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Abstract

Authorship Verification is the task of deciding whether two texts
were written by the same author or by different authors. We
hypothesize that authors have a phonetic preference, based on
which they produce texts, and that we can use this phonetic
information to aid in classification. Using a range of phonetic
transcription systems of different granularity, we examine the
viability of using transcription-based features in two well-known
Authorship Verification algorithms. We find that the use of pho-
netic representations of text does not yield an improvement in
performance. In fact, for many configurations we record statis-
tically significant decreases in performance. We propose three
possible explanations for the negative results. For reproducibil-
ity, all code is published as open-source.
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Chapter 1

Introduction

With the widespread availability and use of text as a medium of information
transfer, the problem of identifying authorship of given texts has become one
of the main focuses of stylometric analysis. In this report, we specifically tackle
the task of Authorship Verification which consists of classifying whether two
given texts were written by the same author or not. Underlying our approach
is the hypothesis that authors have a phonetic preference, based on which they
produce different texts. Ladefoged and Johnson [2014] titles this preference the
“phonetics of the individual” and states that “[. . . ] the set of phonetic habits
and memories that each speaker possesses is different from those of every other
speaker of the language”. By applying phonetic transcription systems of varied
granularity to the data used, we aim to emphasize these phonetically relevant
features implanted into the texts by their authors. Then, we use the tran-
scribed data to train two well-known Authorship Verification classifiers. By
evaluating the results with standard measures used in Authorship Verification,
we aim to answer the following questions:

• Does the prior phonetic transcription of texts improve the performance
of the algorithms over using verbatim text?

• Are the results correlated to the granularities of the transcriptions?

We transcribe textual data to North American English pronunciation. We are
aware that in this process some author-specific information is lost and will
discuss the implications of this. Nevertheless, we anticipate that the pho-
netic information encoded into plain text and boosted by transcribing gives
the classifiers an advantage over more naïve methods. All code attributions
are open-sourced at https://github.com/av-pt/bachelors-thesis with an
emphasis on ease of reproduction.
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Chapter 2

Background

2.1 Authorship Verification
In our world a large amount of communication and information transfer is
done through a visual medium: text. This was not always the case. According
to Roser and Ortiz-Ospina [2016], for most of history, reading and writing
was reserved to an elite and associated with power. Through the spread of
public education over time, increasingly more people were able to read and
write. World-wide literacy rates are estimated to have been at 12% in 1820
and have risen to 86% in 2016. Buringh and Van Zanden [2009] estimates that
the number of books produced annually in Western Europe in the sixth and
seventh centuries was only around 120. In contrast, and not only due to the
invention of letterpress printing with movable type, the production in 1790
was at a peak of 20,000,000 books per year. These historical processes gave
rise to the linguistic branch of stylometry, the analysis of “an author’s work
based especially on the recurrence of particular turns of expression or trends of
thought”1. The worth of profiling authors can be illustrated with an anecdote
about a court case from 1979 published in Hitt [2012]. The American linguist
Roger Shuy was able to infer that the author of a ransom note linked to a
kidnapping case had to be well-educated and from Akron, Ohio. Using this
information, the offender was caught and later confessed the crime.

With the adaption of computers by the linguistic community, stylometry
was increasingly done automatically. As presented in Stamatatos [2009], the
wide availability of training data and the increasing speed of computers allowed
for more involved and complex stylometric methods. Nowadays, Authorship
Analysis, concerned mainly with determining authors of given texts, is consol-
idated as a subbranch of stylometry. According to Bevendorff et al. [2020b], it

1https://www.merriam-webster.com/dictionary/stylometry
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CHAPTER 2. BACKGROUND

can be further parted into four disciplines:
Authorship Attribution aims at selecting the author of a given text doc-

ument from a list of candidate authors. This task simulates, for example, a
forensic situation where the document is a threatening letter, and it has to be
determined which of the possible suspects created it. Authorship Obfuscation
changes the direction of the effort. Instead of trying to determine an author,
the goal is to paraphrase a given text in such a way that its author cannot
be identified by comparing it to other non-paraphrased texts of the same au-
thor. For example, the author of said threatening letter could actively try
to use different language to conceal their identity. Although it seems at first
counter-intuitive to model this behavior, by developing working obfuscation
methods mistakes and pitfalls in the creation of Authorship Analysis methods
can be uncovered. To this end, Obfuscation Evaluation measures are devised
which assess the performance of the obfuscation methods. Lastly, Authorship
Verification (AV), which is the task of interest to our research, is defined in
Bevendorff et al. [2019a] as: “[G]iven a pair of documents, determine whether
they are written by the same author”. This task was first proposed in 2004
by Koppel and Schler, and thus is a rather recent development. Authorship
Verification abstracts on other Authorship Analysis tasks by employing only
basic inputs and outputs. In contrast to Authorship Attribution, it does not
aim to identify actual authors but only the fact of whether they are different or
not. This arguably makes Authorship Verification a more difficult task, since
no additional information about the authors of the two texts can be used to
extract author profiles from. Instead, Authorship Verification algorithms try
to identify the universal characteristics by which authors can be differentiated,
regardless of the style of one specific author. As stated in Bevendorff et al.
[2020b], the PAN2,3 series of shared tasks included Authorship Verification
tasks from 2013 to 2015 and picked them back up with PAN 2020, with a
planned total of three tasks over the years 2020 to 2022. In the course of rein-
tegrating the task to PAN 2020, a new data format has been devised, which
we will use in our research.

Authorship Verification can be formalized as follows. Given a text pair
(d1, d2), classify it to True, False, i.e., approximate the target function ϕ :
(d1, d2) → {True, False} where ϕ(d1, d2) = True iff d1 and d2 have the same
author. We call an algorithm that approximates ϕ an Authorship Verification
classifier, or AV classifier for short. In practice, the output of a binary classifier
is often a real number in the interval [0, 1], signifying the probability that a

2https://pan.webis.de/
3Wikipedia: “originally, plagiarism analysis, authorship identification, and near-duplicate

detection, later more generally workshop on uncovering plagiarism, authorship, and social
software misuse”, https://en.wikipedia.org/wiki/Stylometry#PAN
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CHAPTER 2. BACKGROUND

sample belongs to the positive or True class. As discussed later, the precision
of an AV classifier is arguably more important than its recall. Because of this,
PAN 2020 uses metrics that take non-answers into account. An AV classifier
can decide that the chance of a same-author classification is not high enough
and withhold an answer. Usually, this is implemented with an uncertainty
interval around 0.5 for which non-answer is returned.

2.2 Phonetic Transcriptions
As defined in O’Grady et al. [2017], which serves as a reference for the notions
in this section, phonetics4 is the branch of linguistics concerned with “the in-
ventory and structure of the sounds of speech”. Not all sounds humans can
articulate are present in the worlds languages. Yet a wide range, estimated to
consist of 600 consonant and 200 vowel sounds, occur in human language. Note
that phonetics is different from phonology, in that phonology examines how
sounds create meaning in a language. Two subbranches of phonetics are artic-
ulatory phonetics and acoustic phonetics. The former concerns itself with the
physiological processes involved in speech production while the latter exam-
ines acoustic characteristics of speech. In this report we focus on articulatory
phonetics.

The distinct sounds of which a spoken utterance is made up are called
phones. On a more abstract level, linguists segment speech into phonemes.
Phonemes are defined as the smallest units of sound distinguishing meaning
in the words of a language. Swapping a phoneme in a word for another one
changes its meaning, while replacing a phone with a different one does not
necessarily alter its meaning. Those sets of phones that do not evoke a change
of meaning when exchanged are called allophones of their respective phonemes.
For example, the alveolar nasal consonant [n]5 and the dental nasal consonant
[n”] are allophones of the phoneme /n/6 as they are not used to differentiate
meaning in English — [w2n] and [w2n”] both point to the same concept “one”.
However, the alveolar nasal consonant [n] and the bilabial nasal consonant
[m] are different, contrasting phonemes — [mæp] and [næp] indicate the two
distinct concepts “map” and “nap”. While phones are universal, phonemes are
language specific.

As hypothesized in the introduction, we suspect that information valuable
for identifying authorship exists on the phonetic level. Because Authorship

4Merriam-Webster: from Greek phōnētikós, “of speech, endowed with speech” , https:
//www.merriam-webster.com/dictionary/phonetics

5Square brackets are used to generally mark phonetic notation in IPA.
6Slashes are used to mark an abstract phonemic notation in IPA, omitting details that

would be used to distinguish sounds in the specific language notated.
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CHAPTER 2. BACKGROUND

Table 2.1: Example transcriptions.

