
Martin-Luther-Universität Halle-Wittenberg
Institute of Computer Science
Degree Programme Computer Science, B.Sc.

Listformer: A Listwise
Learning-To-Rank Transformer

Bachelor’s Thesis

Erik Reuter

1. Referee: Prof. Dr. Matthias Hagen
2. Referee: Msc. Ferdinand Schlatt

Submission date: July 31, 2022

Declaration

Unless otherwise indicated in the text or references, this thesis is
entirely the product of my own scholarly work.

Halle/Saaale, July 31, 2022

. .
Erik Reuter

Abstract

The usability of search engines is heavily influenced by the quality of the rank-
ing and the time needed to form the ranking. Therefore, learning-to-rank
models have to be both efficient and effective. Especially transformer mod-
els trade effectiveness with efficiency. Pointwise transformer models are faster
but not as effective as pairwise transformers. ListNet shows the potential of
listwise approaches to be more effective than pairwise models. We want to
use the potential and propose the first single-stage listwise transformer named
Listformer. Listformer uses a global-local attention mechanism to reduce mem-
ory requirements. Our global-local attention Thus, Listformer can process a
ranking of more than 20 documents without truncation in a single stage. We
fine-tune Listformer on the TripClick click-log dataset using the ApproxNDCG
loss. Experiments evaluating Listformer’s effectiveness using the TripClick IR
Benchmark show that Listformer is not as effective as our BM25 baseline yet.
In exchange, for reranking 100 documents, the Listformer is slower than point-
wise BERT but faster than pairwise BERT.

Contents

1 Introduction 1

2 Related Work 4

3 Methods 8
3.1 Listformer . 9
3.2 Approximated NDCG Loss . 11
3.3 Dataset . 12

4 Experiments 14
4.1 Configurations . 15
4.2 Results . 16

5 Conclusion 18

Bibliography 19

i

Chapter 1

Introduction

The ranking of documents in a search engine is crucial for usability. Users
expect the most relevant documents to be presented in the first spots of the
search results list. To model the relevance of a document to a query, diverse
approaches have been proposed, e.g., term-weighting functions like BM25 [27]
or learning to rank (LTR) models like RankNet [9] or ListNet [10]. Recent
approaches to learning to rank often use a two-stage approach by first retriev-
ing documents using a term-weighting function before reranking the retrieved
documents using an LTR model [4, 7]. This done because search engines are
expected to be fast and most LTR models are too slow to gather a ranking from
the index directly. Three types of LTR approaches exist: pointwise, pairwise,
and listwise [21].

Pointwse LTR models estimate the relevance score of a document to a
query independently of other documents. In contrast, in pairwise models the
relevance scores of the documents are estimated by comparing the documents
in pairs. RankNet [9] has shown that pairwise models have a higher effective-
ness than pointwise models. The document comparisons enrich the process
of relevance prediction in pairwise LTR by allowing the model to combine
information of multiple documents. We call this exchanged information inter-
document information.

Listwise LTR approaches follow the intuition of creating a ranking directly
from the list of search results, instead of processing the list in single or pairs of
documents. The listwise LTR model ListNet [10] strengthens our assumption
that inter-document information benefits LTR by having a higher effectiveness
than RankNet.

In recent learning to rank approaches, transformer models were used for
pointwise or pairwise learning to rank [23, 12], because of their exceptional
language-modeling capabilities [14]. The reason transformer models have not
widely and effectively been used for listwise learning to rank is their memory

1

CHAPTER 1. INTRODUCTION

requirements. The self-attention mechanism of transformers builds an atten-
tion score matrix quadratically increasing in size with the size of the input
sequence [30]. This makes transformer models impractical to use for listwise
reranking. The reranking of a list of documents needs large input sequences
containing all documents from the list. To use e.g. BERT for listwise LTR
with just 10 documents, one would need to either truncate the documents to
around 50 tokens or need to train and predict on a GPU cluster.

We tackled the problem of quadratic memory requirements using a sparse
self-attention mechanism similar to that in the Longformer transformer model
[6]. The sparse self-attention brings the quadratic memory requirements of full
self-attention down to linear memory requirements. Our sparse self-attention
is a specialized global-local attention. Each class and separator token, and each
query token are global tokens. Thus, they can attend to every other token and
every token attend to them. The tokens from a document on the other hand,
are local tokens and can only attend to tokens from the same document and
to all global tokens. The intuition behind our global-local attention, is that a
seperator token following the document’s tokens is used to build a representa-
tion of the document using the documents inner information in combination
of the inter-document information obtained from the other seperator tokens’
document representations. With the reduction of the memory limitations, we
can up-scale the input size and thus can include more documents to build a
listwise LTR transformer model we named Listformer.

The other problem we tackle is the lack of order-invariance in pairwise LTR
transformer models, meaning the order of documents in the input influences the
relevance prediction [22], which leads to pairwise models predicting either di or
dj as more relevant when processing the input of a document pair (di, dj). Since
order-invariance is a key axiom of reranking, pairwise models like DuoBERT
[22] or DuoT5 [23] are called on all permutions of document pairs (di, dj) with
i ̸= j. We designed our model, especially the positional embeddings and the
global-local attention, to be order-invariant. The order-invarince eliminates
the bias given by the position of the document in the input. Thus, our model
estimates the relevance scores of the documents based on the inter-document
information rather than their position in the input.

