
Bauhaus-Universität Weimar
Faculty of Media
Degree Programme Medieninformatik

Integrating Counterarguments into
args.me

Bachelor’s Thesis

Philipp Rudloff

1. Referee: Prof. Dr. Benno Stein
2. Referee: Prof. Dr. Florian Echtler

Submission date: May 20, 2019



Declaration

Unless otherwise indicated in the text or references, this thesis is
entirely the product of my own scholarly work.

Weimar, May 20, 2019

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Philipp Rudloff



Abstract

The argument search engine args allows a user to search for arguments by
matching a free text query to argument claims stored in args’ index. This offers
an interesting way of exploring a topic on a more natural level. Building on this
concept is the theoretical foundation of finding relations between arguments. In
this thesis, we look into integrating a notion of counterarguments into args.me.
That is, arguments that attack another argument with the intention to support
a different claim than that of the attacked argument. While doing that, we
also want to improve args.me in terms of usability.

With the abundance of internet-accessing hardware with a variety of screen
sizes, pixel densities, and input modes came a time for websites to answer
to users with a similarly diverse set of requirements. Not only could your
website be viewed from devices with smaller viewport dimensions than you
ever anticipated, users also tried to satisfy their information needs in ways
more close to human interactions than how they accepted a computer to be
capable of.

Today, web services like Google, Wolfram Alpha, and args.me offer their
users different approaches for fulfilling information needs. For example, Wol-
fram Alpha can list rhyming words for your query or calculate a planet’s po-
sition for a given date. Args.me aids users in tasks such as researching a topic
or forming an opinion. It does that by crawling debate portals for arguments
which it then indexes using a common argument model.

This thesis aims at making args.me more useful by incorporating recent
contributions in the field of computational argumentation into args.me’s inter-
face. We also want to supports args’ viability by improving its overall usability.
Offering args.me to as many users as possible includes the consideration of the
mentioned variety of devices they use. With this goal in mind, a working
responsive layout is a necessity. Another aspect of widening the potential
audience for args.me is the consideration of people using different modes of
operations such as keyboards or screen readers.

We provide a series of prototypes of the args.me website as a foundation for
its further development. The goal is to replace the current version of args.me
with a new, more powerful and accessible version. To achieve this, we consulted
with experts from the fields of computational argumentation and information
retrieval who were involved with the initial development of args.me. We also
reviewed args.me under the scope of the Web Content Accessibility Guidelines
(WCAG), a catalog of recommendations for ensuring a web page’s content is
accessible by all users.



Contents

1 Introduction 1

2 Web service prerequisites 3
2.1 Project structure . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Use cases & features 6
3.1 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Argument search . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Argument-counterargument relation . . . . . . . . . . . . 10

3.3 Overview of use cases & features . . . . . . . . . . . . . . . . . . 10

4 Prototypes 12
4.1 State of args.me . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.2 Layout issues . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.3 Accessibility issues . . . . . . . . . . . . . . . . . . . . . 16

4.2 Prototype 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Prototype 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Prototype 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Prototype 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 Prototype 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.7 Overview of the prototypes’ changes . . . . . . . . . . . . . . . . 32

5 Args API 33

6 Future work 35

7 Conclusion 39

i



Acknowledgments

I’d like to express my thanks to Johannes Kiesel and Yamen Ajjour (Bauhaus-
Universität Weimar) for guiding me through the process of writing this the-
sis with valuable feedback and regularly scheduled meetings. I would also
like to thank Henning Wachsmuth (Universität Paderborn) and Martin Pot-
thast (Universität Leipzig) who provided feedback for the late prototypes for
args.me’s new website.

I would also like to thank Scott O’Hara (Accessibility Engineer, The Pa-
ciello Group) who helped me implement an expandable excerpt component in
an accessible manner by suggesting a sound source order for my HTML and
testing the component with a screen reader.

Lastly, I want to thank my roommate’s dog Shiro for always greeting me
so lovely in the morning.

ii



Chapter 1

Introduction

In 2017, a prototype of the argument search engine args.me was presented for
the first time [1], offering the framework for argument retrieval on the web by
the means of computational argumentation.

While args.me is currently capable of fulfilling a variety of different infor-
mation needs regarding topics of a certain controversity, some of these needs
go beyond the search engine’s current set of features and remain unanswered.
Take the following scenario describing a user’s need to relate to an outside
stance on a difficult matter:

Scenario A public hearing is held on the topic of “Removing large trees
from the town center”. The hearing is moderated by a town representative.
The general public is invited to ask questions and raise concerns. You, as the
town representative, are tasked with answering their questions and responding
to their concerns.

By looking at the perspective of the town’s representative, an immediate
information need becomes apparent. Not only does the person have to take
on the stance of the town they are representing, they also need to be able to
understand a variety of other stances, namely those of the general public.

In addition to evaluating arguments with either supporting or attacking
stances towards an initial stance, it would be helpful to review arguments in
a closer relationship to each other. One important relationship between two
arguments is the one between argument and counterargument. In 2018, the
groundwork for exposing this relationship was laid by offering a solution to the
retrieval task of finding the best counterargument when given any argument
[2].

In this thesis, the current state of the argument search engine args.me
is examined in order to lay foundation for its further development. Before

1



CHAPTER 1. INTRODUCTION

looking into args.me’s development in particular, a broad lookout is provided
on how a project is developed in the Web Technology and Information Systems
(Webis) group in general. A broad set of guidelines were defined to improve
this process (chapter 2). After that, several use cases for an argument search
engine are presented. Next, the use cases are developed into a set of technical
requirements which then allow the specification of a feature set that allow a
search engine to serve these use cases (chapter 3).