System Transcription

Verbatim Wake and rise, and step into the green outdoors.
IPA weIk 2nd ôaIz 2nd stEp Intu D2 gôin aUtdOôz
Dolgo WVK VNT RVS VNT STVP VNTV TV KRVN VTTVRS
ASJP wek ond raz ond stEp intu 8o grin atdorz
CV CVC VCC CVC VCC CCVC VCCV CV CCVC VCCVCC
Soundex W200 A530 R200 A530 S310 I530 T000 G650 O362
RefSoundex W030 A086 R9030 A086 S3601 I0860 T60 G4908 O06093
Metaphone WK ANT RS ANT STP INT 0 KRN OTTRS

Verification classifiers use text as input, we want to utilize methods to extract
these phonetically relevant features from the texts. One possible way of achiev-
ing this is by employing phonetic transcriptions. For our purposes, these are
transformations assigning a symbol to each sound of a text as if the text was
spoken aloud. Phonetic transcriptions can be seen as data reduction methods.
By applying them, we anticipate that the phonetically relevant features stay
apparent while other, less relevant features stand out less. In total, we use
eight phonetic transcription systems of different granularity. The narrower a
transcription, the more closely it follows the phonetic details of an utterance.
This often leads to the system having a bigger alphabet, such as the IPA de-
scribed below. The broader a transcription, the more it generalizes phonetic
features. Table 2.1 shows example transcriptions for one of the “phonetically
balanced” sentences developed by the IEEE [1969].

The most widely used phonetic transcription system is the International
Phonetic Alphabet (IPA). As outlined in the Handbook of the International
Phonetic Association [1999], it was developed by the International Phonetic
Association founded in 1886. It serves as a system to notate the sounds of
languages in an internationally agreed-upon manner. Pulmonic consonants —
consonants initiated by a buildup of pressure from the lungs — are distin-
guished in their place and manner of articulation. The place of articulation
describes the position in the vocal tract where the sound is produced. For
example, a bilabial sound, such as the “b” in “beer”, is articulated with both
lips whereas a glottal sound, such as the “h” in “hello”, is articulated all the
way back at the glottis. The manner of articulation includes several factors
regarding distinctive ways of sound production. To give an example, a plosive,
such as the “p” in “explosion”, is created by completely stopping the airflow,
building up pressure and suddenly releasing said pressure. The IPA also dif-
ferentiates between voiced and voiceless consonants such as the first phonemes
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in the words “vast” and “fast”. In a similar way, non-pulmonic consonants and
vowels are organized on scales such as position and manner of articulation.
This way, a system to classify arbitrary sounds of a language has been created.
With 155 symbols, its alphabet is the largest of the transcription systems con-
sidered in this report. Therefore, the produced transcriptions are usually the
narrowest. It should be noted that when using the IPA system a transcrip-
tion can be much more detailed than just using the correct symbols for the
phonemes. Using diacritics, many other qualities of speech can be indicated,
for example, to transcribe specific dialects. Creating accurate and detailed
transcriptions of a given speech sample on the level of phones is a difficult task
usually done manually by linguists. This ties into a problem we have found
in our research that we will discuss later on. To achieve more stable results,
we use a slightly broader version of the IPA omitting prosodic markers and
diacritics.

Because of their detailed nature, IPA transcriptions contain a lot of infor-
mation. Continuing with the idea of reducing phonetically irrelevant informa-
tion, we also employ broader transcription systems. The following ones can be
categorized as sound class systems organizing speech sounds into linguistically-
informed classes.

According to List [2012], the term “sound class” was first devised and
detailed in Dolgopolsky [1986]. For conciseness, we will use the term more
generically as defined above. In the Dolgopolsky sound class system (Dolgo),
phonemes are organized into ten classes, so that the difference between sounds
inside a class is smaller than the difference between classes. The classes were
derived manually from empirical data. We use a slightly extended version
of the original Dolgo sound class system, as implemented in Anderson et al.
[2018]. It includes an eleventh class for vowels and is compatible with all IPA
symbols including common diacritics. A list of the Dolgo sound classes with
examples for corresponding phonemes can be seen in Table 2.2.

The Automated Similarity Judgment Program is a project aiming to clas-
sify the world’s languages introduced in Brown et al. [2008]. As of August
8, 2021, it consists of a database comprising 40-word lists of core vocabu-
lary translated to 9,788 languages. The word lists include meanings such
as “I”, “drink”, and “water”. Each word is transcribed using the asjpCode
transcription system. This way, phonetic similarities between language pairs
can be computed. Language-similarity-trees created with ASJP produce near
expert-level classifications. AsjpCode (ASJP) consists of 34 consonant and
7 vowel symbols. It can be seen as a simplified variant of the IPA system,
with some symbols representing a broader class of speech sounds. For exam-
ple, “N” represents the velar nasal [N] directly, while “o” represents all rounded
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Table 2.2: Dolgo sound classes, adopted from List [2010] with the eleventh category
“V” added.

Symbol Example
phonemes Category

P p, b, f labial obstruents
T d, t, T, D dental obstruents
S s, z, S, Z sibilants
K k, g, ts, tS velar obstruents, dental and alveolar affricates
M m labial nasal
N n, ñ, N remaining nasals
R r, l liquids
W v, u voiced labial fricative and initial rounded vowels
J j palatal approximant
H h, H laryngeals and initial velar nasal
V A, E, I other vowels (simple and diphtongs)

and unrounded mid and low back vowels [7, 2, A, o, O, 6]. Another benefit of
asjpCode, although not directly influential to our research, is that it consists of
only those symbols which are found on a standard QWERTY keyboard. This
facilitates manual transcription.

Lastly, the CV sound class system assigns the symbol “C” to consonant
phonemes and the symbol “V” to vowel phonemes as done in List et al. [2017].
With a binary alphabet it is the broadest of the transcription systems we use.

Apart from these systems we also examine the impact of three simple pho-
netic algorithms. These algorithms were invented to match words of similar
pronunciation in English. The Soundex algorithm, patented by Robert C.
Russell in 1918 and 1922, was devised for indexing names. By grouping names
by phonetic similarity instead of alphabetically, the time needed to search for
a given name would be shortened. Also, similar-sounding names that are writ-
ten differently would be organized into the same categories simplifying access
when, for example, only a spoken name is given. A word is represented by a
code consisting of a capital letter, the first character of the word, and three
digits. The digits, ranging from 1 to 6, represent sound classes of letters oc-
curring later in the word. Table 2.3 shows these classes in more detail. The
process of assigning these codes roughly functions as follows. The first letter
in the word is used as the beginning letter of the code. The first letter along
with all occurrences of the letters “a”, “e”, “i”, “o”, “u”, “y”, “h”, and “w” are re-
moved. The remaining letters are encoded using the mapping from Table 2.3.
If two equal sound classes appear next to each other, the second occurrence
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Table 2.3: Soundex sound classes as used in our research.

Symbol Associated characters Category

1 b, f, p, v labials, labio-dentals
2 c, g, j, k, q, s, x, z gutturals, sibilants
3 d, t dental-mutes
4 l palatal-fricatives
5 m, n nasals
6 r dental-fricatives

Table 2.4: Refined Soundex sound classes as used in our research.

Symbol Associated characters

0 a, e, i, o, u, y, h, w
1 b, p
2 f, v
3 c, k, s
4 g, j
5 q, x, z
6 d, t
7 l
8 m, n
9 r

is removed. The resulting code is truncated to a length of four characters in
total. If the code is shorter than four characters it is filled up with trailing
zeros.

The Refined Soundex algorithm (RefSoundex) extends its predecessor,
with the main difference being that the resulting codes are no longer trun-
cated or extended to a length of 4 but instead retain their original length.
Also, the number of the sound classes is increased to nine, instead of six,
leading to a narrower transcription. The alternate mapping can be seen in Ta-
ble 2.4. Lastly, the digit sequence following the first character also includes this
character’s sound class symbol. The word “and”, for example, is transcribed
to “A086”, not “A86”. Howard and James [2019] traces the origins of Refined
Soundex back to an implementation in the Apache Commons Library as noted
in Fossati and Di Eugenio [2008], but indicates that the idea of modifying the
sound classes already appeared in Zobel and Dart [1995].

Metaphone is also a phonetic indexing algorithm first published in Philips
[1990]. It improves on the Soundex family of algorithms by taking a larger
number of inconsistencies and edge-cases of English pronunciation into ac-
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count. Also, its focus does not only lie on indexing names but rather English
words in general. It consists of a series of 27 context-aware transformations7,
sequentially replacing phonetically similar patterns with representative sym-
bols or removing them if they are not unpronounced. For example, one such
transformation is removing the first letter of a word if that word starts with
“KN”, “GN”, “PN”, “AE”, or “WR”. Metaphone’s alphabet consists of 21 sym-
bols — 16 for consonants and 5 for vowels — representing classes of speech
sounds. Vowel symbols only appear at the beginning of transcribed words.
Metaphone was later superseded by Double Metaphone and the closed-source
Metaphone 3, both of which use a substantially larger rule set.

