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Abstract

This thesis explores the use of different language modelling approaches to error de-

tection in English Language Learner writing and investigates detection performance

measures at different levels of detection granularity. We compare the error detection

performance of word language models and a class-based extension to them at sentence

and world level using language learner corpora and a corpus of automatically generated

errors. Furthermore, we explore the issues that arise from ambiguities in both human

and algorithmic error annotation and the impact they have on error detection results.

We find that our class-based extensions to word language models improve error detection

performance and that error detection quality at word level may require more advanced

measures than the standard precision and recall as they seem to neither adequately as-

sess human nor algorithm error detection quality. We conclude that the latter finding

requires further investigation as the learner corpora we draw our results from are too

small in size to produce fully conclusive results.
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Chapter 1

Introduction

This thesis is about finding errors in second language (L2) writing using algorithmic

error detection. Writing errors, such as wrong wording, flawed word order, misspelling,

made-up words and faulty construction of tense, degrade the quality of a text and can

make it hard, if not impossible, to understand the content.

Errors are easily made during writing, but usually we neither know that we made

them nor where we made them. As a result, finding one’s errors requires time, effort,

and sometimes even money if professional help is being used. This is especially true

when writing in a foreign language because, rather than merely translating individual

words, one has to adapt to foreign idiomatic expressions.

To detect errors in second language writing, we examine existing error detection

methods and focus on approaches that use language models, i.e. statistical models

that can be used to determine how likely each expression contained in a presumably

erroneous sentence is. Furthermore, we study evaluation measures commonly used as

detection quality criteria and explore the impact of word class-based language models on

detection quality. Finally, we compare the performance of algorithmic detection methods

and a crowdsourcing approach that uses native speakers to detect L2 errors.
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Chapter 2

Language Models

A language model uses a statistical representation of a language, called an n-gram corpus,

to determine how likely it is for a portion of text (e.g. a phrase) to appear in a language

[1]. First, this chapter describes how an n-gram corpus is built from a large collection of

text: how n-grams are extracted from a text collection and then counted to be stored as

a statistical representation of language. Second, it overviews how n-gram counts from

the corpus can be used to determine if a given n-gram exists and how likely the n-gram

is to appear in the language. Additionally, the chapter summarizes how language models

are smoothed and how class-based language models work. The formulas and concepts

described in this chapter are based on the book ”Speech and Language Processing”

by Daniel Jurafsky and James H. Martin [1], which provides one of the most concise

and sound overviews of the subject matter. Since a large part of our language model

implementations use Google’s web n-gram collection released in 2006 [2], we also include

a brief examination of their collection.

2.1 N-Gram Corpus Construction

This section overviews how an n-gram corpus is constructed by collecting n-grams fre-

quency information from a text collection. It describes what an n-gram is, followed by

an illustration of how n-grams are extracted from a large collection of written language

and how n-gram occurrence counts are collected to form an n-gram corpus.

A word n-gram is a sequence of n words w1w2 . . . wn. The phrase “a sequence of

words”, for example, a 4-gram which is denoted as w1w2 . . . w4.

An n-gram corpus contains information about how often each distinct n-gram oc-

curred in a given collection of written language (a text corpus). Figure 2.1 illustrates
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2.1. N-GRAM CORPUS CONSTRUCTION

the details of corpus construction using an example paragraph1.

1. Given a text
    corpus

... by counting for 
each distinct n-
gram, how often it 
occurred in the list 
of n-grams

Alice was beginning to get very tired of sitting by her sister 
on the bank and of having nothing to do: once or twice she 
had peeped into the book her sister was reading, but it had 
no pictures or conversations in it, "and what is the use of a 
book," thought Alice, "without pictures or conversations?' 
...

"Alice's Adventures in 
Wonderland"

Lewis Carrollby

distinct unigrams count

2
2
1
2
1
1
...

Alice
was
beginning
to
get
very
...

distinct bigrams count

1
1
1
1
1
1
...

Alice was
was beginning
beginning to
to get
get very
very tired
...

distinct trigrams

Alice was beg.
was beginning to
beginning to get
... ...

...

n-gram corpus

3. Build the n-gram corpus ...

2. Tokenize the text corpus ...

... by 
deconstructing 
each sentence 
into lists of n-
grams

unigram list

Alice
was
beginning
to
get
very
...

bigram list

Alice was
was beginning
beginning to
to get
get very
very tired
...

trigam list

Alice was beginning
was beginning to
beginning to get
to get very
get very tired
very tired of
...

tokenization

count distinct 
occurrences

Figure 2.1: A text corpus 1. is tokenized into n-grams 2. of different length to obtain
n-gram lists for uni- bi- trigrams and so forth. In a third step n-gram occurrences are
counted to from the n-gram corpus 3.

1 The paragraph was taken form the book “Alice’s Adventures in Wonderland” by Lewis Carroll [3].
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2.2. LANGUAGE MODELS

2.2 Language Models

This section describes three approaches to how n-gram counts from n-gram corpora are

used to model a language. The first approach uses raw n-gram counts to determine

whether an n-gram exists within a language. The second approach determines how

likely it is for an n-gram’s last word to follow its preceding words. And finally, the

third approach describes how likely a whole phrase (n-gram) appears in the modelled

language.

N-gram Existence

The most basic approach to determining whether a certain phrase is a part of a language

or not is to check if the phrase n-gram can be found in the n-gram corpus. For example,

if we wanted to determine whether the bigrams “beginning to” and “starting to” exist

within the language described by the n-gram corpus built in figure 2.1, we would simply

retrieve their counts form the corpus. To get the counts a function count(w1w2 . . . wn)

is used, which takes an n-gram w1w2 . . . wn as query and retrieves the associated count

from the corpus. Using the counts for the two bigrams we would determine that the

bigram ”beginning to” exists within the corpus and therefore in the modelled language,

whereas the bigram ”starting to” does not (see figure 2.2).

unified bigrams count

1
1
1
...

Alice was
was beginning
beginning to
...

...

...

...

...

Alice n-gram corpus excerptn-gram n-gram count assumption

retrieve

assess

query

beginning to

starting to

1

no count (0)

exists

nonexistent

Figure 2.2: An n-gram can be queried against the n-gram corpus to retrieve an n-gram
count and make an assumption whether or not an n-gram exits in the langauge.

Conditional probability of an n-gram

N-gram counts can also be used to determine the probability with which an n-gram’s

last word wn follows the n− 1 preceding words. Using the previously mentioned count

function an n-gram’s conditional probability P (wn|w1w2 . . . wn−1) can be calculated from

n-gram counts as follows [1].
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2.2. LANGUAGE MODELS

P (wn|w1w2 . . . wn−1) =
count(w1w2 . . . wn−1wn)

count(w1w2 . . . wn−1)
(2.1)

In this equation count(w1w2 . . . wn) describes the corpus count of the whole n-gram,

including the last word wn, and count(w1w2 . . . wn−1) describes the corpus count of the

n-gram without its last word. For example, the conditional probability of the bigram

“was beginning”, P (“beginning”|“was”), would be calculated like so:

P (“beginning”|“was”) =
count(“was beginning”)

count(“was”)

The probability is determined at 1
2 because the unigram “was” appears two times

in the corpus and the bigram “was beginning” appears exactly once as can be seen in

figure 2.3.

P("beginning"|"was") = Probability for "beginning" to
                                     follow the word "was"

= 1/2

P("bank"|"the") = 1/3   
P("book"|"the") = 1/3   
P("use"|"the")   = 1/3

Conditional ProbabilityAlice was beginning to get very tired 
of sitting by her sister on the bank 
and of having nothing to do: once or 
twice she had peeped into the book 
her sister was reading, but it had no 
pictures or conversations in it, "and 
what is the use of a book," thought 
Alice, "without pictures or 
conversations?' ...

was beginning

was
bookthe

the use

the bank

Figure 2.3: Conditional probabilities from n-gram counts.

Joint probability of an n-gram

To determine the likelihood of an entire n-gram (or phrase) an n-gram’s joint probability

can be calculated using either the total number of n-grams in the n-gram corpus or the

chaining rule for conditional probabilities.

To calculate the joint probability using the total number Tn of all corpus n-grams

equation 2.2 is used.

