that detects such effectiveness-centered

31https://mathoverflow.net/questions/116649
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function is_question(sentence 𝑆) is
if 𝑆 does not contain a verb then

return false;
else if 𝑆 starts with an interrogative word from Table 3.3 then

return true;
else if 𝑆 does not end with question mark then

return false;
else if 𝑆 starts with an auxiliary verb from Table 3.4 then

return true;
else

return false;
end

end

Algorithm 3.1: Rules for labeling natural language questions.

yes-no questions and then applies customized health-related retrieval approaches
to give the correct answer and reduce misinformation in the search results.

Both our labeling approaches for questions are based on simple syntactic rules ap-
plied to each sentence in the question text, as split usingNLTK [BL04]. Algorithm 3.1
describes how English questions can be labeled using four simple conditions. Our
intuition is that questions always start with an interrogative word (Table 3.3) or
with an auxiliary verb (Table 3.4). Furthermore, we assume that a valid sentence
should at least contain one verb (part of speech tags from NLTK [BL04]). Most
questions end with a question mark, and we therefore require the sentence to end
with a question mark. But because our dataset includes query-like questions where
the question mark is often missing, we also allow questions that do not end with
a question mark, as long as they start with one of the interrogative words from
Table 3.3. Yes-no questions can similarly be labeled as shown in Algorithm 3.2.
Here we flip the condition for interrogative words, because questions that start
with an interrogative word are open-ended and thus cannot be yes-no questions.

Table 3.5: Proportion of natural language questions in filtered question answering datasets.

Dataset Size Natural Questions

BioASQ 4,249 3,646 86 %
Yahoo! Answers 3,895,407 2,619,092 67 %
MS MARCO 1,010,916 651,412 64&
HEAD-QA 6,765 2,522 37 %
Stack Exchange 8,123,683 2,579,633 32 %
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function is_yes_no_question(sentence 𝑆) is
if 𝑆 does not contain a verb then

return false;
else if 𝑆 starts with an interrogative word from Table 3.3 then

⊲ Notice that this condition’s output is flipped compared to Algorithm 3.1.
return false;

else if 𝑆 does not end with question mark then
return false;

else if 𝑆 starts with an auxiliary verb from Table 3.4 then
return true;

else
return false;

end
end

Algorithm 3.2: Rules for labeling yes-no questions.

Filtering datasets for natural language questions reveals that only 32% of the
post titles on Stack Exchange are formulated as questions but most of the posts on
Yahoo! Answers (67 %) are. A comparison of all 5 datasets that were filtered for
questions is given in Table 3.5. Other datasets were not filtered for natural language
questions because either the dataset’s description or manual inspection revealed
that all questions are formulated in natural language. In our current dataset, we
currently do not filter for yes-no questions, but we plan to facilitate our labeling
approach for yes-no questions in the future to mine health-related yes-no questions
such as used in Chapter 5.

3.2.2 Health-Related Questions
After cleaning our dataset, we automatically label whether each question is health-
related or not. The resulting labels serve as training data to tune and evaluate
health-related question classifiers (see Chapter 4). First, a definition for health-
related questions is proposed. Then, we describe how we apply weak supervision
for automatic labeling, and describe the heuristic labeling functions that we use as
the input to our label model.

Following the World Health Organization’s definition of health [46] and common
topics in health-related literature (see Chapter 2), we define a question as health-
related if it covers any of the following topics:

• physical, mental, and social well-being;
• diseases, illnesses, disorders, or other medical conditions;
• physical or mental states;
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• diagnosis, prevention, or risk factors thereof;
• treatments, medication or drugs, or exercises;
• healthcare service or social measures;
• anatomy or biochemical processes; or
• fitness, sports, lifestyle, sex, and nutrition.

We consider health-related questions regarding both humans and animals. But a
question is not considered health-related if it is purely navigational (e.g., asking
for a website or phone number) or if it is a factual biological question without a
clear reference to health (e.g., asking for the structure of a protein but not for its
biochemical interactions with the body). Our definition of health-related questions
is kept broad to be able to capture diverse health-related information needs that
users of a search engine or question answering system might have. Note also, that
here we intentionally include non-medical health questions, for example fitness or
nutrition tips, where a professional opinion is not always needed (see Section 3.2.3
for a distinction of medical and non-medical questions).

Due to the large number of questions in our dataset, manually labeling all question
we collected becomes infeasible. The large amount of data to label is a common
bottleneck in machine learning [RHD+19]. Ratner et al. [RBE+17] propose the
Snorkel framework to address this problem. In Snorkel, heuristic labels from
several labeling functions are combined into a probabilistic label set. A label model
then first estimates each labeling function’s accuracy. Weighted voting is applied to
combine the labels from all labeling functions into a set of probabilistic aggregated
labels. The combined labels can be used to train discriminative neural models that
generalize beyond the labeling functions’ coverage [RBE+17; RHD+19].

Many datasets or subcategories of the datasets we collected only contain health-
related questions, e.g., the PubMedQA dataset or the Health category on Yahoo! An-
swers. Additionally, names of drugs (e.g., Ibuprofen) or conditions (e.g., headache)
are almost only used in health-related questions. Other health-related terms like
“hospital” indicate a similar signal. Following the aforementioned assumptions,
we derive four heuristic labeling functions that mark a question as health-related
or not, based on: (1) The question’s data source and category, (2) the occurrence
of drug names in the question, (3) the occurrence of condition names, and (4) the
occurrence of other health-related terms.

Data Source and Category From most of the dataset descriptions, we can
directly infer whether a dataset contains health-related questions or not. Many
of the datasets also contain metadata about the category or subset of a question.
Hence, we implement the first labeling function as a simple lookup table of the
question’s source and (if applicable) category or subset. This lookup table is shown
in the second last column of Table 3.6. If the dataset description does not provide
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Table 3.6: Lookup table for labeling a question as health-related (HR) and medical (Med.)
based on its source dataset and category or subset. Positive labels are denoted by Ë,
negative by é, and abstain by ?.

Dataset Category/Subset HR Med.

BioASQ, EPIC-QA, Health Misbeliefs, Medication QA, MEDIQA 2019 RQE,
MedQuAD, MeQSum, PubMedQA, QA4MRE Alzheimer’s, QALD-4 Biomedi-
cal, TREC Health Misinformation

Ë Ë

BiQA medical Ë Ë

biology ? ?
nutrition Ë é

COVID-QA — Ë ?

GooAQ explanatory, knowledge, list ? ?
conversion é é

HEAD-QA medicine, psychology, pharmacology Ë Ë

nursery Ë ?
biology, chemistry é é

Medical Safety expert-annotated, crowd-annotated Ë ?
negative examples é é

MS MARCO description, entity, numeric ? ?
person ? é

location é é

Natural Questions — ? ?

SQuAD genome, immunology, infection, pharmacy Ë Ë

brain, diarrhea, digestion, gene, immune system, mam-
mal, memory, pain, pharma industry, tuberculosis

Ë ?

bacteria, pesticide, symbiosis ? ?
nutrition Ë é

adolescence, animal, beer, bird, education, emotion, gym-
nastics, identity, sexual orientation, uranium

? é

others é é

Stack Exchange health Ë ?
biology, cognitive science ? ?
beer, coffee, fitness, lifehacks, martial arts, open data,
outdoor, parenting, sustainability, vegetarianism

? é

others é é

Yahoo! Answers health Ë ?
pregnancy, parenting ? ?
pets, travel ? é

others é é
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clear information about the contained questions being health-related, we randomly
sample 10 questions from each category or subset to infer whether the questions in
that dataset, category or subset are mostly health-related. For the questions from
Stack Exchange, we also inspect the community homepage which contains a short
self-description of the community, to infer a label for the lookup table. An exception
is the SQuAD dataset: Because the question categories directly correspond to titles
of Wikipedia articles, we infer whether the category’s questions are health-related
by inspecting the Wikipedia article’s content. If we only find very few health-
related questions in the examined samples, or if it is otherwise unclear whether the
dataset, category, or subset mainly contains health-related questions, we abstain
from voting a label for the question. Table 3.7 shows the distribution of labels
contributed by the source-based labeling function (see row “Source”) in comparison
to the other labeling functions.

Health-Related Terms Because health-related questions often use a specific
vocabulary with health terms, drugs, and medical conditions, we compile lists of
such terms. We create three heuristic labeling functions, one for each term list.

First, we extract 15,425 general health-related terms from OpenMD dictionary32
and from curated lists of health topics, definitions, and health services provided by
the MedlinePlus.33 Based on an online outline of health sciences34 and the World
Health Organization’s list of health topics,35 we propose a list of 133 additional
health terms that were not included in either the OpenMD’s or the MedlinePlus’s
vocabularies and merge all terms to form a vocabulary of 15,558 general health-
related terms, e.g., “family therapy” or “pacifier”.
A similar approach is used to extract drug names from five drug databases:

(1) The European Medicines Agency’s public assessment reports database of EU-
authorized drugs,36 (2) the U.S. Food and Drug Administration’s National Drug Code
Directory containing drug products for sale in the U.S.,37 (3) the DrugBank’s open
vocabulary,38 (4) the SIDER side effects database’s list of drug names [KCL+10],39
and the list of drugs on WikiData.40 Only commercial brand names (e.g., “Omidria”)
and synonym generic names (e.g., “ketorolac phenylephrine”) are used, resulting in
a list of 404,726 drug names.

32https://openmd.com/dictionary
33https://medlineplus.gov/xml.html
34https://en.wikipedia.org/wiki/Outline_of_health_sciences
35https://who.int/health-topics
36https://ema.europa.eu/en/medicines/download-medicine-data
37https://open.fda.gov/data/downloads
38https://go.drugbank.com/releases/latest
39http://sideeffects.embl.de/download
40Instances of the “drug” class: https://wikidata.org/wiki/Q8386

https://openmd.com/dictionary
https://medlineplus.gov/xml.html
https://en.wikipedia.org/wiki/Outline_of_health_sciences
https://who.int/health-topics
https://ema.europa.eu/en/medicines/download-medicine-data
https://open.fda.gov/data/downloads
https://go.drugbank.com/releases/latest
http://sideeffects.embl.de/download
https://wikidata.org/wiki/Q8386
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Finally, medical conditions are mined from the WHO’s ICD-11, the most recent
international classification of diseases [HWJ+21],41 from the SIDER side effects
database [KCL+10], and from the list of medical conditions on WikiData.42 From
the ICD-11, we only include the names of conditions within the dataset’s “primary
tabulation”. In total, 182,664 medical conditions are extracted, that mostly use a
medical vocabulary, e.g., “implant site pain” or “hyperkaluria”.
Our lists of general health terms, drug names, or condition names are subse-

quently filtered by removing terms that are too short (i.e., fewer than 3 char-
acters), too long (i.e., more than 5 words or more than 1 sentence; split with
NLTK [BL04]), too general (i.e., more than 50 % words are stop words; from NLTK),
contain less than 50% alphabetic characters, or contain parentheses or chemical
prefixes. We normalize the remaining terms by lower-casing them, removing ac-
cents and non-alphanumeric characters, and stemming each word of the term with
the English Snowball stemmer [Por80]. After deduplication, 14,681 general health
terms, 74,127 drug names, and 109,117 medical conditions remain.

A first analysis of the filtered terms shows that our lists still contain terms that are
only health-related in some contexts, but in others might not be. Examples include
names of fruits (e.g., “peach”), chemicals (e.g., “sulfur”), or locations (e.g., “america”).
Two annotators therefore inspect terms with shorter than or equal 10 characters
and manually collect a list of 2,532 terms that are often not health-related. We
remove these terms from our term lists. Our final lists contain 14,125 general health
terms, 70,825 drug names, and 104,397 medical conditions.

For each of the three lists, we build a regular expression to search for occurrences
of any term from the list at a word boundary in the question text. We use the
occurrence count to derive three labeling functions that check whether the question
text contains (1) at least one general health term, (2) at least one drug name, or
(3) at least one medical condition. Each labeling function abstains from labeling if
no term is found in the question text. A comparison of the label distributions as
contributed by each labeling function is shown in Table 3.7.

Label Model The four labeling functions for health-related questions are used to
train a Snorkel label model [RBE+17] to automatically label our 8,657,422 collected
questions as health-related or not health-related. We do not preset the class balance,
and train the model for 500 epochs with stochastic gradient descent (constant
learning rate of 0.01) and no regularization. Questions where the label model does
not return an aggregated label (e.g., due to a tie between the labeling functions)
are labeled as not health-related. As shown in Table 3.7, the aggregated label
distribution is very similar to the label distributions observed in prior work (cf.
Chapter 1) with 23% of the questions labeled as health-related. Some source
41https://icd.who.int
42Instances of the “health problem” class: https://wikidata.org/wiki/Q2057971

https://icd.who.int
https://wikidata.org/wiki/Q2057971
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Table 3.7: Labels contributed by labeling functions for health-related questions and medical
questions. Aggregated labels are returned by Snorkel label models [RBE+17] trained on the
labeling functions. Ties of the label model resolve to the negative label.

Function Positive Negative Abstain

Health-related labeling functions

Source 426,476 5 % 4,077,916 47 % 4,153,030 48 %
Health terms 1,529,398 18 % 0 0% 7,128,024 82 %
Drugs 317,350 4 % 0 0% 8,340,072 96 %
Conditions 528,015 6 % 0 0% 8,129,407 94 %
; Aggregated (Snorkel) 1,990,406 23 % 6,667,016 77 % — —

Medical labeling functions (only health-related questions)

Source 266,409 13 % 453,987 23 % 1,270,010 64 %
Health terms 0 0 % 461,008 23 % 1,529,398 77 %
Drugs 0 0 % 1,673,056 84 % 317,350 16 %
Conditions 0 0 % 1,462,391 73 % 528,015 27 %
Medical topics 553,506 28 % 99,025 5 % 1,337,875 67 %
; Aggregated (Snorkel) 1,317,873 66 % 672,533 34 % — —

datasets contribute more health-related questions than others. Table 3.1 contains
a comparison of label distributions per source dataset in the second last column
group. Most of the health-related question answering datasets contain close to
100 % health-related questions, indicating that the label model puts a lot of weight
on the source-based labeling function. Hence, the questions from general question
answering datasets or community platforms follow the global distribution of health-
related questions more closely.

3.2.3 Medical Questions

We further distinguish health-related questions into medical questions like “What
are the side effects of methadone?” and non-medical questions like “how many
litres of water daily?”. We define medical questions as health-related questions that
require additional, professional expertise, e.g., from a doctor, nurse, pharmacist,
or therapist. Our definition includes research questions from clinical studies (i.e.,
asked from professional to professional) as well as questions from consumers to
professionals (e.g., for diagnosis). We exclude questions where the answer would
depend on personal preference or that are common sense, even for laymen.

To label questions as medical or not, we apply the same framework as for health-
related questions (Section 3.2.2) but slightly tune the labeling functions to account
for the different vocabulary used in medical questions. The last column of Table 3.6
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shows the labels that are returned by the source-based labeling function that just
uses an adjusted (stricter) lookup table. We use the same lists of general health terms,
drugs and medical conditions as for health-related questions for counting term
occurrences but our term-based labeling functions for labeling medical questions
are stricter: Questions that do not contain any general health term, drug name,
or condition name, respectively, are labeled as not medical, and we abstain from
labeling if a term is found.
Initial experiments showed that with using the four labeling functions alone,

many medical questions were not labeled as such. We therefore add a fifth labeling
function based on MedlinePlus health topics.43 The topics are tagged with a cate-
gory which we use to group topic names and aliases into 227 non-medical terms
(categories: “Food and Nutrition”, “Wellness and Lifestyle”, “Fitness and Exercise”,
“Health System”, “Disasters”, and “Safety Issues”) and 1,684 medical terms (all other
categories). Our labeling function then labels a question as medical if the question
text contains a medical term but does not contain a non-medical term. If the ques-
tion contains a non-medical term but does not contain a medical term, the question
is labeled as not medical. The labeling function abstains from labeling questions
that do not contain any of our medical or non-medical terms.

Using the five labeling functions for medical questions, we train a Snorkel label
model [RBE+17] to label our collected questions as medical or not medical. Because
non-health-related questions are, by definition, non-medical, we only consider
health-related questions for training the label model. The model is trained for
500 epochs with stochastic gradient descent (constant learning rate of 0.01). No
regularization is applied, and we do not preset the class balance. Ties between the
labeling functions are resolved by labeling the question as not medical. The aggre-
gated label distribution is shown in Table 3.7. From the health-related questions
in our dataset, a relatively high proportion (66 %) is labeled as medical, which we
further investigate in Section 3.5. When considering all questions, 15 % are labeled
as medical, higher than most proportions reported in prior work (cf. Chapter 1).
Comparing the label distributions of questions from each source dataset in Table 3.1,
shows that besides the health-related question answering datasets, the GooAQ and
MS MARCO datasets contribute many medical questions.

3.3 Manual Annotation
We complement the automatic question labels from Section 3.2 with manual anno-
tations to allow for subsequent evaluation of our labeling approaches (Section 5.5).
Post titles from Stack Exchange and Yahoo! Answers are used for manual annota-
tion of natural language questions and yes-no questions. For the manual annotation
43https://medlineplus.gov/xml.html

https://medlineplus.gov/xml.html
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Figure 3.1: Screenshot of the Doccano annotation interface.

of health-related and medical questions, we consider questions from our whole
data collection. We recruit eleven volunteer annotators: three PhD students, four
Master’s students, and one Bachelor’s student in computer science, one Bache-
lor’s student in mathematics, one Master’s graduate in media and communication
science, and one student in human medicine. Even though the annotators are
not native English speakers, all are fluent in English. We provide the annotators
with instructions for each task and use the Doccano annotation tool44 shown in
Figure 3.1 to facilitate the annotation process. To distinguish the two types of labels,
manual and automatic, we refer to the subset of manually annotated questions as
“gold” label dataset in the following. Automatically labeled questions are of lower
methodical quality than manually labeled questions, and we therefore refer to them
as our “silver” label dataset.

3.3.1 Natural Language Questions and Yes-No Questions
For evaluating the automatic labeling of natural language questions and yes-no
questions, we randomly sample 2,750 post titles from Stack Exchange and Ya-
hoo! Answers. We create annotator instructions for two sub-tasks: (1) Annotating
whether a text is formulated as a natural language question, and (2) annotating
whether a text is a yes-no question. The full (revised45) instructions are given in
Appendix A.1. For annotation, each of our eleven annotators is presented with
the texts to annotate in random order on Doccano. We do not allow a text to be
annotated as not formulated as a natural language but being a yes-no question at
the same time, as explained in the annotator instructions (Appendix A.1). On the
annotation platform, we therefore use a single nominal label that encodes the two
binary labels of each sub-task. This nominal label is converted to the two binary
labels (health-related or not, and medical or not) after annotation.
After giving an initial short explanation of the task at hand, we first conduct a

pilot study with 500 randomly sampled post titles. Each question of this first pilot
44https://github.com/doccano/doccano
45That is, the version after revision based on annotator feedback.

https://github.com/doccano/doccano
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study is annotated by each annotator. Two annotators did not participate in the
pilot study. It was noted during the pilot study that many post titles contained spam
or were not written in English language. We therefore filter the post titles in the
same way as described in Section 3.1.4 and only consider the 366 cleaned post titles
for the annotation. We measure inter-annotator agreement using Fleiss’ ^ [Fle71], a
measure to assess the degree of annotation agreement over the agreement expected
by chance. An agreement of 0.93 is measured for the sub-task of annotating texts as
natural language questions, and an agreement of 0.80 is measured for the sub-task
of annotating questions as yes-no questions. This reflects almost perfect agreement
for identifying questions and substantial agreement for yes-no questions, according
to Landis and Koch [LK77]. We mainly find inconsistencies in questions without
a question mark (e.g., “What is covid”, should be labeled as question), questions
with minor grammatical errors (e.g., “Any use for pencils with broken lead?”), and
in questions that are formulated like yes-no questions but instead ask for an open
answer (e.g., “Can you show me the way to the nearest hospital?”, should not be
labeled as yes-no question).
Following the pilot study, we organize an online meeting where the inconsis-

tencies are explained to and discussed with all annotators, including one of the
two annotators who did not participate in the pilot study. The annotator instruc-
tions were revised to account for the discussion. We then sample 2,400 questions
for the main annotation round (sampled from cleaned post titles, as described in
Section 3.1.4). Each annotator is given 400 questions, of which 200 are the same
given to all annotators and 200 are questions only annotated by one annotator. The
200 questions that were annotated by all 11 annotators are used to evaluate the
inter-annotator agreement (Fleiss’ ^) in the main study. Due to presenting the ques-
tions in random order, our annotators were unaware which of their 400 questions
were used for measuring agreement. Agreement for annotating natural language
questions was measured at 0.92 and annotating yes-no questions yielded an agree-
ment of 0.70. These results confirm that our annotators identify questions with
almost perfect agreement [LK77]. The agreement for yes-no question annotation
slightly decreased, even though it still represents substantial agreement. Measuring
pairwise agreement using Cohen’s ^ [Coh60] reveals that no agreement (^ < 0)
is found between the two annotators who did not participate in the pilot study.
For pairs where at least one annotator participated in the pilot study, we mostly
observe fair agreement. Pairwise agreement with the annotator who also missed the
discussion was consistently worse than with the second annotator not participating
in the pilot study, suggesting that the discussion was helpful for the annotators.

