
Friedrich-Schiller-Universität Jena
Institute of Computer Science
Degree Programme Computational and Data Science,
M.Sc.

Verifying Query Logs from
Unkown Sources

Master’s Thesis

Benjamin Schneg

1. Referee: Prof. Dr. Matthias Hagen
2. Referee: Jan Heinrich Merker

Submission date: April 15, 2025



Declaration

Unless otherwise indicated in the text or references, this thesis is
entirely the product of my own scholarly work.

Jena, April 15, 2025

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Benjamin Schneg



Abstract

This thesis aims to analyze the Archive Query Log (AQL), a query log of
unknown source, and examine if it reflects realistic user behavior or if its query
distribution is rather anomalous. To accomplish this, we compare it to other
publicly available query logs, which are collected from real-world logs. We
consider the AOL Log, the MS-MARCO Web Search Log and the ORCAS Log.
The comparison is based on various metrics that aim to capture distinctive
characteristics of a query log.

The analysis in this thesis is composed of three parts: structure-related,
inference-based and temporal-based analysis. For each part we measure dis-
tributions of the query logs and compare them to each other. The numeric
comparison is based on Wasserstein distances, a method to measure similarities
of probability distributions. Besides the numeric comparison of distributions
we provide concrete insights, displaying tables of top queries, top words and
visualizations of temporal patterns.

The results show that the AQL exhibits similar distributions to the other
query logs, but the similarity lacks magnitude to conclude that the AQL be-
longs to the comparison group. Furthermore, temporal pattens of the AQL
are substantially different to the temporal patterns present in real-word query
logs.
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Chapter 1

Introduction

Search engine query logs are an important resource to promote research in
information retrieval [Agosti et al., 2012]. They enable, for instance, analyz-
ing user behavior and user experience, improving query suggestions and query
reformulations or provide data to train retrieval models for re-ranking [Reimer
et al., 2023]. Consequently, a vast access to search engine query logs would
be highly beneficial for the research community. Additionally, public access to
search engine query logs is valuable to create transparency and facilitate inves-
tigations on the fairness of major search engine’s ranking algorithms [Reimer
et al., 2023]. However, despite the high value of query logs, they remain pub-
licly unavailable for the most part. This is due to multiple reasons. On the one
hand, the publication of query logs brings up privacy concerns, as they contain
sensitive information about the users [Reimer et al., 2023]. On the other hand,
search engine operators’ interests may not align with the previous mentioned
motivations to publish query logs, as higher competition in the search engine
market may arise or a comprehensive transparency of the search engines’ be-
havior may simply not be desired in the first place by the operators [Reimer
et al., 2023]. Nonetheless, a few public query logs exist, among which the
AOL query log [Pass et al., 2006] is the most prominent and comprehensive
one [Reimer et al., 2023]. However, publicly available query logs are not on
par with private query logs collected by major search engine operators. This
applies not only for the mere size of the log, specifically the number of queries,
but also for the temporal span the queries stem from. Furthermore, publicly
available query logs are outdated for the most part and lack an overall high
quality in the aforementioned aspects [Reimer et al., 2023]. To fill this gap,
Reimer et al. [2023] published a query log from a new source that had not
been exploited before. A set of 356 million queries, stemming from the past
25 years, was collected from the Internet Archive. The new resource, called
the Archive Query Log (AQL), is on par with private query logs in terms of
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CHAPTER 1. INTRODUCTION

number of queries, time span and further quality aspects. The scope of the
AQL supports many tasks in information retrieval research and can be used
to advance research in this field. This is however only possible if the query log
is trustworthy and reflects realistic user bahaviour. In this thesis, we provide
a comprehensive analysis of the AQL and aim to examine if the AQL reflects
realistic user behaviour or if its queries are rather statistically biased. To ac-
complish this, we compare it to other publicly available query logs, which are
known to show realistic user behaviour. The comparison is based on various
metrics that aim to capture distinctive characteristics of a query log. The
analysis in this thesis is composed of the following parts:

• Structure-related: This analysis aims at capturing structural charas-
teristics of the involved query logs. Frequency distributions of the query
length, word length, word count, character count, search operator count
and other variables are measured. In addition, we examine if the query
logs comply with liguistic laws like zipf’s law.

• Inference-based: We infer characteristics from queries by applying var-
ious language models to them. The involved models either classify the
queries on different taxonomies or extract meaningful information. The
query logs are investigated with regard to query intent, personal identi-
fiable information (PII) entities and questions.

• Temporal-based: We utilize google trends to examine the temporal
aspect of the queries. We analyze the temporal distribution of the queries
in the AQL and their relation to real-world queries. This involves a
correlation study.
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Chapter 2

Background

In this chapter we review some aspects of the literature that are relevant to
this work. In particular, we describe prevalent analyses of search logs that
have been conducted in the past and their motivations. This includes simple
syntactical analyses of the queries as well as the classification into meaning-
ful taxonomies. We discuss whether these analyses would contribute to the
objective of this work. Furthermore, as an additional background to the tem-
poral analysis in this work, we critically point out limitations of utilizing data
from Google Trends1 to investigate temporal patterns in query logs. Thereon,
we elaborate on sentence embeddings and their potential usage in this work.
Finally, we introduce Wasserstein distances as a method to compare distribu-
tions.

2.1 Traditional Query Log Analysis
With the increasing advent of the internet during the late 1990s, search engines
became an essential tool for users to navigate the web. This led to a growing
interest in understanding the behavior of users when searching the web and
hence an interest to study search queries. A lot of publications from this time
investigate query logs to understand user behavior and the differences between
information retrieval on the web and traditional information retrieval.

Query Frequencies
A common analysis among the early works is the examination of query fre-
quencies. Silverstein et al. [1999] consider individual and repeated queries and
measure their frequency. They find out that most queries are individual and

1https://trends.google.com/trends/
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CHAPTER 2. BACKGROUND

conclude that the user’s information need is quite diverse. In addition, they
partition queries into groups that appear 1, 2, 3, or more than 3 times and
measure the frequencies of these groups. Spink et al. [2001] also measure fre-
quencies of queries with respect to the occurence in the log. They also find a
small number with high frequency and a high number of unique queries. Gen-
erally, a lot of works analyze the frequency distribution of queries and discover
highly skewed distributions.

Terms in Queries
Another common approach is the consideration of terms in query logs and their
distribution. Silverstein et al. [1999] measure the frequency distribution of the
number of terms in a query and related statistics like the mean and standard
deviation of the number of terms. Jansen et al. [2000] consider mere frequency
distributions of terms and create a descending-ranked distribution. They test
for Zipf’s Law in the ranked distribution of terms by displaying the frequency
of terms in a log-log plot. Spink et al. [2001] also measure the length of queries
with respect to the number of occuring terms and display this distribution.
Besides testing for Zipf’s Law in the term distribution, they prepare tables of
the most frequent terms and their respective frequencies to provide concrete
insights to the queries. Wolfram et al. [2001] investigate the diversity of terms
in queries and conclude that more unique terms are present in query logs than
in large text corpora.

Search Operators
Lastly, investigations concerning the usage of search operators in queries are
covered by many works. Search operators are special characters or words that
are used to refine the search. Silverstein et al. [1999] measure the fraction of
queries that contain search operators and the number of search operators in a
query. They find that most queries do not contain search operators. Jansen
et al. [2000] also measure the frequency of search operators in queries. Spink
et al. [2001] provide a list of selected search operators and their frequencies in
the query logs.

Based on this overview, we deduce the following domains to analyze query
logs:

• Query Frequencies: Generating frequency distributions of queries.
From this, the creation of rankings of the queries and a subsequent test
for Zipf’s Law is feasible. Furthermore, a list of the most frequent queries
and their frequencies might provide concrete insights.

4



CHAPTER 2. BACKGROUND

• Terms in queries: Extracting terms and generating the distribution
of terms in queries. Likewise, a test for Zipf’s Law after creating a
ranking is possible. In addition, we can measure a query’s length in the
number of its terms and generate a frequency distribution from this. For
a concrete insight, we can create tables of the most frequent terms and
their frequencies.

• Search operators: Creating a list of common search operators and
measuring their frequencies in the query logs.

2.2 Query Classification
A common approach to refine search results is a preceding classification of the
search query. Different ideas regarding what taxonomy of search queries would
be useful to refine search results exist.

Query Intent
One of the most prominent approaches is the idea to understand the intent
behind a query and classify it accordingly. The idea of Broder [2002] to focus
on the intent and distinguish between navigational, informational, and trans-
actional queries was widely adopted. According to Broder [2002], navigational
queries are used to find a specific website, informational queries are used to
find information about a topic, and transactional queries are used to perform
a transaction, such as purchasing a product or download a file. Rose and
Levinson [2004] and Kang and Kim [2003] as well emphasize the importance
of understanding the user’s intent behind a query and adopt the taxonomy
of Broder [2002]. Those early approaches measure, among others, conditional
probabilities of terms being present in a certain category and use them for
classification. Alexander et al. [2022] further refine the taxonomy of Broder
[2002] and introduce a more fine-grained classification of informational queries.
They subdivde the informational category into instrumental (i.e., how to do
sth.), factual (search of facts or pieces of information) and abstain (rest of
informational queries).