For normalization, we remove all inter-word punctuation in the texts. Intra-
word punctuation, such as in “don’t”, is phonetically significant and thus not
removed. For brevity, we refer to all systems described above as phonetic
transcription systems. In addition to the phonetic transcriptions above, we
also create three other conversions for comparison:

• P: Removing punctuation

• PL: Removing punctuation and lemmatizing the occurring words

• PLS: Removing punctuation, lemmatizing, and removing stop words

We handle verbatim text and the three non-phonetic conversions in the same
way as transcribed text.

7The number of transformations stems from the implementation used.
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Related Work

Before the inception of Authorship Verification as a task, Authorship Attri-
bution was the main subject of stylometric investigation, as it is much closer
to real-life circumstances. Stamatatos [2009] divides the scientific efforts on
Authorship Attribution into two periods — before and after the late 1990s —
and gives an overview of their development.

The first application of statistics to authorship research was done in 1887
and 1901 by Mendenhall. Histograms of word length frequencies were used
to differentiate Shakespeare from other authors of his era. Mendenhall’s work
was later critized by Williams [1975] as the differing histograms could better
be explained by differences in presentation — Shakespeare used verse while
the other authors wrote prose. The most influential study of this early period
was conducted by Mosteller and Wallace in 1964 on “The Federalist Papers”1.
It employed a Bayesian statistical analysis on a small set of common words
showing significant capabilities in distinguishing candidate authors. Whereas
before, Authorship Attribution was mainly conducted manually by experts,
this study paved the way for statistically supported methods. Nevertheless,
research continued to mainly focus on solving specific literary disputes and
finding new measures to quantify stylometric features. Stamatatos states that
the evaluation of the emerging methods was hindered mainly by datasets be-
ing too small, unstandardized, and unhomogenized for style and topic. This
prevented meaningful comparisons of the different approaches during this first
period.

Through the expanding use of Internet media during the late 1990s, data
utilized in Authorship Attribution began shifting towards electronic texts. Fol-
lowing this trend, research efforts began to focus on the development of ap-
plications that could be used in real-world scenarios such as forensics or law.
Additionally, the evaluation of proposed methods was emphasized to enable

1https://en.wikipedia.org/wiki/The_Federalist_Papers
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an objective comparison between them.
On a technical level, Stamatatos splits the proposed approaches into two

components: the features used to quantify writing style, and the methods used
to attribute authorship. The stylometric features vary in complexity, ranging
from lexical features working on word level up to semantic features aiming at
extracting the meaning of a text. The most notable lexical feature set is the
set of most common words. Although for semantic analyses these so-called
function words (articles, prepositions, etc.) do not carry much information,
they are well suited for discriminating between authors (Argamon and Levi-
tan [2005], Burrows [1987]). The Unmasking algorithm by Koppel and Schler
[2004], described in more detail in Section 5.2, uses the 250 most common words
of the supplied data as features. On character level, many approaches employ
character n-grams, reporting very good results (Peng et al. [2003], Kešelj et al.
[2003], Stamatatos et al. [2006]). In contrast to lexical features working with
words as atomic and isolated units of information, character-based features
such as n-grams can take advantage of subword and context information. Be-
cause of this, we also use n-grams in our research. The compression-based
approach by Teahan and Harper [2003], described in greater detail in Sec-
tion 5.1, can also be interpreted as a character level approach, as the internal
compression algorithm works with characters as atomic units. Commonly used
syntactic features include part-of-speech (POS) frequencies and n-grams. Us-
ing a POS-tagger, syntactic information is annotated, signaling if a word is, for
example, a noun or a preposition. The resulting tags or sequences thereof are
counted, and their frequencies used as features. On a higher level, semantic
features are used. Most noteworthy is the approach by Argamon et al. [2007].
It extracts semantic information by mapping certain keywords and phrases in
specific part-of-speech contexts to semantic meanings. The word “while”, for
example, is semantically tagged as a conjunction that could be followed by
an elaboration, an extension, or an enhancement of the previous statement.
The frequencies of these semantic phenomena are then used as features for
classification.

In general, the different features function only to the extent that their
underlying Natural Language Processing algorithms are robust. Low-level fea-
tures such as character n-grams are trivial to generate from given text and
thus produce reliable output feature quality. High-level features like semantic
analyses, on the other hand, require much more effort and depend on factors
such as target language and corpus quality.

The methods of attributing authorship can further be divided into profile-
based and instance-based approaches. The former concatenates the texts
by each author into one file, creating a profile of that author. The latter
treats each text as a separate instance from which the attribution model

11
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can be trained. As we examine Authorship Verification in our research, the
approaches we use are instance-based. However, it can be noted that the
compression-based approach was originally developed for Authorship Attribu-
tion and merged the texts of each author into one document, rendering it a
profile-based approach. As we do not have information about the authors of
the given texts, we use an adaption of the compression-based approach that
does not create such profiles and simply compares two given texts.

After 2008, through the PAN workshops in 2013–15 and 2020 onward, nu-
merous approaches aiming at solving Authorship Verification were contributed.
The most notable recent development is the inception of approaches using deep
learning techniques which was enabled by the introduction of a large dataset
in PAN 2020 (Boenninghoff et al. [2020], Weerasinghe and Greenstadt [2020],
Araujo-Pino et al. [2020], Ordoñez et al. [2020]).

Bevendorff et al. [2019a] reveals possible biases (B1–B6) in Authorship
Verification and presents ways to mitigate these. First, the paper discusses
biases of AV classifiers:

• B1: Models using corpus-relative features such as TF-IDF are prone to
overfitting as in most cases the document frequencies are derived from
the training sets themselves.

• B2: In a similar vein, models employing feature scaling also tend to
overfit to the specifics of the training set. Thus, care should be taken to
avoid modelling the training data too closely.

Next, biases concerning the data are examined:

• B3: A text may contain artifacts that were not introduced by the author,
such as editorial marks or text conversion errors. To prevent fitting to
erroneous artifacts, texts should be fully homogenized to only contain
artifacts entered by the author.

• B4: To increase the size of a dataset, text chunks are often reused. This
should not be done, as the resulting corpus might over- or underrepresent
certain authors’ styles.

• B5: Reusing text might lead to overlap including topic words, named en-
tities and other unique character sequences. To inhibit an AV algorithm
learning these features, text overlap should be analyzed and corrected.

Lastly, a bias appearing in the evaluation phase is identified:
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• B6: it is unrealistic for an AV algorithm to be used in situations where it
has access to a large test set. Therefore, while evaluating the algorithms
should only have access to one text pair at a time. This more closely
models manual Authorship Verification where a forensic linguist also
inspects text pairs on a case-by-case basis.

To mitigate the biases stemming from the data, a corpus containing texts from
Project Gutenberg is presented. We will use this dataset in our experiments.

Research combining Phonetics and Authorship Analysis is sparse. As
known to the author, Khomytska et al. conducted the only research on
this topic. Khomytska et al. [2019] analyzes the influence of eight different
consonant phoneme classes in differentiating authorial style. The consonant
phoneme classes that are used group labial, velar, fricative, nasal, sonorous,
coronal, dorsal, and stop phonemes. First, a text pair is transcribed and then
processed to yield a sample of 51,000 consonant phonemes for each text. The
sample is divided into 51 parts and the mean frequencies of the classes are
calculated. Using Pearson’s test, it is proven that the obtained class frequen-
cies follow a normal distribution. To assess the similarity of the distributions,
the Student’s t-test, the Kolmogorov-Smirnov test, and the Chi-square test
are examined. Also, by comparing the phoneme class frequencies between the
texts, differentiation capabilities for each of the classes are determined. It
is concluded that labial, fricative, nasal, coronal, dorsal and stop consonant
phonemes in conjunction with the Kolmogorov-Smirnov test are useful for dif-
ferentiating authorial style, whereas velar and sonorous consonant phonemes
are not. Khomytska et al. have published a number of similar articles on Style
Differentiation and Authorship Attribution. Unfortunately, no standard eval-
uation methods are used, preventing meaningful comparisons to other work in
this area. In addition, the used datasets are small, with the paper outlined
above deriving a not further specified improvement in the differentiation of
authorial styles by analyzing only one text pair, questioning the validity of the
results.

Phonetic transcriptions have also been used as classification features be-
fore, namely in the task of Native Language Identification in Smiley and Kübler
[2017]. Given a text, the goal is to determine the native language of the author
from a closed set of possible languages. Labeled texts from a training set were
transcribed using one of four algorithms. Three of the algorithms used were
Soundex, Double Metaphone and New York State Identification and Intelli-
gence System. Originally they were developed to improve recall in information
retrieval systems when the exact spelling of a word was unknown. Thus, they
can be interpreted as broad transcription algorithms. Also, text was tran-
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scribed to IPA using the Carnegie Mellon University Pronouncing Dictionary
(CMU) resulting in a much narrower transcription. After transcribing, the
samples were segmented into character n-grams of sizes 2–9. Then, the TF-
IDF score for n-grams with a document frequency of at least 5 but not more
than 5% of the training set were calculated. The scores were then used for
training a linear C-Support Vector Machine. Using only features generated
by the phonetic algorithms, the F1-score was worse than using plain character
n-grams. But when these features were combined with plain n-grams they
increased the F1-score. Double Metaphone and plain n-grams resulted in the
largest increase of 0.56%. Also, it turned out that in all cases the broader
transcriptions outperformed the narrow CMU transcription, except when us-
ing only Soundex features. Thus, a transcription that is too narrow might
increase feature noise and thereby damage the classifier’s performance.