We hypothesize that the Listformer model performs better than pairwise
and pointwise models because of the language-modeling capabilities of trans-
formers combined with the inter-document information, and the order-invariance
included in the training of the listwise LTR model. To prove our hypothesis,
we run experiments on the TripClick benchmark [15, 26]. We futher hypothe-
size, that Listformer is faster than pairwise transformer with the same number
of layers. We evaluate this hypothesis by comparing the reranking time of
Listformer with those of pointwise and pairwise BERT models. The rest of

2

CHAPTER 1. INTRODUCTION

the thesis is structured as follows.
We briefly overview related work in Chapter 2. In Chapter 3, we propose

the Listformer model before describing the loss function and the dataset we
used. The experiments, the results, and the discussion of the results are given
in Chapter 4 before a conclusion is drawn, and future work is described in
Chapter 5.

3

Chapter 2

Related Work

We first give an overview of existing listwise LTR models before outlining
low-memory-footprint self-attention mechanisms and models. Our work is a
combination of the listwise LTR approach and global-local attention.

Listwise Learning To Rank Mitra and Craswell describe listwise LTR as
models that optimize a rank-based metric directly, rather than reducing the
ranking problem to pairs of documents or single documents as in pairwise or
pointwise approaches [21]. One of the first listwise methods was ListNet by
Cao et al. [10]. ListNet’s loss function is based on two newly introduced proba-
bilistic functions: permutation probability and top-k probability. Permutation
probability represents the likelihood of a ranking over all possible rankings.
Since the number of possible rankings is of order O(n!), the time complexity
of permutation probability is too high, thus permutation probability is con-
sidered impractical. For a more practical approach, the authors introduced
top-k probability. Top-k probability represents the probability that k docu-
ments are ranked in the top-k positions. There are n!

(n−k)!
rankings having the

top-k documents in the top-k positions, which makes the top-k probability
more usable. The top-k probability is used to form two probability distribu-
tions, one with the predicted ranking and one with the ranking obtained from
the ground truth. The loss function is formed by applying a metric between
the probability distributions, e.g., cross-entropy. ListNet shows the possibili-
ties and challenges of listwise LTR, e.g. forming a loss function that outputs a
reasonable loss for any possible ranking while having bearable time complexity.

Besides ListNet, several other listwise loss functions have been proposed,
e.g., RankCosine, which represents the predicted ranking list and the ground-
truth ranking list as vectors and forms a loss by applying a cosine loss function
between the vectors [25]. Bruch et al. introduced ApproxNDCG [8], a loss
function designed to represent the NDCG. It overcomes non-differentiabilty

4

CHAPTER 2. RELATED WORK

of NDCG. NDCG is the computed using the DCG of the predicted ranking
and the ideal DCG of the ranking. In order to compute the DCG, the rank
of each document di with relevance score ri needs to be determined. The
rank of a document is assessed using the identity function Iri>rj . The identity
function is 1 when ri > rj and 0 else, and therefore is non-differentiable. The
authors used an approximation by replacing the I with the sigmoid function:
Iri<rj ≈ σ(ri − rj). We use this loss for our listwise LTR model, because we
can optimize directly on the measure we later evaluate with.

In recent listwise LTR approaches, neural networks were used, e.g., DLCM,
the group scoring function model proposed by Ai et al. [1, 2], transformer
models like TABLE by Sun et al. [29] or ListBERT by Kumar and Sarkar [17].
The group scoring function is a 3-layer feed-forward neural network that does
not compute relevance scores over all search results, but computes them in
fixed-sized groups of search results. For example, a group size of one would
form a pointwise and a group size of two a pairwise model. In order to predict
the relevance of each document in the list, all permutations of the fixed group
size would have to be computed using the group function. The usage of all
permutations has a too high time-complexity. This problem is tackled using
Monte Carlo methods, which brings the computational complexity down to
O(mn), making the model more practical. The group scoring function performs
better than RankNet and LambdaMART.

The aforementioned TABLE [29] is trained in two stages. Firstly the un-
derlying BERT model undergoes a type-adaptive pointwise fine-tuning phase,
before a listwise loss is used for the second stage. The listwise second stage
is done by predicting unnormalized relevance scores for n positive and m neg-
ative documents for each query. The resulting unnormalized relevance scores
are used to compute normalized relevance scores for each positive document.
Thus, the ith positive document’s relevance score can be computed using the
following formula:

score+i =
r+i∑n

k=0 r
+
k +

∑m
l=0 r

−
l

The scores are then used to form the loss:

L =
−
∑n

i=0 log(score
+
i)

n

TABLE performs better than the pairwise model DuoBERT [22] on the
MS MARCO dataset. The authors show in experiments that the main contri-
bution to the model’s performance is the type-adaptive fine-tuning phase. We
hypothesize that a listwise model could reach higher performance by inputting
all documents in one call rather than collecting the scores of each document
independently. Our hypothesis is based on the assumption that a model can

5

CHAPTER 2. RELATED WORK

learn from inter-document information when all documents can be seen in the
prediction of the relevance score and not only in one linear layer.

Sparse Self-Attention Mechanisms The self-attention mechanism is the
core mechanism of transformer models [30] by enabling the model to construct
a contextualized token representation based on all input tokens.