Topic-related Categories
Similar attention was given to the idea of classifying queries into topic-related
categories. Beitzel et al. [2005] state that classifying queries into topic-related
categories would make topic-specific databases employable. Hence, a more
efficient and effective search could be performed. They attempt to classify
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CHAPTER 2. BACKGROUND

queries into one of 18 topic-related categories and use a supervised learning
approach to do so. Moreover, they develop an ensemble-classifier that involves
a perceptron trained on labeled queries and a rule-based classifier which uses
conditional probabilities of bigrams to classify queries. However, this method
performs rather low and achieves a F1-Score of 0.12.

Challenges
Despite the potential benefits of classifying queries, there are several challenges
associated with this task. One of the main challenges is the sparsity of infor-
mation present in queries. Most queries are short and lack context, making it
difficult to classify them accurately. Furthermore, query streams vary over time
heavily, which even further complicates the classification task [Beitzel et al.,
2005]. Due to their brevity, queries are often ambiguous and can have multiple
meanings. Because of these challenges, first attempts to classify queries were
not very accurate regardless the taxonomy [Beitzel et al., 2005, 2007, Kang and
Kim, 2003]. Though, the method of Alexander et al. [2022] is more promising.
They achieve an accuracy of 0.90 when classifying queries into the three cate-
gories informational, navigational and transactional. Because of this, we focus
on the intent-based taxonomy of Broder [2002] and Alexander et al. [2022] in
this work.

2.3 Named Entities in Queries
According to Guo et al. [2009] and Zhang et al. [2015], over 70% of queries
contain named entities. They seem to be a substantial part of queries. Zhang
et al. [2015] use query logs as a source to learn entity types and Guo et al. [2009]
perform named entity recognition in queries and a subsequent classification into
entity types. Lin et al. [2012] state that a lot of web search queries involve
actions on entities and propose a method to automatically find queries bearing
entities and suggest the most desired actions on such entities for the user. By
actions the authors mean, for instance, reading reviews, watching demo videos
etc. with regard to an entity that is also part of the query. Those early
approaches involve manual labeling of training data and human engineering in
designing domain-specific features and rules [Li et al., 2022]. Present Named
Entity Recognizers (NER), however, are based on deep learning and are not
dependent on designing domain-specific features by humans. Those approaches
achieve state-of-the-art performance [Li et al., 2022] and are provided by open
source libraries such as spaCy2. Considering the large presence of named

2https://spacy.io/
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entities in queries and the availability of state-of-the-art NER, detecting named
entities in the involved query logs seems feasible and insightful.

2.4 Questions in Queries
Over the years, an increasing amount of queries is formulated in the form of
natural language instead of a set of keywords [White et al., 2015]. Accordingly,
users also pose questions to search engines. White et al. [2015] study the be-
haviour of search engines when handling questions. They filter questions from
search logs by a rule-based approach and find that 2-3% of queries are ques-
tions. Bondarenko et al. [2020] as well investigate the presence of questions in
search queries. In their study, they aim at finding comparative questions and
develop classifiers to do so. The work of Reimer [2023] also identifies ques-
tions in queries among other things. Here, a rule-based classifier for detecting
questions in queries achieves a recall of 0.89 and an even higher precision of
0.99. Based on theses findings, a question classification of queries seems to be
feasible and valuable.

Summary

Based on the previous findings we deduce further following domains to char-
acterize query logs:

• Query Classification: Classifying queries into a intent-based taxon-
omy or a topic-related taxonomy. The resulting distributions deliver
additional insights into the query log’s properties. Since the classifica-
tion into topic-related categories is not very accurate, we focus on the
intent-based taxonomy.

• Named Entity Recognition: Identifying named entities in queries and
classifying them into entity types. We obtain distributions of the entity
types in the query log and can make another comparison.

• Questions in queries: Identifying questions in queries from rule-based
approaches. This analysis provides another insight and additionally is
simple to implement.

2.5 Temporal Patterns in Query Logs
The temporal popularity of queries is another phenomenon studied in the lit-
erature. Query frequencies change over time and reflect information about

7
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general popularity of different topics and trends within society. Some queries
even show periodic patterns, such as seasonal trends. Shokouhi [2011] state
that seasonal queries are frequent and need to be detected in order to be
met appropriately by search engines. According to Shokouhi [2011], seasonal
queries demand the most recent web pages and not the most clicked which
is why they have to be treated differently. They propose a method that de-
termines the seasonality of queries with high accuracy by applying time series
analysis on historical frequency distributions. Chien and Immorlica [2005] sup-
pose that temporally correlated queries are semantically related and define a
new measure of the temporal correlation of two queries. Their method success-
fully captures temporally correlated queries and shows that, indeed, temporal
correlation is a good indicator of semantic similarity.

Google Trends and its Limitations
In order to investigate temporal patterns in the AQL, we must specify a subset
of queries whose temporal popularity we want to determine and compare. To
make comparisons, we need realistic and reliable time series of query popularity
from an external source. We choose Google Trends for this. Google Trends is
a free tool that provides insights into the temporal popularity of search queries
from Google. It allows us to make the necessary comparisons and subsequent
conclusions on the observed temporal query popularities from the AQL.

Despite its usefulness, the usage of Google Trends data entails some limi-
tations that need to be taken into account. Behnen et al. [2020] conducted a
study on the reliability of Google Trends data and conclude that the data is not
always reliable. In their study, they review, among others, google’s claim that
inconsistencies are due to overall low search volume and should only appear
for unpopular queries. Behnen et al. [2020] examine inconsistencies of three
german queries for different time spans. They find that inconsistencies occur
particularly for short time spans and queries with overall low search volume.
According to this, data of google trends for english queries of large time spans
should be robust. They even acknowledge that for time spans larger than eight
months, the data seem to be reliable.

In summary, we can state that comparing the popularity of different queries
with data from Google Trends is feasible and valuable since we can assess tem-
poral patterns. However, we need to be careful which queries and what time
spans we choose. Considering the findings of Behnen et al. [2020], a comparison
of queries with high search volume and large time spans is reasonable.
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2.6 Wasserstein Distances
To evaluate the resulting distributions of this works’s experiments, we need
methods to compare the distributions of the AQL with the distributions of
AOL, MS-MARCO Web Search and ORCAS, our comparison group. Wasser-
stein distances quantify differences of probability distributions and are widely
adopted in statistics [Panaretos and Zemel, 2019]. Let µ and ν be two proba-
bility measures on Rd, the p-Wasserstein distance is defined as

Wp(µ, ν) = inf
X∼µ
Y ∼ν

(E∥X − Y ∥p)1/p , p ≥ 1 (2.1)

where the infimum is taken over all pairs of d-dimensional random vectors X
and Y marginally distributed as µ and ν [Panaretos and Zemel, 2019]. An
intuitive idea of what Wasserstein distances measure would be the minimuim
effort to make two distributions coincide. They originally stem from the theory
of optimal transport where one tries to find the optimal way to transport a
distribution of mass to another distribution of mass [Panaretos and Zemel,
2019]. Conveniently, Wasserstein distances satisfy all properties of a metric,
i.e., non-negativity, symmetry and validity of the triangle inequality [Panaretos
and Zemel, 2019]. This makes Wasserstein distances suitable for comparisons
between distributions. Wasserstein distances even generalize to probability
measures defined on much more general spaces: if (X , ρ) is any complete metric
space, then the p-Wasserstein distance can be defined in the same way, with
∥X − Y ∥ replaced by the metric ρ(X, Y ) [Panaretos and Zemel, 2019]. That
is, the distance is able to inherit the metric that is already defined in the
space of the considered distributions which gives a natural interpretation of
Wasserstein distances.

9



Chapter 3

Data Sets

In this chapter, we introduce the data sets that we use in our experiments. We
provide an overview of the data sets, present their origin and describe possibly
needed data cleaning processes that ensure a fair comparison.

3.1 Archive Query Log
The Archive Query Log (AQL) was published by Reimer et al. [2023] in order
to expand the publically available query logs and promote research in the field
of information retrieval. It was mined from the Internet Archive’s Wayback
Machine 1 by identifying search engine result pages (SERP) and parsing the
queries from the corresponding URLs. Reimer et al. [2023] name two possible
reasons why SERPs are archived in the Wayback Machine: First, SERPs can
be linked to by web pages and may thus be included in automated web crawls
of the Internet Archive. Secondly, any user of the Internet Archive can request
archiving a specific URL, hence SERPs may be included, as well. Considering
these two cases as the main sources, the AQL’s queries would be a mixture of
specific queries that users wanted to archive and queries which were linked to
by web pages. This might bias the query distribution compared to a real-world
search engine query log. The AQL contains around 356.6M queries from the
years 1999 to 2022. Moreover, it covers a wide range of languages, namely 104
different languages, and a variety of domains. The most prominent domains in
the AQL are Baidoo, Google, StackOverflow, Twitter and Youtube. The most
frequent query languages in the AQL are English and Cantonese.