We conduct majority voting to determine final labels for the questions that were
annotated by multiple annotators. The author’s vote was used to break ties in the
vote. Annotations of the remaining questions are included as is to form a gold
standard of 2,766 questions for evaluation.
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3.3.2 Health-Related and Medical Questions

To facilitate evaluations of our automatic labeling approach for health-related
and medical questions, we sample 7,500 questions from our collected dataset (see
Section 3.1). From our definition of health-related and medical questions (see
Section 3.2), we derive annotator instructions for two sub-tasks of the annotation:
(1) Annotating whether a question is health-related, and (2) annotating whether a
question is medical. Because a non-health-related question can, by definition, not
be medical, we use three nominal labels to encode the two binary labels of each
sub-task: Medical, otherwise health-related, or not health-related. The nominal
label is converted to the two binary labels of each sub-task after annotation. The
full (revised) annotation guidelines are given in Appendix A.2. We use the Doccano
annotation tool to present each question to the annotators in random order.

We give the annotators a short explanation of the scope of the annotation task. A
sample of 500 questions is then used to conduct a pilot study where each of the 11 an-
notators is asked to annotate the same questions. We measure an inter-annotator
agreement (Fleiss’ ^ [Fle71]) of 0.77 for the sub-task of annotating questions as
health-related, and an agreement of 0.69 for identifying medical questions. Accord-
ing to Landis and Koch [LK77], this reflects substantial agreement for both sub-tasks.
For health-related questions, we find inconsistencies for questions centered around
housekeeping (e.g., “how long to keep live lobsters?”, only concerns the storage
of food and should not be labeled as health-related). Questions about social well-
being were often wrongly labeled as not health-related (e.g., “at what age does
personality stabilize”). Some unobtrusive medical questions were missed (e.g., “Is a
2 pound baby healthy?”, severe underweight) and academic questions about specific
biochemical processes were sometimes not labeled as medical (e.g., “Are glucose
impairment and ghrelin gene variants associated to cognitive dysfunction?”).

An online meeting was organized to discuss the inconsistencies with our annota-
tors and to agree on the revised annotator instructions as included in Appendix A.2.
Another 7,000 questions were sampled from our dataset for the main annotation
round. We assign each annotator to annotate a slice of the questions and include
250 questions to measure inter-annotator agreement after the clarifying discus-
sion. The annotators are again unaware which of their assigned questions are
used for measuring agreement. For the main annotation round, we measure an
inter-annotator agreement (Fleiss’ ^) of 0.78 for health-related question annotation
and 0.66 for medical question annotation, indicating that the discussion neither
improved nor worsened the agreement. Inconsistencies were mainly observed for
questions about nutrition (e.g., “how many litres of water daily?”).

Majority voting was applied to determine the final labels for questions that were
used for measuring agreement. We use the author’s vote in case of a tie. Including
the remaining questions as is, we obtain a gold standard dataset of 7,500 questions.



42 Chapter 3 Data Collection and Labeling

Table 3.8: Comparison of the label distributions of the gold and silver label datasets,
and automatic labeling effectiveness. Positive labels are denoted by Ë, and negative
by é. Labeling effectiveness is measured as (binary) precision (P), recall (R), F1-score and
accuracy (Acc.) using gold labels as ground truth.

Label Gold Silver

Ë é Ë é P R F1 Acc.

Question 51 % 49% 46% 54% 0.99 0.89 0.94 0.94

Yes-no question 12 % 88% 13% 87% 0.80 0.87 0.83 0.96

Health-related 17 % 83% 23% 77% 0.66 0.84 0.74 0.90
– training split 16 % 84% 23% 77% — — — —
– validation split 18 % 82% 23% 77% — — — —
– test split 17 % 83% — — — — — —

Medical 7 % 93% 15% 85% 0.40 0.84 0.54 0.90
– training split 7 % 93% 15% 85% — — — —
– validation split 8 % 92% 15% 85% — — — —
– test split 8 % 92% — — — — — —

3.4 Deduplication and Dataset Splits

After collecting the automatically and manually labeled questions, we assign a
unique ID46 to each question based on the question text. We find that 56 ques-
tions from our manual annotations for health-related and medical questions were
duplicated (0.7 %). From the automatic labels, we find 113,333 duplicates (1.3 %).
Duplicates are removed from the datasets, leaving 7,444 manually labeled questions
and 8,544,089 automatically labeled questions.

Our annotations for health-related and medical questions are used to create two
datasets: A gold label dataset with manually annotated questions, and a silver label
dataset with automatically labeled questions. We derive predefined splits to be used
for training, validation, and testing of classifiers. Providing predefined dataset splits
is a common practice to facilitate comparable evaluation in a leaderboard setting,
e.g., with the MS MARCO retrieval tasks [NRS+16].47 We randomly split our gold
label dataset into 4,466 questions for training, 1,489 questions for validation, and
1,489 questions for testing (60 %/20%/20%). The silver label dataset is split into
6,835,271 questions for training and 1,708,818 questions for validation (80 %/20 %).
We intentionally do not create a test set from the automatically labeled questions
because we want to evaluate all classifiers on the same test set. Label distributions
46Name-based SHA-1 UUID according to RFC 4122: https://rfc-editor.org/rfc/rfc4122
47https://microsoft.github.io/msmarco

https://rfc-editor.org/rfc/rfc4122
https://microsoft.github.io/msmarco
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Figure 3.2: Histograms of the question length in our dataset splits for medical, health-
related or non-health-related questions. Length is measured as number of words as split by
the NLTK tokenizer [BL04; Por80]. Punctuation is counted as a word.

for manual (gold) and automatic (silver) labels are given in Table 3.8. Because the
splits were sampled randomly, the label distributions of all splits of either the gold
label dataset or the silver label dataset are similar and therefore models trained on
the training split should be applicable on the test split.

3.5 Evaluation

To get a better understanding of the questions in our manually annotated (gold)
dataset and the automatically labeled (silver) dataset, we first conduct an exploratory
data analysis on the questions at hand, and then evaluate the effectiveness of our
automatic labeling approaches for health-related and medical questions.

Question Length Previous research has found that health-related queries are
longer (5.9 words on average) than other queries (4.2 words on average) [BKK+03].
It was also found that question-like queries are longer than keyword queries, with
an average length of 7.4 words [WRY15], which can be attributed to their higher
specificity [PBW07]. Consequentially, we expect the average length of health-
related questions to be longer than 7 words. Histograms of the question length
observed in our dataset are given in Figure 3.2. The histograms indicate that health-
related questions are only slightly longer (10.2 words on average on gold labels)
than questions that are not health-related (10.0 words). Medical questions contain
10.7 words on average, which is slightly longer than health-related questions. All
three distributions are skewed towards shorter questions. Due to our previous
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Figure 3.3: Confusion matrices of the automatic labels compared to manual labels.

filtering steps (see Section 3.1.4), we cannot evaluate the characteristics of the
questions from the long tail. Slight differences can also be observed between the
length distributions of our gold and silver labels. Questions labeled as medical with
our automatic labeling approach are shorter (10.1 words on average) than questions
that were manually labeled as medical (10.7 words). This discrepancy suggests that
the question length could be another useful signal for automatic labeling.

Automatic Labeling Effectiveness We evaluate our automatic labeling ap-
proaches by measuring the accuracy of automatically re-labeling the manually
annotated questions from the gold label dataset and the most common error types.
As a second indicator of effectiveness, we also compare the closeness of the label
distributions of our manual and automatic labels for (1) natural language questions
and yes-no questions, and (2) health-related and medical questions.

As Table 3.8 demonstrates, the silver label distributions for well-formed questions
are very similar to the corresponding gold label distributions, with half of the post
titles from Stack Exchange and Yahoo! Answers being labeled as natural language
questions by human annotators and our simple labeling heuristic. The heuristic
can label questions with a very high precision of 0.99 and still achieve a high recall
of 0.89. Consequentially, both the F1-score [Rij79, p. 134] and the accuracy are high.
The confusion matrix in Figure 3.3 supports our findings and illustrates the slightly
decreased recall (152 post titles being falsely labeled as not a question). Similar
results are found for labeling yes-no questions. With a slightly lower precision
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of 0.80, the heuristic still achieves an F1-score of 0.83 and an accuracy of 0.96. Silver
labels for yes-no questions also resemble the gold label distribution more closely,
so the confusion matrix is nearly symmetric.
For labeling health-related questions, Table 3.8 shows that only 17% of the

questions were health-related in our gold label dataset, but 23 % were automatically
labeled as health-related (silver labels). A similar discrepancy can be observed for
medical labels (8 % of the gold labels, 15 % of the silver labels). Even though the
Snorkel label models achieve high accuracy for both health-related and medical
question labeling, the precision is low, and hence also is the F1-score. A possible
explanation might be that our labeling functions are too broad (include too many
false positives) or that the label model did not learn the right label distribution.
In practice, however, identifying health-related questions is a recall oriented task,
therefore still allowing our automatic labeling approach to be used to train classifiers.
The confusion matrices in Figure 3.3 show that our automatic labeling approach
only misses 203 questions that are actually health-related and 84 questions that are
actuallymedical. But as the confusionmatrix formedical questions and the precision
of only 0.42 show, our automatic approach also assigns a medical label to more non-
medical questions than to questions that are actually medical. Initial experiments
show that for all questions automatically labeled as medical, the health term labeling
function abstained from voting. The labeling function could have learned that the
question must be medical if the health term labeling function abstained from voting,
but further investigation is needed to confirm this hypothesis.

3.6 Summary

We have presented a novel dataset of 8.5 million questions from curated medical
question answering datasets, general purpose question answering datasets, and
community question answering platforms, an unprecedented scale for datasets of
health-related questions. By collecting questions from multiple sources, we ensure
a high diversity of health-related questions and provide a realistic distribution of
health-related questions. Our manual labels of 7,500 randomly sampled questions
indicate that 17 % of the questions are health-related and that 7 % are medical, which
reflects a realistic distribution of health-related and medical questions compared
to related studies on query logs (5-24 %, cf. Chapter 1). For Research Question 1,
we can therefore confirm that a large dataset with millions of health-related or
medical questions can be created by combining existing datasets. By comparison
with related work, we also confirm that this dataset is realistic in terms of the
distribution of health-related questions. We cannot give a clear conclusion to
Research Question 2. Even though, we show that automatic labeling using weak
supervision can be applied to our large question dataset with decent recall, our
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heuristic labeling functions are often too optimistic and therefore lead to a low
precision, especially for medical questions. Consequentially, 23 % of the questions
from our dataset were automatically labeled as health-related (6 p.p. higher than
the real proportion) and 15 % were labeled as medical (8 p.p. higher). Moreover, the
low recall can propagate to models trained on the automatic labels (see Chapter 4).
In order to reach close to human-level accuracy, we suggest extending our set of
labeling functions with additional heuristics that label questions as not health-
related or not medical. Our exploratory data analysis of the questions in our dataset
is limited to the question length. Because other important characteristics such as
topical similarity or the vocabulary were not discussed, we cannot give a clear
conclusion to Research Question 3. However, we find that health-related and
medical questions are slightly longer than questions that are not health-related.
Mainly due to its size our dataset is nonetheless a valuable resource for future
research on health-related question answering.
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Chapter 4

Identifying Health-Related and
Medical Questions

To identify health-related questions, we train three types of classifiers: (1) Feature-
based classifiers with using sentence embeddings as features, (2) transformer-based
encoder models, (3) causal language models (decoder-only transformer), and (4) text-
to-text language models (encoder-decoder transformer). An overview of all model
variants used in our classification experiments is given in Table 4.1. We only
experiment with classifiers that can be fitted to our question dataset, and use the
predefined training, validation, and test splits as described in Chapter 3. Rule-based
approaches are therefore not included. Separate models are fine-tuned on two
tasks: (1) To distinguish between health-related and non-health-related questions
and (2) to distinguish between medical and non-medical questions. This additional
distinction is motivated by the need for stricter measures against misinformation
when answering medical questions.

For each type of classifier and task, we tune hyperparameters on the validation
set using the Weights & Biases framework [Bie20]. Bayesian hyperparameter
optimization with the Hyperband algorithm is employed for faster convergence
to optimal parameter configurations [FKH18; LJD+17]. After hyperparameter
optimization on the validation set, the most effective configurations from each
type of classifier and for each of the two classification tasks (health-related and
medical) are evaluated on the test set. We also evaluate a cascading setting where
questions are first classified as health-related prior to medical classification, to
avoid falsely classifying non-health-related questions as medical. In the following
sections, we first outline the training settings (Sections 4.1, 4.2 and 4.3). We then
describe our cascading classification approach (Section 4.4) and evaluate the most
effective models from each type of classifier with respect to effectiveness and
efficiency (Section 4.5). Finally, the chapter is concluded with a short comparison
to prior approaches (Section 4.6).
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Table 4.1: Neural models used in our approaches for classifying health-related and medical
questions. Variant and parameters indicate which model was used in this thesis. Links to
model checkpoints are provided in Appendix B.

Type Model Variant Params Year Ref.

Sentence embedding
models
(see Section 4.1)

MiniLM all-round 33M 2019 [RG19]
MiniLM paraphrase 33M 2019 [RG19]
MPNet all-round 110M 2019 [RG19]
Instructor base 335M 2022 [SSK+22]

Encoder models
(see Section 4.2)

BERT base, uncased 110M 2019 [DCL+19]
RoBERTa base 125M 2019 [LOG+19]
SciBERT uncased, SciVocab 110M 2019 [BLC19]
BART base 140M 2020 [LLG+20]
PubMedBERT base, uncased, abstract 110M 2022 [GTC+22]
BioLinkBERT base 110M 2022 [YLL22]

Causal language
models
(see Section 4.3)

GPT-2 small 124M 2019 [RWC+19]
GPT-Neo — 125M 2021 [BLW+21]
OPT — 125M 2022 [ZRG+22]
Galactica — 125M 2022 [TKC+22]
BioGPT — 347M 2022 [LSX+22]
BioMedLM — 2,700M 2022 [BHY+22]

Text-to-text
language models
(see Section 4.3)

T5 base 220M 2020 [RSR+20]
SciFive base, PubMed 220M 2021 [PAT+21]
LongT5 TGlobal, base 250M 2022 [GAU+22]
Flan-T5 base 220M 2022 [CHL+22]

4.1 Training Feature-Based Classifiers with
Sentence Embeddings

Our first batch of classifiers uses feature-based machine learning models: (1) Sup-
port vector machine [CL11], (2) random forest [Bre01] (both implemented in scikit-
learn [PVG+11]), and (3) gradient boosting (implemented in XGBoost [CG16]).
We use pre-trained sentence embeddings from the sentence-transformers li-
brary [RG19] and instruction-fine-tuned text embedding models [SSK+22] with
custom prompts to embed each question in a vector space. The aforementioned clas-
sifiers are then trained to distinguish between health-related and non-health-related
questions and between medical and non-medical questions respectively.

We use only the gold label dataset for training the feature-based classifiers. Initial
experiments showed that the silver label dataset is too large to be trained with
either of the three classifiers, because the implementation in scikit-learn loads full

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/hkunlp/instructor-base
https://huggingface.co/hkunlp/instructor-base
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://huggingface.co/roberta-base
https://huggingface.co/roberta-base
https://huggingface.co/allenai/scibert_scivocab_uncased
https://huggingface.co/allenai/scibert_scivocab_uncased
https://huggingface.co/facebook/bart-base
https://huggingface.co/facebook/bart-base
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract
https://huggingface.co/michiyasunaga/BioLinkBERT-base
https://huggingface.co/michiyasunaga/BioLinkBERT-base
https://huggingface.co/gpt2
https://huggingface.co/gpt2
https://huggingface.co/EleutherAI/gpt-neo-125M
https://huggingface.co/EleutherAI/gpt-neo-125M
https://huggingface.co/facebook/opt-125m
https://huggingface.co/facebook/opt-125m
https://huggingface.co/facebook/galactica-125m
https://huggingface.co/facebook/galactica-125m
https://huggingface.co/microsoft/biogpt
https://huggingface.co/microsoft/biogpt
https://huggingface.co/stanford-crfm/BioMedLM
https://huggingface.co/stanford-crfm/BioMedLM
https://huggingface.co/t5-base
https://huggingface.co/t5-base
https://huggingface.co/razent/SciFive-base-Pubmed
https://huggingface.co/razent/SciFive-base-Pubmed
https://huggingface.co/google/long-t5-tglobal-base
https://huggingface.co/google/long-t5-tglobal-base
https://huggingface.co/google/flan-t5-base
https://huggingface.co/google/flan-t5-base
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Table 4.2:Hyperparameter prior distributions for training support vector machine, random
forest, or gradient boosting classifiers to identify health-related or medical questions.

Parameter Distribution Values

Embeddings model uniform cat. all-MiniLM-L6-v2, paraphrase-MiniLM-L6-v2,
all-mpnet-base-v2, instructor-basea

Class weights uniform cat. balanced, imbalanced

Support vector machine

Regularization 𝐶 log-uniform 0.1 — 1000
Kernel uniform cat. linear, polynomial 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, RBF, sigmoid
Kernel coefficient 𝛾 log-uniform 0.01 — 100

Random forest

Number of trees log-uniform 1 — 100
Max tree depth log-uniform 1 — 100
Min samples to split log-uniform 2 — 20
Min samples in leaf log-uniform 1 — 10

Gradient boosting

Number of trees log-uniform 10 — 1000
Learning rate log-uniform 5e-3 — 1
Max tree depth log-uniform 1 — 500
Min loss reduction 𝛾 log-uniform 1e-3 — 100
Min child weight log-uniform 1 — 100
Subsampling by tree uniform 0 — 1
Subsampling by level uniform 0 — 1
Subsampling by node uniform 0 — 1

aPrompt: Represent the question for health related classification: [question] or
Represent the question for medical classification: [question]

training dataset into memory multiple times (e.g., for each decision tree). Attempts
to train the classifiers on sub-samples of approximately 10% of the silver label
dataset have also failed. From the gold label dataset, we use the predefined training
split to train each model, and the validation split to tune hyperparameters. The test
set is only used after completion of hyperparameter optimization to evaluate the
most effective model configuration on the test set (see Section 4.5).
We use the Bayesian Optimization and Hyperband algorithm [FKH18] from

the Weights & Biases framework to determine the best hyperparameters for each
model by targeting high effectiveness with respect to the F1-score [Rij79, p. 134].
In contrast to random search, this Bayesian hyperparameter approach samples
initial hyperparameter configurations from a prior distribution and evaluates the
F1-score on the validation set. Based on the evaluation results, the hyperparameter

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/hkunlp/instructor-base
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distributions are iteratively updated to favor configurations with higher F1-scores.
The prior distributions for our feature-based classifiers are specified in Table 4.2
and are based on the recommended hyperparameter choices for text classification
in scikit-learn and XGBoost [CG16; PVG+11]. For each of the three model types,
the hyperparameter optimization is performed with 25 runs, each time drawing
new parameters from the hyperparameter distributions.