The key and query vectors are multiplied to produce an attention score
matrix of size n2, which limits the input size. Therefore, most models restrict
the input size to 512 tokens [14, 19]. To input larger sequences, self-attention
with lower memory requirements would be needed. Approaches to tackling
this problem are lightweight convolutions as attention replacements [31] or re-
current [13], hierarchical [32], compressed [18], or sparse attention mechanisms
[3, 6, 11]. In a sparse attention mechanism, a token does not attend to all
tokens but to a subset of tokens. With an input sequence of size n a sparse
attention mechanism, where each token attends only to m tokens, the atten-
tion mechanism has a space complexity of O(nm). When m is fixed, the size
of the attention matrix increases linearly with the input size. For example,
in the Sparse Transformer, an image generation model, pixels attend to pixels
from the same row or column in the image. Thus, the space complexity of the
sparse attention applied to an image with n pixels is O(n

√
n).

An even lower space complexity is obtained with the ETC (extended trans-
former construction) architecture by Ainslie et al. by using local-global-attention
[3]. The architecture splits the input into a global input of size ng and a long
input of size nl. The intuition behind the global input is that all tokens from
the global and long input attend to the global input, and the global input
attends to all tokens from the long and the global input. The long input to-
kens can only attend to a subset of long input tokens, but all input tokens
in the global input. With global and local attention combined, linear space
complexity is reached while retaining information on all tokens.

In more detail, the global-local attention is split into four pieces: global-to-
global (G2G), global-to-local (G2L), local-to-global (L2G) and local-to-local
(L2L). G2G is the part of the attention where each global input token attending
to all global input token, G2L where each global input token attends to all long
input tokens, and L2G where each long input token attends to all global input
tokens, respectively. On the other hand, L2L is the part of attention where
each long input token only attends to a subset of long input tokens. The
attention of the global sequence is computed using G2G and G2L, and the
attention of the local attention using L2L and L2G, respectively.

A very similar mechanism is used by the Longformer by Beltagy et al. [6].
The main difference is that the Longformer’s inputs are an input sequence and
an attention mask. The attention mask defines which tokens in the input are

6

CHAPTER 2. RELATED WORK

considered global and which are local. According to the global-local specifica-
tions by [6], global tokens attend to all other tokens while local tokens attend
to tokens within an attention window on the tokens and to all global tokens.
The flexibility of the global-local attention in the Longformer allows encoding
task-specific structures in the attention mask. We use the Longformer ap-
proach to global-local attention in our model and encode a list structure in
the attention mask. We further adapt the local-to-local piece to the task of
listwise LTR, as described in Chapter 3.

7

Chapter 3

Methods

In this chapter, we describe how we designed our model for listwise LTR while
keeping order-invariance, to eliminate the bias given by a documents position.
Therefore, we formally describe the task of listwise relevance prediction and
our model’s input. Then we explain the global-local attention mechanism we
use. Especially, we show how we adapted our listwise LTR model to be order-
invariant by explianing the document-wise local attention and document-wise
positional embeddings. To fine-tune our model, we use the TripClick dataset
and the ApproxNDCG loss function, both being described in the following
sections.

Input Formulation We define a set of queries Q := {q1, q2, ..., qn} and a
result set of documents per query Di := {di,1, di,2, ..., di,m}, qi ∈ Q. The
sequence of tokens of query qi ∈ Q are denoted as q′i, similarly the sequence
of tokens of a document di,j ∈ Di is denoted as d′i,j. With this notation, the
input of our listwise model has the form:

<CLS>q′i<SEP>d′i,1<SEP>d′i,2<SEP>...<SEP>d′i,l<SEP>

where l ≤ m is a parameter determining the number of documents passed to
the model, CLS is the class token, and each SEP token is a seperator token.

The task of listwise relevance prediction is to predict a list of relevance
scores ri,j, . . . , ri,l for a query qi ∈ Q with input documents di,1, . . . , di,l. The
predicted relevance scores can then be used to form the ranking of the docu-
ments. With the formulation of the input and the task of listwise relevance
prediction, we can describe how we designed our listwise LTR model.

8

CHAPTER 3. METHODS

Figure 3.1: This figure shows the difference in the attention patterns of the List-
former and the Longformer model by Beltagy et al.. We use blue for tokens used in
the global attention, while green tokens are used for local attention. The attention
patterns show which tokens a token attends to. In both the listwise LTR trans-
former and the Longformer, all global tokens attend to all tokens. The differences
lie in the local attention. We perform a document-wise local attention, where each
token attends to tokens within an attention window of fixed size; therefore, in the
Listformer, the last and first tokens of document do not attend to the last tokens of
the previous, or the first tokens of the following documents.

3.1 Listformer
Our novel listwise LTR transformer model Listformer is the first model to use
a single-stage approach for listwise relevance prediction. We tackle the prob-
lem of quadratic space complexity of self-attention in the original Transformer
model by using a modified global-local attention mechanism. Further, we
design our model to be order-invariant. Order-invariance means, that the rel-
evance score of a document is computed purely on inner-, and inter-document
information rather than on the documents position within the input. We en-
sure order-invariance, by designing the global-local attention mechanism to
use a document-wise local attention, applying the local attention to each doc-
ument individually rather than on the whole sequence. Another contribution
to our listwise models order-invariance are the positional embeddings being
document-wise, too. We describe our global-local attention and positional
embeddings in more detail in the next paragraphs.

9

CHAPTER 3. METHODS

Figure 3.2: The figure depicts the document-wise global-local attention mecha-
nism. Keys, queries and values are acquired from the hidden states of the previous
transformer layer. The Listformer has two attention mechanisms, firstly the global
attention, which computes a self attention over all global tokens, and the local at-
tention. To perform the local attention, the keys and queries are devided in l + 1
splits, one for the query and l for the l documents passed to the model. We then
perform the local attetnion on each split individually, before collecting the resulting
attention scores from the local and global attention to concatenate them reobtain-
ing the sequence-wise representation. We use the sequence-wise attention scores for
multiplication with the values to obtain the attention result.