1https://web.archive.org/
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CHAPTER 3. DATA SETS

Column Name Description Example Data Type

serp_query_text_url Query-string weather str
serp_timestamp Query-timestamp 1680604622 int
search_provider_name The query’s search

provider
google str

serp_url URL of a query’s
SERP

<SERP-URL> str

Data Generation SERPs from WayBack Machine
Languages Multilingual, 104 languages
Time Span 1999-2022
Num. Rows 356.6 M

Table 3.1: Summary of the Archive Query Log.

3.1.1 AQL Cleaning
Some results of analysing the AQL have uncovered outliers and further abnor-
malities that should be removed to ensure a fair comparison between the query
logs. First of all, the analysis of the query length distribution has shown that
there are some exceptionally frequent lengths in the distribution. In Figure 3.1
we can see that the query length distribution has a peak at the lengths 14, 16
and 24. Therefore, we take a look at the most frequent queries of these lengths.
For each length, we find a particularly frequent query whose frequency out-
numbers the second most frequent query by several orders of magnitude and
likely produces the outlier in the distribution. We remove these uncommonly
frequent queries from the data set. Secondly, we noted that a subset of the
AQL’s queries is subject to a decode error and, as a result, consist of replace-
ment characters. We remove these queries from the data set as well. Lastly,
we remove all empty queries, i.e., queries with an empty string, from the data
set.

11
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Figure 3.1: Query length distribution of the AQL before cleaning. Note the peaks
at the lengths 14, 16 and 24.

3.2 AOL User Session Collection
The AOL User Session Collection (AOL) was published by Pass et al. [2006] to
provide real query log data based on real users that was intended for research
in personalization, query reformulation and other types of search research. It
was a dircet publication from AOL to encourage research in the named fields.
The dataset contains around 36 million queries from AOL’s search engine en-
tered by about 650,000 users. The queries were randomly sampled over a
3-month period from March to May 2006. There were no specific filters ap-
plied to the queries, hence the dataset depicts a real-world query distribution.
Of the roughly 36 million queries, around 20 million are unique. The language
distribution of the queries is highly skewed towards English, as the majority of
the queries are in English. The queries are provided with a respective times-
tamp. Despite the controversial publication of this data set and its violation of
user privacy, it remained a useful asset for research in the field of information
retrieval [MacAvaney et al., 2022].

12
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Column Name Description Example Data Type

serp_query_text_url Query-string weather str
serp_id Query-ID 1733 int
serp_timestamp Query-

timestamp
(2006,3,2) datetime

serp_offset Rank of clicked
URL

3 int

Data Generation Random sample over a 3-month period
Languages Mostly english
Time Span May, 2006
Num. Rows 36 M.

Table 3.2: Summary of the AOL Log.

3.3 MS-MARCO Web Search
The MS-MARCO Web Search dataset, published by Chen et al. [2024], con-
tains around 10 million queries from 93 different languages. The queries were
mined from Microsoft’s Bing search engine. According to the publishers, the
dataset closely mimics real-world web document and query distributions and
was created to serve as a critical data foundation for future research in down-
stream tasks of information retrieval. The dataset was constructed by filtering
the Bing query log from a selected time span for queries that have a click
connection to the ClueWeb22 document set. ClueWeb22 is a large dataset of
web documents and is aligned with the document distributions in commercial
web search [Overwijk et al., 2022]. Hence, the publishers expect the query
distribution of the MS-MARCO Web Search dataset to mimic real-world dis-
tributions, as well. The query set was further filtered to remove queries that
are rarely triggered, contain personally identifiable information, offensive con-
tent or adult content. By rarely triggered the authors mean that queries are
removed if they were triggered by less than K users, where K is a high num-
ber. Moreover, the dataset contains only unique queries. The most frequent
language in the dataset is English, followed by Chinese, Japanese, German,
French and Spanish.

13
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Column Name Description Example Data Type

serp_query_text_url Query-string JFK airport str
serp_id Query-ID 1733 int
language Query-

language
en-US int

Data Generation Bing queries with a clicked connection to
ClueWeb22

Languages Multilingual, 93 languages
Time Span -
Num. Rows 10 M.

Table 3.3: Summary of the MS-MARCO Web Search Log.

3.4 ORCAS
The Open Resource for Click Analysis in Search (ORCAS) dataset was pro-
vided by Craswell et al. [2020]. It is, like MS-MARCO Web Search, based
on a subsample of Bing’s query logs. In this case, the subsample stems from
a 26-month period up to January 2020. Queries of this dataset were aggre-
gated based on a click-connection to the TREC Deep Learning documents.
The queries of TREC DL were selected in a way that favored natural language
questions. Since ORCAS’ queries were selected based on a connection to the
TREC DL documents, they still might be biased towards questions but, ac-
cording to Craswell et al. [2020], also have words in the top-10 that are more
rare in TREC DL such as “www”, “the”, “best” and “free”. The queries of
ORCAS were filtered for potentially offensive queries, like queries related to
hate speech or pornography, and for queries that had very negative post-click
signals, such as a short dwell time. Additionally, only english queries which
were typed by K different users from the United States for a high value of
k were kept in the dataset. The dataset contains around 10 million unique
queries and is intended for web mining, query autocompletion and ranking
tasks.

14
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Column Name Description Example Data Type

serp_query_text_url Query-string “weather” str
serp_id Query-ID 120133 int

Data Generation Bing queries with a clicked connection to
TREC Deep Learning documents

Languages English
Time Span 26-month period up to January, 2020
Num. Rows 10 M.

Table 3.4: Summary of ORCAS.

15



Chapter 4

Experiments

This chapter covers the analyses that we carry out on the involved query logs
and related information regarding the used computational framework and gen-
eral setup. For each analysis, we again provide a brief motivation and, if nec-
essary, add information to complete the theoretical background. Furthermore,
we describe in detail how the analysis is conducted. Eventually, we evaluate
each analysis and discuss the obtained results. In this section, we provide
detailed descriptions on how we carry out the analyses. Though, in order to
precisely reprodcue the obtained results, we refer to this GitLab-Repository 1.
The repository contains the source code to run the analyses and instructions
on how to set up the environment.

4.1 Computational Framework
Since we are processing large data sets (recall that the AQL contains around
356 million queries), it is favorable to employ a distributed computing frame-
work which allows for parallel processing and distributed memory manage-
ment. Moreover, many pretrained models and ML-related libraries are avail-
able in python. Therefore, we choose Ray2, an open-source distributed comput-
ing framework for python applications, as our environment for implementing
and executing the analyses. Ray provides a high-level API that enables par-
allelizing python code without much effort. The Ray API includes methods
whose call starts parallel processing of a parsed function. By this, we can easily
parallelize our implemented functions that perform desired transformations on
the data. In addition, Ray provides API-calls for parallel reading and writing
of data on the distributed system, thus providing a fully parallel pipeline.

1https://git.webis.de/code-teaching/theses/thesis-schneg
2https://docs.ray.io/en/latest/index.html
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4.1.1 Ray API-Calls
There are different paradigms to transform data in Ray. In this work, we
mainly make use of Ray’s following API-calls:

• map_batches(): This API-call is used to perform transformations on
the data set. In this case, transformations are carried out on batches
of the data set, enabling vectorized transformations from, e.g., numpy
operations. Map_batches() takes a user-defined function or a callable
class as an argument and applies it to each batch of the data set. The
execution is configurable: We can specifiy the the number of parallel
workers, the amount of required memory for each worker or the number
of CPUs or GPUs for each worker. Map_batches() is Ray’s preferable
API-call for performing offline batch inference.

• flat_map(): This API-call is mainly used to extract specific elements
of the data. It is detached from the constraint of returning at most
one result per row and can handle multiple results from each row. The
flat_map()-call is applied to each row of the data set and returns a new
data set with the extracted elements. The resulting data set can be of
different size than the original one. As in map_batches(), we can specify
the configuration of execution.

• groupby(): This API-call is used to group the data set by a specified
key. It returns a new data set with the grouped elements. In addition, we
can apply further functions to each group, e.g., we can apply a function
to count the number of elements in each group. This API-call does not
support specifiying the configuration of execution.

4.2 Structure-related Statistics
In this section, we generate a set of structure-related statistics from the query
logs. The analyses in this section are based on the findings of Section 2.1.
Additionally, aspects of the analysis of named entities are included in this
section, too. The goal is to perform a comparison of the query logs’ linguistic
and structural composition, initially neglecting semantic characteristics. We
collect a set of distributions from the cleaned AQL and the other involved query
logs. Ultimately, we evaluate similarities of the distributions by computing
distances between them. This allows for identifying syntactical differences or
similarities.

For this analysis, we look at queries from different syntactic perspectives

17



CHAPTER 4. EXPERIMENTS

and carry out measurements in the defined perspectives. We define the follow-
ing categories as syntactic perspectives:

1. Queries

2. Named Entities

3. Words

4. Characters

Even though named entities are not considered a syntactic category primarily,
we include them in this analysis since they are frequent enough to be regarded a
structural element of queries. Also, their analysis might provide an additional
valuable insight to the structure of query logs. To add on that, we recall from
Section 2.3 that up to 70% of queries contain named entities.

For each of the aforementioned categories (queries, named entities, words
and characters), we carry out two types of measurements:

1. Frequencies of Linguistic Elements: We extract all elements of a
category from the query log and determine the frequency of each ele-
ment. For instance, we extract all existing words from the query log
and measure each word’s frequency. We proceed accordingly for all cat-
egories.