With the help of this feature set, a series of user interface prototypes are
built. Besides implementing the previously defined features, improvements are
made to args.me in terms of layout and accessibility (chapter 4). Eventually,
one of the prototypes will serve as the foundation for implementing a new
version of the args.me website.

2



Chapter 2

Web service prerequisites

The argument search engine args is one of many services that are developed at
the Webis group. To be able to maintain their software projects in an efficient
manner, the Webis group is looking to standardize their overall development
process. We took the opportunity of working on one of Webis’ projects to
formalize some of the aspects of this standardization process. This chapter
introduces a general project structure with the long-term goals of improving
the overall maintainability and lowering the barrier of entry when introducing
new developers into a Webis project. It also provides a brief explanation
for why Webis aims to rely on standard technology rather than introducing
additional frameworks into a project.

The Webis group develops a variety of projects in the fields of information
retrieval, search, natural language processing, computational linguistics, data
mining, and machine learning. Projects are realized by the group’s staff, re-
search assistants and students who take part in project modules at the content
management and web technologies chair at Bauhaus-Universität Weimar.

This is an environment where the composition of a group of people working
on a project changes regularly. Over time, a development process like this
becomes a maintenance problem as people finish their studies or research tasks
and head for other endeavors. As such, implementing features or introducing
new students or research assistants to software they are going to work with gets
more and more time-consuming and complicated. Therefore, Webis undertakes
efforts to agree on (1) a sensible way of structuring projects and (2) a fitting
stack of technologies to use in these projects.

2.1 Project structure
Since it can be expected that the people who work on a project change on
a regular basis, one strategy of improving its maintainability is splitting a

3



CHAPTER 2. WEB SERVICE PREREQUISITES

service into smaller pieces. We call these pieces components. Each component
of a service has its own well-defined purpose. This strategy is an attempt to
minimize the impact that is caused by changing existing features or adding
new ones on the service as a whole. The components of project fall into one
of four categories which are explained below.

Model component The model contains information about how the entities
of a service are structured and what data they contain. Entities are the primary
objects that a service is concerned with; for example, since args is an argument
search engine, an argument is an entity of the args service. An entity’s model
is usually defined as a Java class. Various components of a service potentially
need access to this model; hence, separating the model from other components
avoids unnecessary dependencies between otherwise unrelated components. It
also avoids the need to re-define the model in each new component that needs
it, thus reducing code duplication and avoiding the usage of different models
for the same entity. For these reasons, one project has at most one model
component.

Application components These components contain the core implemen-
tations of a service; for example, the argument search framework args is an
implementation of the args indexing and retrieval processes. A service can be
made up of many such applications.

HTTP API component An HTTP API component specifies the interface
between HTTP endpoints and methods that are exposed by application com-
ponents. HTTP API components shall follow the REST architectural style
and model endpoints as resources.

Server component A server component contains a web server and a servlet
container.

It should be noted that some of these components interact with each other
(figure 2.1). Application and HTTP API components depend on the model
component. The server component runs the application and HTTP API com-
ponents.

In its current state, args consists of one application component only. Part of
this component is the code responsible for the indexing and retrieval processes
and for powering the web service args.me. It also includes the public args API.

In the future, args will start to adopt the project structure as outlined above
and split the single component into individual components. The model and
the public HTTP API will be moved into their own repositories. New features

4



CHAPTER 2. WEB SERVICE PREREQUISITES

Figure 2.1: The dependencies between model, application, HTTP API, and server
components.

like the integration of counterarguments into args.me will be developed in their
own components as well.

2.2 Technologies
Due to the variety of people working on Webis projects, there are many differ-
ent frameworks, libraries, and tools used for implementing a project’s compo-
nents. Although it can be highly beneficial for a person or team to use such
aids in their development process, it is generally not the case that a majority
of people within Webis have prior experience with the same set of tools. Over
time, especially with the departure of members of the group, projects end up in
a state of difficult maintainability. Not only may the projects be conceptually
unfamiliar, the technology used to implement them might be, too.

As a consequence, a tendency towards using more fundamental technologies
can be observed in the group’s long-term members. We assume that more peo-
ple share a common understanding of fundamental technologies like HTML,
CSS, and JavaScript. Likewise, given the availability of a wide range of third
party frameworks for both frontend and backend technologies and program-
ming languages, we assume that only a few people are familiar with the same
tool or framework at any given point in time.

For these reasons, any code produced during the further development of
args in this thesis will be written in standards-compliant HTML, CSS, and
JavaScript. No additional libraries or frameworks will be used 1.

1Polyfills implementing web standards for browsers without support for them are exempt
from this rule.

5



Chapter 3

Use cases & features

In order to determine which capabilities args.me is missing, it is important to
understand a user’s information needs. Informally, we found that the general
use case categories for an argument search engine are researching, convincing,
opinion-forming, and decision-making. For these categories, a set of use cases
are constructed (section 3.1). From these use cases, the technical requirements
for an argument search engine are derived. During this process, some of the
derived requirements are already met with existing features, whereas other
requirements demand changes be made to the underlying argument search
framework. Eventually, a set of features supporting the use cases will be
presented (section 3.2).

3.1 Use cases
A scenario is presented for each of the following use case categories which
represent general areas of interest in computational argumentation.

• Researching: Acquiring or deepening one’s knowledge about a topic.

• Convincing: Persuading someone of your opinion.

• Opinion-forming: Arriving at an opinion based on supporting premises.

• Decision-making: Basing a decision on supporting or undermining premises.

In order to support the different use cases, technical requirements for an argu-
ment search engine will be inferred for each scenario.