Global-Local Attention In the Longformer’s local attention, tokens attend
to tokens within a range around the token. Since we simply concatenate the
input documents and seperate them using a SEP token, the last tokens of doc-
ument di,j would attend to the first tokens of document di,j+1. The document-
overlapping local attention encodes an order between the documents, which
contradicts the model’s order-invariance. Therefore, we cut the overlaps so
that the local attention is performed per document rather than sequence, as
depicted in figure 3.1. In detail, we split the sequence-wise key and query vec-
tors into document-wise key and query vectors for documents. Then a sliding
attention window over the tokens of each document is used to compute the
attention scores. The document-wise local attention scores then are concate-
nated to sequence-wise local attention scores. The global attention scores are
computed by key vectors of all tokens, and the query vectors of the global
tokens. The global and local attention gets concatenated and multiplied with

10

CHAPTER 3. METHODS

the value vectors. The process is depicted in Figure 3.2.

Positional Embeddings Another contribution to the order-invariance of
our model are the positional embeddings. Positional embeddings encode the or-
der of tokens in the input. When dealing with a single document, the straight-
foreward approach would be to assign each token its position, which is later
used to produce a positional embedding. If we count up the position from the
start of the input sequence to the end, we encode an order of documents, be-
cause the tokens of di,j+1 have higher positions than tokens of di,j. Therefore,
we assign positions to each document’s tokens independently. More precisely,
each document’s tokens’ positions start at 0 and are counted up to the next
seperator token.

Relevance Prediction To predict the relevance scores the last hidden states
corresponding to the seperator token after each document are gathered, e.g., in
the input <CLS>q′i<SEP>d′i,1<SEP>d′i,2<SEP>. . .<SEP>d′i,l<SEP> the
underlined tokens will be used to gather their last hidden states. We denote
those last hidden states as s1, s2, ..., sl where sj corresponds to the jth seperator
token. Relevance scores are predicted from s1, . . . , sl, where W is a hidden layer
projecting the output hidden states to a single value:

rj = W · sj + b

3.2 Approximated NDCG Loss
The ApproxNDCG loss proposed by Bruch et al. [8] is designed to tackle the
problem of the non-differentiability of the indicator function I used in the
NDCG ranking metric. In more detail, the NDCG is formulated as follows:

NDCG(πf ,y) =
DCG(πf ,y)

DCG(π∗,y)

Where y is a list of relevance labels in descending order, π∗ is a list of the
numbers 1 to l in ascending order, and πf is a permutation of π∗. More
precisely, πf is sorted for their predicted relevance scores r1, . . . , rl by model
f . The DCG is formulated as

DCG(π,y) =
n∑

i=0

2yi − 1

log(π(i) + 1)

In order to obtain πf , the indicator function Is<t is used. The indicator function
is 1 when s > t and 0 else. The ith position in the ranking πf is thus formed

11

CHAPTER 3. METHODS

Table 3.1: Statistics of the TripClick dataset.

Number of user interactions 5, 272, 064
Number of sessions 1, 602, 648
Number of unique queries 1, 647, 749
Number of retrieved documents 2, 347, 977

by:

πf (i) = 1 +
l∑

i ̸=j

Iri<rj

Qin et al. approximated I using the sigmoid function σ [24]: Is<t ≈ σ(s − t).
Thus the approximated rank of the ith document in a list of l documents with
relevance scores r1, . . . , rl is:

π̃f (i) = approxRank(i) =
l∑

i ̸=j

σ(ri − rj)

From the approxRank function, an approxRanks function can be derived, tak-
ing in a list of relevance scores and computing the approximated rank of the
relevance scores in a list.

π̃f = approxRanks(r1, . . . , rl)

Now, to produce a loss function with the NDCG with the rank approximation,
the NDCG needs to be negated to create a minimization problem Bruch et al..
This is done by multiplying with −1 to obtain the ApproxNDCG Loss:

L(x,y) = −NDCG(approxRanks(x),y)

where x is the predicted list of relevance scores.

3.3 Dataset
In order to fine-tune and evaluate our model, we use the TripClick dataset, a
click log dataset collected from the bio-medical search engine Trip database.
TripClick wast introduced by Rekabsaz et al., it consists of around 700, 000
queries, and 1.3 milion query-document relevance labels collected from 5.2
million user interactions [26]. More statistics are shown in Table 3.1.

The click logs contain user sessions consisting of queries entered by the user
and the documents clicked, and retrieved per query. Rekabsaz et al. extracted

12

CHAPTER 3. METHODS

the queries and divided them into three splits for their frequency in the click
logs: head queries, with a frequency higher than 44; torso queries, with a
frequency between 6 and 44; and tail queries, with a frequency lower than 6.
The frequencies are selected, so the head queries make up around 20%, the
torso queries around 30%, and the tail queries around 50% of all queries. The
splits are divided into train, test, and validation sets.

We construct samples to a query by firstly, retrieving document candidates
using the pyterrier search engine [20] and BM25 [27]. Each candidate then gets
annotated with a score according to a click model. Like Rekabsaz et al., we
used DCTR for head queries and RAW for torso and tail queries. DCTR
classifies a document’s relevance into four classes using their relative click
frequency. The relative click frequency of a document di,j to a query qi is
defined by rci,j =

ci,j
ci

, where ci,j is the number of times di,j was clicked when qi
was entered and ci is the number of times any document was clicked. DCTR
assigns a relevance label to a document di,j as following: 0, when rci,j = 0,
1 when 0 < rci,j ≤ 0.04, 2 when 0.04 < rci,j ≤ 0.3 and 3 else. Since the
documents retrieved for torso and tail queries were not clicked as often as for
head queries, the binary RAW click model is more fitting. RAW assigns a
relvance label of 1, when a document was click, and 0 else.