2. Length-related Frequencies: We measure the lengths of all extracted
items from a category in terms of all possible subcategories. The defined
syntactic categories are subject to a hierachical order, e.g., queries can
be described as a set of named entities, words or characters. Words, in
turn, can not be described as a set of named entities. Accordingly, we
measure lengths of queries in terms of named entities, words and charac-
ters. Named entities are measured by the count of words or characters.
By continuing this procedure for all categories, we gain a thorough set
of measurements for each query log.

4.2.1 Frequencies of Linguistic Elements
To obtain the frequency of liguistic elements, we first extract all elements
of a category from the query log and subsequently measure each element’s
frequency. Besides reading and writing the data, this experiment consists of
two major steps in the Ray environment:

1. Extraction of Linguistic Elements: We apply the flat_map() API-
call to extract all elements of a linguistic category from the query log.
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Max. Number of Workers 32
Max. Number of CPUs per Worker 1
Max. Memory per Worker 12 GB
Max. Duration 24h
Used Models spaCy-Tokenizer, spaCy-NER

Table 4.1: The parameter values of this table are the extreme values of the con-
figuration to run the extractions of linguistic elements. Both models, the spaCy-
Tokenizer and the spaCy-NER are part of spaCy’s en_core_web_sm-model, which
was used for this analysis.3

For named entities and words, we parse a spaCy-model to the API-call
that performs named entity recognition or tokenization into words. The
model is applied to each query of the data set and returns the found
elements which are appended to the result set. In the end, we obtain a
data set that contains all extracted elements of a liguistic category.

2. Frequency Measurement: We apply the groupby() API-call to group
the data set by the extracted linguistic elements. Thereon, we call
a count() to count the items of each group, which provides us with
each elements’s frequency in the query log. Eventually, we obtain a data
set with the linguistic elements and their frequencies.

In Table 4.1, we note some key parameters of the experiments to enhance repro-
ducibility. We only list the parameters’ extreme values, such as the maximum
number of used workers, to indicate the maximum of required ressources.

Evaluation of Linguistic Elements

As stated in Section 2.1, a well-studied phenomenon is the frequency distri-
bution of terms in query logs. Several studies conclude that ranked frequency
distributions of terms in query logs resemble Zipf’s law. Zipf’s law originates
from linguistics and is meaningful, among other things, to describe frequency
distributions of words in natural language texts [Piantadosi, 2014]. The law
states that the frequency f of an element is inversely proportional to its rank
r in the frequency table with some scaling constant c and exponent α ≈ 1:

f ∝ c

rα
(4.1)

We investigate the frequencies of all considered categories, namely queries,
named entities, words and characters, and evaluate two things: the similari-
ties of the resulting distributions and if they resemble Zipf’s law. To achieve

3https://github.com/explosion/spacy-models/releases/tag/en_core_web_sm-3.7.1
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this, we take two approaches: Firstly, we visualize the results in log-log-scaled
graphs to assess the proximity to Zipf’s law. A constant slope would suggest a
Zipfian distribution. Albeit primarily studied for words, we attempt to retrieve
Zipf’s law also in the frequencies of queries, named entities and characters since
they as well are linguistic categories and probably follow linguistic dynamics.
Secondly, we numerically compare the distributions by measuring distances
between them. In this case, we are primarily interested in the differences of
two groups: the pairwise distances of the AQL to each of the other query
logs and the pairwise distances within the comparison group, namely AOL,
MS-MARCO Web Search and ORCAS.

For evaluation we consider the frequencies of the linguistic elements sorted
in descending order, i.e., rank-size distributions. Accordingly, we initially only
evaluate the relationship of rank and frequency.

Rank-size Distributions of Named Entities and Words

To assess similarities to Zipf’s law, we display the frequencies sorted in descend-
ing order in a log-log-scaled graph. Figure 4.1 shows the ordered frequencies
of named entities and words in the query logs. As for named entities, we can
state that all distributions fairly resemble Zipf’s law. The distributions show
a relatively constant slope in the log-scaled dimensions. The slope of the word
frequencies, in turn, is not as constant. We can observe a small deviation:
The constant slope is interrupted by a small curvature in the central part of
the distribution. However, this curvature is present in all distributions. Con-
sequently, from a visual perspective, we can conclude that the distributions
of the different data sets are quite similar. No striking outliers which indi-
cate clear differences are visible. Though, the rank-size distribution of named
entities is more similar to a Zipfian distribution than the distribution of words.

Rank-size Distributions of Queries and Characters

In Figure 4.2, the frequencies of queries and characters are displayed in the
log-scaled graph. The query distributions as well comply reasonably well with
Zipf’s law. The distributions are similar and a constant slope is present in the
log-scaled dimensions. In turn, the distributions of characters do not resemble
Zipf’s law. They are actually quite different among the query logs. Though,
it is striking that AOL and ORCAS are similar as well as MS-MARCO Web
Search and AQL. This is probably due to their language distribution. AQL
and MS-MARCO Web Search are multilingual query logs, whereas AOL and
ORCAS are English-only query logs. Hence, the character distributions of the
English-only query logs are similar and the distributions of the multilingual
query logs are also similar. Additionally we can observe a significant difference
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Figure 4.1: The relative frequencies of extracted named entities and words are
displayed in a log-scaled graph for each query log. The frequencies were ordered in
a descending order to create a ranking. A straight line in the log-scaled dimensions
indicates similarities to Zipf’s law.

in the number of characters. The multilingual query logs contain much more
characters then the English-only logs which seems logical. Moreover, all query
logs commonly show that there is a group of very frequent and rather uni-
formly distributed characters while the frequencies of less frequent characters
are decreasing even more rapidly than Zipf’s law would suggest. This might
be the case because alphanumeric characters are probably significantly more
frequent than special characters, indicating why the distribution is even more
skewed.

Numeric Comparison: Linguistic Elements

The distributions of linguistic elements are now compared numerically to each
other. To evaluate similarities between the resulting distributions, we apply
the Wasserstein distance with p = 1. For each analysis, we compute the
Wasserstein distance between the distributions of all pairs of query logs. In
Table 4.2 the obtained Wasserstein distances are displayed with regard to the
conducted analysis. To assess if the AQL’s distributions are similar or rather
anomalous, we first calculate the average Wasserstein distance of the compar-
ison group, i.e., AOL, MS-MARCO Web Search and ORCAS. We denote the
average Wasserstein distance of the group excluding the AQL by Wµ(AQL).
Secondly, we determine the average Wasserstein distance between the AQL
and the other query logs. For this we consider all possible pairs that contain
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Figure 4.2: The relative frequencies of queries and extracted characters are dis-
played in a log-scaled graph for each query log. The frequencies were ordered in a
descending order to create a ranking. A straight line in the log-scaled dimensions
indicates similarities to Zipf’s law.

the AQL and one of the other query logs. We call this average Wasserstein
distance Wµ(AQL). If Wµ(AQL) ≤ Wµ(AQL) is true, we can argue that the
AQL’s distributions are similar enough to be considered a part of the compar-
ison group. If ths is not the case, we can conclude that there are significant
differences. For a further evaluation, we compute the standard deviation of the
Wasserstein distances within the comparison group. We denote the standard
deviation of distances within the group excluding the AQL by σAQL. This
allows us to put differences of Wµ(AQL) and Wµ(AQL) into the perspective
of average deviations within the comparison group. In all three cases, named
entities, words and characters, Wµ(AQL) is smaller than Wµ(AQL). This
indicates that the AQL’s distributions are similar to the comparison group,
suggesting an non-anomalous behaviour of rank-size distributions of linguistic
elements when compared to “true” query logs.

Top Queries

To further evaluate the linguistic elements, we take a look at the top 20 most
frequent queries in the query logs. The most frequent queries are listed in
Table 4.5. Since MS-MARCO Web Search and ORCAS only contain unique
queries, we only have data from the AQL and AOL available to create this
table. Moreover, only top queries with latin characters are considered for this

22



CHAPTER 4. EXPERIMENTS

Named Entities WS-Values

AOL AQL MS WS ORCAS Wµ(AQL) 272K
AOL - 91895 391408 27423 Wµ(AQL) 163K
AQL 91895 - 301466 97748 Wµ(AQL) − Wµ(AQL) 108K
MS WS 391408 301466 - 397262 σAQL 172K

ORCAS 27423 97748 397262 - Wµ(AQL) − Wµ(AQL)
σAQL

0.63

Words WS-Values

AOL AQL MS WS ORCAS Wµ(AQL) 195K
AOL - 55120 216678 77063 Wµ(AQL) 116K
AQL 55120 - 161679 132184 Wµ(AQL) − Wµ(AQL) 79K
MS WS 216678 161679 - 293741 σAQL 90K
ORCAS 77063 132184 293741 - Wµ(AQL) − Wµ(AQL)

σAQL
0.89

Characters WS-Values

AOL AQL MS WS ORCAS Wµ(AQL) 61
AOL - 57 92 1 Wµ(AQL) 53
AQL 57 - 44 57 Wµ(AQL) − Wµ(AQL) 8.9
MS WS 92 44 - 92 σAQL 43
ORCAS 1 57 92 - Wµ(AQL) − Wµ(AQL)

σAQL
0.21

Table 4.2: On the left: Wasserstein distances of rank-size distributions of linguistic
elements. On the right: various values to evaluate the AQL’s similarity to the com-
parison group, which were motivated in the preceding paragraph (see Section 4.2.1).
The Wasserstein distances are computed with p = 1.

table. This is due to the fact that the AQL contains a lot of queries with
non-latin characters, e.g., Chinese characters. Since we can not compare these
queries with queries from AOL, we replace the six queries of the AQL’s top 20
with the next most frequent queries of latin characters.