P (w1w2 . . . wn) =
Count(w1w2 . . . wn)

Tn
, (2.2)

Here w1w2 . . . wn is a word n-gram, and Tn is the number of corpus n-grams that have

the same length as the word n-gram. This means that, for example, the joint probability

of the 2-gram “was beginning” is calculated by dividing the 2-gram’s corpus count (1)
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2.2. LANGUAGE MODELS

by the total number of all corpus 2-grams T2, which is 56 as seen in figure 2.4. According

to equation 2.2 this would yield the following joint probability:

P (“was beginning”) =
Count(“was beginning”)

T2
=

1

56

P("was beginning") = Probabiliy for the word sequence
                                  "was beginning" to appear in the 
                                  corpus

Joint Probability

P("get very tired of") = 1/55 P("of having nothing") = 1/55

Alice was beginning to get very tired 
of sitting by her sister on the bank 
and of having nothing to do: once or 
twice she had peeped into the book 
her sister was reading, but it had no 
pictures or conversations in it, "and 
what is the use of a book," thought 
Alice, "without pictures or 
conversations?' ...

of having nothing

get very tiredwas beginning

=
1

56

Figure 2.4: From Counts to Joint Probabilities:

Calculating the joint probability using the corpus Tn is usually very fast, because Tn

can be recalculated for every n. However, recalculation is not always applicable as the

following two cases will demonstrate. First, the n-gram can never be longer (have more

words) then the longest n-grams in the corpus, because a corpus that contains 1, 2, and

3-grams can not directly be used to get the count of a 4-gram. And second, when an

online source such as search engine queries are used get n-gram counts Tn is unknown.

In such cases, joint probabilities have to be calculated from conditional probabilities. Re-

calling that, in probability theory, a joint probability can be calculated from conditional

probabilities (see equation 2.1) using the chaining rule, an n-gram’s joint probability is

calculated as follows [1]:

P (w1w2 . . . wn) = P (w1)P (w2|w1)P (w3|w1w2) . . . P (wn|w1 . . . wn−1)

=
n∏

i=1

P (wi|w1 . . . wi−1) (2.3)

Since equation 2.3 requires 2·n times the n-gram count lookups that equation 2.2 requires,

it computes phrase probabilities 2 · n times slower. Where n is the number of words in

an n-gram.

In conclusion, there is a general trade-off between the two methods of calculation.

While equation 2.2 needs information about the total number of corpus n-grams, but

computes rapidly, equation 2.3 does not require such information, but is slower to com-

pute for long n-grams. However, both equations produce a zero probability if an n-gram
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2.3. MODEL SPARSENESS

does not exist in the n-gram corpus. Some n-grams are naturally missing from the n-

gram corpus because language is flexible and evolves over time. To counteract this issue

called model sparseness, two improvements exist, and are explained in the next section.

2.3 Model Sparseness

One of the main issues of language models is that the data they are built on is sparse,

meaning that they do not contain n-grams to represent every portion of a language. As

a result, n-grams that are not in the language model’s n-gram corpus, are assigned zero

probability.

To alleviate this limitation there are two improvements available.

• More n-grams. Scaling up the amount of data the language model uses, decreases

the amount of a language it does not “know”.

• Language model smoothing. This technique makes it possible to estimate language

model probabilities for n-grams that are missing from the n-gram model.

Both techniques are more closely described in the following two sections.

Web-Scale Corpora

In late 2006 Google Research released a collection of n-grams that was taken from public

webpages and scaled up to be a thousand times larger than existing corpora at that

time, hence the expression web-scale [2]. The goal behind this effort was to provide the

research community with a larger data set for their language modelling efforts, since

Google’s own research had proven that, ”there is no data like more data”. A hypothesis

that has been reaffirmed by other researchers when they built their second language

(L2) error detection on both, the offline Google n-gram collection, and counts attained

online using Bing search queries [4]. However, larger n-gram collections can only reduce

sparseness to some extent, not eliminate it.

Language Model Smoothing

Another approach to the problem of model sparseness and hence avoiding zero proba-

bilities, is language model smoothing. This means shifting some probability mass from

highly probable n-grams towards zero probability n-grams, thereby assigning n-grams

that do not occur in the n-gram corpus with a low, but non-zero probability. N-gram

10



2.3. MODEL SPARSENESS

back-off is an efficient solution to language model smoothing [5]. A recently developed

technique is described below.

Google Stupid Backoff [6].

This smoothing technique was devised by Google Research in 2007 and optimized for

large scale models. It needs less calculations than other smoothing techniques while

achieving similar performance, given a sufficiently large n-gram corpus [6]. While other

language model smoothing techniques guarantee that the smoothed model is still a

proper probability distribution, meaning that its n-gram probabilities sum up to ex-

actly one, the Stupid Backoff technique sacrifices this property to significantly decrease

calculation complexity, and thereby increase processing speed.

Stupid Backoff is used to determine an n-gram’s backed off conditional probability

PSB(wn|w1 . . . wn−1) from n-gram counts. To recall section 2.2, an n-gram’s conditional

probability determines with what probability a word wn follows its n−1 preceding words

w1 . . . wn−1. The preceding n− 1 words are often referred to as wn’s history to describe

the back off mechanism. In case a zero probability is attained, the technique backs off

one step by shortening wn’s history and applying a back-off factor α. This is formalized

by the following equation:

PSB(wn|w1 . . . wn−1) =


count(w1 . . . wn−1wn)

count(w1 . . . wn−1)
if count(w1 . . . wn−1wn) > 0,

αPSB(wn|w2 . . . wn−1) else, shorten history and repeat

(2.4)

Here count(w1 . . . wn−1wn) is the corpus count of the whole n-gram, (i.e. the history

w1 . . . wn−1 combined with the last word wn.) The history is shortened by one word

from the left, which is described by w2 . . . wn−1. In case no non-zero probability can

be determined even for the backed off n-gram, the process is repeated recursively until

a probability is found. Contrary to Google’s original implementation of Stupid Backoff

we stop recursion at bigram level because at unigram level it would not be possible to

condition the occurrence of a word on the context of the preceding word. To give an

example, Figure 2.5 illustrates how equation 2.4 can be used to calculate the conditional

probability P (“book”|“Alice was reading a”).

The initial conditional probability PSB(“book”|“Alice was reading a”) has a value of

1, but it still has to be corrected by multiplying the empirically determined back-off

11



2.4. CLASS-BASED N-GRAM MODELS

α 3

Count("Alice was reading a book")
Count("Alice was reading a")

P("book"|"Alice was reading a")

Count("reading a book")
Count("reading a")

...

...

Back-off Probability (with α as back-off factor)Alice was beginning to get very 
tired of sitting by her sister on the 
bank and of having nothing to do: 
once or twice she had peeped into 
the book her sister was reading, 
but it had no pictures or 
conversations in it, "and what is the 
use of a book," thought Alice, 
"without pictures or conversations?' 
...

Count("was reading a book")
Count("was reading a")

α P("book"|"was reading a")

α α P("book"|"reading a")

Count(a book)
Count(a)

P(book|Alice was reading a)
1
1=

a book

α

α α

α 3

book
=

=

=

=

Figure 2.5: From Counts to Back-off Probability:

factor α = 0.4 at each back-off level. Since back-off occurred three times the resulting

probability PSB(“book”|“Alice was reading a”) has a value of 1 · (0.4)3 = 0.064.

In conclusion, smoothing improves a language model by making it possible to esti-

mate probabilities for any given n-gram despite of model sparseness. Another extension

would be to use multiple different language models and combine their information (see

next section).

2.4 Class-based N-Gram Models

Another method to model a language is to use n-grams of word classes instead of word

n-grams. Each word in a language belongs to a certain word class such as verb, noun,

preposition and so on. Instead of tokenizing a sentence into its word n-grams it is also

possible to tokenize the sentence into its word class n-grams by using parts-of-speech

tagging which assigns every word in a sentence to a word class [1]. Hence, word class

n-grams, like word n-grams, can be used to build an n-gram corpus from a collection of

written language. Such a word class n-gram corpus can then be used by a language model

to determine how likely it is for a certain word class n-gram to appear in a language.