14



Chapter 4

Datasets and Transcription

4.1 Datasets
We use learning-based classification algorithms. This means, given a set of
rules, they try to induce the underlying patterns of a training set. The resulting
patterns are then used to classify unseen entities of a test set. To train and
test our algorithms we use two datasets, each consisting of labeled text pairs.
A pair has the label True if both texts were authored by the same person and
False if not.

First, we will use the small official dataset (FF) from the PAN 2020 task
on Authorship Verification from Bevendorff et al. [2020a]. This allows us to
compare our results to the other methods submitted. It consists of 52.601 text
pairs collected from the fanfiction website fanfiction.net. The dataset file
is formatted in the PAN 2020 format with each line containing a json object
with the text pair, an ID, and optionally some additional information such
as the corresponding fandoms1. In contrast, the large official dataset contains
256.000 samples. This is roughly five (4.86) times as many samples as the
small dataset. Efforts have been made to maximally optimize the methods
used, but due to certain implementation details, the utilization of the large
Fanfiction dataset remains infeasible for now.

We source the second dataset (GB) from Bevendorff et al. [2019a]. It
presents a dataset containing science fiction and adventure texts from the 19th
and 20th century, compiled from books from Project Gutenberg2. As discussed
earlier, the aim of this dataset is to reduce common biases in datasets for
Authorship Verification. This makes it a good candidate for evaluating new
authorship verifiers. With only 262 text pairs, it is much smaller than the first

1The franchise a fanfiction text belongs to. It can be seen as the topical domain of the
text.

2https://www.gutenberg.org/
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CHAPTER 4. DATASETS AND TRANSCRIPTION

dataset used. To maximally use the information in this dataset, we employ
cross-validation in our evaluation instead of a standard train-test-split method.
As this dataset is in the old format, used before PAN 2020, we converted it to
the new PAN 2020 format for standardization3.

4.2 Transcription
We use a range of open-source libraries to transcribe the datasets. Figure 4.1
shows the process a given text undergoes during transcription. Because the
Fanfiction dataset is at times noisy and contains artifacts that are phonetically
irrelevant (e.g., long punctuation sequences, HTML-tags), we clean it with the
following steps:

1. Remove tokens longer than 23 characters.
→ The longest token occuring in the Fanfiction dataset that also occurs
in the ASPELL4 dictionary is 23 characters long. Longer tokens are
mainly artifacts.

2. Remove tokens with 3 or more punctuation symbols.
→ Tokens with many punctuation symbols are mainly artifacts.

3. Remove tokens containing symbols that are not in the following set:
{symbol | isTranscribable(symbol) ∧ isPunctuation(symbol)}
e.g. {a, b, c, . . . , ñ, ë, . . . , !, ?, ", . . . }
→ Tokens with such non-transcibable symbols do not create meaningful
transcriptions.

4. Replace all double quotes with single quotes.
→ During the creation of the Fanfiction dataset all types of quotes were
normalized to double quotes. This leads to combinations that are not
transcribed correctly (e.g. “I"m” is erroneously transcribed to [Im] in-
stead of [aIm]). On the other hand, single quotes used in place of double
quotes do not present any difficulties in transcribing.

5. Remove excessively long or short texts (< 20500 and ≥ 22500 characters,
around 1.6% of the data).

The actual transcription steps are the same for the texts from both datasets.
First, we transcribe a given text to IPA using g2pE introduced by Park and
Kim [2019]. It works as follows:

3The code for the conversion is available at https://github.com/av-pt/NAACL-19
4http://aspell.net/
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g2pE: Grapheme to
Phoneme & removing 
inter-word punctuation
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CLTF: Phoneme to 
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Phonetic Algorithms

Original text: 
Verbatim (original)

Cleaning 
(only FF data)

Text: Verbatim

ASJP
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CV

CV 4-grams

ASJP 4-grams

Dolgo 4-grams
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Removing spaces
& generating 4-grams

(only GB data)

P 4-grams

Figure 4.1: Transcription setup, orange = data, blue = process.
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1. Expand numbers and currency symbols (e.g., “$400” to “four hundred
dollars”).

2. Use part-of-speech information to find the correct pronunciations for het-
eronyms, i.e., for words that have multiple context-dependent pronunci-
ations.

3. Look up pronunciations in the Carnegie Mellon University Pronouncing
Dictionary5.

4. For out-of-vocabulary words use a neural net model to predict their cor-
rect pronunciations.

We use this method over a simpler approach because it exploits word context
to find the correct pronunciation. Additionally, it creates IPA representations
segmented into phonemes. This is important for the next step, generating the
broader sound class transcriptions using the Cross-Linguistic Transcription
Systems project by Anderson et al. [2018]. CLTS serves as a phoneme-by-
phoneme mapping between different transcription and sound class systems.
Given a list of IPA transcribed phonemes, they can be mapped to a range of
other systems. As words in IPA can contain arbitrary supra-segmental letters,
and it is hard to segment these words into phonemes after transcribing, List
et al. [2018] recommends using segmented IPA representations. Transcribing,
for example, the word “make” to IPA results in [meIk]. In contrast to other
algorithms, g2pE produces the correct segmentation [m eI k]. Using CLTS
to convert this to the Dolgo system we correctly get “MVK”. If we were, for
example, to naively segment [meIk] to [m e I k] by interpreting each IPA
symbol as a phoneme, we would incorrectly get “MVVK” as a result for the
Dolgo system. For the Gutenberg dataset, we also generate space separated
character 4-grams for the systems above.

Punctuation and stop word removal, as well as lemmatization is done with
spaCy6 for speed and robustness. For the punctuation-removed data (P) we
also create 4-grams. They can be used as a generic n-gram approach compared
to n-gram approaches using transcriptions as the transcriptions above also have
punctuation removed. The other phonetic algorithms — Soundex, RefSoundex
and Metaphone — work with verbatim text on word level, i.e., they do not
use context but transcribe each word in isolation. Thus, we space-tokenize the
punctuation-removed data (P) and use the resulting lists as input for these
algorithms. For the transcriptions themselves we use the library pyphonetics7.

5http://www.speech.cs.cmu.edu/cgi-bin/cmudict/
6https://spacy.io/
7https://github.com/Lilykos/pyphonetics
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The source code in this library is based on Talisman.js8 which itself is based
on the Apache commons codec9. The source code for transcribing datasets
formatted in the PAN 2020 standard is available on GitHub10.

4.3 Transcription Characteristics
To better understand the characteristics of the phonetic transcription systems
and the idiosyncrasies of the datasets, we conduct some preliminary inves-
tigations. We calculate the vocabulary size scaling factor (VSSF ) for each
transcription system by determining the ratio of the number of distinct lexical
types before and after transcribing. A VSSF of 1.5, for example, indicates that
the examined transcription system increases the vocabulary size by 50%. This
way, we can assess the granularity of the different transcription systems. A
vocabulary reduction of 50%, for example, indicates that on average two words
are binned into one transcription. In practice, there may be some transcrip-
tions grouping many words while many transcriptions would have a one-to-one
mapping to a single word. We calculate the absolute vocabulary size and the
VSSF per transcription system per dataset. Table 4.1 shows the results.

First, let us take a look at findings for the Gutenberg dataset, which are
visualized in Figure 4.2. The verbatim text contains 50277 types. Both IPA
and ASJP increase the vocabulary size by a significant amount, 20.68% and
11.21% respectively. This is to be expected as the alphabet of both systems
is larger than the alphabet of verbatim text and thus more types can be gen-
erated. The text with removed punctuation (P) retains the same amount of
types as verbatim text because punctuation symbols are not counted towards
the vocabulary size. By further lemmatizing the texts (PL), more tokens are
binned and the resulting vocabulary is reduced by 18.6%. Eliminating stop
words (PLS ) removes 220 more types. The Dolgo system has an even smaller
amount of types, but still retains more type granularity than the more simple
phonetic algorithms. RefSoundex and Metaphone reduce the vocabulary size
by 41.44% and 47.29% respectively. Because of its length restriction to four
characters, Soundex can at most produce 8,918 unique types (A000 to Z666)
with only 4250 of them appearing in the data. Lastly, CV reduces the number
of types the most and retains only 1954 types. A reduction to 3.89% of the
original vocabulary size implies that on average ca. 26 words are binned into
one transcription.