Our trained random forest classifiers always predicted the majority classes (not
health-related or not medical, respectively). Consequentially, all trained random
forest classifiers yield a high accuracy of 0.84 or 0.93 but an F1-score of 0.00 on the
validation set. The feature importances of the trained random forest classifiers (i.e.,
accumulated impurity decrease within each tree) shows that all components of the
sentence embedding vectors were ignored. Consequentially, the classifier never
predicts the positive classes (health-related or medical, respectively). Due to the
failed training of random forest models, we do not report results for random forest
classifiers in our further analyses.

Figure 4.1 shows parallel coordinates plots of all hyperparameter configurations
trained for the support vector machine (SVM) and gradient boosting classifiers. To
simplify the visualization, we select only the four most important parameters as axes
of the parallel coordinates plot. The parameter importance is inferred from a random
forest model’s feature importance after training the model to predict the target
metric based on the parameter values, implemented in Weights & Biases [Bie20].
The color of each line indicates the F1-score on the validation split with better F1
appearing in brighter colors. Using the parallel coordinates plots, we can identify
optimal ranges for each hyperparameter and particularly well- or bad-performing
hyperparameter configurations. For example, in Figure 4.1a and 4.1b the blue lines
running through the polynomial kernels of degree 3 and the RBF kernel indicate
that a more complex kernel function might harm the classification effectiveness of
SVM classifiers. Figures 4.1c and 4.1d both show that balanced class weights are
beneficial for gradient boosting classifiers and that a minimum loss between 0.01
and 1 is optimal for splitting nodes in the gradient boosted trees.
For classifying questions as health-related or not, the most effective SVM clas-

sifier1 achieves an F1-score of 1.00 on the training set and 0.83 on the validation
set. Our most effective gradient boosting classifier2 achieves very similar F1-scores
of 1.00 on the training set and 0.75 on the validation set. Both models are over-
fitting the training set as indicated by the perfect F1 on the training set and the
lower F1-score on the validation set. From our medical question classifiers, the

1Embeddings: instructor-base; regularization: 0.11; kernel: 𝑥5; coefficient: 35; class weight:
imbalanced.

2Embeddings: all-mpnet-base-v2; trees: 89; maximum depth: 4; learning rate: 0.45; minimum
child weight: 2.53; minimum split loss reduction: 0.76; feature column subsampling by level: 37 %;
by node: 65 %; by tree: 34 %, class weight: balanced.

https://huggingface.co/hkunlp/instructor-base
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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(a) SVM, health-related questions.

(b) SVM, medical questions.

(c) Gradient boosting, health-related questions.

(d) Gradient boosting, medical questions.

Figure 4.1: Parallel coordinates plots of validation F1-scores with different hyperparameter
configurations when training support vector machine or gradient boosting models to
classify health-related or medical questions. Configurations with higher F1 appear brighter.



52 Chapter 4 Identifying Health-Related and Medical Questions

Table 4.3: Hyperparameter prior distributions for fine-tuning encoder models to identify
health-related or medical questions.

Parameter Distribution Values

Pre-trained model uniform cat. bert-base-uncased, roberta-base, bart-base,
scibert_scivocab_uncased, BioLinkBERT-base,
BiomedNLP-PubMedBERT-base-uncased-abstract

Weight decay uniform 0 — 0.5
Epochs uniform 1 — 30
Batch size uniform 1 — 10
Class weights uniform cat. balanced, imbalanced
Optimizer fixed Adam 𝛽 = (0.9, 0.999) [KB15]
Learning rate log-uniform 1e-6 — 1e-3
Scheduler uniform cat. linear, cosine
Warm-up steps uniform 0 — 5000

most effective SVM classifier3 achieves an F1-score of 0.83 on the training set and
0.70 on the validation set, whereas the most effective gradient boosting classifier4
is overfitting slightly more with an F1-score of 0.96 on the training set and 0.68 on
the validation set. For both, SVM and gradient boosting classifiers, the best model
parameters are substantially different between classifiers for health-related and
medical questions, indicating that the optimal hyperparameters for feature-based
classifiers are task-specific. The twomost effective SVM classifiers and the twomost
effective gradient boosting classifiers are evaluated in more detail in Section 4.5.

4.2 Fine-tuning Transformer-Based Encoder
Models

To classify texts with transformer-based encoder models [VSP+17], a linear classifi-
cation layer is added on top of the encoder’s pooled output [DCL+19]. By applying
this pattern, we fine-tune pre-trained bidirectional encoder models on the down-
stream task of classifying questions using the transformers library [WDS+20].
The classification models are fine-tuned using gradient descent on a shared cluster
of 24 Nvidia A10 GPUs. We use the same Bayesian Optimization and Hyperband
framework as for the feature-based classifiers [FKH18]. This Bayesian hyperparam-

3Embeddings: all-mpnet-base-v2; regularization: 82; kernel: sigmoid; coefficient: 0.04; class
weight: imbalanced.

4Embeddings: all-MiniLM-L6-v2; trees: 973; maximum depth: 73; learning rate: 0.017; minimum
child weight: 17.78; minimum split loss reduction: 0.003; feature column subsampling by level: 40 %;
by node: 48 %; by tree: 74 %; class weight: balanced.

https://huggingface.co/bert-base-uncased
https://huggingface.co/roberta-base
https://huggingface.co/facebook/bart-base
https://huggingface.co/allenai/scibert_scivocab_uncased
https://huggingface.co/michiyasunaga/BioLinkBERT-base
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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(a) Health-related questions.

(b)Medical questions.

Figure 4.2: Parallel coordinates plot of validation F1-scores with different hyperparameter
configurations when fine-tuning encoder models to classify health-related or medical
questions. Configurations with higher F1 appear brighter.

eter optimization samples hyperparameters from a prior distribution and after each
run updates the distributions to favor configurations with higher F1-scores. We
perform the hyperparameter optimization with 25 runs for each model and use the
prior distributions specified in Table 4.3 based on recommended hyperparameter
ranges from the transformers library [WDS+20]. All our runs use the predefined
training, validation, and test splits of the gold label dataset.
Figure 4.2 shows parallel coordinates plots of the four most important parame-

ters. Parameter importance is again inferred from a random forest model’s feature
importance trained to predict the target metric based on the hyperparameter val-
ues [Bie20]. By far themost influential hyperparameter for classifying health-related
questions or medical questions is the learning rate. Higher learning rates consis-
tently lead to worse effectiveness with respect to the F1-score on the validation set,
which could be explained by the learning rates being too high for the gradient de-
scent optimization to converge. We also observe lower F1-scores when fine-tuning
the PubMedBERT model [GTC+22]. Applying balanced class weights to the models’
loss tends to improve classification effectiveness for health-related questions, but a
slight negative correlation was found for medical questions. Both the number of
epochs and the batch size are less important for classification effectiveness.
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The most effective encoder model to classify health-related questions, a fine-
tuned BART model [LLG+20],5 achieves an F1-score of 0.88 on the training set and
0.83 on the validation set, i.e., the model nearly does not overfit. The best parameters
classifying medical questions were different. Here, the most effective model, based
on BERT [DCL+19],6 overfits the training set slightly more with an F1-score of 0.89
on the training set and 0.76 on the validation set. The different best parameters
indicate that (like the feature-based classifiers), the best hyperparameter choice
depends on the task (classifying health-related questions or medical questions).

We use a combination of well-performing hyperparameters of the encoder models
fine-tuned on the smaller gold label dataset to fine-tune two BERTmodels [DCL+19]
on the larger silver label dataset:7 onemodel for identifying health-related questions
and one model to classify medical questions. The hyperparameters were selected
based on the most effective models that were trained on the gold label dataset are
used, but slightly adapted to respect our findings from parameter importances and
to make the fine-tuning of the two new models more reproducible. We only fine-
tune the two models for three epochs, because the silver label dataset is much larger
than the gold label dataset. For classifying health-related questions, this approach
yields an F1-score of 0.98 on the validation set (silver labels) and an F1-score of 0.97
for medical questions. Due to the large size of the training set (6.8M questions),
effectiveness was only measured on the validation set (1.7M questions). Hence, we
cannot conclude if the model overfits.
The classification effectiveness of our two most effective encoder models fine-

tuned on the gold label dataset and the two encoder models fine-tuned on the silver
label dataset are evaluated in more detail in Section 4.5, to evaluate if the effective-
ness of the models can be improved by fine-tuning on the larger, automatically
labeled silver label dataset instead of the manually annotated gold label dataset.

4.3 Fine-tuning Transformer-Based Text
Generation Models

Our third family of question classifiers explores using the first output token of
transformer-based text generation models (i.e., causal and text-to-text language
models) to predict the question’s label, an approach that has previously been success-
fully used for text classification using the T5 text-to-text language model [PNL21;

5Model: bart-base, weight decay: 0.19, epochs: 3, batch size: 10, class weights: balanced, optimizer:
Adam 𝛽 = (0.9, 0.999), learning rate: 1e-5, scheduler: linear, warm-up steps: 1,513.

6Model: bert-base-uncased, weight decay: 0.25, epochs: 2, batch size: 1, class weights: imbal-
anced, optimizer: Adam 𝛽 = (0.9, 0.999), learning rate: 4e-6, scheduler: cosine, warm-up steps: 921.

7Model: bert-base-uncased, weight decay: 0.2, epochs: 3, batch size: 128, class weights: balanced,
optimizer: Adam 𝛽 = (0.9, 0.999), learning rate: 1e-5, scheduler: linear, warm-up steps: 1,500.

https://huggingface.co/facebook/bart-base
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
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Table 4.4: Hyperparameter prior distributions for fine-tuning text-to-text language models
to identify health-related or medical questions.

Parameter Distribution Values

Pre-trained model uniform cat. t5-base, long-t5-tglobal-base, flan-t5-base,
SciFive-base-Pubmed

Prompt
(health related)

uniform cat. Question: [question] Health related?,
Question: [question] Is this question health
related?, Question: [question] Is this
question about something health related?

Prompt
(medical)

uniform cat. Question: [question] Medical?,
Question: [question] Is this question medical?,
Question: [question] Is this question about
something medical?

Labels uniform cat. true/false, yes/no
Weight decay uniform 0 — 0.5
Epochs uniform 1 — 30
Batch size uniform 1 — 4
Optimizer fixed Adam 𝛽 = (0.9, 0.999) [KB15]
Learning rate log-uniform 1e-6 — 1e-3
Scheduler uniform cat. linear, cosine
Warm-up steps uniform 0 — 5000

RSR+20]. Text-to-text language models are based on a standard encoder-decoder
transformer architecture [VSP+17] and are trained to decode the target text given
an encoded prompt. Raffel et al. [RSR+20] suggest using the model’s input to
prompt a simple task that specifies how the text should be classified. The generated
output is then used as the classified label. With this simple approach, they achieve
an accuracy of 83.28 on the GLUE classification benchmark but also highlight a
potential issue: If the model generates a token that is not a valid class label, it
is not clear what label should be assigned to the input. Pradeep, Nogueira, and
Lin [PNL21] address this issue by fine-tuning a T5 text-to-text model to predict
either true or false as the first output token of the text-to-text model when
given a prompt like Query: [query] Document: [document] Relevant? For infer-
ence, Pradeep, Nogueira, and Lin [PNL21] look at the decoder’s first output token
probability instead of directly decoding the text. The softmax function [GBC16,
pp. 180–184] is applied after masking all other token IDs except for the predefined
true and false tokens to constrain the model to predict one of the target tokens.
The classifier then returns the token with the highest probability as class label, and
consequentially always predicts a valid label. We adapt this approach for classi-
fying questions by using different prompts (e.g., Question: [question] Is this

https://huggingface.co/t5-base
https://huggingface.co/google/long-t5-tglobal-base
https://huggingface.co/google/flan-t5-base
https://huggingface.co/razent/SciFive-base-Pubmed
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Table 4.5: Hyperparameter prior distributions for fine-tuning causal language models to
identify health-related or medical questions.

Parameter Distribution Values

Pre-trained model uniform cat. gpt2, opt-125m, gpt-neo-125M, galactica-125m,
biogpt, BioMedLM

Prompt
(health related)

uniform cat. Question: [question] Is this question health
related?, Question: [question] Is this
question about something health related?,
Question: [question] Is this question health
related, yes or no?, Question: [question] Is
this question about something health related,
yes or no?

Prompt
(medical)

uniform cat. Question: [question] Is this question medical?,
Question: [question] Is this question about
something medical?, Question: [question]
Is this question medical, yes or no?,
Question: [question] Is this question about
something medical, yes or no?

Labels uniform cat. true/false, yes/no
Weight decay uniform 0 — 0.5
Epochs uniform 1 — 30
Batch size uniform 1 — 4
Optimizer fixed Adam 𝛽 = (0.9, 0.999) [KB15]
Learning rate log-uniform 1e-6 — 1e-3
Scheduler uniform cat. linear, cosine
Warm-up steps uniform 0 — 5000

question health-related?) and target label tokens (e.g., yes and no) as listed in
Table 4.4. But the same method is used to extract a prediction from the text-to-text
language model output token probabilities.

We also transfer this approach to causal language models like GPT-2 [RWC+19].
Causal language models are decoder-only transformer models trained to predict
the next token that follows a sequence of given input tokens. For inference, we pass
the prompt to the model and then look at the output logits of the next token, i.e.,
the first predicted token after the prompt. The softmax function is again applied
after masking all other token IDs except for the target label tokens, to predict
the token with the highest probability. During fine-tuning, the target label token
is appended to the prompt and the model is fine-tuned using cross-entropy loss.
Hyperparameters for fine-tuning causal language models are given in Table 4.5.

The same Bayesian Optimization and Hyperband framework [FKH18] is used as
for the encoder models. Optimization is performed with 25 runs for each model by

https://huggingface.co/gpt2
https://huggingface.co/facebook/opt-125m
https://huggingface.co/EleutherAI/gpt-neo-125M
https://huggingface.co/facebook/galactica-125m
https://huggingface.co/microsoft/biogpt
https://huggingface.co/stanford-crfm/BioMedLM
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drawing parameters from the hyperparameter distributions specified in Table 4.5
and Table 4.4. The predefined training split of the gold label datasets is used to
fine-tune the classifiers and the models are evaluated based on their F1-score on
the validation split. Due to time constraints we do not fine-tuned language models
on the larger silver label dataset. Hyperparameter optimization was run for one
week on a shared cluster of 24 Nvidia A10 GPUs. With causal language models,
23 runs were fine-tuned successfully for classifying health-related questions and
22 for medical questions. For text-to-text language models, there were 23 successful
runs for classifying health-related questions and 23 for medical questions. Even
though we had to stop hyperparameter tuning before all planned 25 runs per model
were completed, the amount of runs is still large enough to draw conclusions about
the best hyperparameters for each classification task.

We show the four most important hyperparameters for each model in Figure 4.3.
Choosing the best pre-trained model checkpoint is the most important parameter to
tune for text classification and depends on the classification task. Of the text-to-text
language models, for example, the Long-T5 model [GAU+22] performs best to
identify health-related questions, but SciFive [PAT+21] works better to distinguish
between medical and non-medical questions. From the causal language models, the
BioGPT model [LSX+22] achieves the best F1-score on the validation set for both
tasks. A longer, clarifying prompt is also beneficial for the text-to-text language
models. Shorter prompts similar to the prompts used by Pradeep, Nogueira, and
Lin [PNL21] are less effective for question classification. Most of the successful
models required ten or more epochs of fine-tuning. Text-to-text models required
higher learning rates for fine-tuning than causal language models. Causal language
models also yield higher F1-scores with higher weight decay. The diverse parameter
settings of the most effective models show that hyperparameter optimization is
important when fine-tuning transformer-based text generation models to classify
health-related or medical questions.
Our most effective text-to-text language model for classifying health-related

questions, a fine-tuned Long-T5 model [GAU+22],8 achieved an F1-score of 0.88
on the training set and 0.83 on the validation set (nearly no overfitting). For
classifying medical questions, the most effective text-to-text model was a fine-
tuned SciFive model [PAT+21],9 overfitting more severely with an F1-score of
1.00 on the training set and 0.70 on the validation set. Our most effective causal
language models for identifying health-related andmedical questions are both based

8Model: long-t5-tglobal-base, prompt: Question: [question] Is this question about
something health-related?, labels: true/false, weight decay: 0.46, epochs: 3, batch size: 2,
optimizer: Adam 𝛽 = (0.9, 0.999), learning rate: 4e-5, scheduler: cosine, warm-up steps: 1,610.

9Model: SciFive-base-Pubmed, prompt: Question: [question] Is this question about
something medical?, labels: yes/no, weight decay: 0.48, epochs: 27, batch size: 2, optimizer:
Adam 𝛽 = (0.9, 0.999), learning rate: 3e-5, scheduler: linear, warm-up steps: 3,895.

https://huggingface.co/google/long-t5-tglobal-base
https://huggingface.co/razent/SciFive-base-Pubmed
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(a) Text-to-text language models, health-related questions.

(b) Text-to-text language models, medical questions.

(c) Causal language models, health-related questions.

(d) Causal language models, medical questions.

Figure 4.3: Parallel coordinates plot of validation F1-scores with different hyperparameter
configurations when fine-tuning language models to classify health-related or medical
questions. Configurations with higher F1 appear brighter.
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on BioGPT [LSX+22]. Here, the best model to classify health-related questions10
achieves an F1-score of 0.02 on the training set and 0.81 on the validation set,
indicating that the model does not learn the training data. The most effective causal
language model classifier for medical questions11 behaves similarly and yields an
F1-score of 0.01 on the training set and 0.73 on the validation set. The training logs
of both models reveal that the accuracy of both models increases during training
but the precision, recall, and F1-score decrease. Due to time constraints, we were
not able to investigate the cause of this behavior, but it seems likely that the models
predict the majority class (not health-related or not medical, respectively) too often.

4.4 Cascading Classification Strategies

We propose two cascading classification strategies to avoid an error of our medical
classifiers: The classifiers sometimes classify a question as medical even if it is not
health-related. But by our definition of medical questions in Chapter 3, a question
must always be health-related to be medical. All our models return prediction scores
for each class that sum up to 1, and we thus interpret the scores as probabilities,
i.e., 𝑃 (𝐻 ) for classifying health-related questions and 𝑃 (𝑀) for classifying medical
questions. The aforementioned constraint can also be formulated in reverse: A
question that is not health-related cannot be medical. Consequentially, the proba-
bility 𝑃 (𝑀 = 1, 𝐻 = 0) should equal 0. However, our medical classifiers sometimes
classify non-health-related questions as medical, i.e., 𝑃 (𝑀 = 1, 𝐻 = 0) > 0. Our
cascading strategies multiply the scores of the health-related and medical question
classifiers (inspired by mixture of experts models [Bis06, pp. 672 sqq.]) to correct the
probability 𝑃 ′(𝑀) such that 𝑃 ′(𝑀 = 1, 𝐻 = 0) = 0. We first correct the conditional
probability as follows:

𝑃 ′(𝑀 =𝑚 |𝐻 = ℎ) =
{
0 if ℎ = 0
𝑃 (𝑀 =𝑚) if ℎ = 1

10Model: biogpt, prompt: Question: [question] Is this question about something health-
related?, labels: yes/no, weight decay: 0.42, epochs: 3, batch size: 3, optimizer: Adam 𝛽 = (0.9, 0.999),
learning rate: 5e-6, scheduler: cosine, warm-up steps: 1,195.
11Model: biogpt, prompt: Question: [question] Is this question medical?, labels: yes/no,

weight decay: 0.31, epochs: 22, batch size: 2, optimizer: Adam 𝛽 = (0.9, 0.999), learning rate: 1e-6,
scheduler: linear, warm-up steps: 1,709.

https://huggingface.co/microsoft/biogpt
https://huggingface.co/microsoft/biogpt
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With this correction of the conditional probability, the constraint that questions
which are not health-related cannot be medical 𝑃 ′(𝑀 = 1, 𝐻 = 0) = 0 holds true:

𝑃 ′(𝑀 = 1, 𝐻 = 0) = 𝑃 ′(𝑀 = 1 |𝐻 = 0)
𝑃 (𝐻 = 0)

=
0

𝑃 ′(𝐻 = 0) = 0

We then use the corrected conditional probability to compute the corrected proba-
bility 𝑃 ′(𝑀) for medical questions:

𝑃 ′(𝑀 = 1) = 𝑃 ′(𝑀 = 1, 𝐻 = 0) + 𝑃 ′(𝑀 = 1, 𝐻 = 1)
= 𝑃 ′(𝑀 = 1 |𝐻 = 0) · 𝑃 (𝐻 = 0)
+ 𝑃 ′(𝑀 = 1 |𝐻 = 1) · 𝑃 (𝐻 = 1)

= 0 · 𝑃 ′(𝐻 = 0) + 𝑃 ′(𝑀 = 1) · 𝑃 (𝐻 = 1)
= 𝑃 (𝑀 = 1) · 𝑃 (𝐻 = 1)

Our cascading classification framework uses two different ways to compute the
probability 𝑃 (𝐻 ) of a question being health-related: (1) Manual ground-truth labels
as a way to simulate the best achievable effect of our cascading strategy, and (2) the
predicted scores from our health-related question classifiers to evaluate the effect
achievable in real-world applications.