Which means that, class-based models are language models that use word class n-grams

instead of word n-grams. Additionally, class n-grams are known to perform better at

small model sizes than word n-gram models do, because there are significantly fewer

distinct word classes than there are distinct words. This means class-based models

exhibit less model sparseness than word language models. On the other hand, it also

means that word language models built on large n-gram collections can determine n-gram

probabilities more finely grained than class-based models which generalize words into

12



2.4. CLASS-BASED N-GRAM MODELS

classes, as Samuelsson and Reichl point out [7].They use class-based language models to

combine word n-gram probabilities with word class probabilities. Below, we summarize

two approaches Samuelsson et al. propose [7]:

• Interpolation between word and word class. Using w1w2 . . . wn to describe a word

n-gram and c1c2 . . . cn to describe the respective word class n-gram, word n-gram

probabilities can be interpolated with word class n-gram probabilities using a

weighting factor λ like so:

PIWC(wn|w1 . . . wn−1) = λw · Pw(wn|w1 . . . wn−1) (2.5)

+ (1− λw) · Pc(cn|c1 . . . cn−1)

In this equation Pw(wn|w1 . . . wn−1) is the conditional probability of a word wn

as described by equation 2.1, λw is a standard interpolation weight used for the

word probability, and Pc(cn|c1 . . . cn−1) is the word class probability along with

the remaining weight 1 − λw. Interpolation has the advantage that, due to the

interpolation weights, different models can be flexibly combined at any point as the

different models are not dependent on each other’s calculation. Another approach

is to use a back-off mechanism.

• Back-off from word to word class. Here the model backs off from word n-grams to

class n-grams if a word n-gram’s probability falls below a predefined probability

value. Thus, as Samuelsson et al. [7]. noted, this model has the advantage of only

using class-based information when word n-grams failed, whereas interpolation

mixes in information from class n-grams, even when this is is not necessary.
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Chapter 3

Error Detection Algorithms

This chapter discusses the algorithms we use to detect second language (L2) writing

errors. It starts with a standard definition for writing errors, overviews three algorithms,

how we annotate errors, and what types of errors the algorithms are able to find.

3.1 Definition Writing Error

There is no single definition for errors in writing. Writing errors are usually defined by

the category they belong to. The various categorizations found in the literature can be

boiled down to the following four types..

• Grammar errors. A grammar error is a deviation from the grammar of a language.

A grammar is defined as a set of rules that defines the “correct formation of words

(morphology) and sentences (syntax). A grammar is not concerned with either

meaning (semantics) nor sound (phonology). ” [8]

• Spelling errors. A spelling error is a deviation from the “conventionally accepted

way of forming words from letters” [9]. Fossati et al. [10] identified two types of

spelling errors. The first type, non-word errors, are errors that lead to nonexistent

words like “Wikypedia”. The second type, real-word errors, are errors that result

in an existing word, which is misplaced considering the context of the surrounding

words. An example of a real-word error is the phrase “The companies expenditures

increased. . . ”, that should correctly spell “The company’s. . . ” instead.

• Semantic errors. Finding errors in the meaning (semantics) of a text requires an

understanding of its subject matter. Therefore, provided that a subject matter is

14



3.2. ERROR DETECTION METHODS

not understood, semantic errors can not be found. For example, if an anthropol-

ogist reads a scientific article about quantum physics he or she might not be able

to fully grasp the article’s content, much less find errors in its semantics.

• Style. Unlike the aforementioned error types, style focuses on making the content

of a text more easily accessible for the reader. According to the Plain Language

campaign [11] good style “avoids obscurity, inflated vocabulary and convoluted

sentence construction.” Thus, style errors are errors that make a text harder to

understand. However, whether or not a certain style is appropriate depends on

the domain and genre of the writing. Inflated vocabulary and convoluted sentence

construction might be deemed acceptable style for philosophical works, but in a

scientific publication of biology or physics they have no place.

3.2 Error detection methods

To detect the errors in a text we tokenize the text into n-grams and categorize each

n-gram as correct or erroneous using n-gram occurrence counts and n-gram probabilities

provided by our language models. We categorize an n-gram as erroneous if its probability

lies below an empirically determined probability threshold τ . If a model uses occurrence

counts a count threshold is used instead. To define the value of τ a language model is

trained on a large collection of errors so that categorization into correct and erroneous n-

grams is as accurate as possible. As the threshold globally divides the modelled language

into correct and incorrect language, the collection of errors used for the training of τ has

to be large enough to be statistically representative for the whole language.

We use the following three methods to detect erroneous n-grams which can then be

joined to form error annotations for text.

N-Gram Existence

Our most basic method detects errors using occurrence counts from n-gram corpora and

a count threshold to determine whether an n-gram exists in a language or not. First

we tokenize a sentence into its word n-grams and store their respective positions in the

text. We then look up each n-gram’s count in the n-gram corpus and finally, use n-gram

positions and counts to determine error positions. Figure 3.1 illustrates how this works

using a snapshot of the Google n-gram corpus [2].
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Error at 
words
4 - 7

count

0.6 mil
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258,975
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have to go on
to go on the
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0

error 
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1-4
2-5
3-6
4-7

tokenize

query
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Figure 3.1: Error positions are determined through examination of each n-gram’s occur-
rence count and text position.

N-Gram Backoff Probabilities

Our second approach detects erroneous n-grams using a probability threshold τ along

with n-gram Stupid Backoff probabilities calculated from n-gram counts (see section 2.4)

[6] . As before, the text is first tokenized into n-grams and their respective positions in

the text so that each n-gram’s probability can be calculated using n-gram count lookups

on the n-gram corpus. Once a text’s erroneous n-grams have been determined using τ

their respective positions can be used to obtain the final error positions within the text.

Figure 3.2 illustrates in how far the process differs from the existence method.

Error at 
words
4 - 7

count

0.6 mil
87,249
258,975
0

Google n-gram corpus n-gram 
probability

4-grams

I have to go
have to go on
to go on the
go on the bathroom

I have to go
have to go on
to go on the
go on the bathroom

sentence n-grams with 
their positions

0.04734
0.02510
0.09777
0.00003

error 
position

1-4
2-5
3-6
4-7

tokenize

query

calculate

determ
ine

back-off
67,129

Figure 3.2: Using the counts from the Google corpus we calculate a Stupid Backoff
probability for each 4-gram. Since the 4-gram “go on the bathroom” does not exist
among the corpus 4-grams, the algorithm backs off to the 3-gram “on the bathroom” to
calculate a probability. Since the resulting 3-gram probability of 0.00003 is smaller than
the predetermined τ , an error is detected at word positions 4− 7.

Class-Based N-Gram Probabilities

In the third approach we combine language models of words with language models

of word classes to detect errors. At first, a given sentence is tokenized into its word

n-grams, word class n-grams and their corresponding positions within a sentence. Then,
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count

0.6 mil
87,249
258,975
0

Google word n-gram corpussentence 
as words

word n-gram 
probabilities

I have to 
go on the 
bathroom.

4-grams

I have to go
have to go on
to go on the
go on the bathroom

I have to go
have to go on
to go on the
go on the bathroom

sentence n-grams with 
their positions

0.04734
0.02510
0.09777
0.00003

1-4
2-5
3-6
4-7

tokenize

query

retrieve

count

59
224
5198
18292

class n-gram corpussentence 
as classes

class n-gram 
probabilities

NN HV TO 
VB IN DT 

NN

4-grams

NN HV TO VB
HV TO VB IN
TO VB IN DT
VB IN DT NN

NN HV TO VB
HV TO VB IN
TO VB IN DT
VB IN DT NN

class n-grams with 
their positions

0.65555
0.26762
0.40874
0.55494

1-4
2-5
3-6
4-7

tokenize

query

retrieve

Figure 3.3: Process for retrieving erroneous word and word-class n-grams from a sen-
tence. Both word and word class n-gram probabilities are obtained using Stupid Backoff.

word n-grams are queried against a word n-gram corpus to determine erroneous word n-

grams. Additionally, word-class n-grams are queried on a word-class corpus to determine

erroneous word class n-grams (see Figure 3.3).

Erroneous n-grams of both words and classes are combined either using one of the

methods described in section 2.4, or by normalizing word n-gram probabilities with class

n-gram probabilities. Given Pw as word probability and Pc as word class probability we

normalize words with classes as follows:

PN (wn|w1 . . . wn−1) = Pw(wn|w1 . . . wn−1) · Pc(cn|c1 . . . wn−1) (3.1)

Here, both Pw and Pc are independently calculated, each using Google’s back-off

method described on page 11. Pw and Pc may be of different back-off levels, which

means Pw might be attained on a word bigram while Pc resulted from a class 4-gram.

An example of how this method can be used to detect erroneous n-grams is illustrated

in Figure 3.3. While the Stupid Backoff probability for the word 4-gram “go on the

bathroom” is very low the probability of the respective word-class 4-gram “VB IN DT

NN” is very high. However, combing both probabilities using the normalization method

we just describe results in a probability of 0.000016 which means that the n-grams at

position 4− 7 are still classified as erroneous.
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3.3. ALGORITHMIC ERROR ANNOTATION

3.3 Algorithmic Error Annotation

We demonstrated three methods that classify the n-grams of a sentence as correct and

erroneous, but the erroneous n-grams still need to be assembled to form error annotations

that represent the errors detected within a sentence. The Figure 3.4 demonstrates how

error annotations are drawn from a set of erroneous n-grams and their positions. While

other methods to create error annotations may come to mind we choose a merging

approach because we found it to be the most reliable way of creating algorithmic error

annotation. A more detailed review of other annotation methods we tested is given in

the next chapter (section 4.2).