8https://yomguithereal.github.io/talisman/
9http://commons.apache.org/proper/commons-codec/userguide.html

10https://github.com/av-pt/ba-util
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Table 4.1: Effects of transcription systems on the vocabulary sizes of the datasets.
Verbatim represents plain English text. Verbatim (original) is the uncleaned version
of the Fanfiction dataset.

System GB
absolute

GB
VSSF

FF
absolute

FF
VSSF

Verbatim (orig.) – – 795621 1.0426
IPA 60673 1.2068 782424 1.0253
ASJP 55913 1.1121 691146 0.9057
Verbatim 50277 1.0 763097 1.0
P 50277 1.0 754293 0.9885
PL 40924 0.814 739629 0.9692
PLS 40704 0.8096 739530 0.9691
Dolgo 36288 0.7218 384440 0.5038
RefSoundex 29441 0.5856 229360 0.3006
Metaphone 26501 0.5271 210973 0.2765
Soundex 4250 0.0845 6471 0.0085
CV 1954 0.0389 9436 0.0124
IPA 4-grams 176092 3.5024 – –
P 4-grams 103983 2.0682 – –
ASJP 4-grams 78246 1.5563 – –
Dolgo 4-grams 4061 0.0808 – –
CV 4-grams 16 0.0003 – –

Figure 4.3 shows the results for the same analysis but using the Fanfiction
dataset. Both plots are predominantly similar but exhibit a few interesting
differences stemming from the characteristics of the transcription systems and
the datasets. Note that the Fanfiction dataset is substantially larger than the
Gutenberg dataset, also leading to a larger total vocabulary count.

First, the vocabulary size of the uncleaned (original) verbatim text is 4.26%
larger than that of the cleaned one. This was expected as we removed certain
words during cleaning. Next, it can be observed that there is an unexpected
difference between verbatim text and punctuation-removed text (P). This may
stem from the Fanfiction dataset including many more different punctuation
symbols which are removed to create the P transcription but not when count-
ing types in verbatim text. Also, the relative difference between P on the one
hand and PL as well as PLS on the other is much smaller. This could indi-
cate that the Fanfiction dataset has many out-of-vocabulary tokens that are
not easily lemmatized. Compared to the Gutenberg dataset, which consists of
texts from published books, this would make sense as the acceptance criteria
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Figure 4.2: Vocabulary sizes for transcriptions on Gutenberg dataset with VSSF s
above.

for Fanfiction stories are much lower than those for books. For the phonetic
algorithms, Soundex has a smaller vocabulary than CV. As mentioned above,
the codes generated by the Soundex algorithm are bound to 4 characters in
length. Because CV tokens are only restricted to a binary alphabet, but do
not have any length restrictions, with a large enough text sample the CV vo-
cabulary outnumbers the Soundex vocabulary. To substantiate this claim, we
created a vocabulary list for each text pair in the Fanfiction dataset. Then
we accumulated the vocabulary lists one by one to examine if the transcribed
texts follow Heaps’ Law as defined in Schütze et al. [2008]. Figure 4.4 shows
the sizes for the accumulated vocabulary for Soundex and CV when reading
in the texts from the Fanfiction dataset in a shuffled order. The vocabulary of
the Soundex transcription grows fast in the beginning but then begins to max
out at around 6000 types. For the CV transcription on the other hand, the
accumulated vocabulary size grows slowly in the beginning, probably due to
its restricted alphabet, but does not hit a ceiling and continues to grow beyond
Soundex ’s vocabulary size.

Arguably, the most notable difference is that when transcribing the Guten-
berg dataset ASJP leads to an increase in vocabulary size whereas using the
Fanfiction dataset ASJP surprisingly results in a significant reduction of the
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Figure 4.3: Vocabulary sizes for transcriptions on Fanfiction dataset with VSSF s
above.
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Figure 4.4: Accumulated vocabulary size for Soundex and CV, shuffled Fanfiction
dataset.
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Figure 4.5: Accumulated vocabulary size for Verbatim, IPA, ASJP, and Dolgo,
in-order Fanfiction dataset.

vocabulary. Note that as shown in Figure 4.1, ASJP results from the IPA
transcription. To attain a clearer view of what is happening here, we also cal-
culate the accumulated vocabulary sizes for Verbatim, IPA, ASJP, and Dolgo,
shown in Figure 4.5. This plot poses two additional questions11:

1. Why is there a sudden change in slope in the accumulated vocabulary
size?

2. Why do IPA and verbatim text diverge on the left side but stay at a
constant difference after the change in slope on the right side?

The first question has an obvious answer: The Fanfiction dataset is sorted.
The first half consists of only same-author pairs with all different-author pairs
residing in the second half. Table 4.2 shows information on the author dis-
tribution of both datasets segmented into same-author and different-author
parts. With 47813 authors, the different-author part of the Fanfiction dataset
has around 7.47 times as many authors as the same-author part. For the same-
author part, one author wrote 1.036 individual texts on average whereas for
the different-author part this number is 8.702212. It comes as no surprise then
that — despite individual text and vocabulary sizes being nearly equal for both
parts — the vocabulary of the different-author part is much more diverse. This

11Both phenomena persist when using single texts instead of text pairs for the cumulative
vocabulary size analysis.

12Or in terms of dataset samples, on average authors contributed to 0.518 and 4.3511 text
pairs respectively.
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Table 4.2: Author distribution of the datasets used.

Gutenberg Fanfiction

No. of authors in same-author part 54 6397
No. of authors in different-author part 56 47813
No. of authors in both parts 53 1555
Texts per author in same-author part 4.8148 8.7022
Texts per author in diff-author part 4.7143 1.036
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Figure 4.6: Same-author part of accumulated vocabulary size for Verbatim, IPA,
ASJP, and Dolgo, in-order Fanfiction dataset.

diversity leads to the higher slope in the different-author part. As a side note,
the bias-mitigated Gutenberg dataset does not exhibit a change of slope when
analyzing it as above. This is also reflected in the number of authors for the
same- and different-author parts in table 4.2. For the Gutenberg dataset, the
number of authors for both parts are almost identical, and most authors appear
in both parts. Also, the number of texts an author contributed to the dataset
is nearly equal between both parts. We conclude that the number of authors
is correlated to the vocabulary size of a given dataset. Further investigations
are necessary to determine whether the difference in author distribution and
thus in vocabulary size in the Fanfiction dataset has an effect on the results
from the PAN 2020 task where this dataset was used.

As of yet, we do not have an answer to the second question. To change
the perspective of this phenomenon, Figures 4.6 and 4.7 show the cumulative
vocabulary size for the same-author and different-author part in isolation. As
expected, all curves follow Heaps’ Law and the total vocabulary of the same-
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Figure 4.7: Different-author part of accumulated vocabulary size for Verbatim,
IPA, ASJP, and Dolgo, in-order Fanfiction dataset.

author part is lower than that of the different-author part. The surprising
difference is that the curves for Verbatim and IPA in Figure 4.7 do not di-
verge. In contrast to the same-author part, for the different-author part the
transcription to IPA does not lead to an increased vocabulary size. We in-
vestigated some possible explanations of this phenomenon. The samples from
both parts are transcribed in one coherent process and also plotted in one
go, lowering the probability of an implementation error. The percentage of
alphabet characters (a-z, A-Z) in both parts is almost equal. The only small
difference we found is in the fraction of words that occur in the ASPELL dic-
tionary. For the same-author part 15% of the words are in ASPELL while for
the different-author part only 10% are in ASPELL.

We suspect that the decrease in vocabulary size of ASJP compared to
verbatim text (Fig. 4.3) has two reasons. First, the missing increase for the
vocabulary size of IPA in the different-author part. As IPA is the transcription
preceding ASJP, the vocabulary size of the former directly impacts the that of
the latter. Second, in Figure 4.6 we observe that ASJP still produces a lower
vocabulary count, even for the same-author part only. This lets us speculate
that some other factor, e.g., the quality of the dataset, must also play a roll in
its transcription. Maybe both, the same-author and the different-author part,
are affected by the same phenomenon with the same-author part affected only
slightly. This hypothesis could be supported by comparing the vocabulary
increase of IPA between both datasets. With the Gutenberg dataset, IPA in-
creases the vocabulary by 20.68% (Fig. 4.2) while with the Fanfiction dataset
the vocabulary is only increased by 2.53% (Fig. 4.3). Still, this comparison
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Figure 4.8: Vocabulary sizes for 4-grams compared to Verbatim.

should be interpreted cautiously because of the bespoken size differences of the
datasets. To this end, further investigation is needed.