It is striking that the top queries of the AOL log are mostly navigational
queries, either domain names like “www.yahoo.com” or “www.google.com” or
the mere names of those websites, e.g., “yahoo” or “google”. The AQL’s top
queries are more diverse and contain a lot of queries that are not naviga-
tional. They don’t seem very coherent and quite random. A lot of them
are even difficult to interpret, such as “place:86f203b1e5d”, “{srch_str}” or
“p2045576.m1710”. Some top queries of the AQL even are parts of URLs, e.g.,
“http://extras.denverpost.com/media/maps /kml/co...”. In summary, the top
queries are substantially different and the AQL’s top queries don’t seem to
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reflect realistic user behaviour.

Top Words

Besides the top 20 queries, we additionally take a look at the top 20 most
frequent words in the query logs. The most frequent words are listed in Ta-
ble 4.3 and Table 4.4. To evaluate similarities, we take a look at intersections
of the top words. Particularly, we first determine the average intersection of
top words within AOL, MS-MARCO Web Search and ORCAS. Considering a
collection G of n sets of top words Wi, the average cardinality of the pairwise
intersections is given by:

Sµ(G) = 1(
n
2

) n∑
i=1

n∑
j=i+1

|Wi ∩ Wj| (4.2)

We denote the average cardinality of the group excluding the AQL by Sµ(AQL).
Secondly, we determine the average intersection of top words between the AQL
and the other query logs. For this we consider all possible pairs that contain
the AQL and one of the other query logs. We call this average cardinality
Sµ(AQL). We obtain:

• Sµ(AQL) = 11.66

• Sµ(AQL) = 9.33

To evaluate how similar the two cardinalities are, we compute the deviation
present in the group AQL and assess if the deviation of the AQL’s average car-
dinality matches the standard deviation of cardinalities within the comparison
group AQL. For the standard deviation of the group AQL we obtain:

• σAQL = 1.25

Even though the cardinalities of intersections of top words seem to be in the
same range, the deviation of the AQL is slightly higher than the standard devi-
ation in the comparison group. We could conclude that we observe similarites
but, despite this, the AQL’s top words are still too different to the comparison
group to be considered a part of this group. However, the queries of ORCAS
and MS-MARCO Web Search are biased to more quetion-like queries, natu-
rally exhibiting higher similarities. Taking this into account, we could also
argue that the AQL’s top words are not too different from the other query
logs.
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AOL AQL

Rank Word Count Ratio Word Count Ratio
1 of 1,126,030 1.26% = 29,301,944 1.81%
2 in 946,200 1.06% of 12,284,222 0.76%
3 the 839,233 0.94% and 11,385,504 0.71%
4 for 698,847 0.78% the 8,532,900 0.53%
5 and 692,798 0.78% site 8,466,226 0.52%
6 to 471,360 0.53% in 6,584,034 0.41%
7 free 450,322 0.50% for 6,084,390 0.38%
8 a 373,919 0.42% -wikipedia 5,620,112 0.35%
9 google 366,059 0.41% to 5,588,686 0.35%

10 ’s 359,448 0.40% vector 4,544,168 0.28%
11 new 270,823 0.30% finance 4,353,432 0.27%
12 http 263,056 0.29% $ 4,211,514 0.26%
13 on 254,673 0.29% from 4,105,194 0.25%
14 pictures 236,860 0.27% -site 3,983,136 0.25%
15 county 232,176 0.26% on 3,794,202 0.24%
16 yahoo 219,822 0.25% a 3,675,640 0.23%
17 how 209,175 0.23% kak 3,574,962 0.22%
18 lyrics 190,043 0.21% 2 3,554,028 0.22%
19 my 188,189 0.21% de 3,349,984 0.21%
20 school 183,790 0.21% free 3,132,780 0.19%

Table 4.3: Ranking of the top 20 words in the AOL and AQL. The ratio is computed
by dividing the count of a word by the total number of words in the query log.
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MS-MARCO Web Search ORCAS

Rank Word Count Ratio Word Count Ratio
1 the 245,317 0.83% of 567,790 1.65%
2 de 242,823 0.82% to 484,322 1.41%
3 in 239,674 0.81% in 465,981 1.36%
4 to 214,375 0.73% how 393,224 1.15%
5 for 212,892 0.72% what 374,409 1.09%
6 212,760 0.72% is 367,364 1.07%
7 of 211,873 0.72% for 355,161 1.03%
8 a 175,659 0.59% the 343,583 1.00%
9 and 127,821 0.43% a 268,469 0.78%

10 is 107,218 0.36% and 192,209 0.56%
11 how 104,567 0.35% on 118,872 0.35%
12 on 68,471 0.23% online 117,947 0.34%
13 2021 67,953 0.23% free 106,799 0.31%
14 what 66,618 0.23% does 104,246 0.30%
15 download 65,442 0.22% definition 102,850 0.30%
16 sale 65,000 0.22% best 98,291 0.29%
17 online 64,211 0.22% do 97,787 0.28%
18 en 62,309 0.21% login 94,548 0.27%
19 free 61,086 0.21% ’s 93,077 0.27%
20 la 59,558 0.20% county 91,291 0.26%

Table 4.4: Ranking of the top 20 words in MS-MARCO Web Search and ORCAS.
The ratio is computed by dividing the count of a word by the total number of words
in the query log.
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AOL AQL

Rank Query Count Ratio Query Count Ratio
1 - 1,000,375 2.75% finance 2,135,183 0.78%
2 google 332,192 0.92% # 1,515,866 0.55%
3 ebay 139,207 0.38% query 1,368,346 0.50%
4 yahoo 130,538 0.35% $ 1,319,815 0.49%
5 yahoo.com 97,518 0.27% speed force 850,884 0.31%
6 mapquest 88,279 0.24% place:86f203b1e5d

c4397
414,853 0.15%

7 google.com 79,991 0.22% “Kurdish
Referendum”

371,211 0.14%

8 myspace.com 77,211 0.21% video 294,899 0.11%
9 myspace 74,365 0.20% Latoya Cantrell 239,827 0.09%

10 myspace.com 43,036 0.12% http://extras.denver
post.com/media/maps
/kml/co...

208,918 0.08%

11 www.yahoo.com 42,597 0.12% {srch_str} 208,725 0.08%
12 www.google.com 39,622 0.11% la teachers strike 186,735 0.07%
13 internet 30,125 0.08% rabble.ca 157,519 0.06%
14 http 28,516 0.08% Sarah Stierch 146,697 0.05%
15 my space 27,887 0.08% Aspects 143,905 0.05%
16 weather 27,845 0.08% #communitywebs 139,392 0.05%
17 www.myspace.com 27,842 0.08% http://dcist.com/

2015/07/metros_-
1000-series_ra...

130,715 0.05%

18 map quest 25,856 0.08% prom electric 127,972 0.05%
19 ebay.com 22,893 0.07% p2045576.m1710 124,971 0.05%
20 american

idol
22,652 0.07% GFW 123,257 0.04%

Table 4.5: Ranking of the top 20 queries in the respective query logs. Since MS-
MARCO and ORCAS only contain unique queries, we only consider AQL and AOL
for this table. We also only display queries with latin characters. Because of this,
six queries of the AQL’s top 20 are replaced with the next most frequent queries of
latin characters.
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4.2.2 Length-related Frequencies
Besides considering the frequency of linguistic elements, we also measure the
lengths of the elements in terms of different subcategories. We describe the
length of an element by the occuring counts of a possible subcategory, e.g.,
the length of a query by the count of characters the query contains. From the
extraction of named entites and words, we have three sets of categories whose
lengths we can measure: queries, named entities and words. To illustrate how
we obtain the frequencies of query lengths, named entity lengths and word
lengths, we provide a description of how the lengths of queries are measured.
Accordingly, we proceed for all categories. The measurement of lengths is
carried out in two steps:

1. Computing Lengths: We apply the map_batches() API-call to com-
pute the lengths of queries. Since we are interested in the count of named
entities, words and characters, we parse a function that performs mul-
tiple measurements on each query. We again apply spaCy’s en_core_-
web_sm-model to perform the measurements (e.g., count words or named
entities). For each type of measurement (i.e., entity count, word count
or character count) the function appends a new column to the batch
which contains the corresponding lengths. Eventually, a batch with the
computed lengths is returned.

2. Frequency Measurement: We apply the groupby() API-call to group
the resulting data set by the computed lengths. By this, we obtain a
group for each length. Thereon, we call a count() in order to count
each length’s occurence in the query log. In the end, we obtain a data
set with the lengths and their frequencies.

In Table 4.6, we again note some key parameters of the experiments that
outline the maximum of required ressources and the applied models.