... sentence

n-grams 
determined 
to be 
erronous

overlapping 
n-grams

resulting 
annotations

w1 w2 wn

e1 e1 e1 e2 e2 e2

e3 e3 e3

e4 e4 e4

a a a1 1 1 a a a2 2 2 a2 a2

Figure 3.4: Using one of the previously mentioned error detection algorithms, erroneous
n-grams ei are now assembled to form error annotations ai. For example, the n-grams
of e2, e3 and e4 have overlapping positions within the sentence. Hence, we merge them
to form one single annotation a2.

3.4 Error Detection Prospects

While the beginning of this chapter describes types of writing errors, we now summarize

what types of errors are expected to be found using language models. Numerical exam-

ples are based on Google Stupid Backoff probabilities and n-gram counts [6] obtained

using the language models we built on the Google n-gram corpus [2].

• Spelling errors. Misspelled words, or non-word errors, are detected as writing
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errors by language models given that the misspelling does not occur in the models

n-gram corpus or at least very rarely. For example, the phrase “I hav a house”

does not exist in the Google n-gram corpus. The correct spelling “I have a house”

on the other hand appears 16, 078 times.

Real-word errors can be detected using language models as well. For example, the

real-word error “rather then” has a probability of 0.004, whereas the correct form

“rather than” has a probability of 0.52. Hence, “rather then” is detected as an

error.

• Grammar errors. In linguistics the grammar of a language is a set of rules that

defines “how sentences are formed from words to convey meaning” [12]. As Leacock

et al. observe, “grammar does not describe the conventional usage of a language,

such as what preposition is best used in a given context, or whether to use the

article ’a’, ’the’ or non article at all.” [13]. Leacock et al. conclude that usage

errors are the most common type of error found in second language (L2) writing

and categorize them as a type of grammar error. In this thesis we apply language

models as a statistical presentation of how language is conventionally used to find

errors in learner writing.

• Semantic errors. The algorithms presented in this work do not understand mean-

ing. As such, they can neither decide whether a text makes sense, nor where logical

errors are located within it.

• Style errors. Style errors that concern sentence structure, e.g. overlong sentences

or overuse of brackets are not detected by the algorithms. Style errors that result

from using uncommon words and expressions however, are detected using language

models.

In conclusion, using language models and thresholds to classify the n-grams of a text

into the binary categories correct and erroneous allows us to detect and annotate the

errors in a sentence. It does not, however, allow us to precisely determine what type of

error was found; even though such information might be considered useful.
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Chapter 4

Evaluation Framework

This chapter describes the evaluation corpora as well as the performance measures used

to evaluate algorithmic error detection quality. The evaluation data are collections of

sentences with reference error annotations that we compare with our algorithmically

determined error annotations to measure detection quality. We overview three types of

detection measures and how algorithmic and human error annotations alike are influ-

enced by ambiguities in a sentence’s semantics and grammar.

4.1 Evaluation Data

To evaluate our algorithms we first need a gold standard which is a set of texts with

reference error annotations. We then feed these text to our algorithmic error detection,

and compare the output to the reference error annotations in order to determine how

well the algorithms extract errors. In this section we summarize two types of corpora

that contain error annotated writing: learner corpora and an artificially constructed

error corpus. The former are collections of language learner writing that have been error

annotated by linguists. The latter is a corpus of well-formed English texts in which

errors have been introduced artificially [14].

Learner corpora.

Learner Corpora are collections of second language learner writing. They are created

to analyze language usage of learners so that linguists may study how certain second

language (L2) error types are related to a learner’s first language (L1) knowledge, or

what error types are common for learners of the same L1 background [15]. For example,

Rozovskaya et al. noted that: ”Chinese learners struggle with article errors because the
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4.1. EVALUATION DATA

Corpus Name Corpus Size Annotated L2 Available

CLC Cambridge LC 30M words 6M words [17] en no

CLEC Chinese LEC 1M words 1M words [18] en yes

CzeSL Czech as a second lan-
guage (currently developed)

TBA TBA [19] cz not yet

EnglishTLC E Taiwanese LC 2M partially [20] en yes

FALKO German learner cor-
pus

36k fully [21] ger yes

FRIDA French Interlanguage
Database

450k 300k words [22] fr unclear

LLC Longman LC 10M fully en no

MELD Montclair Electronic
Language Database

18 essays 18 essays en yes

NICT Japanese LC 2M no number en yes

TLCE Taiwanese LCE 710k words fully [23] en no

TLEC Tswana LEC 200k fully [24] en academic

123 Mass Noun Sentences 123 sentences fully en yes

Fehlerprojekt Uni Augsburg 7000 errors 7000 errors ger yes

LC = Learner Corpus E = English

Table 4.1: List of learner corpora that contain error annotations.

Chinese language does not use articles. Speakers of languages that use articles, such

as French or German, make few errors involving articles but struggle with punctuation

[16].”

We use errors in learner corpora that were professionally annotated by linguists as a

reference collection (gold standard) of writing errors, so that we may compare algorithmic

error annotations against them. As part of our research we compiled a list of learner

corpora that contain error annotations. We identified thirteen learner corpora of four

different languages. They are listed in Table 4.1.
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4.2. AMBIGUITY OF ERROR ANNOTATION

The errors in learner corpora are annotated using so called error tag sets, which

map each learner error onto a predefined linguistic category. There is no standardized

tagging system for learner corpora and each tag set focuses on different linguistic aspects.

Although a general categorization of tag sets can be made, as found by Dı́az et al.

[25], the same learner error might be assigned to spelling errors in one tag set and to

grammar errors in another. Thus, comparing evaluation results drawn from different

learner corpora and error tag sets is rendered difficult.

Artificial Error Corpora.

Artificial error corpora are the second type of corpora we use for evaluation. They are

built through insertion of writing errors into a corpus of well-formed language. Wagner

et al. [14] generated such an artificial error corpus from the British National Corpus

(BNC) [26] by “inserting, deleting or replacing words within the BNC”. They find that

a “comparative evaluation of existing error detection approaches has been hampered by a

lack of large and commonly used evaluation error corpora”[14]. To address this problem

they built an artificial error corpus that contains four different types of grammatical

errors which were previously identified to be the most frequently occurring errors. The

four error types are real-word spelling errors, agreement errors, missing word errors and

extra word errors. These results are backed by findings of Nicholls et al. “who obtained

a similar error categorization through examination of learner corpora” [14, 27].

4.2 Ambiguity of Error Annotation

Unlike simple non-word (spelling) errors, most types of writing errors are ambiguous

by nature. If the task is to find the errors contained in a sentence both humans and

algorithmic detection methods struggle with ambiguities in grammar and semantics,

which in turn cause the task of error annotation to be ambiguous.

Semantic ambiguity

The meaning of a sentence, its semantics, are not always clear. The sentence ”The boy

carried the girl with the flower.” for example, can have two meanings. It either states

that the girl had a flower, e.g. in her hair, or that the boy used a flower to carry the

girl. While the author knows his intended meaning, a reader does not. Similarly, an

annotator who has to find writing errors in a text can only guess the intended meaning,
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4.2. AMBIGUITY OF ERROR ANNOTATION

which means errors are ambiguous in relation to how the annotator understood the text.

To give an example we examine a sentence taken from the 123 Mass Noun corpus that

was assembled by Brockett et al. [28]. The sentence was produced by a Chinese learner.

For the example we assume that the author’s original (untranslated) intention was to say:

”These insights are extremely useful.” But instead, he produced the sentence: ”These

knowledge are extremely useful”1, which is incorrect. It is clear that the translation he

chose for “insights” is a wrong usage of the word knowledge. To find the error, we gave

the sentence to three native speakers, recruited using a crowdsourcing platform called

Amazon Mechanical Turk2, and asked them to correct the sentence. Table 4.2 lists the

three corrections they produced.

Original sentence Corrected sentence

These knowledge are extremely useful (a) This knowledge is beneficial.

(b) These knowledges are extremely useful.