We annotate the documents using the described click models and sample
from these annotated results lists using two parameters, the number of docu-
ments passed to the model l > 0 and a positive part in the sample 0 < p ≤ 1.
The positive part specifies the part of all documents passed to the model hav-
ing relevance labels higher than 0. In other words, a positive part of p would
produce a sample consisting of p · l (relevant) documents with relevance > 0
and (1− p) · l (non-relevant) documents with a relevance label of 0.

We then shuffle the sampled documents. Having a query qi, relevant, and
non-relevant documents di,1, . . . , di,l, we tokenize them to get the query tokens
q′i and the document tokens d′i,1, . . . , d′i,l. We can then form the model input by
concatenating the query’s and documents’ tokens. Furthermore, we build an
attention mask defining the type of attention per token. The attention mask
entry for a token is 0 when no attention should be used, 1 when local attention
should be used, and 2 if global attention should be used. Thus, a sample
consists of the model input, the attention mask, and the relevance labels to
the sampled documents in descending order.

We use this dataset, because of the rankings being deeply judged, e.g., the
head queries have an average of 46.2 non-zero relevance judgements per query.
The high number of judgements benefits the training of the Listformer, since
we can train on samples having 20 or more documents with non-zero relevance
labels.

13

Chapter 4

Experiments

In this chapter, we describe benchmarks proposed on TripClick dataset before
explaining which experiments we set up to test the Listformer’s effectiveness
on the TripClick IR Benchmark. For the efficiency of Listformer, we test using
BERT-based pointwise and pairwise rerankers as baselines for our experiments.
We propose different configurations for these experiments. We then show and
discuss the results of our experiments.

Benchmarks Different benchmarks have been introduced on the TripClick
dataset so far. Rekabsaz et al. set up baselines using BM25 and machine
learning models, e.g., KNRM (kernel-based neural ranking model), and MP
(match pyramid). The authors used a negative sampling strategy, where all
non-clicked documents are considered non-relevant. This strategy will likely
produce false negative samples because relevant documents in the first few
positions in the search results may not have been clicked.

Hofstätter et al. uses a more sophisticated negative sampling strategy by
considering non-clicked search results with a low BM25 score for negative sam-
pling. The authors used this strategy to train BERT-style transformer mod-
els to establish a benchmark on TripClick. In more detail, the authors used
pre-trained models, e.g. SciBERT [5], DistilBERT [28], or Colbert [16], and
fine-tuned them on the head, torso, and tail splits, individually.

We use the TripClick benchmark by [15] to evaluate the Listformer since the
BERT-style transformers are more comparable to our listwise LTR transformer
than the models used by Rekabsaz et al..

To create a benchmark for efficiency, we used the task of reranking 100
documents and measured the time used for reranking. The benchmark model
we use is BERT [14] for pointwise and pairwise reranking. We measure how
much time BERT needs to predict relevance scores for the documents in a
pointwise and in a pairwise manner. For the pointwise BERT, we simulate

14

CHAPTER 4. EXPERIMENTS

pointwise reranking by passing 100 inputs, each consisting of 512 random to-
kens to BERT. The reranking time starts when the first input is passed and
ends when all 100 inputs are processed. We approximate the reranking time
needed to rerank the documents using pairwise BERT by taking pointwise
BERT’s reranking time. Since pairwise BERT is called n(n − 1) times for a
list of n documents, and we know how much reranking time BERT needs to
process n inputs, we can approximate the reranking time of pairwise BERT
by tpointwise(n) · (n− 1), where tpointwise(n) is pointwise BERT’s reranking time
for n documents.

4.1 Configurations
In this section, we explain how we fine-tune our model before describing the
different model settings we experimented with.

Fine-Tuning We use a pre-trained Longformer model1 as bases to fine-tune
our model. The fine-tuning is done using the train split of the head queries.
We sample these queries as described in section 3.3. The model inputs of
a sample are passed to our listwise LTR model to predict relevance scores.
The ApproxNDCG loss is computed from the predicted scores and the labels
before gradient descent is used to optimize the model. To fine-tune our model
with different configurations, we trained for 5, 000 steps with a learning rate
of 1 · e−5, a warm-up of 100 steps, and a weight-decay of 0.01. For the local
attention we used an attention window of size 512. We trained with a batch
size of 4 samples on 4 Nvidia V100 GPUs having 40 GB of memory each.

Experimental Setup To evaluate the effectiveness of the Listformer, we
used the fine-tuned configurations to rerank the first 100 documents retrieved
by BM25. This is done by building an input out of the query and the 100
top-documents and passing it to the model to rerank the documents for the
predicted relevance scores.

We build a single input for the efficiency benchmark by concatenating a
query and 100 documents separated by SEP tokens. The query and the doc-
uments consist of 512 random tokens each. The input is passed to the List-
former. The time needed for reranking starts when the input is passed and
ends when the relevance predictions are received.