Max. Number of Workers 32
Max. Number of CPUs per Worker 1
Max. Memory per Worker 9 GB
Max. Duration 22h
Used Models spaCy-Tokenizer, spaCy-NER

Table 4.6: The parameter values of this table are the extreme values of the con-
figuration to run the frequency measurement of lengths. Both models, the spaCy-
Tokenizer and the spaCy-NER are part of the spaCy-model en_core_web_sm4, which
was used for this analysis.
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Distribution of Character Counts: Queries and Named Entities

In Figure 4.3, the distributions of query and named entity lengths in characters
are displayed. As for queries, the distributions appear to be not very close but
still similar to each other. Though, the range of occuring query lengths is
quite similar among all logs. Regarding the shape, AOL and AQL are similar,
whereas the AQL’s distribution is more noisy. ORCAS stands out presenting
a binomial-like distribution. MS-MARCO Web Search’s distribution is also
unique but unlike ORCAS’ not symmetrical. Regarding the distributions of
named entities, we can again observe a common scope of lengths among all
logs and similar shapes. Especially ORCAS and AOL are very similar to one
another. The AQL’s distribution is similar to a poisson distribution whereas
distribution of MS-MARCO Web Search is not exactly assignable to a popular
distribution.

Distributions of Characters per Word and Entities per Queries

In Figure 4.4 the distributions of word and query lengths measured in charac-
ters and named entities are displayed. We can observe very similar frequencies
of entity counts in queries. The distributions are visually almost equivalent
among the involved query logs. As for the word lengths, the distributions are
also similar but depict some clear differences, as well. While MS-MARCO
Web Search and ORCAS show a very similar distribution, AOL’s distribution
is clearly different. We can observe an unusual peak of word lengths between
10 and 20 characters. Reviewing AOL’s words of this lengths showed that
the most frequent words are website addresses in this range. The extensions
before and after the website’s name (e.g., “www.” or “.com”) cause a shift of
frequent words towards longer words. This has been confirmed by filtering
out website addresses from the AOL and subsequently measure the word legth
distribution. In that case, AOL’s distribution of word lengths aligns with the
other query logs’ distributions. Added to this, the top queries of AOL (see
Table 4.5) contain many web sites and domain names, which also confirms the
peak in the distribution.

Distributions of Word Counts: Queries and Named Entities

In Figure 4.5 the distributions of query and named entity lengths measured in
the number of words are displayed. Concerning the lengths of named entities,
we can observe almost equivalent distributions of AOL and MS-MARCO Web
Search. The distribution of ORCAS is still similar to AOL and MS-MARCO
Web Search while the distribution of the AQL is slightly different. The AQL

4https://github.com/explosion/spacy-models/releases/tag/en_core_web_sm-3.7.1
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contains significantly more named entities comprised of one word than the
other logs. In contrast to the other logs, named entities comprised of one
word a the most common named entities. A similarity among all logs is that
named entities consisting of two words are the most frequent. As of the query
lengths measured in words, we can observe more diverse distributions among
the different logs. While the number of words is distributed similarily in AOL
and AQL, the distributions of ORCAS and MS-MARCO are different. The
distribution of ORCAS resembles a poisson distribution and the distribution
of MS-MARCO Web Search is not clearly assignable to a popular distribution.
However, the range of the most frequent number of words is similar among all
logs.

Numeric Comparison of Lengths

The resulting distributions of the measurements are now compared numeri-
cally to each other. We again apply the 1-Wasserstein distance to evaluate
similarities between the resulting distributions. In Table 4.7 the obtained
Wasserstein distances are displayed with regard to the conducted analysis.
The table is structured in a similar way as Table 4.7. We again compute the
average Wasserstein distance within the comparison group, i.e., AOL, MS-
MARCO Web Search and ORCAS, denoted by Wµ(AQL). We refer to the
standard deviation of wasserstein distances within that group as σAQL. Ad-
ditionally, we determine the average Wasserstein distance between the AQL
and the other query logs, denoted by Wµ(AQL). It is striking that we ob-
tain Wµ(AQL) > Wµ(AQL) for all length-related measurements. The closest
distribution of the AQL to the comparison group is the distribution of char-
acters per word. In this case, we measure a deviation from the AQL to the
comparison group of 0.3 σAQL. The most dissimilar distribution in turn is
the query length measured in characters. The deviation of this distribution is
6.1 σAQL. Since we measure substantial deviations of the AQL’s distributions
we conclude that the AQL is rather anomalous to the comparison group for
length-related measurements of linguistic elements.
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Characters per Query Characters per Entity

AOL AQL MS WS ORCAS AOL AQL MS WS ORCAS
AOL - 5.54 2.56 3.72 - 2.12 1.79 0.80
AQL 5.54 - 4.75 7.75 2.12 - 2.86 1.98
MS WS 2.56 4.75 - 3.00 1.79 2.86 - 1.03
ORCAS 3.72 7.75 3.00 - 0.80 1.98 1.03 -
Wµ(AQL) 6.0 Wµ(AQL) 3.1 Wµ(AQL) 2.3 Wµ(AQL) 1.2
Wµ(AQL) − Wµ(AQL) -2.9 σAQL 0.5 Wµ(AQL) − Wµ(AQL) -1.1 σAQL 0.4
Wµ(AQL) − Wµ(AQL)

σAQL
-6.1 Wµ(AQL) − Wµ(AQL)

σAQL
-2.6

Characters per Word Words per Query

AOL AQL MS WS ORCAS AOL AQL MS WS ORCAS
AOL - 3.69 6.31 4.20 - 0.58 0.69 0.89
AQL 3.69 - 6.29 4.17 0.58 - 0.81 1.25
MS WS 6.31 6.29 - 2.20 0.69 0.81 - 0.44
ORCAS 4.20 4.17 2.20 - 0.89 1.25 0.44 -
Wµ(AQL) 4.7 Wµ(AQL) 4.2 Wµ(AQL) 0.9 Wµ(AQL) 0.7
Wµ(AQL) − Wµ(AQL) -0.5 σAQL 1.7 Wµ(AQL) − Wµ(AQL) -0.2 σAQL 0.2
Wµ(AQL) − Wµ(AQL)

σAQL
-0.3 Wµ(AQL) − Wµ(AQL)

σAQL
-1.1

Words per Entity Entities per Query

AOL AQL MS WS ORCAS AOL AQL MS WS ORCAS
AOL - 0.19 0.06 0.11 - 0.18 0.12 0.03
AQL 0.19 - 0.18 0.30 0.18 - 0.06 0.15
MS WS 0.06 0.18 - 0.17 0.12 0.06 - 0.09
ORCAS 0.11 0.30 0.17 - 0.03 0.15 0.09 -
Wµ(AQL) 0.2 Wµ(AQL) 0.1 Wµ(AQL) 0.13 Wµ(AQL) 0.08
Wµ(AQL) − Wµ(AQL) -0.1 σAQL 0.04 Wµ(AQL) − Wµ(AQL) -0.05 σAQL 0.04
Wµ(AQL) − Wµ(AQL)

σAQL
-2.5 Wµ(AQL) − Wµ(AQL)

σAQL
-1.3

Table 4.7: Wasserstein distances between the distributions of the query logs. For
each analysis, e.g. characters per query, distances of all pairs of query logs are
computed. Besides the distances, the table contains values that are relevant for
assessing the simlarity of the AQL to the comparison group.
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Figure 4.3: The relative frequencies of query and named entity lengths measured
in the number of characters are displayed.
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Figure 4.4: The relative frequencies of word and query lengths are displayed. In
this collection, the word length is measured in number of characteres. The query
length is measured in the number of occuring named entities.
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Figure 4.5: The relative frequencies of query and named entity lengths are dis-
played. Both, the query length and the named entity length are measured in number
of occuring words.
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4.2.3 Search Operators
As stated in Section 2.1, search operators are a common feature of search en-
gines. They are used to filter the search results or specify specific requirements
for the search results. In this section, we analyze the usage of search opera-
tors in the query logs. In particular, we determine the ratio of queries, that
contain search operators, measure frequencies of the search-operator-count in
queries and present the most prominent search operators per query log. The
considered search operators of this analysis are:

• AND

• OR

• around()

• site:

• filetype:

• intitle:

• allinurl:

• allintitle:

• intext:

• allintext:

• related:

• define:

• chache:

Search Operator Frequencies

First, to obtain the frequencies of the considered search operators in a query
log, we apply the flat_map() API-call to extract all search operators from the
query log. We parse a function to the API-call that checks for each query if
it contains one of the search operators. If so, the search operator is appended
to the result set. The function simply checks for the presence of a search
operator’s string. Thereon, we apply the groupby() API-call to group the
data set by the extracted search operators and call a subsequent count()
to get the count of each search operator. Similarly we proceed to get the
frequencies of search operator counts in queries. We apply the map_batches()
API-call to compute the search operator counts of each query. The count is
again obtained by a string matching. Then we apply the groupby() API-
call to group the data set by the computed search operator counts and call a
subsequent count() to get the frequency of each search operator count.