6



CHAPTER 3. USE CASES & FEATURES

Researching: Public hearing

Scenario A public hearing is held on the topic of “Removing large trees
from the town center”. The hearing is moderated by a representative of the
town. The general public is invited to ask questions and raise concerns. The
representative is tasked with answering their questions and responding to their
concerns. It is assumed that some of the questions and concerns cannot be
predicted; therefore, they are unknown to the representative. Thus, the repre-
sentative will have to prepare for the hearing. This allows them to potentially
anticipate some of the arguments the audience will bring up as well as to gain
insights into the audience’s different perspectives.

Technical requirements

• The town’s representative needs to find arguments regarding a specific
topic

• They need to gain new perspectives on the topic

• They need to be able to anticipate the course of a debate

Convincing: Transparent wages are harmful

Scenario An employee takes the stance of having transparent wages within
a company is disadvantaging women further rather than tackling present in-
come differentials. In order to justify their company’s stance of making em-
ployee’s wages transparent to everyone, the employee’s manager is looking to
present a counterargument to them. To avoid being faced with an unforeseen
counterargument, the manager wants to find multiple related stances on the
topic.

Technical requirements

• The employee’s manager needs to find arguments attacking the em-
ployee’s stance.

• They also need to anticipate further arguments that are potentially coun-
tering their own argument.

7



CHAPTER 3. USE CASES & FEATURES

Opinion-forming: Space exploration

Scenario A person wants to form an opinion on the topic of space explo-
ration (e.g. whether space exploration is a good or bad cause). The topic is
complex and can be viewed from many different perspectives. As such, one
might not have formed an opinion, yet, and doing so is not trivial. Hence,
further research is necessary to arrive at an informed opinion.

Technical requirements

• The person needs to consider different stances on a topic in order to form
an opinion of their own.

Decision-making: Choosing a messenger

Scenario A person is looking for a suitable messenger application for private
use and wants to know which features are necessary or desirable. Available
applications vary in features, especially with regard to security and privacy.
The person might have heard that it is of importance where the application
provider has located their servers or whether there have been independent code
and security audits. It is not immediately obvious why such factors play an
important role; thus, looking at existing stances can help making a decision.

Technical requirements

• The person needs to find arguments on whether a feature of a messaging
application is necessary

• They need to judge how well an argument is supporting or countering a
stance

Summary of technical requirements

From the use case scenarios, the following technical requirements are derived.

• Search for arguments on a topic

• Gain perspective on a topic

• Search for counterarguments regarding a specific argument

• Judge an arguments quality

8



CHAPTER 3. USE CASES & FEATURES

3.2 Features
After determining the technical requirements for an argument search engine
(section 3.1), a more detailed set of features will now be specified. In doing so,
args.me can meet the technical requirements, and thus handle the previously
defined use cases.

On a high level, the following technical requirements need to be met by
args.me. On a low level, those requirements are implemented by a set of
specific features.

• Argument search

• Argument-counterargument relation (depth-first search)

We refer to the argument-counterargument relation as a depth-first search to
illustrate the way a human user would explore the argument space. Initially,
the argument space in the context of args was a list of arguments. With the
addition of argument-counterargument relationships, the argument space can
be represented as a tree structure where nodes are arguments and a node’s
children are counterarguments. To be precise, args’ index of arguments can
be seen as a list of argument trees. Offering a way to explore an argument’s
counterarguments allows users to perform a depth-first search on these trees.
To do that, an argument is required as a starting point (i.e. a tree’s root node).
This starting point can be acquired by performing an argument search.

Another consideration for a new feature was the addition of further quality
metrics such as the controversity of an argument or its number of counter-
arguments. Currently, when viewed on an argument search results page, the
only quality metric for an argument is its associated score containing ranking-
specific data points. Besides measuring the quality of a single argument, adding
further quality metrics could help comparing arguments and judging the over-
all quality of the argument search results. However, in order to keep this thesis
focused, no work was done to add quality metrics to args.me at the time and
so this task is left to future work.

3.2.1 Argument search

Argument search is the core requirement for an argument search engine.

Search A search is performed on the arguments in args’ index. A user enters
a free-text query to retrieve a list of arguments that are in direct relation to
the entered query. That is to say that arguments are retrieved by matching the

9



CHAPTER 3. USE CASES & FEATURES

query with an argument’s conclusions and ranked by weighing an argument’s
conclusions, premises, and discussions [1].

Search results After entering a query and retrieving the matching argu-
ments, the results are presented as a list sorted according to an argument’s
rank for that particular query. Each argument in the resulting list has a stance
towards its conclusion; it either supports or attacks it.

3.2.2 Argument-counterargument relation

One major factor in improving the viability of args.me is the ability to represent
relations between arguments itself; hence, connecting a specific argument to a
set of counterarguments is considered a requirement itself. For each argument,
there exists a set of related counterarguments. An argument has a claim and,
optionally, premises supporting or attacking that claim [1]. A counterargument
is an argument that either denies a claim (i.e. arguing that the claim is false)
or attacks the relationship between a claim and its reason (i.e. the claim is not
sufficiently supported) [3]. Counterarguments are arguments themselves [2];
therefore, arguments can be represented in a hierarchical tree structure built
from following argument-counterargument relations.

3.3 Overview of use cases & features
In table 3.1, an overview is provided on how existing and new features relate
to the use case categories of section 3.1. Existing features include offering the
argument search results in two views: a pro vs. con view and a topic space
view. Among the new features are the integration of counterarguments and a
new default view (see chapter 4). The “related conclusions” feature remains
an idea for future work (see chapter 6).

Some of args’ pre-existing features are not specific to argument search, but
serve more general use cases in the context of web search. For example, each
argument links to the URL from which it was obtained. Since the use cases in
this chapter are concerned with the specifics of argument search, these general
features are not listed in table 3.1.