4.5 Evaluation
We evaluate the most effective feature-based classifiers (Section 4.1), transformer-
based encoder models (Section 4.2), and transformer based text generation mod-
els (Section 4.3) for both health-related and medical question identification. Each
of the most effective models is evaluated in terms of classification effectiveness
and efficiency. We measure classification effectiveness by area under the receiver
operating characteristic curve, as well as accuracy, precision, recall, and F1-score
to predict the correct class (health-related vs. not health-related or medical vs.
not medical). Inference efficiency is measured by throughput, i.e., the number of
questions that can be classified by the model per second on a high-end laptop (Intel
i7 8-core CPU, no GPU used, measured time includes data loading, embeddings,
and inference). Recall that the classifiers are targeted at identifying health-related
or medical questions in a search engine, in order to let the system use specialized
retrieval approaches (e.g., misinformation detection). An ideal model should be
able to identify most of the health-related or medical questions but should also not
classify too many false positives. We therefore primarily focus on the F1-score of
the classifiers, but also consider a high throughput to be beneficial for application
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Table 4.6: Classification performance of our most effective models trained to identify
health-related or medical questions. Effectiveness is reported with respect to area under
the ROC curve (AUC), accuracy (Acc.), precision (P), recall (R), and F1-score on the test set.
Throughput is measured for inference on an Intel i7 8-core CPU. Best results per task are
highlighted in bold.

Model Effectiveness Efficiency

AUC Acc. P R F1 Throughput

Classifiers for health-related questions

SVM (gold labels) 0.96 0.93 0.85 0.74 0.79 41.6/s
XGBoost (gold labels) 0.93 0.92 0.80 0.70 0.75 63.8/s
Encoder (gold labels) 0.96 0.94 0.88 0.73 0.80 24.4/s
Encoder (silver labels) 0.92 0.90 0.67 0.81 0.73 29.8/s
Causal LM (gold labels) 0.95 0.92 0.82 0.72 0.76 5.5/s
Text-to-text LM (gold labels) 0.96 0.94 0.87 0.74 0.80 6.8/s

Classifiers for medical questions

SVM (gold labels) 0.96 0.96 0.74 0.64 0.69 68.6/s
XGBoost (gold labels) 0.97 0.95 0.70 0.62 0.66 408.6/s
Encoder (gold labels) 0.97 0.95 0.67 0.64 0.65 29.9/s
Encoder (silver labels) 0.93 0.90 0.42 0.81 0.55 27.7/s
Causal LM (gold labels) 0.96 0.95 0.68 0.67 0.68 5.8/s
Text-to-text LM (gold labels) 0.94 0.94 0.63 0.60 0.61 9.7/s

Cascading classifiers for medical questions (using ground-truth health-related labels)

SVM (gold labels) 0.99 0.96 0.81 0.64 0.72 —
XGBoost (gold labels) 0.98 0.96 0.79 0.62 0.70 —
Encoder (gold labels) 0.98 0.95 0.72 0.64 0.68 —
Encoder (silver labels) 0.97 0.93 0.52 0.81 0.63 —
Causal LM (gold labels) 0.98 0.96 0.72 0.67 0.69 —
Text-to-text LM (gold labels) 0.98 0.95 0.73 0.60 0.66 —

Cascading classifiers for medical questions (using health-related predictions)

SVM (gold labels) 0.98 0.96 0.79 0.61 0.69 25.9/s
XGBoost (gold labels) 0.97 0.95 0.72 0.58 0.64 55.2/s
Encoder (gold labels) 0.97 0.95 0.69 0.60 0.64 13.4/s
Encoder (silver labels) 0.94 0.90 0.42 0.80 0.55 14.4/s
Causal LM (gold labels) 0.97 0.95 0.68 0.67 0.68 2.8/s
Text-to-text LM (gold labels) 0.96 0.95 0.69 0.60 0.64 4.0/s
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in ad hoc applications. Our random forest classifiers always predict the same class
and are therefore not considered for further evaluation. Our cascading classifica-
tion framework is evaluated in both variants, using manual labels and using the
predictions from our health-related question classifiers.
Table 4.6 shows an overview of the classification performance of our most ef-

fective models for both classification tasks. We report three classification settings:
(1) Identifying health-related questions from a set of questions that could be queried
by users, (2) directly identifying medical questions, and (3) identifying medical
questions only within the pool of previously identified health-related questions. A
cascade of two classifiers – one for health-related questions and one for medical
questions – can be beneficial because a question that is not health-related can
by definition never be medical. We evaluate cascades that either use the manual
ground-truth label to rule out non-health-related questions or use the predictions
of the most effective health-related question classifier of the same type (e.g., best
SVM classifier for health-related questions when identifying medical questions
with an SVM). We also report the receiver operating characteristic (ROC) curves
(Figure 4.4) and precision-recall curves (Figure 4.5) for all evaluated classifiers. In
the health-related question classification setting, our text-to-text language model
fine-tuned on the gold label dataset achieves the best F1-score (0.80) and area under
the ROC curve (AUC: 0.96), indicating that fine-tuned text generation models can
successfully be used for binary classification of questions. But as text generation
models were the slowest models in our evaluation, using them in a real-world
search system might not be desirable. The most effective encoder model fine-tuned
on the gold labels is comparably effective but four times faster. Fine-tuning the
encoder model on the larger silver label dataset instead of the gold label dataset
increases recall (0.81) at the cost of lower precision (0.67). The encoder model’s
ROC curve in Figure 4.4a reveals that it yields more false-positives even at lower
thresholds of the true positive rate. Except for the encoder model fine-tuned on
the silver label dataset, all model types have a similar precision-recall curve. Even
the simpler and faster embedding-based SVM classifier performs well to identify
health-related questions. It achieves an F1-score of 0.79, only slightly worse than
our most effective neural models. One explanation for the worse effectiveness of
our classifiers trained on the silver label dataset is that the automatic silver labels
are not very precise (labeling precision: 0.66, F1: 0.74; cf. Table 3.8) and the encoder
model trained on these labels (precision: 0.67, F1: 0.73; cf. Table 4.6) is limited by
the quality of automatic labels.

SVM classifiers using sentence embeddings are also the most effective models to
identify medical questions, and yield an F1-score of 0.69. Because medical questions
are rarer and often use a complex vocabulary, classification effectiveness is generally
worse than for health-related questions. This is also reflected in the precision-recall
curves in Figure 4.5b, where all model types have a lower precision at high recall
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(a) Classifiers for health-related questions.
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(b) Classifiers for medical questions.
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(c) Cascading classifiers for medical questions (using ground-truth health-related labels).
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(d) Cascading classifiers for medical questions (using health-related predictions).

Figure 4.4: Receiver operating characteristic curves of our most effective models to identify
health-related or medical questions. Better models have a larger area under the ROC curve,
perfect models touch the upper left corner (i.e., FPR: 0, TPR: 1).
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(a) Classifiers for health-related questions.
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(b) Classifiers for medical questions.
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(c) Cascading classifiers for medical questions (using ground-truth health-related labels).
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(d) Cascading classifiers for medical questions (using health-related predictions).

Figure 4.5: Precision-recall curves of our most effective models to identify health-related
or medical questions. Better models have a larger area under the precision-recall curve,
perfect models touch the upper right corner (i.e., recall: 1, precision: 1).
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thresholds. The best recall (0.81) is achieved by the encoder model fine-tuned on
the larger silver label dataset at the cost of a low precision of only 0.42, that is likely
limited by the automatic labeling quality (precision: 0.40; cf. Table 3.8). Because of
this limitation, we expect future improvements in the automatic labeling process to
propagate to the encoder models that are fine-tuned on these silver labels. Gradient
boosting also yields good effectiveness results for classifying medical questions,
and is only slightly outperformed by the SVM classifier. But with a throughput of
409 questions per second, it is by far the fastest evaluated model in our experiments.
The high efficiency and decent effectiveness, again highlights the usefulness of
sentence embeddings for fast feature-based classification.
Our cascading classification strategy for medical questions is evaluated in two

scenarios: (1) With manual ground-truth labels and (2) with predictions from
the health-related question classifiers. Using manual labels, all 1,236 non-health-
related questions from the test set are marked as not medical, leaving only the
253 health-related questions to be further classified as medical or not. As Figure 4.4c
shows, this pre-filtering caps the worst false positive rate that could be achieved
while identifying all true positives correctly (TPR: 1) at 17 % (i.e., if all remaining
questions are classified as medical). In the scenario of using predictions from
the health-related question classifiers, the slightly deteriorated predictions from
actual health-related question classifiers reduce the beneficial effect of cascading
classification. But we still observe higher effectiveness for identifying medical
questions. The most effective cascade model, our SVM classifier trained on the gold
label dataset, achieves a precision of 0.79 and a recall of 0.79. Compared to the same
medical question classifier without cascade, this reflects a precision improvement
of 5 percent points but decline in recall of 3 percent points. Because the effects
of the cascade are marginal even when using the manual ground-truth labels to
pre-filter questions that are not health-related, we conclude that the cascade is not
beneficial for identifying medical questions. An important consideration is that
we trained our model for identifying medical questions on the full (gold or silver
label) datasets, i.e., with a skewed label distribution. Another promising approach
could be to limit training of medical question classifiers to only the health-related
questions. This would reduce the number of negative training examples and thus
balances the label distribution. Our datasets allow for such an approach, but due to
time constraints, we leave further analyses for future work.

4.6 Summary

We have presented efficient and effective approaches to identify both health-related
and medical questions using a variety of feature-based and transformer-based mod-
els. Hyperparameter tuning with Bayesian Optimization and Hyperband allowed
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us to find the best parameters for each type of model and task in just 25 iterations.
Our approaches based on sentence embeddings proved to be both effective and effi-
cient for identifying health-related and medical questions. For classifying medical
questions feature-based approaches even outperform much larger encoder models.
From our models to identify health-related questions, we found that the most ef-
fective model is a text-to-text language model fine-tuned on the gold label dataset,
that achieves an F1-score of 0.80 on the test set. Hence, we improve upon the
rule-based prior approaches by Eysenbach and Köhler [EK03] (F1: 0.50). Advances
by Schlatt et al. [SBH+22] who use BERT models to classify cause-effect statements
as health-related are not directly comparable to our work, as they do not classify
questions but rather statements. Nonetheless, their reported F1 effectiveness of 0.92
is considerably higher than our best model. Our most effective model for identifying
medical questions is an SVM using sentence embeddings as features. This SVM
model is also fine-tuned on the gold label dataset and achieves an F1-score of 0.69.
Cascading approaches for identifying medical questions are not beneficial in our
setting. Prior approaches, e.g. by Liu, Antieau, and Yu [LAY11] (F1: 0.89), is often
not comparable to our approach due to the different definition of medical questions
(i.e., we have labeled based on the expertise needed to answer the question while
others used labels based on the background of the questioner).

With respect to our Research Question 4, it is hard to compare against prior work
because no benchmark dataset exists yet for the task of identifying health-related
questions or sentences. Nonetheless, our best classifiers achieve a good F1-score
of 0.80 for health-related questions and a reasonable F1-score of 0.69 for medical
questions. At least for health-related questions, we can therefore conclude that
our best approach (fine-tuning a text-to-text language model) is effective. It is
also reasonably effective, with a throughput of multiple questions per second on a
consumer-grade CPU, even though our evaluations do not consider parallelization or
GPU acceleration. Our medical question classifier is even faster but not as effective.
Research Question 5 concerns the effectiveness of training encoder models on
larger, automatically labeled datasets. We find that our models closely approximate
the label distribution of our silver label dataset, and hence, achieve a higher recall
than models trained on the smaller gold label dataset (0.81 for both label types,
highest of all evaluated models). This increase in recall comes at the cost of lower
precision and F1-scores and we therefore can neither conclude that automatic
labeling increases nor that it decreases the effectiveness of encoder models. We
leave further analyses of the effectiveness of automatic labeling for future work.
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Chapter 5

Answering Health-Related Yes-No
Questions

In the previous two chapters, we have demonstrated how health-related or medical
questions can be identified in search engines. We now discuss approaches to
answer these questions. In particular, we focus on answering health-related yes-no
questions about treatments for diseases, the type of questions used in the TREC
Health Misinformation tracks [ASL+19; CMS+22; CMS21; CRS+20]. Answering
open questions is left as an open challenge for future work.
We first build a modular pipeline using evidence retrieved from PubMed (Sec-

tion 5.1) to answer health-related yes-no questions (Section 5.2). After the topic
answer is found, our approach retrieves supporting web documents to back up
the answer (Section 5.3) and re-ranks the documents to favor correct information
over misinformation (Section 5.4). In view of increasing calls for improving the
reproducibility of information retrieval research [Lin22], our pipeline consists of
self-contained modules that each serve a single purpose. The PyTerrier frame-
work [MTM+21] is utilized to implement and compose the modules, and we use
Elasticsearch1 to build our search indices. In Figure 5.1, we give an overview of our
four-stage pipeline for inferring the correct answer and ranking web documents to
reduce misinformation. The stages are explained in the first sections of this chapter.

For evaluation, we then discuss how this modular retrieval pipeline has been used
in our participation in the TREC 2022 Health Misinformation track, and explain the

topic evidence retrieval
(see § 5.1)

answer inference
(see § 5.2) answer

web retrieval
(see § 5.3)

answer re-ranking
(see § 5.4) ranking

Figure 5.1: Overview of our pipeline for answering health-related yes-no questions and
retrieving helpful documents that support the answer.

1https://elastic.co/elasticsearch

https://elastic.co/elasticsearch
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topic BM25
(Elasticsearch)

PubMed index

monoT5 duoT5 filters ranking

Figure 5.2: Flowchart of our evidence retrieval pipeline. Dashed arrows indicate that a
step can be skipped.

five runs submitted for answer inference and ten runs submitted for web retrieval
(Section 5.5.2). The runs from our TREC submissions are complemented with four
runs based on a multi-stage grid search optimization to find the best parameters for
evidence retrieval, answer inference, web retrieval, and answer re-ranking, based
on topics from the TREC 2021 Health Misinformation track (Section 5.5.3). To
facilitate tuning and evaluation of the evidence retrieval stage, we gather manual
relevance and answer judgments for medical abstracts retrieved from PubMed
(Section 5.5.1). As an outlook to recent advances in large conversational language
models, we also build runs using two chat models for answering health-related
yes-no questions (Section 5.5.4). Our runs for each stage are then evaluated with
the PyTerrier and ir_measures libraries [MMO22; MTM+21] on the topics from
the TREC 2022 Health Misinformation track. We discuss important aspects learned
from the shared task results and show how grid search optimization improves our
health-related question answering pipeline (Section 5.5.5). The chapter is concluded
with a summary of our contributions, which also addresses the research questions
that were posed in Chapter 1 (Section 5.6).

5.1 Evidence Retrieval

Recall our example from Figure 1.1 in Chapter 1: Popular search engines like Bing
often incorrectly answer health-related questions because their answer can be
based on any web document that was found to be relevant to the question, even
including unverified sources. This approach clearly fails to prevent misinformation.
We argue that answers to health-related questions must instead be grounded on
solid evidence, such as found in peer-reviewed biomedical publications.

The PubMed2 is a large government-maintained repository of biomedical litera-
ture and contains citations and abstracts of 35 million scientific articles from the
fields of life sciences, behavioral sciences, chemical sciences, and bioengineering.
Because the PubMed contains evidence of all grades, from relatively recent case

2https://pubmed.gov

https://pubmed.gov
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studies, e.g., about garlic-induced face burn,3 to systematic reviews, e.g., about
the effectiveness of COVID-19 vaccines,4 we can use it to retrieve evidence for
answering both current and long-standing health-related questions. Scientific ab-
stracts also often contain a conclusion to the articles research question. Intuitively,
we can therefore use PubMed abstracts as context to infer the correct answer to
a health-related question. We propose a retrieval pipeline, shown in Figure 5.2,
which first retrieves abstracts from an index of PubMed abstracts and then uses
pre-trained text-to-text models to re-rank the initial candidates, as proposed by
Pradeep, Nogueira, and Lin [PNL21]. Filtering can be applied after re-ranking to
remove articles without an abstract text or without a title.
The U.S. National Library of Medicine each year releases a complete snapshot

of all articles in PubMed. We use Elasticsearch to index the abstracts and titles of
the 34 million scientific articles from the snapshot of 2022,5 resulting in an index
of 73GB. From this index, we retrieve up to 1,000 abstracts for each topic with
BM25 [RWJ+94] on the title and abstract text, as implemented in Elasticsearch.
Either the topic’s natural language question (description field) or the provided
keyword query (title field) can be used with this approach. We then re-rank up
to 1,000 of the top results from BM25 using monoT5 [PNL21], a pointwise neural
re-ranker based on a fine-tuned text-to-text model. Different monoT5 models are
utilized in our experiments, which were all tuned on subsets of the MS MARCO
dataset [NRS+16]. Up to 50 of the top-ranked results from the monoT5 ranking
are then re-ranked using duoT5 [PNL21], a pairwise neural re-ranker similarly
based on a text-to-text prompting. Again, we try different duoT5 models that were
pre-trained on MS MARCO. The last steps of our evidence retrieval stage consist
of optionally filtering out abstracts with an empty body or title, as they are not
useful for answering the question.

5.2 Answer Inference

After retrieving relevant evidence for a topic, we use pre-trained claim verification
models and question answering models to infer a yes/no answer to the topic’s
question as shown in Figure 5.3. Both claim verification models and question
answering models expect an input of a text context on which the answer is based.
We use the retrieved articles’ abstracts and titles as context for the models. Claim
verification models then predict whether a claim can be supported or refuted given
the context [TVC+18]. Question answering models instead use the context to
directly answer the given question [KMK+20]. Multiple models can be used in

3PubMed ID: 33691515
4PubMed ID: 35202601
5https://pubmed.gov/download#annual-baseline

https://pubmed.gov/33691515/
https://pubmed.gov/35202601/
https://pubmed.gov/download#annual-baseline
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Figure 5.3: Flowchart of our answer inference pipeline. Dashed arrows indicate that a step
can be skipped.

our pipeline. The article-level answers of different models are averaged to form
one answer for each article. We then optionally apply axiomatic re-ranking using
the publication dates to resolve conflicts where the predicted answer based on
one article contradicts the answer based on another article [HVG+16]. Finally, the
answers from all articles that are retrieved for a topic are aggregated to form a
single answer for the topic’s question.