1https://huggingface.co/allenai/longformer-base-4096

15

https://huggingface.co/allenai/longformer-base-4096

CHAPTER 4. EXPERIMENTS

Table 4.1: Listed are the different configurations we experimented with. We exper-
imented with a base configuration of 20 documents and a positive part of 0.5 and
derived a configuration with 40 documents and 50% positive documents. Due to the
poor effectiveness of both configurations, we did not build further configurations.

Configuration Number of Documents Positive Part

Listformer(20,0.5) 20 0.5

Listformer(40,0.5) 40 0.5

Model Settings In our listwise LTR model, we can configure the number of
documents per sample and the positive part in a sample. Our base configura-
tion uses 20 documents per sample with 50% of them being positive. Derived
from this configuration we set up configurations with a higher number of doc-
uments. Due to the poor performance of our base configuration, we did not
experiment with the number of documents or the positive part further.

We listed the configurations in Table 4.1.

4.2 Results
The results of our experiments for effectiveness show, that all Listformer con-
figurations have a much lower effectiveness than the BM25 baseline and is
far behind other transformer models. This suggests that Listformer has ma-
jor issues creating a ranking. We suspect that we either made mistakes in the
implementation of the Listformer, or in the design of the global-local attention.

The results of our efficiency experiment proof the hypothesis, that List-
former has a higher efficiency than pairwise transformer models using a sim-
ilar number of layers. We further see that pointwise BERT is much faster,
suggesting that Listformer’s efficiency can be further optimized.

Our results for experiment on effectiveness is shown in Table 4.2, and the
results for the efficiency experiment in Table 4.3.

16

CHAPTER 4. EXPERIMENTS

Table 4.2: Experimental results on of the TripClick IR Benchmark. We used NDCG
scores at ranks 5, 10, 20, and 100 to evaluate the effectiveness of the Listformer. The
NDCG scores of BM25benchmark and BERTCAT were taken from the TripCLick IR
Benchmark.

Model Name NDCG@5 NDCG@10 NDCG@20 NDCG@100

Head (DCTR)

Listformer(20,0.5) 0.086 0.102 0.146 0.236
Listformer(40,0.5) 0.089 0.104 0.147 0.245
BM25pyterrier 0.123 0.139 0.167 0.256
BM25benchmark - 0.140 - -
BERTCAT - 0.303 - -

Head (RAW)

Listformer(20,0.5) 0.111 0.110 0.119 0.255
Listformer(40,0.5) 0.110 0.110 0.120 0.253
BM25pyterrier 0.199 0.197 0.209 0.307
BM25benchmark - 0.199 - -
BERTCAT - 0.409 - -

Torso (RAW)

Listformer(20,0.5) 0.042 0.054 0.084 0.226
Listformer(40,0.5) 0.040 0.056 0.080 0.223
BM25pyterrier 0.183 0.210 0.253 0.338
BM25benchmark - 0.206 - -
BERTCAT - 0.370 - -

Tail (RAW)

Listformer(20,0.5) 0.026 0.038 0.057 0.172
Listformer(40,0.5) 0.025 0.041 0.062 0.181
BM25pyterrier 0.234 0.269 0.301 0.348
BM25benchmark - 0.267 - -
BERTCAT - 0.420 - -

Table 4.3: Efficiency of the Listformer in comparison to a pointwise and a pairwise
BERT, where each model is used to predict relevance scores of 100 documents to a
query.

Model Name time in s

Listformer 8.32
BERT(pointwise) 0.13
BERT(pairwise) 12.57

17

Chapter 5

Conclusion

We propose a listwise transformer model named Listformer. Listformer uses a
global-local attention, similar to the attention used in the Longformer model
[6]. The global-local attention mechanism decreases the otherwise quadratic
memory requirements of self-attention used in the original transformer [30]
to linear memory requirements. The lower memory requirements open the
possibility of single-stage listwise LTR, since the input length can be higher
than the restrictions used in common transformer model. Hence, whole lists of
search results can be passed in the model. We designed our model to be order-
invariant, meaning the oder of the documents in the input does not affect
the relevance prediction. The order-invariance removes the bias given by a
documents position in the input.

We fine-tuned our model on the bio-medical domain using the TripClick
dataset and evaluated the Listformer on the TripClick IR Benchmark for its ef-
fectiveness. The results show that the Listformer has a lower effectiveness than
the BM25 baseline. Further, we evaluated the Listformer’s efficiency by com-
paring the reranking time of Listformer with those of pointwise and pairwise
BERT models. We found out, that Listformer is faster than pairwise BERT
and slower than pointwise BERT. Which shows that listwise transformer mod-
els can make use of inter-document information while having a lower runtime
than pairwise models.

Future Work The next steps will be to fix our model to get reasonable
results. When we have model with a decent performance we will create more
configurations for experiments. For example, we can experiment with the
attention window size or with different global-local attention mechanisms.

In order to reach higher efficiency, we want to train a distilled version of
the Listformer.

18

Bibliography

[1] Qingyao Ai, Keping Bi, Jiafeng Guo, and W. Bruce Croft. 2018. Learning
a Deep Listwise Context Model for Ranking Refinement. In The 41st
International ACM SIGIR Conference on Research & Development in
Information Retrieval (SIGIR ’18). Association for Computing Machinery,
New York, NY, USA, 135–144. https://doi.org/10.1145/3209978.
3209985

[2] Qingyao Ai, Xuanhui Wang, Sebastian Bruch, Nadav Golbandi, Michael
Bendersky, and Marc Najork. 2019. Learning Groupwise Multivari-
ate Scoring Functions Using Deep Neural Networks. In Proceedings of
the 2019 ACM SIGIR International Conference on Theory of Infor-
mation Retrieval. 85–92. https://doi.org/10.1145/3341981.3344218
arXiv:1811.04415 [cs].