10



CHAPTER 3. USE CASES & FEATURES

Table 3.1: Use cases & features

Use cases

Features Researching Convincing Opinion-forming Decision-making

Argument search X X X X

Traditional view X X X X

Pro vs. con view X X X

Topic space view X X

Related conclusions X X X

Counterarguments X X

Quality metrics X X X X

11



Chapter 4

Prototypes

Based on the uses cases and features defined in chapter 3, a set of prototypes
were implemented to serve as the foundation for a new version of the args.me
website. With the help of these prototypes, an evaluation of their compliance
with the technical requirements can be performed.

In total, five prototypes were developed in the order they appear in this
chapter. As a consequence, prototypes listed earlier influenced the design of
those listed later on. Due to this, the last prototype is expected to be the
candidate which will eventually be used as the foundation for building the new
website.

Improving usability

Besides integrating counterarguments into args.me, the goal of developing these
prototypes was to improve the general usability of the website. The previous
version of args.me did not have a responsive layout and failed in terms of
accessibility by not exposing crucial pieces of content to some user groups. To
accomplish this, a detailed analysis of args.me’s shortcomings in these areas
was done.

4.1 State of args.me
As an actively maintained website, args.me is subject to change in terms of
layout and functionality. Since the prototypes in this chapter are based on the
previous version of args.me which will likely be replaced with a new version by
the time this document is published, this previous version is described here.

First, existing functionality present in the previous version of args.me will
be documented. In addition, problems with its usability will be listed.

12



CHAPTER 4. PROTOTYPES

Figure 4.1: The main argument search page of the previous version of args.me.

4.1.1 Features

Argument search

The main purpose of args.me is argument search. Consequently, the page that
is served when accessing the URL https://args.me offers a search component
as its main content and nothing else (figure 4.1).

Argument search results

The result of executing a search on the argument search page is a paginated
results page representing the arguments collection resource for a specific query.

The results page is available in two views: a pro vs. con view (figure 4.2)
and a topic space view (figure 4.3). The pro vs. con view uses a two column
layout where each column contains a list of results: one for pro arguments, and
one for con arguments. The topic space view, too, uses a two column layout
for the results. In contrast to the pro vs. con view, the first column contains
all results while the second column contains a visualization of the arguments’
topic space as presented in “Visualization of the Topic Space of Argument
Search Results in args.me”.

13

https://args.me


CHAPTER 4. PROTOTYPES

Figure 4.2: Argument search results page of the previous version of args.me.

Figure 4.3: Argument search results page of the previous version of args.me using
the topic space view.

14



CHAPTER 4. PROTOTYPES

Figure 4.4: The presentation of an argument in the previous version of args.me
with collapsed argument premises.

Figure 4.5: The same argument as in figure 4.4 with expanded argument premises.

Argument presentation

Each argument contains a title, a source URL, the argument’s premises and
conclusion, and search-related meta information (figure 4.4). The title is a
prefix of the first premise. It’s colored green for pro arguments; red for con
arguments. The source URL links to the website from which the argument
was crawled. Case-insensitive matches with the entered query are emphasized
in the argument’s premises.

Initially, only a subset of the argument premises is visible. By clicking
a downward-pointing triangle, the rest of the premises and the argument’s
conclusion are revealed (figure 4.5).

In a similar way, meta information are hidden by default and become avail-
able after clicking a button labeled “score” which triggers a modal dialog (figure
4.6).

15



CHAPTER 4. PROTOTYPES

Figure 4.6: An argument’s score dialog showing meta information regarding args’
ranking process.

4.1.2 Layout issues

The argument search results page, although technically usable, is hard to use
on devices with small to medium-sized screens. Below a viewport width of
1147 pixels, content is partially hidden off-screen. It can only be made visible
by scrolling horizontally.

Since the search results page tends to contain multiple results, it is very
likely to trigger vertical scrollbars on that category of devices. Therefore, this
is in violation with the Web Content Accessibility Guidelines (WCAG) 2.1,
Success Criterion 1.4.10 Reflow .

Another issue with the usage of space on small screens are the meta infor-
mation that are revealed in a modal dialog by clicking on “score”. This dialog
does not make use of the available screen space below a viewport width of 768
pixels; instead, the dialog’s width is limited to 60% of the viewport’s width.
The smaller the screen, the more content is potentially hidden in a scrollable
area.

4.1.3 Accessibility issues

The search input has no explicit label. Its placeholder attribute with the value
“Enter a topic” is used for its accessible name instead. The surrounding form’s
submit button has no associated label. This makes it hard for screen reader
users to perform a search.

The two lists containing the search results in the pro vs. con view are not
marked up as HTML list elements. Marking them allows screen readers to
offer list navigation mode to their users.

Other than the argument title’s text color, nothing in a result itself conveys
an argument’s stance. The only other way of telling whether an argument is
pro or con is looking at the heading preceding its respective results list. This

16



CHAPTER 4. PROTOTYPES

fails the Web Content Accessibility Guidelines (WCAG) 2.1, Success Criterion
1.4.1 Use of Color .

Initially, parts of an argument’s premises and the argument conclusion are
hidden (figure 4.4). After clicking triangle-shaped icon, all premises and the
conclusion are revealed (figure 4.5). However, the functionality of revealing this
content is not accessible by all but sighted users using a pointer-based interac-
tion device (e.g. mouse, touch pad). This fails the Web Content Accessibility
Guidelines (WCAG) 2.1, Success Criterion 2.1.1 Keyboard . Furthermore, the
interactive element doesn’t communicate its interactive nature to the accessi-
bility tree. Also, it cannot be focused. This fails the Web Content Accessibility
Guidelines (WCAG) 2.1, Success Criterion 2.4.7 Focus Visible.