Two claim verificationmodels and two question answeringmodels are considered
in this thesis: (1) MultiVerS, a claim verification model with checkpoints pre-trained
on different (scientific) claim verification datasets [WLW+22], (2) Vera, which was
proposed to predict document-level effectiveness of treatments in the TREC 2021
Health Misinformation track [PMN+21], (3) UnifiedQA, a question answering
model pre-trained on various question answering datasets [KMK+20], and (4) a
RoBERTa model fine-tuned on the BoolQ dataset to predict binary yes/no answers
to closed-ended questions. Different models and checkpoints are used for our TREC
submissions (Section 5.5.2) and our grid search experiments (Section 5.5.3), and we
experiment with using either the topic’s title or description field as the model’s
claim or question. Answers are predicted for up to 1,000 abstracts, depending on
the configuration. We normalize all models’ outputs to a 0–1 normalized answer
score where values near 1 denote “yes”, near 0 denotes “no”, and values in between
denote uncertainty. Even though the claim verification models were originally
trained to predict the supporting/refuting probabilities (given a claim and a text
passage), we interpret their predictions as yes/no answer prediction scores. This
follows our intuition that evidence which supports a claim about some treatment
is analogous to giving a yes answer to a question about the effectiveness treatment
based on the same evidence.
The normalized answers for each topic-article pair are combined by averaging

the predicted answer scores from all used models, leaving one answer score for
each topic-article pair. Sometimes, the answers inferred from different articles of
the evidence ranking may contradict each other, e.g., if the answer of the first-
ranked article is “no”, but the answer of the second article is “yes”. In medical
sciences, it is not uncommon that results of older studies are disproved by newer
studies. For example, it had been generally accepted that vaccines could cause
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autism in children until studies in the 2000s disproved this myth [GO09]. Intuitively,
we should therefore favor newer over older evidence when inferring answers to
health-related questions. In our pipeline, we reflect this preference by re-ranking
the predicted article-level answers using information retrieval axioms [HVG+16].
Axioms are constraints that induce a pairwise preference between two items, given
that the axiom’s precondition is met. We use the ir_axioms library [BFR+22] to
formulate the following axiom: Given two articles with contradicting answers to
the topic, the more recently published article’s answer should be preferred. Article
publication dates are retrieved using the PubMed API.6 The axiom is applied to all
pairs of articles retrieved for a topic, and the conflicting articles are re-ranked with
the KwikSort algorithm [ACN08].

We propose five different answer aggregation strategies. The first four strategies
aggregate the answer scores of all considered articles disregarding their ranking
position: (1) Averaging, (2) strict aggregation that returns the most pessimistic
(closest to 0) answer score, (3) relaxed aggregation that returns the most optimistic
(closest to 1) answer score, and (4) majority voting by counting the number of “yes”
and “no” answers (answer score threshold: 0.5). The drawback of the aforementioned
aggregations is that the topical relevance of the retrieved evidence (estimated by
the retrieval score) is not considered. But we assume that answers inferred from
more relevant (and more recent, in case of conflict re-ranking) articles might be
closer to the true answer, and thus, should receive a higher aggregation weight. In
our fifth aggregation strategy, we therefore discount the aggregation weights of
articles with lower ranking positions, similar to how cumulative gain is discounted
in the nDCG relevance measure [JK02].

Discounted answer aggregation of the topic answer score consists of three steps:
First, the predicted answer score score𝑖 from the article at rank 𝑖 is discounted
by the logarithm of its rank, and we compute the discounted cumulative answer
score DCA for the top-𝑘 articles:

DCA𝑘 =

𝑘∑︁
𝑖=1

score𝑖
log2 𝑖 + 1

Second, the normalization factor for a ranking of 𝑘 articles is computed as the
maximum achievable (ideal) discounted cumulative answer score IDCA (i.e., if all
article answers were “yes”):

IDCA𝑘 =

𝑘∑︁
𝑖=1

1
log2 𝑖 + 1

6https://ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESummary

https://ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESummary
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Figure 5.4: Flowchart of our web retrieval pipeline. Dashed arrows indicate that a step can
be skipped.

Finally, we use the normalized discounted cumulative answer score nDCA𝑘 as the
predicted answer score to the topic:

nDCA𝑘 =
DCA𝑘

IDCA𝑘

This approach imitates human search behavior like nDCG does: When skimming
through evidence to answer a question, people tend to trust the top-ranked articles
more than the lower-ranked ones [AS19]. We experiment with different cutoff
points for each of the five aggregation strategies, using up to 1,000 articles for each
topic to infer the answer.

5.3 Web Retrieval
Our web retrieval stage follows a standard ranking architecture composed of lexical
candidate retrieval and neural re-ranking as proposed by Pradeep, Nogueira, and
Lin [PNL21]. Figure 5.4 shows a flowchart of the components of the web retrieval
pipeline. The C4 corpus is used as the web collection for our web retrieval exper-
iments [DSM+21; RSR+20]. Like with evidence retrieval (Section 5.1), we index
the 1 billion documents in Elasticsearch, resulting in a distributed index size of
18 TB. Up to 1,000 documents are retrieved for each topic with Elasticsearch’s BM25
scoring [RWJ+94] using the topics’ question or query. Up to 1,000 of the top results
from BM25 are then re-ranked with monoT5, and up to 50 of the top-ranked results
from the monoT5 ranking are again re-ranked with duoT5 [PNL21]. We experiment
with varying re-ranking depths and different monoT5/duoT5 models that were
pre-trained on parts of the MS MARCO dataset [NRS+16]. Topic answers are not
yet considered in the web retrieval stage.

5.4 Answer-Based Re-Ranking
The documents retrieved by our web retrieval pipeline are so far only ranked based
on their topical relevance. But for health-related questions, it is important to also
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Figure 5.5: Flowchart of our answer re-ranking pipeline. Dashed arrows indicate that a
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consider the correctness of the information contained in the retrieved documents.
Misinformation should be penalized and never appear on high ranks. To this end,
we propose to first predict the answer to the topic’s question for each retrieved
document, and then compare the document answer to the “true” answer that was
predicted for the topic (Section 5.2). We then combine the document retrieval
scores with the answer prediction scores using different strategies to obtain a final
answer-based ranking with less misinformation at the topmost ranking positions.
The steps of this answer-based re-ranking pipeline are shown in Figure 5.5.

To predict answers from web documents, we apply the same set of claim veri-
fication and question answering models that were used to infer the topic answer
(Section 5.2) and similarly combine the document-level answers if more than one
model is used. We interpret the topic answer inferred from PubMed evidence as the
“true” answer to compare the document answers to. To “sharpen” the topic answer,
we optionally binarize the topic answer at a configurable threshold, such that the
topic answer is set to 1 (“yes”) if the predicted topic answer score is greater than
the threshold and to 0 (“no”) otherwise.

For re-ranking, we then compute the difference between the predicted (optionally
binarized) answer score of the topic 𝑇 (used as the “true” answer) and the answer
score each ranked document 𝐷 :

Δ answer =
�� answer(𝑇 ) − answer(𝐷)

��
This answer difference can serve as a proxy to the incorrectness of a web document.
That is, if the topic answer was “yes”, then Δ answer is smaller for documents where
the predicted answer is also “yes”. The closeness 1−Δ answer to the predicted “true”
topic answer can similarly serve as a proxy for document correctness. We propose
four answer-based re-ranking strategies that combine a document’s retrieval score
(estimating the topical relevance) with its correctness: (1) Linear score boosting
multiplies the retrieval score with the closeness to the predicted topic answer:

scorelin(𝐷) = scoreBM25+T5(𝐷) · (1 − Δ answer)
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Figure 5.6: Influence of answer difference on the original retrieval score with different
score combination strategies.

(2) Polynomial score boosting multiplies the original retrieval score with the soft-
ened closeness to the predicted topic answer, by squaring the answer difference. For
documents answers relatively close to the topic answer, the impact on the retrieval
score is not as strong as for documents with a large answer difference:

scorepol(𝐷) = scoreBM25+T5(𝐷) · (1 − Δ answer2)

(3) Logarithmic score boosting multiplies the original retrieval score with the
negative logarithm of the difference to the predicted topic answer:

scorelog(𝐷) = scoreBM25+T5(𝐷) · − log(Δ answer)

And (4) weighted score combination combines the original retrieval score with the
closeness to the predicted topic answer using a configurable weight 𝛼 :

scorecom(𝐷) = 𝛼 · scoreBM25+T5(𝐷) + (1 − 𝛼) · (1 − Δ answer)

In Figure 5.6, we compare the six answer combination strategies. The score boosting
strategies (linear, polynomial, and logarithmic) in the upper row of Figure 5.6
multiply the original score. Consequentially, the combined scores approach 0 for
higher answer differences. The polynomial and logarithmic variants can be seen as
“softer” and “stricter” variants of the linear score boosting strategy, respectively. For
the weighted score combinations in the lower row of Figure 5.6 scores are shifted
down for higher answer differences. The trade-off factor 𝛼 can be used to adjust
the impact of the answer difference on the final score.
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5.5 Evaluation
We facilitate two settings to evaluate our approaches: (1) By participating in the
TREC 2022 Health Misinformation Track [CMS+22] with five answer prediction
and ten retrieval runs based on our framework (Section 5.5.2), and (2) by performing
a grid search parameter optimization using relevance and answer judgments from
TREC 2021 and manually annotated judgments for PubMed articles (Section 5.5.3).

Because the four stages of our approach are different in their goals and outputs,
we evaluate them separately using specialized measures for each stage. For rel-
evance judgments, we adopt the notion of graded relevance proposed by Clarke
et al. [CRS+20] for the TREC Health Misinformation tracks from 2020 to 2022.
Graded relevance labels do not only take into account a document’s relevance but
also its correctness and credibility. Clarke et al. [CRS+20] claim that a relevant
but incorrect document is even worse than an irrelevant document and assign
the graded labels accordingly. They refrain from using normalized discounted
cumulative gain (nDCG) [JK02] on graded judgments as the primary measure for
misinformation-aware rankings because it does not penalize incorrect informa-
tion [CRS+20]. But because incorrect yet relevant information is considered to be
the most harmful, we must consider the incorrectness of the retrieved documents
in evaluation. Clarke, Vtyurina, and Smucker [CSV20; CVS20] propose a new
measure, the compatibility to an ideal ranking, to evaluate the effectiveness of
rankings where relevance levels are hard to define, e.g., when considering incor-
rect documents. At TREC Health Misinformation, the compatibility is separately
measured for helpful documents (i.e., relevant and correct documents) and harmful
documents (i.e., relevant but incorrect), and the effectiveness of misinformation
prevention is measured as the difference between the helpful and harmful com-
patibility. We use the compatibility measures as the primary measure to evaluate
our three stages which return rankings: (1) Evidence retrieval, (2) web retrieval,
and (3) answer-based re-ranking. For the answer prediction stage, we use a set of
common classification measures with the primary measure being the area under the
receiver operating characteristic curve (AUC) as proposed at TREC 2022 [CMS+22].

The TRECHealthMisinformation tracks also provide an extensive set of relevance
judgments for documents from the C4 corpus and provide verified expert-annotated
true answers for each of the topics used in the tracks [CMS+22; CMS21]. The
judgments were obtained by NIST assessors7 labeling the relevance, correctness, and
credibility of the documents from submitted TREC runs. Because of the high quality
of TREC judgments, we use these judgments and true answers for our evaluation.
Evidence retrieval effectiveness was, however, not measured nor annotated in the
TREC shared tasks. We therefore create our own relevance judgments for evidence

7The U.S. National Institute of Standards and Technology (NIST) hosts the TREC conference series
and usually recruits retired employees for relevance assessments.
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retrieval by manually annotating the relevance and answer of 2,096 documents
retrieved for 151 topics (Section 5.5.1).

5.5.1 Manual Judgments for Evidence Retrieval

To assess the effectiveness of evidence retrieval approaches from the PubMed corpus,
we create graded relevance judgments based on the manual assessment of topical
relevance and represented answer of 2,096 medical abstracts pooled for 151 top-
ics from the TREC 2019, 2021, and 2022 Health Misinformation tracks [ASL+19;
CMS+22; CMS21] as well as for the 15 consumer health questions by Bondarenko
et al. [BSD+21]. Top-5 pooling is used on six retrieval systems that retrieve abstracts
and titles from an Elasticsearch index of 34M articles from PubMed: (1) The top-
1000 retrieved by Elasticsearch’s BM25 [RWJ+94] using the topic’s query (title
field), (2) the 1,000 documents from the BM25 ranking after first re-ranking the
top-100 with monoT5 (monot5-base-msmarco) and then re-ranking the top-5 again
with duoT5 (duot5-base-msmarco) both pre-trained on MS MARCO [NRS+16;
PNL21], (3) the monoT5-duoT5 re-ranked abstracts additionally filtered for non-
empty title and abstract text; and (4–6) the same three rankings applied using the
topic’s natural language question (description field) instead of the query. In total,
2,096 documents are included in the pool.

To build relevance judgments in the same way as the TREC Health Misinforma-
tion tracks [CRS+20], we need to label each document’s relevance, answer, and
credibility. Four volunteers with a computer science or media science background
(1 Master’s student, 1 Master’s graduate, and 2 PhD students) were asked to anno-
tate the pooled abstracts. While none of the annotators had professional medical
training, they were familiar with medical texts and had previously worked on medi-
cal information retrieval annotation tasks. We derive annotator instructions similar
to the guidelines used in the TREC 2022 Health Misinformation track [CMS+22].
To reduce annotation time for the volunteer annotators, we simplify the original
instructions from TREC to only consider one relevance level (i.e., relevant or not).
Instructions for answer assessment are used without modification. Credibility as-
sessments are not made under the assumption that almost all abstracts on PubMed
are published in peer-reviewed journals and hence, are automatically labeled as
credible. The full (revised) annotation instructions are available in Appendix A.3.
We conduct a pilot study where each of the three annotators is asked to an-

notate the same 66 abstracts from five topics, to assess the annotation time and
inter-annotator agreement. Annotating the 66 abstracts from the pilot study was
measured to take 40 minutes. We therefore estimate that judging the remaining
pooled documents takes 21 hours or five hours per annotator. We measure inter-
annotator agreement using Fleiss’^ [Fle71] for the two labels, relevance and answer,
separately. Moderate to substantial agreement is achieved with ^ = 0.64 on the

https://huggingface.co/castorini/monot5-base-msmarco
https://huggingface.co/castorini/duot5-base-msmarco
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relevance labels and ^ = 0.55 on the answer labels [LK77]. Both the high annotation
time8 and the moderate inter-annotator agreement indicate that the annotation task
is challenging and that the instructions are not clear enough. After a chat discus-
sion with the annotators, we therefore extended the annotation instructions with
examples and clarifications. Nonetheless, the annotator agreement is considered
high enough to be able to use the judgments for evaluation.
The remaining abstracts are distributed to the four annotators and annotated

by each annotator individually. Due to the high annotation time we refrain from
conducting a second inter-annotator agreement study. Instead, we compare the
label distribution of the complete pool with the label distribution from the Monant
Medical Misinformation dataset [SPT+22], a dataset of 317,000 medical news articles
with associated fact-checked claims. We expect both datasets to follow similar label
distributions, as both datasets are based on medical texts and both datasets are
annotated for effectiveness (i.e., “yes” answer) and ineffectiveness (i.e., “no” answer).
Our labels of scientific abstracts yield a less severe confirmation bias than the labels
by Srba et al. [SPT+22] on scientific news articles. Relevant abstracts from PubMed
were confirming the question in 44% of all cases compared to of 66 % confirmed
claims in the Monant dataset. The number of inconclusive abstracts or articles
is higher in our judgments (46 %, Monant dataset: 6 %) and fewer abstracts from
PubMed contradict the question (10 %, Monant dataset: 28 %). Except for a higher
percentage of inconclusive abstracts, the label distribution is similar to the Monant
dataset and our judgments are therefore considered valid.
During the annotation process, we also observed that some abstracts are not

medical, but related to other fields like material sciences.9 We also found that some
abstracts are duplicates, indicating that deduplication of evidence search results
might be necessary. An example of duplicated abstracts on PubMed is the article
“Oral contraceptives for functional ovarian cysts”, which appeared five times10 for
the question “Will taking birth control pills treat an ovarian cyst?” Due to time
constraints, we were unable to address this issue, but future work should investigate
how retrieving duplicated abstracts or abstracts from other field could bias answer
prediction as was previously demonstrated by Fröbe et al. [FBP+20; FBR+20].
Annotations from the pilot study are aggregated by majority vote of the four

annotators, using the author’s vote as a tie-breaker. We then use the annotations
from all 2,096 documents to derive binary and graded judgments in the same way
as Clarke et al. [CRS+20]: First, correctness labels are obtained by comparing each
article’s annotated answer label with the topic’s true answer field. For simplicity and
due to high amount of peer-reviewed articles on PubMed, we consider all articles

8Settles, Craven, and Friedland [SCF08] report an average annotation time of 7.6 seconds for a
similar binary annotation task on PubMed abstracts, 5 times less time than our task (36 s).

9E.g., one abstract about the fragility of crystals; PubMed ID 23023553.
10PubMed IDs: 17054275, 19370628, 19701050, 21901701, and 24782304.

https://pubmed.gov/23023553/
https://pubmed.gov/17054275/
https://pubmed.gov/19370628/
https://pubmed.gov/19701050/
https://pubmed.gov/21901701/
https://pubmed.gov/24782304/
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Table 5.1: Graded and binary relevance judgments derived from manual annotations of
PubMed abstracts on 4 datasets of health-related yes-no questions. Relevance labels are
generated for helpful results only (Help), harmful results only (Harm), relevant results,
relevant and correct results (R & Co), and incorrect results (Incor.).

Track/Dataset Graded Binary

Help Harm Relevant R & Co Incor.

TREC 2019 Health Misinfo. [ASL+19] 438 5 652 97 5
TREC 2021 Health Misinfo. [CMS21] 287 54 625 141 54
TREC 2022 Health Misinfo. [CMS+22] 193 27 645 98 27
Health Misbeliefs [BSD+21] 43 7 166 16 7∑
Total 961 93 2088 352 93

as credible. We then use the mapping from Clarke et al. [CRS+20] to derive graded
labels that combine the preference orderings of an article’s relevance, correctness,
and credibility. Table 5.1 shows how many relevance judgments were created for
each annotated dataset. These relevance judgments are used for hyperparameter
optimization (Section 5.5.3) and to evaluate the effectiveness of evidence retrieval
approaches discussed in Section 5.5.5.

5.5.2 TREC Health Misinformation Track

Shared tasks such as TREC11 enable the large-scale of advancing approaches in
the field of information retrieval. With a focus on preventing misinformation in
the retrieval for health-related questions, the TREC 2022 Health Misinformation
track represents a good opportunity to evaluate our approach on yet unseen top-
ics [CMS+22]. The 2022 edition of the shared task was the first to feature a second
task besides the web retrieval task: Participants were not given the true topic
answers in advance but instead had to predict the answer for all 50 topics. We
participate in both tasks, answer prediction and web retrieval.
We participate in the TREC Health Misinformation track with an international

team of researchers from the Webis group [BFG+22]. From the 20 runs submitted to
the track by the Webis team, 15 runs are based on our proposed question answering
and retrieval pipeline and the remaining runs were created by other team members.
The five answer prediction runs use the first two stages of our pipeline (Sections 5.1–
5.2) and the ten web retrieval runs use all four stages described in Sections 5.1–5.4.
In the following, we shortly characterize our submissions to the two tasks. The
results are discussed in Section 5.5.5.
11https://trec.nist.gov/

https://trec.nist.gov/
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Answer Prediction Task To predict a correct answer to the 50 health-related yes-
no questions, we employ our pipeline with different pre-trained question answering
and claim verification models. All five answer prediction runs use the abstracts from
1,000 PubMed articles as evidence. After retrieving 1,000 abstracts from our PubMed
index on Elasticsearch using the topic’s question as the query and BM25 for scoring,
we first re-rank all 1,000 results from BM25 with monoT5 [PNL21] pre-trained
on medical passages from MS MARCO (monot5-3b-med-msmarco) and then again
re-rank the top-50 results from monoT5 with duoT5 [PNL21] also pre-trained on
MS MARCO (duot5-3b-med-msmarco).12 Our runs use different answer prediction
models: One run uses a question answering model, two runs use claim verification
models, and two runs use a combination of both. In all runs, the topic answer is
based on the predicted answer scores from all retrieved 1,000 question-abstract
pairs. In all runs, we aggregate the topic answer score by discounting ranking
positions nDCA𝑘 (with 𝑘 = 1, 000).

Five runs that were submitted in the team are not discussed in this thesis because
they have been developed mainly by other team members: Webis-goo-boolq-abs,
Webis-goo-lbert-abs, Webis-goo-lbert-title-abs, Webis-nlm-boolq-abs, and Webis-nlm-
lbert-abs. We shortly list the characteristics of the remaining runs that were devel-
oped by the author of this thesis:

Webis-uniqa-dis predicts the answers to the topics’ questions with a UnifiedQA
model (unifiedqa-t5-large) pre-trained on various question answering
datasets and uses the article abstracts as context for the model [KMK+20].