(c) This knowledge is extremely useful

Table 4.2: The first correction (a) is valid given the limited information and slightly
changed the meaning of the sentence so that the sentence sounds less odd. The second
annotator (b), did not find the important error but added the missing full stop. The
third annotator (c), corrected the obvious grammatical error, but forgot to add the
missing full stop.

Though two valid corrections were produced, none of the native speakers proposed

to use insights instead of knowledge, because, the author made two errors at the same

time. Not only did he choose the wrong translation for insights (semantic error), but

also use the singular instead of the plural (grammar error); both of which are common

errors in learner writing. Though the grammar error was easily found, the underlying

semantic error was only noticed by annotator (a) who attempted to adjust the word

“useful” to make the sentence sound less odd.

1 The author also forgot the full stop after “useful”.
2 Found at https://www.mturk.com.
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Grammatical ambiguity

For algorithmic error annotation, additional issues arise from grammatical ambiguities

like the full stop, which is ambiguous because it can either indicate the end of a sentence

or an abbreviation [29]. Birn et al. described the problem with ambiguity as follows:

”Grammatical errors may disturb disambiguation, which in turn disturbs detection of

grammatical errors” [30]. Their conclusion is backed by findings of Tetreault et al. who

noticed that “annotators only agree 75% of the time on the same preposition when

given a choice to pick one” [31], even though prepositions are seemingly unambiguous.

Grammatical ambiguities are also a problem in part-of-speech (POS) tagging, where

so called POS taggers determine a word’s class as verb, noun, adjective an so forth.

POS tagging becomes ambiguous when a sentence contains grammatical errors, which in

turn negatively affects error detection performance as investigations of Dı́az and Oronoz

revealed [32, 33].

Ambiguity in algorithmic error annotation

To create error annotations we use n-grams that were classified as erroneous using our

algorithms. In the case of trigrams this means that a one word error is annotated along

with the two words that surround it, which results in a rather fuzzy annotation. Though

we made attempts at making our error annotation more precise, so that a one-word-error

is detected as such, we refrained from doing so for two reasons:

1. Given the complexity of the problem this type of disambiguation is beyond the

scope of this work. However, we explain two of the methods we did test to minimize

error annotation length and why they did not work.

2. Looking at the semantic and grammatical ambiguities in writing we decided not

to disambiguate but instead preserve the contained ambiguities.

To minimize the length of error annotations and thereby disambiguate it we tested

two methods. We illustrate them in Figure 4.1 and explain why both methods do not

work as desired. The examples are based on observations made on learner sentences.

Our first attempt (a) was to assume that if adjacent erroneous n-grams overlap each

other their intersection must clearly be an error. The second attempt (b) was built on the

assumption that a low conditional probability for an n-gram indicates that the last word

in the n-gram causes the error. We were quite surprised to observe that assumption (b)
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is not generally true, as the error annotation was more frequently caused by a preceding

word than by the last one.

r r

e1 e1 e1

e2 e2 e2

e3 e3 e3

a1

Error overlap indicates 
definite error (a)

Conditional probability 
means last word is error (b)

false disambiguation

r

e1 e1 e1
r real error

e1 e1 e1
erroneous 
n-gram

a1
a1

wrong 
annotation

Figure 4.1: Shown are two different methods to disambiguate algorithmic error annota-
tion. Method (a) uses n-gram overlap and method (b) only uses an n-gram’s last word
to construct error annotations. Both methods lead to false disambiguations.

Both methods can not generally be expected to work for the following two reasons.

First, an erroneous n-gram does not specify how many of its words are wrong. Second,

an erroneous n-gram does not specify the position of the erroneous word(s), which means

that low conditional probability for an n-gram can occur although the error lies with the

n-gram’s first word rather than with its last word, as might be expected. Experiments

we conducted using the two disambiguation methods during early development of our

error detection algorithms showed a consistent decrease in error detection performance

when using either of the two methods. After additional manual examination of the error

annotations we produced on learner errors using the two methods we decided to discard

both annotation disambiguation methods as unsuitable heuristics.

Another reason why we do not disambiguate error annotation can be explained by

a closer look at the example given in Table 4.2. The human annotators we hired using

crowdsourcing produced three different error annotations, or more specifically correc-

tions, that are located throughout the whole sentence because of the mentioned ambi-

guities. This suggests that a more precise error annotation may not be useful since it

would limit the range of possible corrections to a solution that does not necessarily fit

the author’s original intention.

As a result of these observations we decided to use a type of error annotation that
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These knowledge are

These knowledge are

extemely useful

extemely useful

These knowledge are extemely useful

(a)

(b)

(c)

annotation types

It is reported

It is reported

It is reported

...

...

...

Figure 4.2: Three different ways to annotate errors. Version (a) would suggest a gram-
matical error to the sentence author, because the plural does not fit the noun. Anno-
tation (b) suggests that the wrong word might have been chosen; “insights” instead of
“knowledge” would fix this error. The annotation we use, (c), does not disambiguate
and simply states that there is an error involving the first three words, thereby covering
both annotation (a) and (b).

does not dissolve ambiguity but preserves it. In doing so we fall in line with observations

made by Dı́az et al. who concluded that ”a disambiguation of grammatical errors is

not always useful” [32]. In Figure 4.2 we illustrate how we annotate errors (c) and

give examples how other annotation types may dissolve ambiguity. Since the example

sentence is missing a full stop we included the beginning of the sentence that follows.

Annotation type (c) is the direct result of using our detection algorithms on the

two sentences. We detected two erroneous trigrams which are used to annotate two

errors. Both the errors from (a) and (b) are annotated, though it can be noted that our

algorithmic error annotation is fuzzy when compared to the results produced by human

annotators in Table 4.2. However, to use the human annotations, a language learner is

still required to manually pick the best solution, which in turn, requires him to assemble

the best solution and discard wrong results. The same ability is needed when using

algorithmic error detection. While a fuzzy annotation of writing errors might severely

hit measured performance of an error detection system, it says little about how useful

the annotations are for a language learner. Studies conducted by Microsoft Research on

second language learner data strongly suggest that learners are able to infer where the

error they made is located, even though the system did not mark the exact location [34].
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4.3 Detection Performance Measures

To quantify how well writing errors are detected in the previously mentioned corpora,

performance measures are needed. This section overviews the measures precision and

recall, and how they are applied at three different levels of annotation granularity. We

describe one commonly used sentence level measure as well as word and character level

detection measures that we incorporate to determine how well individual errors within

a sentence are annotated rather than just finding out whether or not a whole sentence

is ungrammatical.

Precision and recall in error detection.

A common way to assess the performance of an information retrieval system is to cal-

culate its precision and recall on a test set. For algorithmic writing error detection

precision and recall are determined on sets of erroneous and correct sentences that are

taken from writing error corpora. The measures are defined as follows [13]: precision

measures the percentage of all algorithmic error annotations that are correct, recall mea-

sures the percentage of the reference errors that are also annotated using the algorithms.

We illustrate both measures in the following Figure (4.3).

reference errorsr r r r r r

a a a a a a a a annotated errors a

h h h h

within the text.

within the text.

hit errors hH

A

R

= set of

= set of

= set of

recall =
H

R
=

4

5
= 0.8

precision =
H

A
=

4

8
= 0.5 = sentences, words or

   characters (token)

A∩= RH

H = cardinality of H

Figure 4.3: An illustration of precision and recall in algorithmic error detection.

Precision and recall can be calculated at three different levels of granularity: sen-

tences, words and characters. We describe how they are calculated on each level using

a set of three reference sentences. While the sentences remain the same, the tokens for
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sentences, words and characters change accordingly at each level (figures 4.4, 4.5 and

4.6). We represent individual tokens by colored boxes as specific sentences, words and

symbols would only hinder understanding.

sentence level tokens

Figure 4.4: Each box represents a
sentence. Boxes are colored as il-
lustrated by Figure 4.3.

Sentence level.

Determining detection performance at sentence

level is commonly used to evaluate error detec-

tion systems [1, 14, 28]. For this measure, every

square in Figure 4.3 represents a sentence that is

classified as either grammatical (correct) or un-

grammatical (contains an error somewhere). A

sentence is a hit, i.e., a correctly found error, if

both algorithmic and reference annotation clas-

sify it as ungrammatical. Therefore, whether or not an error’s location within the sen-

tence was correctly determined is not considered by this measure. Using the measure

on the three sentences example in Figure 4.4 yields a recall of 1.0 and a precision of 1.0.

This suggests, that all writing errors were correctly determined.

word level tokens

Figure 4.5: Each box represents
a word and each row a sentence.
Boxes are colored as introduced by
Figure 4.3.