Figure 4.8 shows the vocabulary sizes for the 4-grams, i.e., the amount of
unique 4-grams generated from each transcription of the Gutenberg dataset,
compared to the vocabulary size of verbatim text. With a binary alphabet,
CV creates only 16 unique 4-grams. This is followed by Dolgo, which could at
most create 20736 4-grams of which 4061 appear in the data. ASJP increases
upon the vocabulary count of verbatim text, as it has a bigger alphabet. The
4-grams generated from punctuation-removed text have an even higher count.
This is due to intra-word punctuation not being removed and thus retaining
many of the punctuation symbols from verbatim text. Lastly, IPA generates
by far the most 4-grams, as it has the biggest alphabet of all transcriptions
used.
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Experiments

As shown in Figure 5.1, the main experimental setup can be structured into
four parts. In a preprocessing step, we standardize the Gutenberg dataset
to the new PAN 2020 format and we clean the Fanfiction dataset. Then,
we transcribe the datasets using the phonetic transcription methods defined
earlier. The resulting datasets, as well as the original dataset, are then used
as the inputs to two widely used Authorship Verification algorithms which are
described in more detail in this chapter. For all experiments, we conduct three
cross-validation runs with ten folds each. We then average the results and
compute the Bonferroni-corrected1 statistical significance using a paired t-test
as the test statistic. Finally, we analyze the results.

5.1 Compression Approach
The first approach, originally from Teahan and Harper [2003] and later adapted
to Authorship Verification and employed as a benchmark in PAN 2020, uses a
text compression method to determine the chance that two texts were written
by the same author. Text compression can be seen as encoding a given text
with an encoding that is optimized for this text. As discussed in Brown et al.
[1992], by determining this encoding, text compression can be used to estimate
an upper bound to the entropy, i.e., the amount of information of characters
in English text. More specifically, by using the compression model optimized
on some text A, the cross-entropy of encoding a text B with this model can
be calculated. During training, this is done for each pair in both directions.
The mean and average of the distance between the resulting cross-entropies
are then used to train a logistic regression model. The smaller the resulting

1As we conduct 30 runs on the same data, the likelihood of encountering a rare configu-
ration that performs well and accepting it as statistically significant is high. Thus we divide
the p-values for accepting statistical significance by 30.
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difference, the more similar the texts, and the higher the chance that both
are written by the same author. The compression model used is Prediction by
Partial Matching (PPM), a standard algorithm for lossless text compression,
first introduced by Cleary and Witten [1984]. As done in PAN 2020, we employ
an uncertainty interval with a radius of 5%, i.e., predictions that are in the
interval [0.45, 0.55] are given a non-answer classification. The source code
used is based on a reimplementation of the Authorship Attribution approach
from Teahan and Harper [2003] as part of a reproducibility study in Potthast
et al. [2016]. The adaption for Authorship Verification stems from PAN 20202.
The source code extending the algorithm to use phonetic features and adding
cross-validation functionality is available on GitHub3.

5.2 Unmasking Approach
Unmasking was first introduced by Koppel and Schler in 2004. In short, it
exploits the degradation of classifier accuracy when removing distinguishing
features. It turns out that iteratively removing those features leads to a faster
degradation on text pairs by one author than on those by different authors.
Thus, the algorithm “unmasks” the text pairs and thereby reveals the infor-
mation needed for classification.

This approach comprises two steps: First, a cross-validation method is
employed to create the accuracy degradation curves for all training samples.
Secondly, a meta-classifier is trained on the resulting curves to differentiate
between same-author and different-author curves.

To compute a curve for a pair, both texts are chunked into parts longer than
500 words without splitting paragraphs. The 250 words with highest average
frequencies in the two texts are used as features. In a 10-fold cross-validation,
linear support vector machine (SVM) models are trained to classify if a chunk
belongs to the first or the second text. The resulting accuracy is noted and
the three most discriminating positive and negative features are removed from
the feature set. The cross-validation and feature removal are repeated until no
features are left. The set of curves is then used to train a linear SVM model
as a meta-classifier. As brought to the point by Bevendorff et al. [2019b], the
features used are “the curve points, the curves’ point-wise first- and second-
order derivatives, and the derivatives sorted by steepest point-wise drop”.

Unmasking is one of the most robust Authorship Verification algorithms.
But as it requires sufficient chunks of no less than 500 words in length, it is only

2https://github.com/pan-webis-de/pan-code/tree/master/clef20/
authorship-verification

3https://github.com/av-pt/teahan03-phonetic
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applicable for book-length texts. To counter this, Bevendorff et al. [2019b] gen-
eralizes the algorithm to accommodate for short texts. Chunks are generated
by oversampling the bag-of-words pool of a given text. Words from this pool
are picked randomly without replacement until a length of 700 words is reached
and the pool is reset afterwards. In total, 30 chunks are generated which are
then used for curve generation as above with the only exception that the five
most positive and negative features are removed instead of only three. As this
approach introduces a significant amount of variance in the resulting curves,
the Unmasking step is repeated multiple times and the curves are averaged. It
is recommended to average at least 15–20 Unmasking runs for each text pair.
In our experiments, we average the curves of 32 Unmasking runs per text pair
with varying chunk sizes of 500, 600, and 700 words respectively. In the im-
plementation supplied by Bevendorff et al. [2019b]4 and used as the basis for
our research, the meta-classifier uses the curves’ “central-difference gradients
(first- and second-order), as well as their gradients sorted by magnitude” as
features. Also, the implementation predicts labels instead of confidence val-
ues and hence does not produce non-answers. The source code extending the
Unmasking framework for the use of phonetically transcribed datasets and im-
plementing a cross-validation functionality is available on GitHub5. Note that
we only use the Gutenberg dataset for Unmasking as processing the larger
Fanfiction dataset for each transcription proved to be too time-consuming.

4https://github.com/webis-de/unmasking
5https://github.com/av-pt/unmasking
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CHAPTER 5. EXPERIMENTS
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Chapter 6

Results

For the evaluation of our approaches we use several traditional as well as
recently proposed measures. We source the definitions for this section from
Schütze et al. [2008]. We use the convention that a pair is in the positive
class iff both texts are written by the same author. tp, tn, fp, fn stand for
the number of cases that where classified correctly as positive (true positives),
correctly as negative (true negatives), falsely as positive (false positives), and
falsely as negative (false negatives) respectively.
The precision of a classifier is the percentage of correct positive classifications
tp over all classifications tp+ fp:

pre =
tp

tp+ fp

Thus, a precision approaching 1 indicates that an AV classifier’s same-author
predictions are near fully correct, meaning that there are nearly no false posi-
tives.
The recall of a classifier is the percentage of correctly classified positive sam-
ples tp over all positive samples tp+ fn:

rec =
tp

tp+ fn

The lower the recall, the fewer same-author cases are recognized and predicted
as such by an AV classifier. In turn, a recall of 1 indicates that all same-author
cases have been correctly identified.

Ideally, we want a system that classifies all same-author cases and only
those as positive. To measure this behavior, the F1-score can be used:

F1 = 2 · prec · rec
prec+ rec

.
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CHAPTER 6. RESULTS

If both, precision and recall, approach 1 the F1-score of an AV classifier also ap-
proaches its maximum of 1. Note that the F1-score weights precision and recall
equally. Especially for forensic Authorship Verification applications though, a
high precision is more important than a high recall, as same-author decisions
might be used as evidence and therefore must be reliable. Also, in our setup,
the F1-score ignores true negatives and therefore does not give an insight into
how well the classifier detects different-author cases correctly. For this, the
different-author class would need to be assigned the positive label.

To mitigate some of the problems of the measures above and to better assess
AV classifier performance, we use two more recently introduced measures. To
include same-author and different-author classifications in the evaluation, one
could use the accuracy:

acc =
tp+ tn

n

where n = tp+tn+fp+fn is the total number of cases. However, as Bevendorff
et al. [2019b] points out, the results are often uncertain. Also, in real-world
applications wrong answers might be worse than non-answers. Therefore, to
give classification systems the option to withhold answers for difficult-to-decide
cases, we use the c@1-score introduced by Peñas and Rodrigo [2011] and
adopted by PAN:

c@1 = acc+
acc

n
· nu

where n is again the total number of cases, and nu is the number of undecided
cases. This way, undecided cases count towards the c@1-score as if they were
answered with the accuracy of the decided cases. When an AV classifier gives
an answer to all cases, the c@1-score is equivalent to the accuracy of the
classifier. A system that leaves all cases unanswered receives a score of 0.

Lastly, we use the F0.5u-score introduced by Bevendorff et al. [2019b]:

F0.5u =
(1 + 0.52) · ntp

(1 + 0.52) · ntp + 0.52 · (nfn + nu) + nfp

.

As mentioned above, a high precision result is more reliable than a high recall
one. To take this into consideration, the F0.5u-score weights precision two times
as much as recall. In addition, it also allows the classifiers to give non-answers.
However, as unanswered cases are often not useful in real-world applications,
it interprets them as wrong answers. Thus, the F0.5u-score emphasizes on the
precision of an AV classifier.