The meta information dialog is not properly accessible by screen reader
users. Activating the button labeled “score” opens the dialog, but the focus is
not moved to an appropriate element inside the dialog.

4.2 Prototype 1
The main objectives of the first prototype were to integrate counterarguments
into the user interface and to improve args.me’s layout in general. As described
in section 4.1.2, several issues with regards to responsive web design exist in
the previous version of args.me.

The argument search results page now has a new default view, and its
overall usability on smaller devices has been improved. Also, the discoverability
of links and other interactive elements on the results page has been improved.

Argument search

Only small visual changes were made to the argument search page (figure 4.7).

Argument search results

Prototype 1 changes the default view from the pro vs. con view with two
lists containing pro and con arguments to a one column view with the list
containing both pro and con arguments. This view is called traditional view
(figure 4.8). The traditional view puts more emphasis on the ranking of the
results rather than the argument’s stance. With this addition, the results page
is now available in three views: Traditional (one column), pro vs. con (two
columns), and topic space (one column). This change addresses the glaring
layout issues on small screens of the previous version.

Most links on the search results page now have underlines in order for
sighted users to be able to distinguish them from non-interactive content. The

17



CHAPTER 4. PROTOTYPES

Figure 4.7: Prototype 1: The main argument search page.

argument title still lacks a visual feature in addition to its color to make it
recognizable as a link.

Argument presentation

Instead of coloring an argument’s title according to its stance as it was done
in the previous version, an explicit badge for an argument’s stance was added
(figure 4.9). Most importantly, an argument now contains its stance as a
piece of text, thus reaching better compliance with Web Content Accessibility
Guidelines (WCAG) 2.1, Success Criterion 1.4.1 Use of Color . However, the
title is also a link which currently does not provide any visual clues to make
it look interactive except for its distinct text color. Therefore, the title itself
fails the same criterion. This issue will be addressed in a future prototype.

Access to the argument premises, conclusion, and meta information is now
ensured for all users in both JavaScript-enabled and JavaScript-disabled con-
texts. The interactive element to toggle the visibility of the argument premises
and conclusion is now labeled properly (figure 4.10).

The meta information dialog now makes better use of the available space
and displays all information without the need for scrolling in most cases (figure
4.11).

To integrate counterarguments into the search results, the first argument
in the results list now shows a list of counterargument previews. This feature

18



CHAPTER 4. PROTOTYPES

Figure 4.8: Prototype 1: The argument search results page.

is incomplete because it is only available on the first argument in the results
list. Further development on this feature will be done in the next prototypes
(figure 4.9).

4.3 Prototype 2
The second prototype focuses on improving the counterargument previews that
were introduced to the first argument in the search results list in prototype 2
(section 4.2). Most notably, counterargument previews are now available to
all arguments (figure 4.12).

Argument search results

Counterargument previews are now available to all arguments instead of just
the first argument in the results list (figure 4.12).

Argument presentation

Counterargument previews are now hidden by default and can be revealed by
clicking on “Show counterarguments” (figure 4.13). This was done because an
argument’s counterarguments are not a direct result of an argument search,

19



CHAPTER 4. PROTOTYPES

Figure 4.9: Prototype 1: The presentation of an argument with collapsed argument
premises.

Figure 4.10: Prototype 1: The same argument as in figure 4.9 with expanded
argument premises.

20



CHAPTER 4. PROTOTYPES

Figure 4.11: Prototype 1: An argument’s score dialog showing meta information
regarding args’ ranking process.

Figure 4.12: Prototype 2: The argument search results page.

21



CHAPTER 4. PROTOTYPES

Figure 4.13: Prototype 2: The presentation of an argument with collapsed argu-
ment premises.

hence showing them adds an unnecessary cognitive load for users trying to
parse the search results which we want to avoid. Displaying counterargument
previews right away would also require the args API to include them in the
HTTP endpoint for argument search, increasing the size of the payload dra-
matically.

Each counterargument preview now contains a link (figure 4.14) to its cor-
responding collection resource.

Counterargument collection resource

For each argument, there now exists a collection resource containing the argu-
ment itself and a set of related counterarguments (figure 4.15). In prototype 1,
such a page did not exist; therefore, it was only possible to access the previews
of counterarguments but not their full content.

4.4 Prototype 3
With prototype 3, further changes were made to the argument presentation.
The accessibility of the component toggling the visibility of an argument’s
premises has been improved. Counterargument previews now use a similar
component to toggle their visibility.

Argument search results

For both traditional and topic space views, the link to the currently active
view has been removed.

22



CHAPTER 4. PROTOTYPES

Figure 4.14: Prototype 2: The same argument as in figure 4.13 with expanded
counterargument previews.

Figure 4.15: Prototype 2: A detail page showing an argument and its counterar-
guments.

23



CHAPTER 4. PROTOTYPES

Figure 4.16: Prototype 3: The argument search results page.

Figure 4.17: Prototype 3: The argument search results page with expanded argu-
ment premises.

24



CHAPTER 4. PROTOTYPES

Figure 4.18: Prototype 3: The presentation of an argument with collapsed argu-
ment premises.

Argument presentation

The argument title was removed because it is merely a prefix of an argument’s
first premise and as such, it doesn’t provide any additional information. With
this removal, all links inside an argument have underlines, thus solving the
aforementioned issue of not providing reliable means of identifying interactive
elements to all user groups (figure 4.18).

The argument conclusion is now visible right away and positioned before
the premises because it is parts of args’ common argument model and should
be visible by default (figure 4.18). In the previous version of the website and
the preceding prototypes, the conclusion was initially hidden.