Word level.

We incorporate word level evaluation to measure

how well our algorithms are able to find individ-

ual errors within a sentence. At this level, every

square in figure 4.3 represents a word and every

row of squares a sentence. For this measure, each

word in a sentence is classified into the binary

classes of correct and erroneous. A word is a hit

if both algorithmic and reference annotation clas-

sify it as erroneous.

Measuring performance at word level (Figure 4.5), yields a recall and precision of 0.0

for the second sentence, because there was no word-hit. For the third sentence a recall of

1.0 and a precision of .33 is determined. Using the arithmetic mean of all precision- and

recall values yields an overall performance of 0.5 for recall and 0.16 for precision. This

stands in harsh contrast to the perfect scores attained by the sentence level measure.
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character level tokens

Figure 4.6: Each box represents a
character and each row a sentence.

Character level.

Measuring detection performance at character

level was our first approach to improve upon the

sentence level measure. The character level mea-

sure, like the word level measure, enables us to

measure detection performance for individual er-

ror word annotations. However, it does not en-

tirely fit our purpose since detection of wrong let-

ters within a word is not required. For our purpose, one of this measure’s major draw-

backs is that it weights a word’s influence on precision and recall through the word’s

character count. As a result, long words have a major impact on performance evaluation

while short words have almost none.

An examination of sentence three in figure 4.6 demonstrates this property. Sentence

three yields a recall of 1.0, which makes sense since the reference error was detected

(orange hit). It also yields a precision of 0.5 which seems too high regarding that only

one out of three words was a hit.

Though we did not find explicit mention of the word and character level error de-

tection measures in the related literature or scientific publications, we believe that the

word level measure is a straightforward concept for measuring detection quality. How-

ever, we noticed that our measures are based on similar ideas as the BLEU measure,

which was developed by IBM to measure word level errors in machine translation [35].

Like the BLEU measure, our measures can be used with multiple reference sentences in

order to alleviate error ambiguity by picking the reference sentence that best fits with

the algorithmic solution [35].
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Chapter 5

Experiment Setup and Evaluation

This chapter describes the corpora we built our language models on (the development

set), how we built them, what corpora we used to train an optimum threshold for error

detection (training set), and finally the corpora we tested our trained models on (test

corpora). We discuss error detection results produced on the corpora as well as the

conclusions we draw from them.

5.1 Development Set

The development set of a language model is the n-gram corpus the model uses to de-

termine the probability of an n-gram. For our language models we use three different

n-gram corpora: a word n-gram corpus and two class n-gram corpora.

Word n-grams

Word n-grams from the Google n-gram corpus [2] are used to classify a sentence’s word

n-grams as either correct or erroneous. We built a Stupid Backoff [6] smoothed lan-

guage model on Google’s collection of 1- to 5-grams. Their collection is built from

95, 119, 665, 584 sentences and contains 1, 024, 908, 267, 229 tokens. An excerpt of the

corpus shows trigrams with their corresponding frequency counts (see Table 5.1).

Parts-of-speech n-grams

The part-of-speech n-gram corpus was built by extracting part-of-speech (POS) n-grams

from the British National Corpus (BNC) [26]. We use this POS n-gram corpus to

detect errors in a sentence by classifying the sentence’s POS n-grams as grammatical
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5.1. DEVELOPMENT SET

Word trigram Frequency count

serve as the incubator 99

serve as the independent 794

serve as the index 223

Table 5.1: An excerpt of 4-grams contained in the Google n-gram corpus.

or ungrammatical. The corpus was built in three steps. First, we turned each sentence

in the BNC corpus into a sentence of parts of speech. Second, we deconstructed the

sentences into their POS 1- to 5-grams, and third, counted how often each distinct POS

n-gram occurred in the corpus. This gave us a corpus of the form presented in Table

5.2.

POS trigram Frequency count

JJ HVZ BEN 53

NNS VBN IN 6378

NP HVZ HVD 2

Table 5.2: Three trigrams from our part-of-speech corpus. JJ = adjective, HVZ = has,
BEN = been, NNS = noun as plural, VBN = verb in past participle, IN = preposition
or subordinating conjunction, NP proper noun as singular, HVD = had.

It contains 7, 736, 709 distinct n-grams and was built from 94, 004, 218 word tokens.

Though this corpus is considerably smaller than the Google corpus, part-of-speech cor-

pora are less sparse than word corpora, which means smaller sizes suffice, as discussed

in section 2.4.

Prefix class n-grams

The prefix n-gram corpus was derived from a Wikipedia word n-gram corpus. We built

this corpus to classify n-grams by the first letter of their words. For example, the

unigram, or word, “language” belongs to the prefix class ‘l’ because it starts with the
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letter ‘l’. Likewise the trigram “language is a” belongs to the prefix class “l i a”.

We built the prefix corpus using a publicly available n-gram collection that was

assembled from plain text previously extracted from the Wikipedia.1 We then took this

corpus and turned all its word 1- to 5-grams into a corpus of prefixes. Table 5.3 shows

an excerpt of trigrams from the prefix n-gram corpus we built.

Prefix trigram Frequency count

i N Y 78243

I n y 243

I n Y 87

Table 5.3: An excerpt of prefix trigrams used for our experiment. These prefixes have a
length k of one letter per word (k=1).

The prefix corpus contains 146, 654, 396 distinct prefix n-grams and was built from

1, 050, 464, 624 word tokens. Though we only use prefixes as classes for our experiments,

the approach can be generalized to use other affixes such as suffixes and infixes. Along

with the prefix corpus, we built respective corpora for suffixes and infixes. These corpora

are built to generalize the concept of classification by first letter into classification by first

k letters, where k = {1, . . . , 5} letters. The whole affix corpus contains 26, 691, 296, 081

affix n-grams of which we use 146, 654, 396 k = 1 prefix n-grams for our experiments.

5.2 Training Set

The training set of a language model is the data used to optimize the model’s perfor-

mance for a given task. In language-model based writing error detection, corpora of

reference errors are used as training set’s to optimize the classification threshold τ by

which n-grams are classified as either correct or erroneous. As mentioned in section

3.2, an n-gram with a probability below the classification threshold τ is classified as

erroneous, an n-gram with a probability higher than τ is classified as correct.

1 The corpus is available at http://nlp.cs.nyu.edu/wikipedia-data/ under the GNU Free Documen-
tation License.
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Using 80% of the sentences contained in the corpus created by Wagner et al. [14] as

training set, we were able to train τ so that error detection performance, as described in

section 4.3, is maximized. This means that, for different thresholds, we calculated error

detection precision and recall on the corpus to determine at what threshold τ detection

precision is highest. The τ was not trained separately for each of the five error types

contained in the artificial BNC, but for all error types at once, since a language model

merely classifies n-grams, without any information about the type of error that was

detected.

To obtain optimum thresholds τ for our language models of word probabilities, word

counts, part-of-speech and prefix probabilities as well as the different class combination

models for word and class probabilities we:

1. Extracted reference error annotations from the BNC corpus of artificially generated

errors using a Myers Difference [36] on corrected and erroneous versions of the same

sentence.

2. Broke up each erroneous sentence into its word, part-of-speech and prefix n-grams

to determine the respective probabilities.

3. Tested 100 different τ ’s per language model to determine τ so that classification

of n-grams into correct and erroneous is as precise as possible.

We trained the model thresholds using 3, 527, 415 pairs of correct and erroneous

sentences of which some had to be discarded because the algorithms involved did not

always work as expected. During training, we encountered the following problems:

• Tokenization is a highly difficult problem in the creation of an n-gram corpus.

Within Google’s word n-gram corpus for example, we found that the apostrophe

(’) is not consistently tokenized. Most of the tokenization found in the collection

removes the apostrophe in contractions with not, e.g. “don’t” becomes “dont”, but

does not in contractions with would, e.g “I’d”. While our word n-gram tokeniza-

tion is adjusted to the Google collection, the tokenizer we used for part-of-speech

sentence tokenization is not. As a result, word n-grams with apostrophes removed

are algorithmically not matching to their underlying part-of-speech n-grams which

is why we skipped sentences containing apostrophes during training. We consid-

ered including a workaround for this problem but did not for two reasons: first, the

apostrophe like the full stop is ambiguous in its grammatical meaning which would
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require a more advanced tokenization, and second, by convention, contractions are

considered a style error in written language and by common error detection sys-

tems.