The results of our experiments can be seen in Tables 6.1, 6.2, and 6.3. The
tables show the absolute values of the results for the transcription systems
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Table 6.1: Results for Unmasking using the Gutenberg dataset with Bonferroni-
corrected significance markers.

System Precision Recall F1 F0.5u (F0.5) c@1 (Accuracy)

Verbatim 0.7545 0.6539 0.6977 0.6784 0.6875

IPA 0.7537 0.6701 0.7004 0.6641 0.6833

ASJP 0.7284 0.667 0.6893 0.6455 0.676

Dolgo 0.7551 0.6733 0.7046 0.6617 0.6792

RefSoundex 0.7297 0.6275 0.6673 0.6233∗∗− 0.6542

Metaphone 0.7193 0.6028 0.648∗− 0.6143∗∗− 0.6423∗∗−
Soundex 0.7333 0.6363 0.6677 0.6234∗∗− 0.6512

CV 0.6316∗∗− 0.5757 0.5936∗∗− 0.5171∗∗∗− 0.5381∗∗∗−
IPA 4-grams 0.6536∗∗− 0.5814 0.6043∗∗− 0.5505∗∗∗− 0.5976∗∗∗−
P 4-grams 0.718 0.6339 0.6658 0.6207∗− 0.6387∗−
ASJP 4-grams 0.721 0.6148 0.6553 0.6086 0.6257

Dolgo 4-grams 0.6894 0.5964 0.6245 0.5558∗∗∗− 0.6012∗∗−
CV 4-grams 0.6161∗∗− 0.5853 0.5926∗∗− 0.4868∗∗∗− 0.5151∗∗∗−
P 0.7155 0.6672 0.6859 0.6452 0.6745

PL 0.7707 0.6801 0.7153 0.6876 0.7079

PLS 0.7676 0.6614 0.7031 0.6572 0.6905

employed and their statistical significance compared to the results of verbatim
text in the first row.1

First, we will discuss the results of the Unmasking approach using the
Gutenberg dataset. Before analyzing the final results, let us take a look at
the sets of the degradation curves generated through Unmasking. The curve
sets generated for each transcription can be split into five types depending on
how fast the accuracy drops. For Verbatim, IPA, ASJP, Dolgo, RefSoundex,
Metaphone, Soundex, P, and PL, the curves degrade over the entirety of the
iterations, giving the maximal resolution for further use as features. Figure 6.2
shows this “best-case” resolution for Verbatim. Next, the curves for IPA 4-
grams, P 4-grams, ASJP 4-grams, and Dolgo 4-grams degrade quicker as can
be seen in Figure 6.3 for IPA 4-grams. This may be caused by a reduction of
author-distinguishing features through 4-gram-generation. We suspect that —

1∗: p < 0.05; ∗∗: p < 0.01; ∗ ∗ ∗: p < 0.001; + marks an increase and − marks a decrease
compared to the top row; bold text marks the highest value of each column.
E.g., 0.5936∗∗− indicates a decrease of the current transcription’s performance compared to
verbatim text with p < 0.01.
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Figure 6.1: F1-score and differences for Unmasking using the Gutenberg dataset,
significant changes: Metaphone 4-grams∗∗, IPA 4-grams∗∗, and CV 4-grams∗∗.
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Figure 6.2: Unmasking curves for Verbatim using the Gutenberg dataset.

34



CHAPTER 6. RESULTS

0 3 6 9 12 15 18 21
Rounds

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

same author
different authors

Figure 6.3: Unmasking curves for IPA 4-grams using the Gutenberg dataset.

analogous to stop words as discussed in Chapter 3 — certain of the possible
4-grams appear often and are suited well for distinguishing between authors
while the less frequent ones are not, resulting in a faster curve degradation.
Further investigation is needed to confirm or deny this hypothesis. For CV 4-
grams (Fig. 6.4) the accuracy drops to zero within a few Unmasking iterations,
for the simple reason that it only contains 16 different types that are used as
features. The standard CV transcription exhibits more chaotic curves, as
shown in Figure 6.5. Apparently, a binary alphabet does not give the linear
SVMs enough information to make robust guesses during curve generation.
Lastly, for PLS (Fig. 6.6) the additional stop word removal leads to a much
slower accuracy degradation. As discussed earlier, stopwords are good features
for distinguishing between authors. Removing these common words results in
the remaining features being more topic-related. Thus, the given texts can be
distinguished more easily even after removing certain of the remaining features.
As our goal, however, is not to retain a high accuracy of the curves, but
to increase the differences between same-author and different-author curves,
omitting stop words does not seem promising.

The results of the cross-validation for Unmasking using the Gutenberg
dataset can be seen in Table 6.1. As mentioned in Section 5.2, Unmasking
does not produce non-answers and thus F0.5u

2 is reduced to F0.5 and c@1 is
equal to the classifier’s accuracy. The results of the individual folds have a
high variance, characteristic of the probabilistic nature of Unmasking. This is

2Weighting precision two times as much as recall, but not accounting for non-answers.
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Figure 6.4: Unmasking curves for CV 4-grams using the Gutenberg dataset.

reflected in the results as the smallest change accepted as statistically signif-
icant (p < 0.05) is the decrease of c@1 for P 4-grams of 4.88% from 0.6875
to 0.6387. Generally, all statistically significant changes result in a reduction
of performance with CV, CV 4-grams, and IPA 4-grams reducing the perfor-
mance the most overall. As already discussed above, the Unmasking curves
for CV and CV 4-grams exhibit characteristics suggesting a decrease in per-
formance as the linear SVMs employed in the meta-classification do not have
enough information to produce meaningful predictions. For IPA 4-grams the
increase in vocabulary size to 350% its original size probably results in too
many features, also decreasing classifier performance. To acquire a sense for
the range of performance reduction, Figure 6.1 shows the F1-score achieved by
each of the transcription systems. A slight trend can be observed regarding the
granularity of the transcription systems and their F1-score: The broader the
system, the worse it performs. In general, 4-grams seem to perform worse then
the transcriptions they were generated from. Still, these observations have to
be taken cautiously as most of the changes are not statistically significant.
Note that, although not also statistically significant, PL increases all scores
the most, suggesting that punctuation removal and lemmatization are a more
promising pre-processing step.

The results of the compression approach using the Fanfiction dataset pro-
vide a different picture. As the cleaning step of the Fanfiction dataset is
phonetically-informed, we use the original data for comparison. As can be seen
in Table 6.2, almost all of the changes are statistically significant. This is a
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Figure 6.5: Unmasking curves for CV using the Gutenberg dataset.

result of the compression approach being deterministic and all variations being
introduced by different configurations of cross-validation folds. The practical
significances of the results, however, are low. Again, almost all experiments re-
sult in a decreased perfomance of the respective score. Surprisingly, Metaphone
breaks this rule, yielding slight increases over verbatim text. Its classification
precision improves upon the baseline by 0.85% leading to an improvement in
F0.5u of 1.26%. CV results in a minor improvement of 0.8% in recall, but a
major loss of 12.64% in precision. Figure 6.7 shows the F1-score for this exper-
iment. The trend of broader transcriptions leading to worse performance can
be observed here as well, with the highest drop of 6.96% in F1 coming from
CV.

As mentioned earlier, we use the default uncertainty interval of [0.45, 0.55].
Increasing this interval improves precision and recall, because non-answers are
omitted in their calculation and thus only those answers are counted that the
classifier is more certain of. Also, F0.5u deteriorates as it counts non-answers as
wrong classifications. Decreasing the uncertainty interval, on the other hand,
leads to a general decrease in performance as uncertain answers are binarized
and counted with the same weight as certain answers.

Lastly, Table 6.1 shows the results for the compression approach using the
Gutenberg dataset. During the cross-validation for this experiment, regard-
less of the number of splits, the classifier returned only negative classifications
for some folds of the following transcriptions: Dolgo, RefSoundex, Soundex,
CV, ASJP 4-grams, P 4-grams,Dolgo 4-grams, and CV 4-grams. We suspect
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Figure 6.6: Unmasking curves for PLS using the Gutenberg dataset.