[3] Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek, Zachary
Fisher, Philip Pham, Anirudh Ravula, Sumit Sanghai, Qifan Wang, and Li
Yang. 2020. ETC: Encoding Long and Structured Inputs in Transformers.
Technical Report arXiv:2004.08483. arXiv. https://doi.org/10.48550/
arXiv.2004.08483 arXiv:2004.08483 [cs, stat] type: article.

[4] Nima Asadi and Jimmy Lin. 2013. Effectiveness/efficiency tradeoffs for
candidate generation in multi-stage retrieval architectures. In Proceed-
ings of the 36th international ACM SIGIR conference on Research and
development in information retrieval. ACM, Dublin Ireland, 997–1000.
https://doi.org/10.1145/2484028.2484132

[5] Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT: A Pretrained
Language Model for Scientific Text. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Association for Computational Linguistics, Hong Kong, China,
3615–3620. https://doi.org/10.18653/v1/D19-1371

19

https://doi.org/10.1145/3209978.3209985
https://doi.org/10.1145/3209978.3209985
https://doi.org/10.1145/3341981.3344218
https://doi.org/10.48550/arXiv.2004.08483
https://doi.org/10.48550/arXiv.2004.08483
https://doi.org/10.1145/2484028.2484132
https://doi.org/10.18653/v1/D19-1371

BIBLIOGRAPHY

[6] Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The
Long-Document Transformer. Technical Report arXiv:2004.05150. arXiv.
https://doi.org/10.48550/arXiv.2004.05150 arXiv:2004.05150 [cs]
type: article.

[7] Leonid Boytsov and Eric Nyberg. 2020. Flexible retrieval with NMSLIB
and FlexNeuART. (Nov. 2020). https://doi.org/10.48550/arXiv.
2010.14848 arXiv:2010.14848 [cs].

[8] Sebastian Bruch, Masrour Zoghi, Michael Bendersky, and Marc Najork.
2019. Revisiting Approximate Metric Optimization in the Age of Deep
Neural Networks. In Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM,
Paris France, 1241–1244. https://doi.org/10.1145/3331184.3331347

[9] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Greg Hullender. 2005. Learning to rank using gradient
descent. In Proceedings of the 22nd international conference on Machine
learning (ICML ’05). Association for Computing Machinery, New York,
NY, USA, 89–96. https://doi.org/10.1145/1102351.1102363

[10] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007.
Learning to rank: from pairwise approach to listwise approach. In Pro-
ceedings of the 24th international conference on Machine learning - ICML
’07. ACM Press, Corvalis, Oregon, 129–136. https://doi.org/10.1145/
1273496.1273513

[11] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. 2019. Gen-
erating Long Sequences with Sparse Transformers. (April 2019). https:
//doi.org/10.48550/arXiv.1904.10509 arXiv:1904.10509 [cs, stat].

[12] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2021.
Overview of the TREC 2020 deep learning track. (Feb. 2021). https:
//doi.org/10.48550/arXiv.2102.07662 arXiv:2102.07662 [cs].

[13] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le,
and Ruslan Salakhutdinov. 2019. Transformer-XL: Attentive Language
Models beyond a Fixed-Length Context. In Proceedings of the 57th An-
nual Meeting of the Association for Computational Linguistics. Associa-
tion for Computational Linguistics, Florence, Italy, 2978–2988. https:
//doi.org/10.18653/v1/P19-1285

20

https://doi.org/10.48550/arXiv.2004.05150
https://doi.org/10.48550/arXiv.2010.14848
https://doi.org/10.48550/arXiv.2010.14848
https://doi.org/10.1145/3331184.3331347
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.48550/arXiv.1904.10509
https://doi.org/10.48550/arXiv.1904.10509
https://doi.org/10.48550/arXiv.2102.07662
https://doi.org/10.48550/arXiv.2102.07662
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285

BIBLIOGRAPHY

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. Technical Report arXiv:1810.04805. arXiv. https:
//doi.org/10.48550/arXiv.1810.04805 arXiv:1810.04805 [cs] type: ar-
ticle.

[15] Sebastian Hofstätter, Sophia Althammer, Mete Sertkan, and Allan Han-
bury. 2022. Establishing Strong Baselines for TripClick Health Retrieval.
Technical Report arXiv:2201.00365. arXiv. https://doi.org/10.48550/
arXiv.2201.00365 arXiv:2201.00365 [cs] type: article.

[16] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective
Passage Search via Contextualized Late Interaction over BERT. In Pro-
ceedings of the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM, Virtual Event China,
39–48. https://doi.org/10.1145/3397271.3401075

[17] Lakshya Kumar and Sagnik Sarkar. 2022. ListBERT: Learning to Rank
E-commerce products with Listwise BERT. (June 2022). https://doi.
org/10.48550/arXiv.2206.15198 arXiv:2206.15198 [cs].

[18] Jiayi Li and Yujiu Yang. 2022. STaR: Knowledge Graph Em-
bedding by Scaling, Translation and Rotation. Technical Report
arXiv:2202.07130. arXiv. https://doi.org/10.48550/arXiv.2202.
07130 arXiv:2202.07130 [cs] type: article.

[19] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach.
Technical Report arXiv:1907.11692. arXiv. https://doi.org/10.48550/
arXiv.1907.11692 arXiv:1907.11692 [cs] type: article.