The control to reveal all argument premises is now positioned before in-
stead of after the premise excerpt (figure 4.19). This is necessary because it
offers screen reader users the choice between announcing only the excerpt of
the premises and announcing their full content at the correct point in time:
Announcing an argument’s content now stops at a toggle button called “Show
all”. If pressed, all argument premises become visible to screen reader users
and sighted users. In prototype 2, this choice was given after announcing the
premise excerpt which defeats the purpose of giving a choice.

An argument’s source URL and score were moved below the argument
premises in order to lower their perceived importance (figure 4.21). An icon
was added to the score button as a signifier for an interaction possibility.

Slight adjustments were made to the way counterargument previews are
revealed. It’s now possible to hide them again (figure 4.20).

Counterargument collection resource

The changes made to the overall order of an argument’s elements on the search
results page were also applied to the main argument on the counterarguments
page (figure 4.22).

25



CHAPTER 4. PROTOTYPES

Figure 4.19: Prototype 3: The same argument as in figure 4.18 with expanded
argument premises.

Figure 4.20: Prototype 3: The same argument as in figure 4.18 with expanded
counterargument previews.

26



CHAPTER 4. PROTOTYPES

Figure 4.21: Prototype 3: A score dialog showing meta information regarding args’
ranking process for the argument in figure 4.18.

Figure 4.22: Prototype 3: A detail page showing an argument and its counterar-
guments.

27



CHAPTER 4. PROTOTYPES

Figure 4.23: Prototype 4: The argument search results page.

4.5 Prototype 4
The forth prototype primarily changes the way arguments are displayed in
counterarguments collection resources. Arguments (and therefor counterargu-
ments) found on the counterarguments page now look like arguments found on
the search results page.

Argument search results

The link to the topic space view was replaced with a drop-down menu con-
taining links to the pro vs. con view and the topic space view (figure 4.23).
The previous prototypes lacked a link to the pro vs. con view altogether, thus
making it unavailable to the user.

Argument presentation

The label of the interactive element that reveals the argument premises and
conclusion was changed from “Show all” to “Show full argument” to better
convey its meaning to the user (figure 4.24).

28



CHAPTER 4. PROTOTYPES

Figure 4.24: Prototype 4: The presentation of an argument with collapsed argu-
ment premises.

Counterargument collection resource

The presentation of counterarguments in collection resources was updated to
match that of arguments on argument search results pages (figure 4.25). After
all, they are both arguments and have a very similar data model. Outside the
context of argument search, arguments do not have a stance and there is no
search-related meta information. Other than that, the data model is identical.
As a consequence, counterarguments now have counterargument previews, too.

4.6 Prototype 5
After reviewing the previous prototypes with experts from the fields of infor-
mation retrieval and computational argumentation in the Webis group, a fifth
prototype became necessary. The primary object of concern was the order of
information in the argument presentation. In particular, the removal of the
argument title turned out to be too big of a deviation from the result presenta-
tion in common search engines, thus it was re-introduced. A secondary concern
was the overall usage of screen space. On small to medium-sized screens, one
was only able to see two to three arguments in the traditional view at most.
That’s why in this prototype, vertical margins were reduced to allow for one
or two extra arguments to fit into the available viewport.

Argument search results

To fit more arguments into the viewport than before, the vertical margins be-
fore and between search results were reduced. The same is true for arguments
themselves. With a viewport height of around 1000 pixels, the search results
page can now display four instead of two arguments at once (figure 4.26).

29



CHAPTER 4. PROTOTYPES

Figure 4.25: Prototype 4: A detail page showing an argument and its counterar-
guments.

Figure 4.26: Prototype 5: The argument search results page.

30



CHAPTER 4. PROTOTYPES

Figure 4.27: Prototype 5: The presentation of an argument with collapsed argu-
ment premises.

Argument presentation

The argument title was added again. It was removed in prototype 3. It is now
placed right after the argument’s stance (figure 4.27) where prototype 4 was
showing the argument conclusion (figure 4.24). In contrast to prototype 2, the
title no longer acts as a link to the argument’s source URL. A title provides the
user with a quick way of assessing the value of the overall content it belongs
to. In the context of search results, it enables users to skim over results more
quickly as there is now a shorter piece of content that they have to assert in
order to determine whether a result is relevant. Marking the title as a heading
has the added benefit of making heading-based navigation available for screen
reader users.

The argument conclusion was removed because it turned out to be less
important as to prioritize its position in the presentation of an argument.
Although it is part of the common argument model [1], its usefulness is limited
since it often contains only a single word which is not sufficient to represent
an argument’s claim.

The argument stance now only reads “pro” or “con” and no longer includes
the prefix “Stance:”. From the context of using an argument search engine, a
stance without the explicit label can be deemed sufficient for understanding
its meaning. With a similar reason, the prefix “Source:” was dropped from the
source URL.

Counterargument collection resource

After collecting feedback from experts within the Webis group, we concluded
that the detail page for an argument and its counterarguments has a close
relationship to argument search. Currently, the only way to access a counter-
arguments page without knowing its URL is via an argument search results
page. For this reason, argument stances were added to all arguments on that
page (figure 4.28).

31



CHAPTER 4. PROTOTYPES

Figure 4.28: Prototype 5: A detail page showing an argument and its counterar-
guments.

4.7 Overview of the prototypes’ changes
After implementing several prototypes for args.me’s new website, it’s now pos-
sible to evaluate whether they have the features specified in chapter 3 and thus,
whether they comply with the technical requirements formulated in the same
chapter. Due to the nature of incrementally developing one prototype after
another, the last prototype ended up being more mature than its predecessors.
It solves most of the usability issues described in sections 4.1.2 and 4.1.3.

The centerpiece of the prototypes is the integration of counterargument
previews into the argument search results page. For each argument, one can
now access a set of counterarguments. This feature is available in all places
where arguments are shown. Therefore, it’s also possible to show arguments
countering other counterarguments on a page (figure 4.28).