Webis-longck-dis predicts the answers to the topics’ questions using the Mul-
tiVerS13 claim verification model pre-trained on the FEVER [TVC+18] dataset
(fever_sci checkpoint) and uses each article’s abstract and title as context
input for the model [WLW+22].

Webis-verasent-dis predicts the answers to the topics’ questions with the Vera
model (Vera-3B checkpoint) pre-trained on the questions and answers from
the TREC 2019 Decision track [ASL+19] and uses the article abstracts as
context for the model [PMN+21]. To circumvent Vera’s 512 token input limit,
we select only the “most relevant” sentences from the abstracts for inclusion
in the prompt by applying a heuristic using term frequencies of selected
indicator words that was proposed by Zhang et al. [ZTA+22].

Webis-longck-uniqa-dis uses the average of the scores predicted with both, the
UnifiedQA question answering model [KMK+20] and the MultiVerS claim
verification model [WLW+22].

12Model links provided in Appendix B.
13The model was previously called LongChecker, hence the different name in the run tag.

https://huggingface.co/castorini/monot5-3b-med-msmarco
https://huggingface.co/castorini/duot5-3b-med-msmarco
https://huggingface.co/allenai/unifiedqa-t5-large
https://scifact.s3.us-west-2.amazonaws.com/longchecker/latest/checkpoints/fever_sci.ckpt
gs://castorini/vera/experiments/3B
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Webis-longck-uniqa-ax-dis also uses the average of the answer scores from the
UnifiedQA [KMK+20] and MultiVerS [WLW+22] models. But after predict-
ing the article-level answer, the top-1,000 PubMed abstracts are axiomatically
re-ranked [HVG+16] based on the abstracts’ publication dates (more recently
published abstracts ranked higher) to resolve potentially contradicting an-
swers from different articles before aggregating the topic answer.

Web Retrieval Task Prior to retrieval from the C4 corpus, all our web retrieval
runs use the same topic answer inference framework as above. Interpreting the
predicted topic answer as the “true” answer, we then apply different answer-based
re-ranking strategies to the web documents based on the closeness of answers
predicted for a web document to the topic answer. For answer prediction on web
documents, we use different question answering and claim verification models.
The topic answer is predicted using pre-trained question answering and claim

verification models based on evidence from 1,000 abstracts retrieved from PubMed.
Abstract retrieval again uses Elasticsearch’s BM25 and re-ranking with monoT5
(top-1,000, monot5-3b-med-msmarco) and subsequently with duoT5 (top-50 from
monoT5, duot5-3b-med-msmarco) [PNL21]. Question answering and claim veri-
fication models are then used to predict an answer on all 1,000 abstracts. After
axiomatic re-ranking [HVG+16] to resolve answer conflicts based on publication
dates, the article-level answer scores are aggregated by discounting ranking posi-
tions nDCA𝑘 (with 𝑘 = 1, 000) to get the topic answer. No binarization is applied.
We then retrieve 1,000 documents from the C4 index [RSR+20], with Elastic-

search’s BM25 scoring. All 1,000 retrieved documents are first re-ranked with a
monoT5 [PNL21] model that was pre-trained onmedical passages fromMS MARCO
(monot5-3b-med-msmarco). The top-50 documents from the monoT5 re-ranking
are then again re-ranked with duoT5 [PNL21] also pre-trained on MS MARCO
corpus (duot5-3b-med-msmarco). The document-level answer is predicted using
either the MultiVerS claim verification model [WLW+22], the UnifiedQA question
answering model [KMK+20], or the average score of both models. The closeness
of the document-level answer score to the “true” topic answer is then combined
with the retrieval score of each document using three different strategies: (1) Linear
score boosting, (2) polynomial score boosting (squared answer difference), or (3) a
weighted score combination with 𝛼 = 0.75. In each run, the same models are used
for both topic and document answer prediction. The individual runs applying
answer-based re-ranking are described in the following:

Webis-longck-ax-lin predicts the answer scores for abstracts and documents the
MultiVerS claim verification model pre-trained on the FEVER [TVC+18],
PubMedQA [JDL+19], and evidence inference datasets [LDB+19] (fever_sci
checkpoint) and uses each article’s abstract and title or each document’s text

https://huggingface.co/castorini/monot5-3b-med-msmarco
https://huggingface.co/castorini/duot5-3b-med-msmarco
https://huggingface.co/castorini/monot5-3b-med-msmarco
https://huggingface.co/castorini/duot5-3b-med-msmarco
https://scifact.s3.us-west-2.amazonaws.com/longchecker/latest/checkpoints/fever_sci.ckpt
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as context input, respectively [WLW+22]. Retrieval scores are then boosted
linearly, based on the closeness between a re-ranked document’s answer
score and the predicted “true” topic answer.

Webis-uniqa-ax-lin predicts the answer scores for abstracts and documents with a
UnifiedQA question answering model (unifiedqa-t5-large) pre-trained
on various question answering datasets [KMK+20], using the abstract text or
document text as context for the model. Linear score boosting is applied as
the answer-based re-ranking strategy.

Webis-longck-uniqa-ax-lin uses the average of the answer scores predicted with
both, the MultiVerS claim verification model [WLW+22] and the UnifiedQA
question answering model [KMK+20]. Linear score boosting is applied analo-
gous to the previous two runs.

Webis-longck-ax-pol uses the same MultiVerS claim verification model [WLW+22]
to predict topic and document answers, but applies polynomial score boosting
for answer-based re-ranking (answer difference is squared).

Webis-uniqa-ax-pol uses the UnifiedQA question answering model [KMK+20] to
predict topic and document answers, but applies polynomial score boosting
for answer-based re-ranking.

Webis-longck-uniqa-ax-pol uses the average of the answer scores predicted with
both, the MultiVerS claim verification model [WLW+22] and the UnifiedQA
question answering model [KMK+20]. Polynomial score boosting is applied
analogous to the previous two runs.

Webis-longck-uniqa-pol predicts the topic and document answer analogous to the
previous run, but does not apply axiomatic re-ranking to resolve answer
conflicts before topic answer prediction.

Webis-longck-ax-com uses the same MultiVerS claim verification model [WLW+22]
to predict topic and document answers, but applies a weighted combina-
tion (𝛼 = 0.75) of the re-ranked document’s retrieval score with the closeness
of the document’s answer score to the predicted “true” topic answer for
answer-based re-ranking.

Webis-uniqa-ax-com uses the UnifiedQA question answering model [KMK+20] to
predict topic and document answers, but applies a weighted combination (𝛼 =

0.75) of retrieval score and answer closeness for answer-based re-ranking.

Webis-longck-uniqa-ax-com uses the average of the answer scores predicted with
both, the MultiVerS claim verification model [WLW+22] and the UnifiedQA
question answering model [KMK+20]. Weighted score combination (𝛼 = 0.75)
is applied analogous to the previous two runs.

https://huggingface.co/allenai/unifiedqa-t5-large
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Table 5.2: Hyperparameters for grid search optimization of our evidence retrieval stage
(Section 5.1). Best parameters are indicated in bold.

Parameter Values

Retrieval top-1000 Elasticsearch BM25 on PubMed index
Query field query (title field), question (description field)
monoT5 cutoff 0, 10, 100, 1000
monoT5 model monot5-base-msmarco, monot5-3b-msmarco,

monot5-3b-med-msmarco
duoT5 cutoff 0, 5, 50
duoT5 model duot5-base-msmarco, duot5-3b-msmarco, duot5-3b-med-msmarco

5.5.3 Optimizing Evidence Retrieval, Answer Prediction, and
Web Retrieval

To evaluate the best achievable answer prediction and web retrieval effectiveness
with our four-stage approach, we conduct a systematic grid search hyperparameter
optimization using the Weights & Biases platform [Bie20]. Each stage is optimized
separately to keep the number of possible hyperparameter combinations at a fea-
sible level. To measure realistic effectiveness, we use the topics and relevance
judgments from the TREC 2021 Health Misinformation track to optimize our pa-
rameters (i.e., as the validation set) and finally, evaluate the effectiveness of the
best hyperparameter configurations on unseen topics from 2022. Our grid search
optimization is performed in four steps, one for each stage of our pipeline as shown
in Figure 5.1: (1) For the evidence retrieval stage, (2) for the answer prediction
stage (using the best parameters found for the evidence retrieval stage), (3) for the
web retrieval stage, and (4) for the answer-based re-ranking stage (using the best
parameters of the three other stages).
First, we optimize evidence retrieval. As suggested by Clarke et al. [CRS+20],

the difference between a ranking’s compatibility [CSV20; CVS20] to helpful and
harmful results is used as our target measure for optimization. The hyperparameter
choices that are considered for the grid search are listed in Table 5.2. All configura-
tions use the top-1,000 articles retrieved from the PubMed index with Elasticsearch’s
BM25 scoring as the first stage retrieval. We use either the topic’s query or ques-
tion for retrieval and include different monoT5 and duoT5 models [PNL21] that
were pre-trained on either the full MS MARCO dataset or just medical passages
from MS MARCO. We also consider different cutoff-points for the two re-rankers
(monoT5 and duoT5). In total, 216 configurations are tested on a shared cluster of
24 Nvidia A10 GPUs. The best configuration yields a maximum difference between
helpful and harmful compatibility of 0.11 on TREC 2021 topics. It uses the topic’s
query for retrieval and then re-ranks the top-100 documents from the BM25 ranking

https://huggingface.co/castorini/monot5-base-msmarco
https://huggingface.co/castorini/monot5-3b-msmarco
https://huggingface.co/castorini/monot5-3b-med-msmarco
https://huggingface.co/castorini/duot5-base-msmarco
https://huggingface.co/castorini/duot5-3b-msmarco
https://huggingface.co/castorini/duot5-3b-med-msmarco
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Table 5.3: Hyperparameters for grid search optimization of our answer inference stage
(Section 5.2). Best parameters are indicated in bold.

Parameter Values

Evidence retrieval best configuration from Table 5.2
Evidence cutoff 1, 3, 5, 10, 100, 1000
Claim/question field query (title field), question (description field)
Answer model MultiVerS (fever, fever_sci, healthver, scifact),

Vera-3B (relevant sentence selection, truncation),
roberta-large-boolq-finetuned, unifiedqa-t5-large

Conflict re-ranking publication date (most recent first), none
Answer aggregation mean, strict, relaxed, majority vote, nDCA

with monoT5 pre-trained on medical passages from MS MARCO. The pairwise
duoT5 re-ranking does to not increase the difference between helpful and harmful
results and is not used in the best configuration (duoT5 re-ranking cutoff: 0).

Second, we optimize our answer inference stage and use the articles retrieved by
the best evidence retrieval run as context for different claim verification and question
answering models as shown in Table 5.3. We also vary the amount of evidence
used for answer prediction (cutoff from 1 to 1,000). The Vera model [PMN+21] is
tested in two variants, either with selecting the “most relevant” sentences to fill
the model’s 512-token input window (heuristic by Zhang et al. [ZTA+22]) or by
truncation. Axiomatic re-ranking based on the publication date is either enabled
or disabled, and we try all five aggregation strategies described in Section 5.2.
From the 960 configurations, the best yielded an area under the receiver operating
characteristic curve of 0.89. The configuration uses evidence from the top-100
retrieved articles and then predicts the answer with the Vera-3B (truncation to
512 tokens) using the topics yes-no question as the model input. Axiomatic re-
ranking is not used in the most effective configuration, and answers are aggregated
by nDCA100 (with 𝑘 = 100, discounting the top-100 ranking positions).

For optimizing our web retrieval stage, we use the same hyperparameter ranges
(shown in Table 5.4) as for evidence retrieval, except for retrieving from the
C4 [DSM+21] index instead of the PubMed index on Elasticsearch. For re-ranking,
we again use different pre-trained monoT5 and duoT5 models [PNL21]. We ran
216 configurations on our cluster. Our best configuration as evaluated on TREC 2021
topics uses the topic’s yes-no question as the query for retrieval and then re-ranks
all 1,000 retrieved documents from the BM25 with monoT5 pre-trained on medical
passages from MS MARCO. As with evidence retrieval, duoT5 re-ranking is not
used in the best configuration (re-ranking cutoff: 0). The best achieved difference
between helpful and harmful compatibility on the validation topics is 0.04.

Finally, the hyperparameter optimization of our answer-based re-ranking stage

https://scifact.s3.us-west-2.amazonaws.com/longchecker/latest/checkpoints/fever.ckpt
https://scifact.s3.us-west-2.amazonaws.com/longchecker/latest/checkpoints/fever_sci.ckpt
https://scifact.s3.us-west-2.amazonaws.com/longchecker/latest/checkpoints/healthver.ckpt
https://scifact.s3.us-west-2.amazonaws.com/longchecker/latest/checkpoints/scifact.ckpt
gs://castorini/vera/experiments/3B
https://huggingface.co/apugachev/roberta-large-boolq-finetuned
https://huggingface.co/allenai/unifiedqa-t5-large
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Table 5.4: Hyperparameters for grid search optimization of our web retrieval stage (Sec-
tion 5.3). Best parameters are indicated in bold.

Parameter Values

Retrieval top-1000 Elasticsearch BM25 on C4 index
Query field query (title field), question (description field)
monoT5 cutoff 0, 10, 100, 1000
monoT5 model monot5-base-msmarco, monot5-3b-msmarco,

monot5-3b-med-msmarco
duoT5 cutoff 0, 5, 50
duoT5 model duot5-base-msmarco, duot5-3b-msmarco, duot5-3b-med-msmarco

Table 5.5: Hyperparameters for grid search optimization of our answer-based re-ranking
stage (Section 5.4). Best parameters are indicated in bold.

Parameter Values

Topic answer best configuration from Table 5.3
Binarization threshold 0.40, 0.45, 0.50, 0.55, 0.60
Web retrieval best configuration from Table 5.4
Claim/question field query (title field), question (description field)
Answer model MultiVerS (fever, fever_sci, healthver, scifact),

Vera-3B (relevant sentence selection, truncation),
roberta-large-boolq-finetuned, unifiedqa-t5-large

Score combination linear score boosting, polynomial score boosting (𝑥2), logarithmic
score boosting, weighted score combination (𝜶 = 0.25, 𝛼 =

0.50, 𝛼 = 0.75)
Re-ranking cutoff 0, 10, 100, 1000

builds on the best configurations of the three aforementioned stages. Hyperparam-
eter ranges are shown in Table 5.5. Because the aggregated topic answer scores are
often near 0.5 (inconclusive), we binarize the topic answer scores with five different
thresholds. We then use different claim verification and question answering models
to predict a document-level answer for the topic’s query or question. All six score
combination strategies for combining the closeness of the document answers to
the predicted “true” topic answer with the original retrieval score from the web
retrieval stage are tested. Answer-based re-ranking is applied with varying cutoff
points. The best configuration on TREC 2021 topics uses the same Vera-3B claim
verification model [PMN+21] as for evidence retrieval and the topic’s question to
predict an answer for each retrieved document (with relevant sentences selection to
avoid truncation [ZTA+22]). The weighted combination (𝛼 = 0.25) of the document
answer’s difference to the binarized topic answer (threshold: 55) is then used to

https://huggingface.co/castorini/monot5-base-msmarco
https://huggingface.co/castorini/monot5-3b-msmarco
https://huggingface.co/castorini/monot5-3b-med-msmarco
https://huggingface.co/castorini/duot5-base-msmarco
https://huggingface.co/castorini/duot5-3b-msmarco
https://huggingface.co/castorini/duot5-3b-med-msmarco
https://scifact.s3.us-west-2.amazonaws.com/longchecker/latest/checkpoints/fever.ckpt
https://scifact.s3.us-west-2.amazonaws.com/longchecker/latest/checkpoints/fever_sci.ckpt
https://scifact.s3.us-west-2.amazonaws.com/longchecker/latest/checkpoints/healthver.ckpt
https://scifact.s3.us-west-2.amazonaws.com/longchecker/latest/checkpoints/scifact.ckpt
gs://castorini/vera/experiments/3B
https://huggingface.co/apugachev/roberta-large-boolq-finetuned
https://huggingface.co/allenai/unifiedqa-t5-large
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re-rank all 1,000 documents. Answer-based re-ranking improves the web retrieval
stage’s compatibility difference evaluated on TREC 2021 topics from 0.04 to 0.06.
The grid-search optimized configurations for our question answering and re-

trieval pipeline are then used to create four additional runs complementing our runs
from the TREC Health Misinformation track, one for each stage of our retrieval
pipeline. All runs are evaluated in Section 5.5.5.

5.5.4 Outlook: Answering Health-Related Questions with
Large Conversational Models

In the last few months, large language models have attained remarkable effec-
tiveness on a variety of natural language processing tasks, including medical
question answering [SAT+22]. Large conversational models like ChatGPT14 and
You Chat15 make it easy to ask questions like “Are squats bad for knees?”, hence,
they are a promising candidate for answering health-related yes-no questions.
As an outlook to future work in the health domain, we therefore briefly dis-
cuss the potential of these models for answering health-related yes/no questions.
We use the topic’s question (description field) to build the following prompt:
[question] Answer in one word: “yes” or “no”. For example, the prompt for
the example above would become: Are squats bad for knees? Answer in one
word: “yes” or “no”. We then use both ChatGPT and You Chat with the same
prompt to generate the answer. Due to usage quotas, we were only able to obtain
answers for a random sample of 15 yes/no questions from the TREC 2022 Health
Misinformation track on both models. The results are discussed in Section 5.5.5.

5.5.5 Results

To assess the effectiveness of our approaches for evidence retrieval (Section 5.1),
answer inference (Section 5.2), web retrieval (Section 5.3), and answer-based re-
ranking (Section 5.4), we apply our pipeline to the 50 topics of the TREC 2022
Health Misinformation track [CMS+22]. We compare our runs submitted to TREC
and our grid search optimized runs with the current state of the art.

Evidence Retrieval For evidence retrieval, in Table 5.6, we report the compat-
ibility to helpful (i.e., correct) and harmful (i.e., incorrect) results and the nor-
malized discounted cumulative gain (nDCG) with respect to graded relevance
judgments [CSV20; CVS20; JK02]. We use our own relevance judgments for the
evidence retrieval stage, as described in Section 5.5.1. Because all our TREC runs
14https://chat.openai.com/
15https://you.com/chat

https://chat.openai.com/
https://you.com/chat
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Table 5.6: Retrieval effectiveness on TREC 2022 Health Misinformation topics, reported as
compatibility to an ideal ranking and nDCG using graded relevance labels. Compatibility
is measured for helpful results (Help), harmful results (Harm), or the difference thereof (Δ).
Results sorted by the compatibility difference or by nDCG in case of ties. Superscripts mark
significant changes to other runs in the same group (Student’s 𝑡-test, 𝑝 < 0.05, Bonferroni
correction). Third-party runs are greyed out and excluded from significance tests because
no run files were available. Best results per group are highlighted in bold.