[20] Craig Macdonald, Nicola Tonellotto, Sean MacAvaney, and Iadh Ounis.
2021. PyTerrier: Declarative Experimentation in Python from BM25 to
Dense Retrieval. In Proceedings of the 30th ACM International Confer-
ence on Information & Knowledge Management. Association for Comput-
ing Machinery, New York, NY, USA, 4526–4533. https://doi.org/10.
1145/3459637.3482013

[21] Bhaskar Mitra and Nick Craswell. 2018. An Introduction to Neural In-
formation Retrieval. Foundations and Trends® in Information Retrieval
13, 1 (Dec. 2018), 1–126. https://doi.org/10.1561/1500000061 Pub-
lisher: Now Publishers, Inc.

21

https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.2201.00365
https://doi.org/10.48550/arXiv.2201.00365
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.48550/arXiv.2206.15198
https://doi.org/10.48550/arXiv.2206.15198
https://doi.org/10.48550/arXiv.2202.07130
https://doi.org/10.48550/arXiv.2202.07130
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.1145/3459637.3482013
https://doi.org/10.1145/3459637.3482013
https://doi.org/10.1561/1500000061

BIBLIOGRAPHY

[22] Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019.
Multi-Stage Document Ranking with BERT. (Oct. 2019). http://arxiv.
org/abs/1910.14424 arXiv:1910.14424 [cs].

[23] Ronak Pradeep, Rodrigo Nogueira, and Jimmy Lin. 2021. The Expando-
Mono-Duo Design Pattern for Text Ranking with Pretrained Sequence-
to-Sequence Models. (Jan. 2021). https://doi.org/10.48550/arXiv.
2101.05667 arXiv:2101.05667 [cs].

[24] Tao Qin, Tie-Yan Liu, and Hang Li. 2008. A Gen-
eral Approximation Framework for Direct Optimiza-
tion of Information Retrieval Measures. (Nov. 2008).
https://www.microsoft.com/en-us/research/publication/
a-general-approximation-framework-for-direct-optimization-of-information-retrieval-measures/

[25] Tao Qin, Xu-Dong Zhang, Ming-Feng Tsai, De-Sheng Wang, Tie-Yan Liu,
and Hang Li. 2008. Query-level loss functions for information retrieval.
Information Processing & Management 44, 2 (March 2008), 838–855.
https://doi.org/10.1016/j.ipm.2007.07.016

[26] Navid Rekabsaz, Oleg Lesota, Markus Schedl, Jon Brassey, and Carsten
Eickhoff. 2021. TripClick: The Log Files of a Large Health Web Search
Engine. In Proceedings of the 44th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval. 2507–2513.
https://doi.org/10.1145/3404835.3463242 arXiv:2103.07901 [cs].

[27] S. Robertson, S. Walker, Susan Jones, M. Hancock-Beaulieu, and Mike
Gatford. 1994. Okapi at TREC-3. In TREC.

[28] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2020.
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and
lighter. Technical Report arXiv:1910.01108. arXiv. https://doi.org/
10.48550/arXiv.1910.01108 arXiv:1910.01108 [cs] type: article.

[29] Xingwu Sun, Hongyin Tang, Fuzheng Zhang, Yanling Cui, Beihong Jin,
and Zhongyuan Wang. 2020. TABLE: A Task-Adaptive BERT-based List-
wisE Ranking Model for Document Retrieval. In Proceedings of the 29th
ACM International Conference on Information & Knowledge Manage-
ment (CIKM ’20). Association for Computing Machinery, New York, NY,
USA, 2233–2236. https://doi.org/10.1145/3340531.3412071

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. At-
tention Is All You Need. Technical Report arXiv:1706.03762. arXiv.

22

http://arxiv.org/abs/1910.14424
http://arxiv.org/abs/1910.14424
https://doi.org/10.48550/arXiv.2101.05667
https://doi.org/10.48550/arXiv.2101.05667
https://www.microsoft.com/en-us/research/publication/a-general-approximation-framework-for-direct-optimization-of-information-retrieval-measures/
https://www.microsoft.com/en-us/research/publication/a-general-approximation-framework-for-direct-optimization-of-information-retrieval-measures/
https://doi.org/10.1016/j.ipm.2007.07.016
https://doi.org/10.1145/3404835.3463242
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.1145/3340531.3412071

BIBLIOGRAPHY

https://doi.org/10.48550/arXiv.1706.03762 arXiv:1706.03762 [cs]
type: article.

[31] Felix Wu, Angela Fan, Alexei Baevski, Yann N. Dauphin, and Michael
Auli. 2019. Pay Less Attention with Lightweight and Dynamic Convolu-
tions. Technical Report arXiv:1901.10430. arXiv. https://doi.org/10.
48550/arXiv.1901.10430 arXiv:1901.10430 [cs] type: article.

[32] Xingxing Zhang, Furu Wei, and Ming Zhou. 2019. HIBERT: Document
Level Pre-training of Hierarchical Bidirectional Transformers for Docu-
ment Summarization. (May 2019). https://doi.org/10.48550/arXiv.
1905.06566 arXiv:1905.06566 [cs].

23

https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1901.10430
https://doi.org/10.48550/arXiv.1901.10430
https://doi.org/10.48550/arXiv.1905.06566
https://doi.org/10.48550/arXiv.1905.06566

	Introduction
	Related Work
	Methods
	Listformer
	Approximated NDCG Loss
	Dataset

	Experiments
	Configurations
	Results

	Conclusion
	Bibliography