• We skipped sentences for which the reference implementation we used to extract

part-of-speech n-grams does not consistently handle number tokenization (QTag

[37]). While short numbers lead to valid POS) n-grams, longer numbers, especially

if they contain punctuation, lead to n-grams of invalid length.

• Another problem we encountered was that, for some sentences, the Myers Differ-

ence algorithm [36] failed to calculate a difference and thus, without reference error

annotation to compare to, we had to skip the affected sentences.

• Finally we skipped sentences that were shorter than the currently used n-gram size

as such sentences cannot be classified by our approach..

Table 5.4 lists training results for optimum probability thresholds and their respective

word level precision. The table is subdivided into the type of n-gram counts and prob-

abilities each language model uses to detect errors. Probability threshold are given in

logarithmic scale. Hence, e.g. the table’s last probability entry 3.173 has an actual value

of 10−3.173 = 0.000671. Since we already choose Stupid Backoff to minimize probability

calculations we also trained our models using conditional probabilities, but omitted the

corresponding values from Table 5.4 since conditional probabilities consistently produced

a lower precision when compared to Stupid Backoff.
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N-Gram Type Optimum Threshold Resulting Precision

n-gram counts for

3-grams 0 0.451

4-grams 0 0.478

n-gram probabilities for

word 3-grams −3.755 0.474

word 4-grams −3.727 0.521

prefix 3-grams −1.298 0.347

prefix 4-grams −1.297 0.424

POS 3-grams −1.397 0.404

POS 4-grams −1.128 0.462

interpolation of probabilities for

word and prefix 3-grams −2.290 0.433

word and prefix 4-grams −2.102 0.494

word and POS 3-grams −2.290 0.455

word and POS 4-grams −2.198 0.504

normalization of probabilities for

word and prefix 3-grams −3.311 0.449

word and prefix 4-grams −2.852 0.503

word and POS 3-grams −3.850 0.487

word and POS 4-grams −3.173 0.522

Table 5.4: List of the each model type’s optimum threshold τ obtained during language
model training along with the precision that was achieved. Language models are sorted
by the type of n-gram information they use for error detection.
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5.3 Testset

We evaluate our error detection approaches on three corpora. First, a 10% test set from

Wagner et al.’s corpus of generated errors [14], second, the Montclair Electronic Lan-

guage Database (MELD) corpus [38] and third, the 123 Mass Noun Sentences corpus

by Brockett et al. [28]. While we trained our language models on an 80% training set of

the first corpus the latter two corpora are separate collections with different error types.

As described in section 4.1, detection performance is measured by comparing reference

error annotations from a corpus with algorithmically obtained error annotations. To

make the corpora error annotations comparable to our algorithmic error annotations,

we first extracted the position of each corpus error annotation along with the erroneous

sentence that contains it. That way, for each erroneous corpus sentence, we can detect

errors and compare our algorithmically obtained error positions with the reference error

positions from the corpora to measure error detection performance at word and sentence

level. We overview each of the three corpora and explain how we extracted the required

erroneous sentences and accompanying reference error positions from them.

10% Subsample of Wagner et al.’s corpus of generated errors

The first test set consists of artificially created errors. It contains 9, 413, 338 words and is

organized into five error types: agreement errors, extra word errors, missing word errors,

spelling errors and verb form errors. The reference error positions in this corpus were

determined using the Myers string difference algorithm [36] on the correct and erroneous

version of each sentence. To get the required sentences, we split the corpus up by error

type and extracted a correct and an erroneous version of each sentence using a script

Wagner et al. were kind enough to provide us with. This allows us to measure error

detection performance for each of the five error types separately.

The Montclair Electronic Language Database

The second corpus consists of 58 essays written by second language learners from different

language backgrounds [38]. The corpus contains 6, 553 words and was annotated by

linguists using a simple {error,replacement} annotation scheme. We turned the corpus

into a collection of pairs of correct and erroneous sentences so that we can calculate

reference and algorithmic error annotations on the fly in order to measure detection

performance.
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123 Mass Noun Sentences

The last test set we use is a 1, 813 word collection that was collected by Brockett et

al. as a corpus of mass noun (uncountable noun) confusions [28], but also contains

subject-verb agreement errors such as “knowledge are” and count noun (countable noun)

errors. We manually annotated the errors in this corpus to create a gold standard to

measure against. Furthermore, we acquired another set of human error annotations

using a crowdsourcing service provided by Amazon2 to be able to compare algorithmic

detection quality with human detection quality.

5.4 Experiment Evaluation

In this section we present word and sentence-level error detection results for each of the

three test set corpora. We analyse each of the corpora and compare their results to find

answers to the following questions:

• Influence of n-gram size. How does the length of n-grams influence detection per-

formance and what n-gram length, 3 or 4, results in better detection performance?

• Influence of class-based models. Can the class-based language models outperform

the word n-gram models and what combination method, interpolation or normal-

ization, works best?

• Comparing sentence with word measures. How well is the word-level measure suited

to measure error detection performance and how do results compare to sentence-

level detection performance?

• Comparing algorithms with humans. How well do laymen human annotators detect

errors compared to algorithmic error detection?

2 The service can be found at https://www.mturk.com.

37



5.4. EXPERIMENT EVALUATION

The Montclair Electronic Language Database (MELD)

N-Gram Type Ps Rs Pw Rw

n-gram counts for

3-grams 0.753 0.988 0.291 0.391

4-grams 0.751 0.994 0.447 0.751

n-gram probabilities for

word 3-grams 0.806 0.850 0.376 0.403

word 4-grams 0.803 0.856 0.494 0.521

POS 3-grams 0.752 0.982 0.315 0.608

POS 4-grams 0.747 0.994 0.430 0.793

prefix 3-grams 0.745 1.0 0.317 0.870

prefix 4-grams 0.747 0.994 0.421 0.869

normalization of probabilities for

word, POS 3-grams 0.797 0.874 0.276 0.349

word, POS 4-grams 0.775 0.910 0.423 0.512

word, prefix 3-grams 0.788 0.892 0.387 0.461

word, prefix 4-grams 0.800 0.934 0.512 0.589

interpolation of probabilities for

word, POS 3-grams 0.793 0.898 0.353 0.407

word, POS 4-grams 0.803 0.928 0.487 0.548

word, prefix 3-grams 0.794 0.856 0.382 0.402

word, prefix 4-grams 0.780 0.916 0.505 0.581

Table 5.5: Error detection performance results for the MELD corpus. Ps = precision at
sentence level, Rs = recall at sentence level, Pw = precision at word level, Rw = recall
at word level, POS = parts of speech.
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The results in Table 5.5 indicate that at sentence level the n-gram length only has an

effect on the word class combination methods where 4-grams consistently outperform 3-

grams. The highest precision values can be observed for word 3- and 4-gram probabilities,

the interpolation of word and POS 4-gram probabilities, and a normalization approach

that uses word and prefix 4-grams. Compared to word n-gram probabilities both class

combination methods improve recall by around 7− 8%.

At word level, 4-grams clearly outperform their 3-gram counterparts throughout

all approaches. Though the class combination methods achieve the highest word-level

precision values using 4-gram normalization and interpolation, it can be noticed, that

word 4-gram probabilities, at 49.4% precision, already perform better than most other

approaches.

Although we did not find any previous sentence-level evaluation for the MELD cor-

pus, we did find word-level evaluations conducted by Fitzpatrick and Seegmiller who

created the corpus [38, 39]. They measured annotation agreement between multiple hu-

man annotators and found that annotators not just annotate grammatical errors but also

stylistic errors like long sentences and corrected sentences to their rhetorical preference,

e.g. correcting “you” to “one’s”. While the latter two kinds of errors are not detectable

by our algorithms, we compare our detection results with their evaluation of annotator

agreement in Table 5.6 [38]. The table compares three different annotation methods,

two produced by Fitzpatrick and Seegmiller and the third by our algorithmic error de-

tection. The first method measures annotation agreement between human annotators.