By default, argument search results are now displayed in a traditional one
column view in contrast to the previous version where the default view always
showed two columns regardless of the window size. With that, args.me now
has a third view in addition to the two column pro vs. con view, the previous
default, and the topic space view. The most important implication of this
change, however, is a better presentation of args.me’s search results on small
devices. The results now fit the page horizontally and only require scrolling
along the vertical axis.

32



Chapter 5

Args API

In order to integrate the features outlined in chapter 3 and implemented in
chapter 4, args.me’s HTTP API needs to be extended. The previous version of
args.me exposed version 1 of the API with one endpoint for argument search.
Now, with the addition of argument-counterargument relations, args has a new
type of resource that needs to be exposed via args’ public API. Version 2 of the
args API will use endpoints modeled after the Representational State Transfer
(REST) architectural style.

Args API version 2
As stated in chapter 2, any Webis HTTP API component should follow REST
style and model its service’s entities as resources. Although args continues
to deal with arguments only, introducing a relationship between arguments is
best exposed by a specific endpoint that reflects this relationship. Therefore,
when viewing args from the perspective of its API, there are now two resources:
arguments and counterarguments.

In API version 1, the path of the sole HTTP endpoint was prefixed with
the string /api/v1; thus, version 2 uses /api/v2 as a prefix for all paths.

Argument resource

In version 2 of args’ API, there are two ways of accessing the argument resource.
The first way is a query-based endpoint for argument search that accesses the
argument collection resource. In version 1, this endpoint was referring to the
string _search which is not a resource in the sense of REST, hence it was
named arguments in version 2. The second way allows access to a specific
argument via an endpoint based on the ID that identifies the argument in the
index.

33



CHAPTER 5. ARGS API

/api/v2/arguments?query={query}

The query-based endpoint provides access to the argument collection resource
and functions as the main search API. In the previous version of the API, the
parameters from and to were used to specify which subset of the argument
collection resource should be retrieved while omitting them retrieved the top
100 arguments matching the query. This behavior was slightly changed in the
current API, and the parameters that determine the size of the collection are
now called start and limit. The parameter start behaves exactly like the
from parameter, but the limit parameter now specifies how many arguments
to retrieve. This way, only the start parameter has to be changed when
paginating search results.

/api/v2/arguments/{argumentId}

The endpoint based on specifying an argument’s ID provides access to a single
argument resource.

Counterargument resource

The counterargument resource is only available in relation to a specific argu-
ment. Therefore, all endpoints accessing the counterargument resource must
be based on the endpoint accessing a single argument resource. It should be
noted that although counterarguments being treated as a different resource
than arguments in terms of the API, their underlying data model remains
identical. For this reason, the response of endpoints accessing a counterargu-
ment resource should be modeled after that of endpoints accessing an argument
resource.

/api/v2/arguments/{argumentId}/counterarguments

This endpoint provides access to the counterargument collection resource for
a specific argument. It allows consumers of the API to use the argument-
counterargument relation described in section 3.2.2.

34



Chapter 6

Future work

Args is an actively developed project with multiple parties currently working
on different aspects of the service. This thesis focused on improving the user-
facing aspects of args.me, but more can be done to improve the quality of the
search engine as a whole.

Improving counterarguments integration
The theoretical foundation for retrieving counterarguments when given any
argument was laid in “Retrieval of the Best Counterargument without Prior
Topic Knowledge”. In this thesis, the first practical applications of this rela-
tionship between arguments were explored. However, this exploration is not
yet complete.

In neither of the prototypes can one view the full counterarguments on
an argument search results page. Individual counterarguments were assigned
a fixed width in order to display them next to each other on the horizontal
axis. However, counterarguments can contain a large amount of text which
leads to some counterargument previews being very tall and them taking up a
substantial portion of the viewport. For this reason, their height was limited
as well, hence their full content is often cut off.

It would be helpful if one could access the full content of a counterargument
without leaving the argument search results page. This would allow users to
get a better overview over the search results in general.

Related conclusions
Argument retrieval in args is currently performed by matching the query words
with the indexed argument conclusions. One way of improving the overall

35



CHAPTER 6. FUTURE WORK

(a) Argument search results with embedded related conclusions.

(b) Detail of the related conclusions feature.

Figure 6.1: The related conclusions feature.

argument search experience is providing related conclusions for the matching
conclusions of each argument search.

When a query of an argument search is matched with the argument con-
clusions in the index, an algorithm could be used to find similar conclusions in
the index. On the search results page for this query, it would then be possible
to list these related conclusions and offer the user results based on one of them
instead (figure 6.1). This idea is reminiscent of the “People also ask” feature
(figure 6.2) that is often shown when performing a web search, in particular
when one enters a query phrased like a question.

36



CHAPTER 6. FUTURE WORK

(a) The “People also ask” feature embedded in a Google search for “feminism”.

(b) Detail of the “People also ask” feature.

Figure 6.2: Google’s “People also ask” feature.

37



CHAPTER 6. FUTURE WORK

Default view for argument search results
Upon gathering feedback for the prototypes in chapter 4, we noticed some
disagreement with regard to the default view that is used when displaying the
results of an argument search. In the previous version of args.me, the pro
vs. con view was the default. Due to the high compatibility of a traditional
one column view with most viewing devices, we changed the default in the
prototypes.

At a certain threshold, it is no longer possible to display two columns of
long-form text content next to each other on the horizontal axis. A simple
solution is to switch to the vertical axis below this threshold. In the context
of the pro vs. con view, this poses the question of which list of results to put
first. This question is relevant because it would be harder to access the second
list due to its position below the first list. An unintentional emphasis would
be put on the first list. One suggestion to alleviate this issue was to keep the
lists next to each other on the horizontal axis while moving the second one
off-screen. By the press of a button, one would be able to switch between the
two lists. However, such a design requires careful planning and testing in order
to ensure accessibility for all users.