Table 6.2: Real caption3

System Precision Recall F1 F0.5u c@1

Verbatim (orig.) 0.7635 0.8092 0.7856 0.714 0.7431

IPA 0.7532∗∗∗− 0.7846∗∗∗− 0.7686∗∗∗− 0.7098∗∗∗− 0.7291∗∗∗−
Verbatim 0.7604∗∗∗− 0.8078∗∗− 0.7833∗∗∗− 0.7101∗∗∗− 0.739∗∗∗−
ASJP 0.7602∗∗− 0.7857∗∗∗− 0.7727∗∗∗− 0.7148 0.7353∗∗∗−
Dolgo 0.7474∗∗∗− 0.7757∗∗∗− 0.7612∗∗∗− 0.6992∗∗∗− 0.7174∗∗∗−
RefSoundex 0.7564∗∗∗− 0.7811∗∗∗− 0.7685∗∗∗− 0.7049∗∗∗− 0.7259∗∗∗−
Metaphone 0.772∗∗∗+ 0.7907∗∗∗− 0.7813∗∗∗− 0.7266∗∗∗+ 0.7477∗∗∗+

Soundex 0.7129∗∗∗− 0.7717∗∗∗− 0.7411∗∗∗− 0.6758∗∗∗− 0.6839∗∗∗−
CV 0.6371∗∗∗− 0.8172∗∗+ 0.716∗∗∗− 0.6253∗∗∗− 0.5842∗∗∗−
P 0.7528∗∗∗− 0.7914∗∗∗− 0.7716∗∗∗− 0.7092∗∗∗− 0.7304∗∗∗−
PL 0.7228∗∗∗− 0.7868∗∗∗− 0.7534∗∗∗− 0.6782∗∗∗− 0.6949∗∗∗−
PLS 0.6994∗∗∗− 0.7773∗∗∗− 0.7363∗∗∗− 0.6604∗∗∗− 0.668∗∗∗−
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Figure 6.7: F1-score and differences for the compression approach using the Fan-
fiction dataset, all changes are statistically significant.

Table 6.3: Results for the compression approach using the Gutenberg dataset com-
pared to verbatim text with Bonferroni-corrected significance markers.

System Precision Recall F1 F0.5u c@1

Verbatim 0.871 0.7354 0.7909 0.6163 0.645

IPA 0.8545 0.676∗− 0.7383∗− 0.5951 0.5396∗∗∗−
ASJP 0.8738 0.7241 0.7786 0.607 0.5325∗∗∗−
Metaphone 0.9441∗∗+ 0.7265 0.8005 0.5824∗∗− 0.4088∗∗∗−
IPA 4-grams 0.9117 0.74 0.7895 0.5611∗∗∗− 0.3793∗∗∗−
P 0.8816 0.7178 0.7801 0.5979 0.5655∗∗∗−
PL 0.8664 0.7237 0.7734 0.592∗∗− 0.5554∗∗∗−
PLS 0.8006 0.7056 0.737∗− 0.6165 0.6197
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this happens because the broader transcriptions reduce the information in an
already small dataset even further. Subsequently, this circumstance weakens
the validity of the results of this experiment overall. Still, except a surprising
improvement from Metaphone by 7.31% in precision, all other all significant
results are decreasing the performance of verbatim text. As the c@1-score of
Metaphone is reduced by 23.62%, the most likely explanation for its raise in
precision is that it produced many predictions within the uncertainty interval
which were subsequently omitted in the determination of its precision.

Taking into account the results from all three experiments, we conclude
that phonetically transcribing texts before using them in Authorship Verifica-
tion does not increase the performance of Unmasking and the compression ap-
proach by any practically significant amount. Regarding the question whether
a transcription systems granularity is correlated to its output, in the range
of perfomance reduction, a slight trend can be seen: Methods that produce
extreme amounts of tokens — many, such as IPA 4-grams, as well as few, such
as CV 4-grams — perform worse than their more moderate counterparts.

In the following, we will discuss a number of possible reasons for the overall
negative trend that phonetic transcriptions bring to the results. Converting
graphemes to phonemes, in our case verbatim text to its IPA transcription,
is a difficult task. Moreover, when transcribing automatically, the transcrip-
tion algorithm does not have any information about the pronunciation of the
speaker of a given text. Thus, usually text is transcribed to either the General
(North) American pronunciation or the Received Pronunciation4. We use g2pE
by Park and Kim [2019] which employs the Carnegie Mellon University Pro-
nouncing Dictionary to look up transcriptions for words. The CMU dictionary
uses North American English as its pronunciation standard. Thus, by tran-
scribing we assume that the author has a North American English phonetic
preference. Transcribing, for example, both an Irish author’s and a Nigerian
author’s texts to American English, one can imagine that a lot of phoneti-
cally relevant information, that could be used to distinguish them, is lost. In
the same vein, authors might actively make efforts to impart certain phonetic
qualities into their texts that are based on topic rather than the author’s un-
conscious phonetic preference. This becomes especially clear when an author
uses direct speech, which often occurs in the datasets we use as they are both
based on sets of fictional stories. The “voice in the author’s head” when writing
a direct speech passage presumably varies greatly depending on the traits of
the character depicted in the story. Thus, extracting these features might aid

4British English
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in topic or genre identification more so than in Authorship Verification. To
mitigate this, direct speech could be removed from text entirely.

Another limitation of phonetic transcriptions for Authorship Analysis is
due to the low-level nature they work at. An author’s freedom of self-expression
is limited on the sub-segmental level, i.e., concerning individual sounds. Usu-
ally, the meaning of a word changes together with its pronunciation. The only
words for which this is not the case are synonyms such as the words “begin”
and “start”. Thus, authors that want to express similar ideas arguably will
sound similar on the sub-segmental level not because of their phonetic pref-
erence but due to the proximity of the topics. More importantly, if authors
want to express different ideas the resulting transcriptions will also be differ-
ent, without the Authorship Verification classifier knowing if this difference
stems from two unique authors with varied phonetic preferences or from one
author discussing different topics. Supra-segmental features such as stress or
prose can be utilized more freely and might give a more informative base for
Authorship Analysis.

Lastly, standard Unmasking without using n-grams works on the lexical
level, i.e., it uses entire words as atomic units and ignores the information
encoded by the symbols inside a word. With the step of transcription, however,
we are precisely attempting to enhance this inner-word information. Thus, for
Unmasking the transcription of data serves only as a phonetically-informed
binning method for types. In an effort to mitigate this, we used the n-gram-
based transcription method, which still led to negative results.
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Conclusion

In this report we analyzed the viability of phonetically transcribing textual
data prior to the use in Authorship Verification algorithms. Despite our initial
expectations, we conclude that using phonetic transcriptions of data for Un-
masking by Koppel and Schler [2004] and the compression approach by Teahan
and Harper [2003] does not result in an improvement in performance. In fact,
we observed many statistically significant decreases in overall performance.
Nonetheless, we could identify a trend, namely the more a phonetic transcrip-
tion system decreases the vocabulary size after transcription, the worse the
performance of the algorithms. This may indicate that broader transcription
systems lose more information that could have been useful for classification.
The other extreme, inflating the vocabulary to 3.5 times its original size by
generating 4-grams of the already detailed IPA transcription, also leads to a
significant drop in performance across most of the measures analyzed. The
only exception to the decrease in performance is the Metaphone algorithm
in conjunction with the compression approach when using a sufficiently sized
dataset, in our case one of the datasets introduced in Bevendorff et al. [2020a]
comprising more than 50,000 training samples. For this configuration, we could
record a slight improvement of 0.85% in precision over using verbatim text.

As is naturally the case with negative results, we cannot disprove that
phonetically informed methods are generally not viable for Authorship Verifi-
cation. We did, however, discuss some possible explanations for the absence
of positive results from our research:

• During automatic transcription, too much phonetic information may be
lost, as the transcription algorithm does not have any information about
the specific pronunciation of the author.

• When working on the level of individual sounds, as we do with phonetic
transcriptions, the sounds expressed when verbalizing an idea are often
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tied to their meaning. Therefore, sub-segmental features might be better
predictors for topic than for authorship.

• Unmasking works on the lexical level, because it treats words as atomic
units and ignores the information encoded inside of them. This way,
phonetic transcriptions are reduced to simple data reduction methods
not exhausting their full potential.

Regarding possible improvements of our research, a more thorough inspection
of the observed trend of diminishing performance with decreasing transcription
granularity could lead to the substantiation of a correlation thereof. If other
non-phonetically-informed token binning methods exhibit a similar correlation
between performance and granularity, one could conclude that this trend is,
in fact, not due to any phonetic phenomena. A different way of verifying
this would be to down-sample the transcriptions so the vocabulary sizes are
the same. Any remaining differences in performance cannot stem from the
systems’ granularities.

To achieve a better understanding of the utilization of phonetic transcrip-
tions, verbatim and phonetically transcribed texts could be combined and
feature selection algorithms could be used to identify the subset of features
that is being employed by the algorithms in classification. This way, it could
be determined whether AV classifiers utilize phonetically transcribed data over
verbatim data.

Additionally to the investigations above, a detailed grid search for the best
parameters for each transcription might lead to an improvement of the results.

For further research, we suggest a more profound investigation of the ex-
istence and nature of the phonetic preference. With a more thorough under-
standing of the ways people are influenced by their personal and subconscious
phonetic palette, more meaningful feature extraction methods could be de-
veloped. These could include more in-depth approaches that, for example,
disambiguate semantic information by analyzing certain punctuation struc-
tures within the text on the phonetic level. Also, shifting the focus from the
low-level sub-segmental features to supra-segmental features spanning longer
segments of text, such as stress, intonation, and rhythm, seems promising as
authors have more freedom of self-expression on this level.
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