It can be observed that agreement results vary strongly between different annotators

(marked bold) but that it averages around 55% recall and 64% precision [38, 39]. The

second method measures agreement using the authors of the essays as annotators which

produces a notably higher agreement. The third approach represents our algorithmic

word-level error annotation, which coincides with the definitions for precision and recall

given by Fitzpatrick and Seegmiller. Compared to the human annotation, precision val-

ues produced by our algorithms are 4% higher, which is rather unexpected since humans

should generally find errors more accurately than our algorithms. On the other hand

we lack behind in recall by 13%, which fits our expectations. Though both human and

algorithmic annotation agreement show similar results, we merely take this as an indica-

tion of our previously made observations regarding the ambiguity of errors (see section

4.2). To avoid low agreement rates due to error ambiguity, error detection results should

perhaps be evaluated by humans to find out how useful the algorithmic annotation are

for an actual user. But such an in-depth evaluation is beyond the scope of this work.
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Annotators Agreement Recall Agreement Precision

Human annotators

J and L essay set 1 0.54 0.58

J and L essay set 2 0.57 0.78

J and N essay set 1 0.58 0.48

J and N essay set 2 0.37 0.54

L and N essay set 1 0.65 0.70

L and N essay set 2 0.60 0.78

average 0.55 0.64

Self-annotations by the

original essay authors set 1 0.73 0.84

original essay authors set 2 0.76 0.90

Algorithmic annotation

MELD reference and algorithm 0.59 0.51

Table 5.6: Annotator descriptions and results are taken from [38]. J, L, N are the
annotators used for the evaluation. The values describe annotator agreement for two
sets of essays from the MELD corpus.

ESL 123 Mass Noun corpus

This corpus is relatively small and thus the results drawn from it carry little statistical

weight. As no reference error annotations were provided with this corpus we created

our own set of reference error annotations to measure against. The detection results are

presented in Table 5.7.

At sentence level, detection results are near optimum which, given that the corpus

contains very few error-free sentences, does not surprise. N-gram length only seems to

improve detection results for the combination models, however the best performance is

achieved using word 4-gram counts and prefix 3-gram probabilities, which most likely
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can be ascribed to the size of the corpus. This becomes even more obvious because the

combination methods are actually outperformed by n-gram counts and probabilities.

At word-level, 4-grams clearly improve detection performance when compared to

3-grams, and the combination approaches outperform the other methods with the ex-

ception of word 4-gram probabilities, which show the second best precision of all methods

but lack behind in recall.

Humans outperform algorithmic detection at both sentence and word level. They

achieve a higher precision at word level and a considerably larger recall. The perfor-

mance results, like the results drawn from the MELD corpus suggest that even in this

small corpus with relatively few different error types, ambiguities seem to influence the

measurements. Another reason for the unexpectedly low results achieved by the human

annotators might be the fact that we created the reference error annotations ourselves,

which could explain the low agreement between humans and the reference annotation.

Additionally, we did not check the human error annotations for correctness prior to using

them for evaluation as removing errors from the human annotations would have skewed

the test results towards our expectations. To further investigate the problem of error

ambiguity, we measured algorithmic detection performance against the human annota-

tions and obtained a precision of 0.494 at a recall of 0.609, which roughly coincides with

the results we obtained against the reference error annotations. Though the ESL mass

noun corpus results confirm the results drawn from the MELD corpus, the 123 ESL

mass noun corpus is too small in size to produce conclusive results.
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N-Gram Type Ps Rs Pw Pw

n-gram counts for

3-grams 1.0 0.981 0.389 0.592

4-grams 1.0 0.990 0.470 0.820

n-gram probabilities for

word 3-grams 1.0 0.945 0.441 0.601

word 4-grams 1.0 0.909 0.502 0.627

POS 3-grams 1.0 0.944 0.352 0.478

POS 4-grams 1.0 0.916 0.443 0.567

prefix 3-grams 1.0 0.990 0.346 0.821

prefix 4-grams 1.0 0.972 0.451 0.798

normalization of probabilities for

word, POS 3-grams 1.0 0.842 0.374 0.412

word, POS 4-grams 1.0 0.842 0.440 0.480

word, prefix 3-grams 1.0 0.936 0.436 0.628

word, prefix 4-grams 1.0 0.927 0.494 0.676

interpolation of probabilities for

word, POS 3-grams 1.0 0.898 0.415 0.554

word, POS 4-grams 1.0 0.888 0.469 0.599

word, prefix 3-grams 1.0 0.927 0.434 0.600

word, prefix 4-grams 1.0 0.927 0.517 0.686

Human annotation

manual 1.0 1.0 0.533 0.776

Table 5.7: Error detection performance results for the ESL mass noun corpus. Ps =
precision at sentence-level, Rs = recall at sentence-level, Pw = precision at word-level,
Rw = recall at word-level, 3g = 3-grams, 4g = 4-grams, POS = parts-of-speech.
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BNC corpus of artificially created errors

The BNC corpus is our largest test set and split into errors of different types, which

allows us to compare detection performance per type. Due to its size it is also the

statistically most valid corpus and allows us to make more general assumptions. Table

5.8 shows a selection of the best error detection performance results, organized by type.

A complete list of all 80 results would be too long.

At sentence level, error detection results are close to optimum, which we expected

because the test set only contains erroneous sentences and language model error detection

approaches tend to detect too many errors rather than too few [14]. The best detection

performance for all five error types was consistently achieved by word counts of 4-grams.

At word level, the best error detection results were produced by normalizing word

n-gram probabilities with part-of-speech n-gram probabilities as described in section 3.2.

The detection results for missed word errors do not fit the other results as both precision

and recall are considerably lower than for the rest of the error types, which is likely

caused by a weakness in our reference error extraction mechanism. Furthermore, it can

be noticed that the results show a similar error detection precision as was observed for

the previous two corpora. Recall, however, is significantly higher for the BNC corpus,

which does not surprise since we optimized our language models using 80% of the corpus

as training set.

sentence level Agreement Extra Miss Spell Verb

Type 4g counts 4g counts 4g counts 4g counts 4g counts

Precison 1,0 1.0 1.0 1.0 1.0

Recall 0.996 0.996 0.982 0.994 0.995

word level

Type POS 4g norm. POS 4g norm. 4g counts POS 4g norm. POS 4g norm.

Precision 0.509 0.522 0.438 0.520 0.545

Recall 0.759 0.730 0.821 0.741 0.791

Table 5.8: Error detection performance results for the artificial BNC corpus sorted by
error type. Agreement errors, extra word errors, missed word errors, spelling errors, and
verb form errors.
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5.5 Experiment Conclusions

In this section we summarize the test results for the three corpora and answer our

previously stated questions about the influence of n-gram length, how well the measures

perform, whether or not the advanced approaches improve detection performance and

what the relation between error ambiguity and the different measures is.

• Influence of n-gram size. Throughout the different approaches it has become clear

that using 4-grams instead of 3-grams increases error detection performance, es-

pecially for the class-word combination methods.

• Influence of class-based models. The most naive approach we use are word n-

gram counts. At sentence level, these seem to produce the highest recall when

used on test sets that mostly consist of ungrammatical sentences. However, as

the sentence-level evaluations performed on the MELD corpus show, they are

outperformed by other methods on test sets that also contain grammatical sen-

tences, i.e., sentences without errors. The lowered precision in conjunction with

the near-perfect sentence-level recall (see Table 5.5) leads us to assume that the

naive word n-gram detection method tends to detect errors where there are none

(false positives). The second error detection approach described in Section 3.2 uses

word n-gram probabilities obtained via Google’s Stupid Backoff method [6]. This

method has proven to provide good baseline error detection performance and is

only outperformed by our advanced models. Results for the last error detection

approach, the class-word combination methods, are somewhat inconclusive. While

normalization between word and part-of-speech probabilities performs best on the

artificial errors, prefix-based combination methods worked better on actual learner

errors. We can only assume that this occurs due to ambiguities in POS tagging

as mentioned by Ilarraza and Oronoz [32, 33].

• Comparing the sentence-level measure with word-level measures. The differences in

error detection performance at sentence and word level are salient. While detection

at sentence level neither tells us where an error is located within a sentence nor how

many errors a sentence contains, the sentence measure seems to be less susceptible

to error ambiguities when compared to the word-level measure. This might be the

reason why it is so frequently used for error detection evaluation and as Ilarraza

and Oronoz state “the influence of error ambiguity is usually forgotten during

the design of error detection systems” [32, 33]. Furthermore, our evaluation of
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the MELD and the ESL mass noun corpus suggest that error annotation at word

level measures annotation agreement between different annotators, and that, as we

pointed out in section 4.2, annotation agreement is influenced by error ambiguities

as well as an annotator’s personal preference [38, 39]. A possible solution to the

agreement problem could be an error detection system that allows its users to

rate the usefulness of the algorithmic error annotations they are presented with

by the system, but such in-depth evaluation is beyond the scope of this work.

Additionally, these last findings are to be taken with a grain of salt as the results

they are based on were drawn from data sets that are to small to be fully conclusive.

We therefore conclude that the impact error annotation ambiguities have on error

detection performance measures need further investigation to produce conclusive

results.
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