Run Compatibility nDCG

Help Harm Δ Graded

Evidence retrieval (see Section 5.1)

(a) Grid search 0.63b 0.53b 0.10 0.63b

(b) Webis-. . . -dis 0.15a 0.13a 0.03 0.31a

Web retrieval (see Section 5.3)

(c) Grid search 0.27d 0.16d 0.10 0.66d

(d) Webis-. . . -dis 0.17c 0.08c 0.09 0.48c
(e) h2oloo-bm25 (best baseline at TREC 2022 [CMS+22]) 0.20 0.15 0.05 —

Answer-based re-ranking (see Section 5.4)

(f) h2oloo-hm22-ref-comb.vera-mt5
(best run at TREC 2022 [CMS+22])

0.35 0.09 0.26 —

(g) Grid search 0.26p 0.08 0.19 0.63knp
(h) Webis-longck-ax-com 0.27p 0.15 0.12 0.66ijknpq

(i) Webis-longck-uniqa-pol 0.17 0.08 0.09 0.57h
(j) Webis-longck-uniqa-ax-pol 0.17 0.08 0.09 0.57h
(k) Webis-longck-uniqa-ax-lin 0.14 0.07 0.08 0.52ghlm
(l) Webis-uniqa-ax-com 0.26p 0.17 0.07 0.66knpq
(m) Webis-longck-uniqa-ax-com 0.25p 0.17 0.06 0.65knpq
(n) Webis-longck-ax-pol 0.15 0.09 0.05 0.54ghlm
(o) Webis-uniqa-ax-pol 0.18 0.14 0.05 0.58p
(p) Webis-longck-ax-lin 0.11ghlm 0.07 0.04 0.49ghlmo

(q) Webis-uniqa-ax-lin 0.15 0.12 0.03 0.56hlm
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Figure 5.7: Compatibility with helpful and harmful results on TREC 2022 Health Misinfor-
mation topics comparing our TREC runs with the grid search optimized runs. Good runs
are helpful but not harmful (lower right corner). The reference lines indicate equal helpful
and harmful compatibility.

used the same configuration for evidence retrieval (see Section 5.5.2), we only
report their results once in Table 5.6. Our grid search optimized approach (run (a) in
Table 5.6) has significantly increased compatibility with helpful and harmful results
compared to the approach that we submitted to TREC (run (b)). This improvement
in helpful compatibility and worsening of harmful compatibility is also indicated
in the leftmost plot of Figure 5.7. The compatibility difference, indicated as the
distance to the reference line in the plot, only slightly increases from 0.03 to 0.10,
though not significantly. Because evidence retrieval was not considered a sub-task
of the TREC 2022 Health Misinformation track, we cannot compare our runs to
third-party approaches. We notice that the evidence retrieval effectiveness also
largely varies between different queries, resulting in a standard deviation of 0.40
for the compatibility difference. For 9 of the 50 evaluated topics, we measure an
nDCG of 0 on graded relevance labels. This indicates that for some queries, (almost)
no evidence can be found on PubMed. Manual inspection of the affected queries
revealed that the worst-performing queries are often about alternative remedies
such as for the question “Can you use WD-40 for arthritis?” Integrating other
sources of evidence might therefore be beneficial.

Answer Inference Answer inference effectiveness is measured as the area un-
der the receiver operating characteristic curve (AUC) among other classification
measures and is shown in Table 5.7. We also include the results reported for the
best-performing automatic run (h2oloo-gpt3b) at TREC 2022 [CMS+22] and the
best reported effectiveness from Pugachev et al. [PAB+23] (using 113 topics distinct
from our test set) for reference. None of our evidence-based answer inference
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Table 5.7: Answer inference effectiveness on TREC 2022 Health Misinformation topics,
reported as area under the ROC curve (AUC), accuracy (Acc.), false positive rate (FPR), and
true positive rate (TPR). Results sorted by the AUC scores or by the next metric in case of
ties. The lower half shows runs evaluated on a different set of topics. Third-party runs are
greyed out. Best results per group are highlighted in bold.

Run AUC Acc. FPR TPR

h2oloo-gpt3b (best run at TREC 2022 [CMS+22]) 0.95 0.86 0.04 0.76
Grid search 0.83 0.72 0.40 0.84
Webis-verasent-dis 0.81 0.70 0.40 0.80
Webis-longck-dis 0.79 0.64 0.36 0.64
Webis-nlm-boolq-abs 0.69 0.52 0.96 1.00
Webis-longck-uniqa-dis 0.66 0.62 0.48 0.72
Webis-uniqa-dis 0.66 0.62 0.48 0.72
Webis-longck-uniqa-ax-dis 0.66 0.60 0.48 0.68
Webis-goo-boolq-abs 0.65 0.52 0.96 1.00
Webis-nlm-lbert-abs 0.48 0.50 0.80 0.80
Webis-goo-lbert-title-abs 0.48 0.50 0.92 0.92
Webis-goo-lbert-abs 0.48 0.50 0.88 0.88

YouChat (15 topics) 1.00 1.00 0.00 1.00
ChatGPT (15 topics) 0.93 0.93 0.14 1.00
Pugachev et al. [PAB+23] (113 topics) 0.82 — — —

runs outperforms the best automatic run submitted at TREC 2022. The best run
we submitted to TREC reaches an AUC score of 0.81. Our multi-stage grid search
optimized run (AUC: 0.83, using Vera [PMN+21] for article answer prediction)
slightly surpasses the AUC score of our best TREC run by 0.02 but still falls short
of the GPT-3-based [BMR+20] h2oloo-gpt3b run by 0.12.
From our proposed answer aggregation strategies (see Section 5.2), the nDCA𝑘

strategy (used in our best TREC runs and the grid search run) is the most effective
in predicting the correct answer with consistently lower false positive rates and
higher accuracy than with simple averaging and in most cases higher AUC scores.
A similar ordering can be observed for the answer prediction model. Here, the
claim verification models (Vera [PMN+21] and MultiVerS [WLW+22]) outperform
the question answering models. The receiver operating characteristic curves shown
in Figure 5.8 indicate that claim verification models are better able to identify most
true positives at lower false positive rates than question answering models. But
because incorrectly predicting that a treatment would be effective (false positive)
is considered more harmful than incorrectly predicting that a treatment would be
ineffective (false negative), we also consider the false positive rate as an important
measure. Here, the MultiVerS model [WLW+22] is the most effective.
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Figure 5.8: Receiver operating characteristic curves of our answer inference approaches
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Figure 5.9: Histograms of the predicted answer scores for true answers “yes” or “no”
from our best TREC run and grid search optimization. The lines show the kernel-density
estimates (Scott’s rule [Sco92, pp. 200 sqq.]).

Even though our grid search optimized approach used a more effective evidence
retrieval than our TREC runs, answer prediction based on that evidence only
slightly improves. As shown in Figure 5.9, the answer scores predicted by the grid
search optimized approach span a wider range than the scores predicted by our
best TREC run, but the predictions for the conflicting true answers “yes” and “no”
largely overlap in both cases. A possible explanation might be that even though the
more effective evidence retrieval can capture stronger signal for the correct answer
in some cases, it also includes “stronger” evidence for the conflicting answers.
Figure 5.9 also highlights that the “no” answer is predicted more accurately.
The two conversational language models perform very well on the 15 sampled

questions. You Chat even predicts all 15 questions correctly, and hence, achieves
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a perfect AUC score of 1. ChatGPT comes close with an AUC score of 0.93. Even
though the results cannot be directly compared due to different test sets (conver-
sational language models were only tested on 15 questions), the results indicate a
strong potential for conversational language models to be used for answer inference.
The best-performing run at the TREC 2022 Health Misinformation track [CMS+22]
also uses a large language model, GPT-3 [BMR+20] (in a few-shot setting) and
outperforms the remaining runs. Other evidence-based approaches from related
work, e.g., Pugachev et al. [PAB+23] using question answering models, achieve
comparable AUC scores like with our evidence-based approach, but direct com-
parison is not possible because their approach was evaluated on different topics.
Even though large language models clearly outperform evidence-based answer
inference, their use is questionable due to their reported tendencies to hallucinate
and to return factual incorrect or contradicting answers, especially in health-related
contexts [BGM+21; KM21; WMR+21]. Recent studies also attribute a lot of the
strength of large language models in benchmarks to train-test leakage [FAP+22].
The pre-trained models can only encode knowledge available at the time they were
trained, which can quickly become outdated in medical sciences. Because our
approach is grounded on credible evidence stored in an easily updatable search
index, we therefore still consider evidence-based answer inference to be a promis-
ing approach. With our discounting strategy based on the evidence rank, we also
make the answer more explainable, because it is understandable that the predicted
answer is based on topically relevant articles. In-depth analyses of potential biases
in evidence-based approaches are needed to support this claim.

Web Retrieval To assess web retrieval effectiveness, we again measure compati-
bility [CSV20; CVS20] and nDCG [JK02]. The results are measured using the official
relevance judgments from the TREC 2022 Health Misinformation track [CMS+22]
and are shown in Table 5.6. All of our TREC runs used the same configuration
for web retrieval (see Section 5.5.2) and hence, we only report the results of this
configuration once (run (d) in Table 5.6). The effectiveness of the best baseline
run at TREC (i.e., without answer-based re-ranking) is reported for reference. The
results are similar to our results for evidence retrieval: Our grid search run is more
compatible to both helpful and harmful results than our TREC runs and more effec-
tive when considering graded relevance judgments. The best difference between
helpful and harmful compatibility is measured for the grid search run (0.10) but the
compatibility difference is not significantly increased from our TREC runs (0.09).
The middle plot in Figure 5.7 also shows that our grid search run improves the
compatibility of both helpful and harmful results at a similar rate. Overall, the
effectiveness of our web retrieval stage is comparable to the best baseline run at
the TREC 2022 Health Misinformation track [CMS+22].
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Answer-Based Re-Ranking Our answer-based re-ranking stage is also eval-
uated using relevance judgments from the TREC 2022 Health Misinformation
track [CMS+22]. In Table 5.6, we compare the ten runs we submitted to TREC
(runs (h)–(q), see Section 5.5.2), our best run from grid search optimization on
TREC 2021 topics (run (g), see Section 5.5.3), and the best participating run at
TREC 2022 (run (f)) with respect to the compatibility to helpful or harmful results
and the nDCG effectiveness on graded relevance judgments. Even though none
of our runs outperform the best participating run from TREC 2022 (run (f)) that
achieves a compatibility difference of 0.26 [CMS+22], the variety of re-ranking
approaches used in our runs allows us to draw conclusions about the effective-
ness of answer score combinations and answer prediction models for reducing
misinformation in web search.
Significant effects were only observed for the compatibility to helpful results

and nDCG. Our runs featuring a weighted score combination of the original
retrieval score and the closeness to the topic answer (runs (g), (h), (l), and (m)
in Table 5.6) are often significantly more effective on graded relevance judgments
and sometimes also more compatible with helpful results than runs that use linear or
polynomial score boosting. Both the highest compatibility difference (0.19, run (g))
and the highest nDCG effectiveness (0.66, run (h)) are measured on runs featuring
a weighted score combination, advocating for the use of weighted combinations
to combine (estimated) topical relevance and correctness. An explanation for
the worse effectiveness of score boosting (linear, polynomial, logarithmic) can be
found in the behavior on negative retrieval scores such as returned by monoT5
or duoT5 [PNL21].16 Figure 5.6 in Section 5.2 shows that the multiplication with
the answer closeness only considers the amplitude of the original retrieval score
disregarding of its sign. Hence, the retrieval scores of correct documents are
actually reduced more than the scores of incorrect documents, exactly the opposite
of the intended behavior. One way to mitigate this effect could be to normalize the
retrieval scores to positive values prior to answer-based re-ranking.

Apart from the answer score combination, we also observe small differences with
different answer prediction models. From our TREC runs using a weighted score
combination, the run predicting answer scores with the MultiVerS claim verification
model (run (h) in Table 5.6) has a slightly improved compatibility difference and
nDCG compared to runs that use the UnifiedQA [KMK+20] question answering
model (run (l)) or a combination of both models (run (m)). With score boosting,
the opposite effect can be observed, which we attribute to the aforementioned
undesired behavior of score boosting on negative retrieval scores. These changes
are, however, not significant. Axiomatic re-ranking to resolve answer conflicts
(runs (i) and (j) in Table 5.6) also did not change compatibility or effectiveness.

16These two T5-based models return log probabilities that are always negative.
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Our best runs from the grid search optimization (run (g)) and from TREC (run (h))
are configured very similarly: Both use aweighted score combination of the retrieval
score and answer closeness and rely on claim verification models to predict answers.
The most important difference between the two runs is that the grid search run
uses the Vera model [PMN+21] for answer prediction while the TREC run uses
the MultiVerS model [WLW+22]. Both runs have a similarly high compatibility
to helpful results (0.26 and 0.27) but our best grid search optimized configuration
(run (g)) has a lower compatibility to harmful results of just 0.08 compared to
our best TREC run (run (h)) that has a compatibility to harmful results of 0.15.
With a compatibility difference of 0.19, the grid search run features the highest
compatibility difference of our runs.
Table 5.6 also allows a comparison of retrieval effectiveness prior to and after

answer-based re-ranking (compare run (c) vs. (g) or run (d) vs. (h)–(q)). Interest-
ingly, only one of our TREC runs (run (p)) is able to slightly reduce misinformation
(i.e., decrease the compatibility to harmful results) by answer-based re-ranking
from 0.08 to 0.07 but at the same time also decreases the compatibility to helpful
results from 0.17 to 0.11. The only TREC run with an improved compatibility dif-
ference after answer-based re-ranking (run (h)) increases both helpful and harmful
compatibility. Both cases are equally undesirable because neither should answer-
based re-ranking make the search results more harmful nor should it make them
less helpful. The grid search optimized run (run (g)) on the other hand is able to
decrease the compatibility to harmful results from 0.16 to 0.08 and only slightly
decreases the compatibility to helpful results from 0.27 to 0.26. In the leftmost plot
of Figure 5.7 the grid search optimized run (yellow cross mark) is therefore shifted
towards the lower right corner.
We conclude that answer-based re-ranking is an effective way to reduce misin-

formation in web search. To first infer the topic answer, our best approach retrieves
medical abstracts from PubMed as evidence, applies the pre-trained Vera claim
verification model using the abstracts as context for the model [PMN+21], and
considers the ranking position while aggregating the individual answer scores.
Evidence can be retrieved with a standard two-stage re-ranking architecture using
BM25 scoring and pointwise monoT5 re-ranking [PNL21; RWJ+94]. After retrieving
web documents with the same re-ranking architecture, the same Vera claim verifi-
cation model can be used to predict answers using the web documents as context.
A weighted combination of each document’s predicted correctness to the binarized
topic answer and its original retrieval score is then used to reduce misinformation
while preserving most of the retrieval effectiveness. This evidence-based approach
can be favorable to current better performing approaches based on large language
models, especially in the health-related context studied in the TREC Health Mis-
information tracks, because in contrast to language models, our approach can be
explained and the influence of each document on the final ranking can be analyzed.
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Our analyses also show disadvantages in the generalizability of our approach that
should be addressed in future work.

5.6 Summary

In this chapter, we have built a retrieval pipeline for answering health-related
yes/no questions regarding the effectiveness of medical treatments. Our approach
first retrieves relevant scientific evidence, then predicts an answer based on that
evidence, and finally re-ranks retrieved web documents based on their alignment
with the predicted answer. We have described our submissions to the TREC 2022
Health Misinformation track [CMS+22] and optimized the hyperparameters of
our pipeline in a multi-stage grid search. Evaluations of the evidence retrieval
stage indicate that monoT5 re-ranking [PNL21] after retrieval from the PubMed
with BM25 scoring [RWJ+94] can achieve high compatibility [CSV20; CVS20]
to helpful results but at the same time is nearly as compatible to harmful results
(compatibility difference: 0.10, higher is better). Evidence retrieval was not evaluated
in previous TREC tracks or other related work, so strong baselines are missing.
Based on our evaluations, we therefore cannot conclude an answer to Research
Question 7. To infer an answer based on the evidence, our best approach uses the
pre-trained Vera claim verification model [PMN+21] to predict article-level answers
and aggregates the answers discounted by article ranks (i.e., determined by retrieval
scores). On TREC topics we achieve an AUC score of 0.83 with a false positive rate
of 0.40, but do not outperform the GPT-3-based [BMR+20] state-of-the-art approach
(AUC: 0.95, FPR: 0.04). On a subset of 15 of the 50 evaluated TREC topics, we achieve
perfect classification effectiveness with zero-shot prompting the large proprietary
You Chat language model. Both results indicate that on a small test set, large
language models can answer health-related yes/no questions correctly without
spreading misinformation (Research Question 6). However, language models are
static, opaque and often lack factual correctness [BGM+21; KM21; WMR+21]. If
we add the requirement of being adaptable to new evidence or more explainable,
our evidence-based approach is more favorable than the language model-based
approach and still mostly yields correct answers (with few exceptions on topics
that lack evidence in scientific literature). Our best web retrieval approach is
similar to our evidence retrieval approach except that it retrieves from the C4 web
corpus [DSM+21]. It also retrieves results that are nearly as compatible with harmful
results as with helpful results (compatibility difference: 0.10). We apply answer-
based re-ranking to reduce misinformation based on the closeness of the answer
predicted for the document and the predicted “true” topic answer. For answer-based
re-ranking, our best configuration uses a weighted score combination of the original
retrieval score and the answer closeness, and it also uses the Vera claim verification
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model [PMN+21]. With this additional stage to mitigate misinformation, we achieve
a compatibility difference of 0.19. The best TREC participant run outperforms our
approach (compatibility difference: 0.26) by using predictions fromGPT-3 [BMR+20].
Yet, our evidence-based approach comes close to the state-of-the-art approach.
We therefore see our approach as a promising alternative to the state-of-the-art
approaches that are based on large language models and hence suffer from the
aforementioned disadvantages, but cannot conclude Research Question 8 positively.
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Chapter 6

Conclusion

In this thesis, we have addressed the problems of identifying and answering health-
related questions from the perspective of a search engine. The following Sec-
tion 6.1 concludes the main findings and the main contributions of this thesis:
(1) A large-scale, health-related question dataset, (2) effective classifiers to identify
health-related and medical questions, and (3) an evidence-based information re-
trieval system for answering health-related yes-no questions. We also discuss the
limitations of our work and propose future work.

6.1 Contributions
The contributions of this thesis are three-fold. In Chapter 3 we have collected
a large-scale dataset of health-related and medical questions and applied weak
supervision to automatically label the questions. Chapter 4 presents a set of feature-
based and neural classifiers to identify health-related and medical questions. Finally,
in Chapter 5, we have built a modular information retrieval pipeline to first answer
health-related yes-no questions and subsequently retrieve web documents that
support the predicted answer. In the following, we summarize the main findings of
each chapter and discuss the research questions posed in Chapter 1.

Data Collection and Labeling Our new health-related question answering
dataset described in Chapter 3 unitesmany existing task-specific but smaller medical
datasets as well as larger general purpose question datasets from query logs and
community platforms. The dataset consists of 8.5 million automatically labeled
questions among which 2.0 million are health-related and 1.3 million are medical,
making it the largest dataset of health-related questions to date.
The automatic labels are based on a set of heuristic labeling functions whose

output was then used to train a label model [RHD+19]. We have found that a
question’s source dataset or category and occurrences of health-related terms
such as drug names and medical conditions are good indicators for health-related
questions. But additional heuristics were required to effectively label medical
questions. Our evaluation based on a set of 7,500 manually annotated questions
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sampled from the dataset shows that our automatic labeling approach achieves a
high recall, but a low precision for health-related and medical questions. Yet, the
dataset’s label distribution (manual: 17 % health-related, 7 % medical; automatic:
23 % health-related, 15 % medical) is similar to the distribution of health-related
questions reported in literature (5-24 %). We can therefore give a positive answer
to Research Question 1: Our dataset does realistically represent the real world
distribution of health-related questions. With regard to Research Question 2, we
are unable to give a clear answer. Automatic labeling tends to be overly optimistic
in predicting questions as health-related and medical. We therefore recommend to
not solely rely on automatic labels to train classifiers if they require high precision.
Research Question 3 is inconclusive as well. Our exploratory analysis shows slight
differences between the length of medical and non-medical questions but other
characteristics such as topical similarity were not yet considered in this thesis.

IdentifyingHealth-RelatedQuestions The second contribution of this thesis is
a set of classifiers to identify health-related and medical questions. In Chapter 4 we
have trained feature-based classifiers based on sentence embeddings and fine-tuned
pre-trained encoder models as well as causal and text-to-text language models to
cover a wide spectrum of neural text classification approaches. Our best classifier for
health-related questions is a fine-tuned text-to-text language model [GAU+22] that
achieves an F1-score of 0.80 and an AUC score (area under the receiver operating
characteristic curve) of 0.96 on the manually labeled test set of our question dataset.
The best medical question classifier, a cascading support vector machine [CL11]
trained to classify sentence embeddings of questions, achieves an F1-score of 0.69
and an AUC score of 0.98. Both were trained on the training and validation splits of
ourmanually labeled subset. We can therefore conclude for ResearchQuestion 4 that
language model fine-tuning is an effective classification approach for health-related
questions. Feature-based machine learning on embedded sentences is relatively
effective to identify medical questions.