Evaluation Search Operators

In Table 4.8 the total frequencies of search operators, the search operator
ratio and the fraction of queries with different numbers of search operators are
displayed. Unfortunately, we couldn’t detect any search operators in the AOL
log. Since MS-MARCO Web Search and ORCAS only contain unique queries
that were filtered by a certain minimum popularity threshold, only very few
search operators were detected in these logs. This makes a comparison of the
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Query Log SO-count SO-ratio count = 0 count = 1 count = 2 count > 2

AOL 0 0% 100% 0% 0% 0%
AQL 7,663,010 2.21% 97.79% 1.83% 0.31% 0.07%
MS WS 6,727 0.07% 99.93% 0.07% < 0.00% < 0.00%
ORCAS 3,937 0.04% 99.96% 0.04% < 0.00% < 0.00%

Table 4.8: Ratios of queries that contain 0, 1, 2, 3, or more than 3 search operators.

AQL MS-MARCO WS ORCAS

Rank SO Count Ratio SO Count Ratio SO Count Ratio
1 site: 5,507,994 1.59% site: 6,564 0.07% site: 3,307 0.03%
2 related: 1,471,351 0.42% intitle: 80 0.00% define: 624 0.01%
3 OR 391,561 0.11% define: 24 0.00% intitle: 4 0.00%
4 AND 188,382 0.05% intext: 22 0.00% related: 1 0.00%
5 intitle: 25,635 0.01% filetype: 18 0.00% intext: 1 0.00%
6 cache: 22,566 0.01% cache: 12 0.00% allintext: 0 0.00%
7 define: 21,676 0.01% allintext: 3 0.00% allinurl: 0 0.00%
8 allinurl: 19,451 0.01% allintitle: 3 0.00% allintitle: 0 0.00%
9 allinurl: 5,564 0.00% related: 1 0.00% filetype: 0 0.00%

10 intext: 4,950 0.00% AND 0 0.00% AND 0 0.00%
11 allintitle: 3,258 0.00% OR 0 0.00% OR 0 0.00%
12 allintext: 619 0.00% around(): 0 0.00% around() 0 0.00%
12 around() 3 0.00% allinurl: 0 0.00% chache: 0 0.00%

Table 4.9: Ranking of the used search operators (SO) in the respective query logs.
The table does not inlcude data from the AOL log because not a single occurence
of the considered search operators was found in it.

AQL to the other logs difficult and less meaningful. In Table 4.9 a ranking
of the considered search operators for each query log is displayed. Again,
this comparison lacks meaningfulness since the search operators are not used
frequently in the comparison group. Though, the search operator “site:” is the
most frequent search operator in all query logs. Apart from this commonality,
no other meaningful results are visible.

4.3 Inference-based Statistics
In this section, we classify queries or components of queries, like named enti-
ties, according to selected taxonomies. As described in Section 2.2, the intent
behind a query is a meaningful taxonomy according which queries are clas-
sified. We also investigate the presence of personally identifiable information
(PII) entities in the query logs and their distribution.
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4.3.1 Query Intent
As a first step, we classify queries into the categories informational, navi-
gational and transactional. Since the classifier from Alexander et al. [2022]
performs fairly accurate, we apply it in this work. In their work, Alexander
et al. [2022] train different models to perform intent classification. We apply
the BERT-based model from their collection in this work which achieves an
accuracy of 0.90. Since this classifier of was trained on english queries only,
we apply it only to the english subset of the multiligual query logs (AQL and
MS-MARCO Web Search). We produce the labels by passing the model to
Ray’s preferable API-call map_batches() for offline batch inference. After
that, we apply the groupby() API-call to group the data set by the labels
and get counts for each label. The classifier is not provided publicly, but was
obtained by a personal request to Alexander et al. [2022]. In Table 4.10 we
note some key parameters of the experiments to enhance reproducibility. We
only list the parameters’ extreme values, indicating the maximum of required
ressources.

Query Intent Distributions

In Figure 4.6 the query intent distributions of the query logs are displayed.
The labels were produced by the classifier of Alexander et al. [2022]. The
figure shows an equal ranking of the labels. The most frequent label is “in-
formational” followed by “navigational” and “transactional”. Apart from the
ratio of navigational queries, the distributions are very similar.

4.3.2 PII Entity Labels
Another aspect that we consider is the prevalence of personally identifiable
information (PII) in the query logs. We employ Microsoft’s Presidio-Model5
to recognize PII entities in the query logs and store their labels. Microsoft
provides an evaluation of the model, demonstrating that it achieves a precision
of 0.94 and a recall of 0.55. Again, we produce the labels by applying Ray’s
preferable API-call map_batches() for offline batch inference. A subsequent
groupby()-call provides the counts for each label. In Table 4.10, the needed
resources and related information to run the classification are listed.

Label Distributions of PII Entities

In Figure 4.7 the distributions of PII entities in the query logs is displayed. The
labels were produced by Microsoft’s Presidio-Model. The figure shows that the

5https://github.com/microsoft/presidio
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Figure 4.6: Distribution of query intents in the query logs. The labels were pro-
duced by the classifier of Alexander et al. [2022].

same four PII labels are the most frequent ones in all query logs: “Person”,
“Location”, “NRP” (a person’s Nationality, religious or political group) and
“Datetime”. Among these four labels however, the distribution varies across
the query logs.

4.3.3 Question Classification
As a last taxonomy we consider the classification of queries into questions and
non-questions. We apply a rule-based classifier provided by Reimer [2023] to
classify queries. The classifier is based on a set of rules that are applied to the

Intent Labels PII Labels

Max. Number of Workers 32 320
Max. Number of CPUs per Worker 3 1
Max. Memory per Worker 7 GB 8GB
Max. Duration 1d 6h 12h
Used Models Intent-Classifier Presidio-Model

Table 4.10: The parameter values of this table indicate the most expensive config-
uration used to produce intent and PII labels
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Figure 4.7: The figure displays the distribution of PII entities in the query logs.
The labels were produced by Microsoft’s Presidio-Model. The figure shows that the
same four PII labels are the most frequent ones in all query logs: “Person”, “Loca-
tion”, “NRP” (a person’s Nationality, religious or political group) and “Datetime”.
Among these four labels however, the distribution varies across the query logs.
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Figure 4.8: The figure displays the ratio of questions in the query logs. The labels
were produced by a rule-based classifier provided by Reimer [2023].

queries. The rules are based on the presence of question words (e.g., “who”,
“what”, “where”, “when”, “how”) or the presence of a question mark at the
end of the query. Since the classifier is designed for english queries only, we
apply it only to the english subset of the multilingual query logs (AQL and
MS-MARCO Web Search). In the study of Reimer [2023] the classifier achives
a recall of 0.89 and a precision of 0.99. This classifier as well is not provided
publicly, but was obtained by a personal request to Reimer [2023]. We produce
the labels by passing the model to Ray’s API-call map_batches() for offline
batch inference and apply the groupby() API-call to get the counts for each
label.

Distributions of Questions

In Figure 4.8 the ratio of questions in each query log is displayed. In general,
the ratio of questions is low among all query logs. Not surprisingly, ORCAS
contains the most questions as its generation is biased towards questions. The
AQL and AOL log contain a similar ratio of questions, while the ratio of
questions in the MS-MARCO Web Search log is between ORCAS and the two
other logs.

Numeric Comparison: Inference-based Distributions
We compute Wasserstein distances for all pairs of distributions of the differ-
ent characteristics. Again, we consider the average distance of the AQL to
AOL, MS-MARCO Web Search and ORCAS and the average Wasserstein dis-
tance within AOL, MS-MARCO Web Search and ORCAS (see Section 4.2.1
for a detailed motivation). Regarding query intent and questions, we note
that Wµ(AQL) < Wµ(AQL) which indicates that the AQL is similar to the
comparison group. In turn, considering the distribution of PII labels, we note
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Query Intent WS-Values

AOL AQL MS WS ORCAS Wµ(AQL) 0.18
AOL - 0.17 0.26 0.20 Wµ(AQL) 0.10
AQL 0.17 - 0.10 0.04 Wµ(AQL) − Wµ(AQL) 0.08
MS WS 0.26 0.10 - 0.07 σAQL 0.08

ORCAS 0.20 0.04 0.07 - Wµ(AQL) − Wµ(AQL)
σAQL

1.00

PII Labels WS-Values

AOL AQL MS WS ORCAS Wµ(AQL) 0.16
AOL - 0.22 0.17 0.09 Wµ(AQL) 0.21
AQL 0.22 - 0.17 0.22 Wµ(AQL) − Wµ(AQL) -0.04
MS WS 0.17 0.17 - 0.23 σAQL 0.06
ORCAS 0.09 0.22 0.23 - Wµ(AQL) − Wµ(AQL)

σAQL
-0.75

Questions WS-Values

AOL AQL MS WS ORCAS Wµ(AQL) 0.05
AOL - 0.5e-2 2.9e-2 7.5e-2 Wµ(AQL) 0.03
AQL 0.5e-2 - 2.4e-2 6.9e-2 Wµ(AQL) − Wµ(AQL) 0.02
MS WS 2.9e-2 2.4e-2 - 4.6e-2 σAQL 0.02
ORCAS 7.5e-2 6.9e-2 4.6e-2 - Wµ(AQL) − Wµ(AQL)

σAQL
0.90

Table 4.11: On the left: Wasserstein distances of inference-based distributions. On
the right: various values to evaluate the AQL’s similarity to the comparison group,
which were motivated in Section 4.2.1. The Wasserstein distances are computed
with p = 1.

that Wµ(AQL) > Wµ(AQL) which indicates that the AQL is less similar to
the comparison group. However, the deviation is equal to 0.75σAQL which is
not very significant. In summary, we can state that the AQL is reasonably
similar for the two insights “query intent” and “questions” but less similar for
the insight “PII labels”.