38



Chapter 7

Conclusion

We developed a new version of the argument search engine args.me that in-
tegrates counterarguments in the search results and improves args’ usability
(figure 7.1). In chapter 2, we proposed a general approach to structure a Webis
project by distinguishing between model, application, HTTP API, and server
components. We expressed the intent of focusing on more fundamental tech-
nologies rather than relying on third-party frameworks for Webis projects in
order to make them more approachable for newcomers and also to ease the
way a project is maintained.

Next, in chapter 3, we considered various uses cases for an argument search
engine. A set of scenarios allowed us to formulate technical requirements which
we then transformed into descriptions of the main features for args’ further
development. In addition to args’ core as an argument search engine, we
focused on exposing the argument-counterargument relationship to the user.

With this set of features in mind, chapter 4 uses the previous version of
args.me as a starting point to implement a series of prototypes for a new
version of the argument search engine. Users now have access to argument-
counterargument relations as introduced in “Retrieval of the Best Counter-
argument without Prior Topic Knowledge”. Additionally, args.me now has a
responsive layout which allows it to be used with smaller devices. Several
issues with args.me’s accessibility were addressed as well.

The integration of argument-counterargument relations justified an update
to args’ public API. Therefore, we established a general specification for a new
API version in chapter 5. With chapter 2 requiring HTTP API components to
follow the REST pattern, we took this opportunity to change some aspects of
how the API is used . Finally, not all the ideas that came up in meetings and
feedback rounds could be addressed in this thesis. Some of these ideas were
documented in chapter 6 and might come to fruition in future work on args.

39



CHAPTER 7. CONCLUSION

(a) Argument search results page of the previous version of args.me.

(b) The new argument search results page.

Figure 7.1: The argument search results in both the previous version of args.me
and the final prototype.

40



Bibliography

[1] Henning Wachsmuth et al. “Building an Argument Search Engine for
the Web”. In: Proceedings of the Fourth Workshop on Argument Mining
(ArgMining 2017). Association for Computational Linguistics, Sept. 2017,
pp. 49–59 (cit. on pp. 1, 10, 31).

[2] Henning Wachsmuth, Shahbaz Syed, and Benno Stein. “Retrieval of the
Best Counterargument without Prior Topic Knowledge”. In: Proceedings
of the 56th Annual Meeting of the Association for Computational Linguis-
tics (ACL 2018). Association for Computational Linguistics, July 2018,
pp. 241–251. url: http://aclweb.org/anthology/P18-1023 (cit. on
pp. 1, 10, 35, 39).

[3] Douglas Walton. “Objections, Rebuttals, and Refutations”. In: Argument
Cultures: Proceedings of the 8th OSSA Conference (2009) (cit. on p. 10).

[4] Yamen Ajjour et al. “Visualization of the Topic Space of Argument Search
Results in args.me”. In: 2018 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2018) - System Demonstrations. Associa-
tion for Computational Linguistics, Nov. 2018, pp. 60–65 (cit. on p. 13).

[5] Andrew Kirkpatrick et al. Web Content Accessibility Guidelines (WCAG)
2.1, Success Criterion 1.4.10 Reflow. W3C Recommendation. https://
www.w3.org/TR/2018/REC-WCAG21-20180605/#reflow. W3C, June
2018 (cit. on p. 16).

[6] Andrew Kirkpatrick et al. Web Content Accessibility Guidelines (WCAG)
2.1, Success Criterion 1.4.1 Use of Color. W3C Recommendation. https:
//www.w3.org/TR/2018/REC-WCAG21-20180605/#use-of-color. W3C,
June 2018 (cit. on pp. 17, 18).

[7] Andrew Kirkpatrick et al. Web Content Accessibility Guidelines (WCAG)
2.1, Success Criterion 2.1.1 Keyboard. W3C Recommendation. https:
//www.w3.org/TR/2018/REC-WCAG21-20180605/#keyboard. W3C, June
2018 (cit. on p. 17).

41

http://aclweb.org/anthology/P18-1023
https://www.w3.org/TR/2018/REC-WCAG21-20180605/#reflow
https://www.w3.org/TR/2018/REC-WCAG21-20180605/#reflow
https://www.w3.org/TR/2018/REC-WCAG21-20180605/#use-of-color
https://www.w3.org/TR/2018/REC-WCAG21-20180605/#use-of-color
https://www.w3.org/TR/2018/REC-WCAG21-20180605/#keyboard
https://www.w3.org/TR/2018/REC-WCAG21-20180605/#keyboard


BIBLIOGRAPHY

[8] Andrew Kirkpatrick et al. Web Content Accessibility Guidelines (WCAG)
2.1, Success Criterion 2.4.7 Focus Visible. W3C Recommendation. https:
//www.w3.org/TR/2018/REC- WCAG21- 20180605/#focus- visible.
W3C, June 2018 (cit. on p. 17).

42

https://www.w3.org/TR/2018/REC-WCAG21-20180605/#focus-visible
https://www.w3.org/TR/2018/REC-WCAG21-20180605/#focus-visible

	Introduction
	Web service prerequisites
	Project structure
	Technologies

	Use cases & features
	Use cases
	Features
	Argument search
	Argument-counterargument relation

	Overview of use cases & features

	Prototypes
	State of args.me
	Features
	Layout issues
	Accessibility issues

	Prototype 1
	Prototype 2
	Prototype 3
	Prototype 4
	Prototype 5
	Overview of the prototypes' changes

	Args API
	Future work
	Conclusion