If a higher recall is desired, our results indicate that training encoder models on
the larger automatically labeled dataset is more effective. This approach achieves a
recall of 0.81 for both classifying either health-related or medical questions and can
therefore best be used in web search engines to identify health-related questions.
The downside is a lower precision of only 0.67 for health-related questions and
0.42 for medical questions, respectively, that is likely caused by the limited precision
of our automatic labeling approach. It therefore largely depends on the notion of
effectiveness, i.e., whether identifying health-related questions is considered to be a
recall-oriented or precision-oriented task, to answer Research Question 5. Training
on the manually annotated gold label dataset yields a higher precision but training
on automatic silver labels yields a higher recall.
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Answering Health-Related Questions Lastly, in Chapter 5 we have demon-
strated a modular retrieval pipeline for answering a subset of the questions that can
be identified as health-related: Yes-no questions about the effectiveness of medical
treatments. Besides correctly answering the question in most cases, our pipeline
also retrieves web documents that support the predicted answer. We have evaluated
this question answering and retrieval system on the TREC 2022 Health Misinforma-
tion track [CMS+22] and have measured the effectiveness of each of the four stages
in the pipeline: (1) Evidence retrieval (by the difference in compatibility to the
most “helpful” and “harmful” ranking, see Section 5.5), (2) answer inference (AUC),
(3) web retrieval, and (4) answer-based re-ranking (both compatibility difference).

The proposed evidence retrieval stage achieves a high nDCG effectiveness with
our best configuration (BM25 scoring [RWJ+94] on a PubMed index and subsequent
monoT5 re-ranking [PNL21]) but is nearly as compatible with harmful results as
with helpful results (compatibility difference: 0.10). Due to the lack of baselines for
evidence retrieval (evidence retrieval effectiveness was not considered at TREC),
we cannot conclude an answer to Research Question 7.

Answer inference uses the retrieved evidence to predict the answer with pre-
trained claim verification models. The best configuration from our experiments uses
the Vera claim verification model [PMN+21] on PubMed abstracts and aggregates
the answers based on the ranks of the retrieved abstracts. Our evidence-based
answer inference approach achieves an AUC score of 0.83 but is still outperformed
by the best participating approach at TREC 2022. The state-of-the-art approach
uses the GPT-3 language model [BMR+20] yields a higher AUC score (0.95) and
lower false positive rates (0.04, our best: 0.40) but has the disadvantage of being
less explainable due to using outputs of a black-box commercial language model.
We confirm the higher effectiveness of large language models in a pilot study
using two conversational language models and hence draw a positive conclusion
to Research Question 6. Because of the recently emerging questions regarding
the fairness, accountability and transparency of such models [BGM+21; KM21;
WMR+21], a reasonable reformulation of the research question might also be: Can
we answer current health-related yes-no questions correctly, explainable, and without
spreading misinformation? Because our answer inference approach outperforms
other approaches based on evidence retrieval (which is both adaptable to current
topics and more explainable than large language models), we can still answer the
adjusted research question positively.
Web retrieval suffers from the same problem as evidence retrieval. It is also

nearly as compatible with harmful results as with helpful results (compatibility
difference: 0.10) because it does not (yet) consider the true answer to the health-
related question. But even without answer-based re-ranking, our best configuration
(monoT5 re-ranking [PNL21] after BM25) improves the compatibility to helpful
results compared to the best baseline run from TREC (just BM25, compatibility dif-
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ference: 0.05). The best answer-based re-ranking configuration in our experiments
uses a weighted score combination of retrieval score and answer closeness and relies
on the same claim verification model used for answer inference to predict answers
(Vera [PMN+21]). This answer-based re-ranking approach achieves a compatibility
difference of 0.19 by reducing the compatibility to harmful results. Again, the best
participating run at TREC outperforms our approach (compatibility difference: 0.26)
but because it uses answer predictions from GPT-3, it suffers from the same biases
as mentioned earlier for answer inference. The evidence-based approach proposed
in this thesis comes close to the state-of-the-art approach. To answer Research
Question 8, answer-based re-ranking is a promising way to retrieve web documents
that support the true answer to a health-related question, but large language models
are yet more effective. Our results also indicate that re-ranking depends on the
answer prediction effectiveness. In the future, we therefore plan to decouple the
evaluation of answer-based re-ranking by experimenting on ground-truth answers.

6.2 Future Work

Our work has demonstrated that health-related questions can effectively be identi-
fied and answered by exploiting advances in machine learning, natural language
processing, and information retrieval. However, there still is a plethora of challenges
that need to be addressed in the future. In the following, we discuss some challenges
and advances that we plan to address in future work to build an end-to-end search
engine for health-related information needs.
Considering that not all queries in search engines are formulated as natural

language questions, the most obvious next step is to not only consider questions
to identify health-related information needs but also keyword queries. A similar
approach as described in Chapter 3 could be applied to automatically label query logs
with health-related queries. Initial experiments have shown that the most difficult
part of this extension would be to find suitable labeling functions to automatically
label health-related queries. In contrast to question answering datasets, query
logs are rarely annotated with categories and to our knowledge, there is only one
query log that only contains health-related queries [RLS+21]. Building a large-scale
query log with health-related queries could also benefit reproducing studies on the
prevalence of health-related queries and the biases that have been observed in web
search [AS19; BZE22; WA14; WH15]. These studies are often based on smaller or
proprietary query logs, so a large scale analysis of biases in health-related search
across multiple search engines is a valuable contribution to the field.

To extend our dataset of health-related questions, multilingual question answer-
ing datasets could also be a valuable addition, for example in Chinese [YZL+14]
or Russian [BKB13]. After finalization of our dataset, there have also been new
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question answering datasets released that could be added to our dataset, for example
HealthSearchQA [SAT+22], CausalQA [BWH+22], and RedHOT [WKA+22]. By
analyzing large datasets of questions and queries, we could also build a taxonomy
of health-related information needs similar to already existing taxonomies for web
search [AKV22; Bro02; CTS+21]. To further improve identifying health-related
or medical questions or queries, interesting directions include the application of
zero-shot language models like T0 [SWR+22] or improving efficiency by distilling
well-performing larger text-to-text language models into smaller models.

Our retrieval and question answering pipeline is currently only capable of answer-
ing health-related yes-no questions. Generalizing our approaches to open-ended
questions is thus a natural next step. Due to the criticism of large language models
for hallucination, factual incorrectness, contradictions, and possible train-test-
leakage effects [BGM+21; FAP+22; KM21; LHE22], we still see our evidence-based
approach as a promising approach to answer open-ended questions. Though, we
have already noticed that retrieving evidence solely from scientific literature is
limited in the sense that it often lacks information about alternative remedies. Here,
we see potential in including high-quality newspapers, websites from health orga-
nizations, and health-related knowledge bases to provide evidence for open-ended
questions. Another direction is to approach health-related question answering
in a multi-hop fashion, thereby reducing the complexity of individual tasks or to
employ a conversational system that allows users to ask follow-up questions to
better understand the answer.

We also believe that evidence retrieval is conceptually similar to finding studies
for a systematic review. Future work should therefore also exploit automated
procedures from systematic reviews to improve evidence retrieval for health-related
question answering systems. This includes to not only look at the abstract and
title of each article but rather their full text which is often publicly available.1 Also,
the type of evidence could probably be used to improve the ranking of evidence
retrieval results. Clearly, a systematic review can be trusted more than a case study.
A promising way to use this metadata could be retrieval axioms. Because some
neural models cannot effectively work on longer texts such as full scientific articles,
we could apply summarization to improve health-related claim verification, an
approach that has been used previously to identify facts in news articles [BKC22].
Summarization techniques are also necessary to make the evidence used from
scientific articles understandable to the public.

Different query variants of the same underlying information need were found to
have adverse effects on the effectiveness of information retrieval systems [ZPH16].
In this regard, the single-query evaluation setting of the TREC Health Misinfor-
mation tracks [CMS+22] can be problematic. In the future, we therefore suggest

1E.g., on PubMed Central: https://ncbi.nlm.nih.gov/pmc

https://ncbi.nlm.nih.gov/pmc
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that health-related question answering systems be evaluated with respect to user
query variants, where the same question is asked in different ways. Our dataset of
health-related questions can serve as a first building block to match similar ques-
tions to existing benchmarks’ topics. We could also use our classifiers to identify
health-related questions in existing datasets of user query variations [BMS+16].
Larger query logs can similarly augment the topics from benchmark collections to
make shared task evaluations more realistic.

Finally, we also plan to conduct end-to-end user studies. An interesting question
is how users perceive search results from existing search engines like Google or Bing
that do not warn users about health misinformation. Comparing user satisfaction
to a new system that identifies health-related questions and answers them correctly,
maybe even in a specialized search interface, could serve as empirical arguments to
bring recent advances in the detection of health misinformation (e.g., at the TREC
shared tasks [CMS21]) to real-world search engines. A joint end-to-end evaluation
of systems for health-related and non-health-related search would also be a first
step to tackle the criticized modular evaluation of current health-related question
answering and information retrieval systems [JYX+23].
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Annotator Instructions
The following sections contain the instructions that were given to the annotators
for the three annotation tasks conducted in this thesis: Annotating yes-no questions
(Section A.1), annotating health-related and medical questions (Section A.2), and
annotating relevance and answers for evidence retrieval (Section A.3).

A.1 Yes-No Question Annotation

The task is to identify whether a text is a question and whether it is a yes-no
question.

Question or not?

A piece of text can contain several sentences.
Label a text as a question if:

1. it is one single interrogative sentence, that is, a question
Examples:

• Does aspirin help with headaches?
• How much aspirin should I take?

2. it contains several sentences, one of which is a question (see above)
Examples:

• I have a headache. Does aspirin help?
• Where can I buy aspirin? My head hurts!

3. typos, smaller grammatical errors, or incorrect word ordering should be
ignored (label as a question)
Examples:

• Do aspirin help with headache? (typos)
• Does aspirin help headache? (missing word)
• Does aspirin help with headaches (missing question mark)

Label a text as not a question if all sentences within the text are:
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1. declarative sentences (assertions or statements)
Examples:

• Aspirin is good for headaches.
• I use aspirin when I have a headache.

2. imperative sentences, i.e., commands
Examples:

• Use aspirin if you have headaches.
• Tell me if aspirin is good for headaches.

3. exclamatory sentences, i.e., exclamations
Examples:

• How good aspirin is!
• What a bad drug aspirin is!

4. ill-formed questions, i.e., questions that do not start with a question word or
auxiliary verb
Examples:

• Aspirin helps for headache?
• Take aspirin at night?

Yes-no question or not?

Label a text as a yes-no question if:
1. the text is a question (see above) and
2. the question can be answered by either “yes” or “no” Examples:

• Should I use aspirin?
• Does aspirin help with headaches?

Label a text as not a yes-no question if:
• the text is not a question (see above) or
• the question is open-ended, i.e., it starts with a question word (where? who?
and so on)
Examples:

– Who can use aspirin?
– How effective is aspirin for headaches?

• the question has multiple explicit choices, e.g., comparisons
Examples:

– I have a headache. Should I use aspirin or paracetamol?
– Does aspirin work better for children or adults?
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Summary

Please read each text and label whether the text is a yes-no question (shortcut 1), a
question (shortcut 2), or not interrogative at all (shortcut 3).

A.2 Health-Related and Medical Question
Annotation

The task is to identify whether a natural question is health-related and/or medical.

Health-related or not?

Health-related question can be any question about human or animal health, both
physical and mental. Some of the topics such questions can address are:

• physical, mental, social well-being
Examples: I’m not feeling well, what should I do? How to cope with being bullied in class?

• diseases, illnesses, disorders, medical conditions
Examples: I got the flu, should I call a doctor? How do I know I have measles?

• physical or mental states (like pregnancy, aging, etc.)
Examples: Can I smoke during pregnancy? What is a normal age to get hair loss?

• diagnosis, prevention, risk factors
Examples: How to test for covid? Are men more likely to get a heart attack?

• treatments, medication, drugs, exercises
Examples: Can aspirin reduce fever? I had a stroke, which exercises can I do?

• healthcare service, social measures
Examples: Where’s the next physician? Does the american healthcare system work?

• anatomy, biochemical processes
Examples: How much oxygen does a fish need to survive? How tall is the average woman?

• fitness, sports, lifestyle, sex, and nutrition
Examples: How often should I go to the gym? Should I use a condom? Is green tea healthy?

Label a question as not health-related if:
• it is only asking for references or navigation
Examples: What papers are worth reading about cancer? Where can I find websites about
pilates?

• it is a purely factual biological question (i.e., there is no direct influence on
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health)
Examples: Can fish breathe? Are bacteria animals?

Medical or not?

Medical questions are health-related questions that require additional, professional
expertise, that often motivate clinical studies and research.
Label a question as medical if:

• the question is health-related (see above) and
• one would usually seek professional advice (e.g., from a doctor, nurse, phar-
macist, or therapist)
Examples:

– Why do I have diarrhea for 3 days?
– I haven’t had my period. Am I pregnant?

• it cannot be answered by laymen
Examples:

– Which variant of Covid is the most dangerous?
– What are the best therapy options for depression?

• wrong answers could cause severe harm
Examples:

– What is the best dosage of ibuprofen for a child?
– How to cure a snakebite?

Label a question as not medical if:
• the question is not health-related (see above) or
• the answer is mostly common sense, even for laymen

Examples:

– Are soft or hard mattresses healthier?
– Do bacteria cause harm to my health?
– Can I drink too much beer?

• the answer mostly depends on personal preference
Examples:

– How many steps should I do each day?
– What’s your preferred way of losing weight?
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Summary

Please read each question and check whether it is medical (shortcut 1), otherwise
health-related (shortcut 2), or not health-related at all (shortcut 3).

A.3 Evidence Relevance and Answer Annotation

The task is to identify whether a scientific abstract is relevant to answer the given
health-related question.
For each question, assess abstracts on:

• How relevant is this abstract for answering the question?
• For abstracts that are relevant, what answer do they support? "Yes" or "no"?

Relevance

• Relevant (see answer labels below)
The abstract either directly answers the question or provides enough infor-
mation to determine an answer. A relevant abstract must address all parts of
the question and help to make a yes/no decision.

• Not relevant (shortcut 3)
The abstract either does not address the question, or fails to address all parts
of a question.
An abstract is not relevant if it:

– only asks about the effectiveness of a specific treatment but only merely
mentions the health issue or treatment of the question

– describes an animal study and does not explicitly mention applicability
to humans

– is not English
– contains adult material, or
– is garbled, empty, unreadable or otherwise broken.

Example: If the question is “Does yoga improve the management of asthma?”, and the abstract
only talks about yoga without talking about asthma or talks about asthma but not yoga,
then the abstract is not-relevant.

Important: For a relevant abstract, it does not matter whether you believe the
information provided in that abstract is correct or incorrect. Only judge whether a
user would likely find the information relevant regardless of its correctness.



106 Appendix A Annotator Instructions

Example: Two relevant abstracts could have different answers (i.e., yes and no) to the same question,
but both would be viewed to be high quality results from credible sources suitable as top 10 web
search results.

Answer

For relevant abstracts, judge whether the answer to the question is “yes” or “no”
according to the abstract.

• Yes (shortcut 0)
The abstract says the answer to the question is “yes” or provides strong
support that would lead to the conclusion that the answer is “yes”.

• No (shortcut 1)
The abstract says the answer to the question is “no” or provides strong support
that would lead to the conclusion that the answer is “no”.

• Unclear (shortcut 2)
The abstract addresses the question, but a user would not be able to conclude
either “yes” or “no” given the abstract.
An abstract has an unclear answer if it:

– is a meta-analysis or systematic review without a final conclusion
– concludes an answer only for animals but not for humans
– the answer could be found in the full study but is not provided in the

abstract

Summary

Please read each topic’s question and description. Then rate each abstract’s rele-
vance and answer to the question (only if abstract is relevant).
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Appendix B

Used Models
In Table B.1, we provide direct links to all models used in this thesis.

Table B.1: Links to the model checkpoints used for the classification of health-related and
medical questions, claim verification, and question answering, sorted alphabetically.

Model Link

BART https://huggingface.co/facebook/bart-base

BERT https://huggingface.co/bert-base-uncased

BioGPT https://huggingface.co/microsoft/biogpt

BioLinkBERT https://huggingface.co/michiyasunaga/BioLinkBERT-base

BioMedLM https://huggingface.co/stanford-crfm/BioMedLM

duoT5 https://huggingface.co/castorini/duot5-3b-med-msmarco

https://huggingface.co/castorini/duot5-3b-msmarco

https://huggingface.co/castorini/duot5-base-msmarco

Flan-T5 https://huggingface.co/google/flan-t5-base

Galactica https://huggingface.co/facebook/galactica-125m

GPT-2 https://huggingface.co/gpt2

GPT-Neo https://huggingface.co/EleutherAI/gpt-neo-125M

Instructor https://huggingface.co/hkunlp/instructor-base

LongT5 https://huggingface.co/google/long-t5-tglobal-base

MiniLM https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2

monoT5 https://huggingface.co/castorini/monot5-3b-med-msmarco

https://huggingface.co/castorini/monot5-3b-msmarco

https://huggingface.co/castorini/monot5-base-msmarco

MPNet https://huggingface.co/sentence-transformers/all-mpnet-base-v2

MultiVerS https://scifact.s3.us-west-2.amazonaws.com/longchecker/latest/checkpoints/fever.ckpt

https://scifact.s3.us-west-2.amazonaws.com/longchecker/latest/checkpoints/fever_sci.ckpt

https://scifact.s3.us-west-2.amazonaws.com/longchecker/latest/checkpoints/healthver.ckpt

https://scifact.s3.us-west-2.amazonaws.com/longchecker/latest/checkpoints/scifact.ckpt

OPT https://huggingface.co/facebook/opt-125m

PubMedBERT https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract

RoBERTa https://huggingface.co/roberta-base

https://huggingface.co/apugachev/roberta-large-boolq-finetuned

UnifiedQA https://huggingface.co/allenai/unifiedqa-t5-large

SciBERT https://huggingface.co/allenai/scibert_scivocab_uncased

SciFive https://huggingface.co/razent/SciFive-base-Pubmed

T5 https://huggingface.co/t5-base

Vera gs://castorini/vera/experiments/3B (Google file system)

https://huggingface.co/facebook/bart-base
https://huggingface.co/bert-base-uncased
https://huggingface.co/microsoft/biogpt
https://huggingface.co/michiyasunaga/BioLinkBERT-base
https://huggingface.co/stanford-crfm/BioMedLM
https://huggingface.co/castorini/duot5-3b-med-msmarco
https://huggingface.co/castorini/duot5-3b-msmarco
https://huggingface.co/castorini/duot5-base-msmarco
https://huggingface.co/google/flan-t5-base
https://huggingface.co/facebook/galactica-125m
https://huggingface.co/gpt2
https://huggingface.co/EleutherAI/gpt-neo-125M
https://huggingface.co/hkunlp/instructor-base
https://huggingface.co/google/long-t5-tglobal-base
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2
https://huggingface.co/castorini/monot5-3b-med-msmarco
https://huggingface.co/castorini/monot5-3b-msmarco
https://huggingface.co/castorini/monot5-base-msmarco
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://scifact.s3.us-west-2.amazonaws.com/longchecker/latest/checkpoints/fever.ckpt
https://scifact.s3.us-west-2.amazonaws.com/longchecker/latest/checkpoints/fever_sci.ckpt
https://scifact.s3.us-west-2.amazonaws.com/longchecker/latest/checkpoints/healthver.ckpt
https://scifact.s3.us-west-2.amazonaws.com/longchecker/latest/checkpoints/scifact.ckpt
https://huggingface.co/facebook/opt-125m
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract
https://huggingface.co/roberta-base
https://huggingface.co/apugachev/roberta-large-boolq-finetuned
https://huggingface.co/allenai/unifiedqa-t5-large
https://huggingface.co/allenai/scibert_scivocab_uncased
https://huggingface.co/razent/SciFive-base-Pubmed
https://huggingface.co/t5-base
gs://castorini/vera/experiments/3B
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