4.3.4 Case Study: Probabilistic Approach
So far we have calculated mean and standard deviation of Wasserstein dis-
tances to assess whether the AQL is similar or anomalous to the comparison
group of AOL, MS-MARCO Web Search and ORCAS. Following this logic,
one could estimate a probability distribution from the Wasserstein distances
and use it to model the “true” distribution for a considered characteristic.
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From the pairwise calculation of Wasserstein distances, we obtain a distance
matrix D ∈ R4×4. Since the Wasserstein distance is a metric, a configuration
of the distributions in three dimensions is naturally induced. We denote the
space of this embedding the Wasserstein space W . Provided that W is a Eu-
clidean space in our use cases, mean and standard deviation can be calculated
straightforward. Given that the ground truth W is normally distributed in the
Wasserstein space,

W ∼ N (µ, σ2)

one could predict the probability of a distribution belonging to the ground
truth by the distance to the mean of the ground truth. An estimation of the
ground truth mean and standard deviation is obtained by the mean Wµ(AQL)
and standard deviation σAQL of distances within the comparison group. Ac-
cording to this, the probability of a new sample belonging to ground truth can
be estimated by its deviation from the ground truth mean. For simplification,
we express the deviation of the AQL from the mean of the comparison group
Wµ(AQL) in the number of sigma deviations σAQL which is also called z-score.
The probabilities of samples with a certain z-score are straightforward:

P (|X − µ| ≥ σ) = 0.32
P (|X − µ| ≥ 2σ) = 0.04
P (|X − µ| ≥ 3σ) = 0.003

From Table 4.2, Table 4.7 and Table 4.11 we can now obtain the calculated z-
scores for the AQL. For simplification we round the z-scores to integers. For a
z-score of 0 we assign a probability of 100% and a z-score that is higher than 4
we assign 0%. The resulting probabilites are displayed in Table 4.12. Averaging
these probabilites would give us a probability of 58.66% that the AQL belongs
to the comparison group. However, this approach is simplified and requires
the satisfaction of many assumptions. In Figure 4.10 and 4.9 a visualization
of the probabilistic approach is displayed. The original configuration in 3D
was embedded into 2D by applying multidimensional scaling (MDS) [Kruskal,
1964].
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Lengths 100% 100% 100%
Elements 0% 4% 100%
Elements 32% 4% 32%
Inference-based 100% 32% 100%

Table 4.12: Z-scores of the AQL to the comparison group of AOL, MS-MARCO
Web Search and ORCAS for the different characteristics of the query logs
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Figure 4.9: Wasserstein distances of rank-size distributions of linguistic elements.
The distance matrix induces a configuration of the four distributions in R3. By
applying multidimensional scaling (MDS) [Kruskal, 1964], we obtain the visualized
embedding in R2. The white area corresponds to a point’s average distance dµ to
the comparison group that satisfies dµ < Wµ(AQL). A point’s location in one of
the colored areas satisfies Wµ(AQL) + n · σAQL ≤ dµ ≤ Wµ(AQL) + (n + 1) · σAQL
for n ∈ N0.
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Figure 4.10: Wasserstein distances of distributions of lengths. The distance matrix
induces a configuration of the four distributions in R3. By applying multidimensional
scaling (MDS) [Kruskal, 1964], we obtain the visualized embedding in R2. The
white area corresponds to a point’s average distance dµ to the comparison group
that satisfies dµ < Wµ(AQL). A point’s location in one of the colored areas satisfies
Wµ(AQL) + n · σAQL ≤ dµ ≤ Wµ(AQL) + (n + 1) · σAQL for n ∈ N0.
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4.4 Temporal-based Analysis
In this section, we aim at performing temporal-based comparisons of real-
world queries and queries of the AQL. To realize this, we select a set of Google
queries which we download from the tool “Google Trends”. We select two sets,
one with annual top queries and one with monthly top queries. As for the
annual top queries, we simply compare the top queries of Google Trends with
the AQL’s top queries. For the monthly top queries, we compare temporal
patterns of real-world queries and queries of the AQL. We expect monthly top
queries to be more volatile that annual top queries which is why we prefer
them for a comparison of temporal patterns. We carry out this comparison by
computing the temporal correlation of the queries’s popularity.

Google Trends

Before conducting the temporal comparison, we must select a set of queries
that we want to utilize for the comparison. In order to meet the constraints of
Google Trends (see Section 2.5), we select queries that are popular. Moreover,
we consider a sufficiently long time span for the comparison. Google Trends
offers to download the top 25 popular queries from a selected time span. We use
this option to create two sets of queries for our comparison. First, we consider
the annual top queries of Google and secondly the monthly top queries of
Google. For the annual top queries we perform a simple comparison to the
AQL’s annual top queries. For the monthly top queries, we compute temporal
correlations between the AQL and Google Trends.

4.4.1 Annual Top Queries
First, we consider annual top queries of Google and use them for comparisons.
We create a list of the annual top 25 from 2004 until 2022. 2004 is the earliest
year for which Google Trends provides data and 2022 is the latest year for
which the AQL contains queries. Similarly, we create a list of the annual top
25 queries from the AQL for the same time span. For this, we first filter the
AQL for queries that stem from Google and afterwards create the annual top
25. As a first comparison, we simply determine the intersection of the two
lists with respect to the year. That is, for each year we check if the top 25
queries of Google Trends are also present in the AQL’s top 25 queries. We
can observe that the intersection is quite small. In fact, only 7 queries out
of possible 475 queries are present in both respective top 25 annual queries.
The queries are facebook (2 times), google (2 times), youtube (2 times) and
yahoo. This indicates that the distribution of Google queries in the AQL is
not very similar to the real distribution of Google queries.
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4.4.2 Temporal Correlation
Secondly, we consider monthly top queries of Google. For this analysis we
attempt to assess the similarity of temporal patterns between queries from
Google and the AQL. We choose monthly top queries because we expect
monthly top queries to be more volatile than annual top queries. Since there
are lots of duplicates in the monthly top queries, we need to create a ranking
of the monthly top queries. By this, we can compare the most popular queries
of the monthly top queries. To do this, we first create a list of the monthly top
25 queries from Google from 2004 until 2022. For each month, we obtain a list
of the top 25 queries. We then create a ranking of theses queries by employ-
ing reciprocal rank fusion [Cormack et al., 2009]. Reciprocal rank fusion is a
method to combine multiple ranked lists into a single ranking. Given a set I
of items to be ranked and a set R of rankings, the RRF-Score is computed by

RRF (i ∈ I) =
∑
r∈R

1
k + r(i) (4.3)

where k is a constant (usually set to 60) and r(i) is the rank of item i in ranking
r. The method assigns a score to each item in the list based on its positions
in the original lists. The score is calculated as the reciprocal of the rank, so
that higher-ranked items receive higher scores. The final score for each item
is then computed by summing the scores from all lists. We feed all monthly
top 25 Google queries from 2004 until 2022 into the RRF-Score function to
obtain a final ranking of the top 25 monthly queries. From this, we obtain the
following ranking:

1. google

2. yahoo

3. weather

4. youtube

5. hotmail

6. facebook

7. gmail

8. news

9. you

10. ebay

11. amazon

12. games

13. free

14. twitter

15. translate

16. mp3

17. maps

18. msn

19. fb

20. mail

21. instagram

22. map

23. face

24. video

25. juegos

Measuring Query Frequencies in the AQL

We then search these queries in the AQL and measure their frequency over
time. We achieve this by applying the map_batches() API-call to first fil-
ter the AQL’s queries for the considered top queries and secondly to map
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the timestamps of the queries into the format (YYYY-MM). Then, we apply
the groupby() API-call to group by queries and timestamp. Thereon, we call
a count() to get the count of each query per month. The result is a data set
with the counts of each query per month. In case a query is not present in the
AQL during a specific month between 2004 and 2022, we set the count to 0.
Eventually, we get a list of queries with their counts per month. In order to
obtain the popularity of a query in a specific month, we divide the counts of
each query by the sum of all counts of the present Google queries in the AQL
in that month. This gives us a relative frequency of each query in that month
which represents its popularity. Since the data of Google trends is projected
to the scale [0,100], we also scale the relative frequencies of the AQL to the in-
terval [0,100]. After this, we can proceed to compute the temporal correlation
of the queries between the AQL and Google Trends.

Computing Temporal Correlations

To assess the similarity of the temporal patterns, we compute the temporal
correlation of the queries between the AQL and Google Trends. Given two
queries q and p, their respective frequency functions Xi,q and Xi,p with d
time steps, their mean µq and µp and their standard deviation σq and σp,
then, according to Chien and Immorlica [2005], their temporal correlation is
computed by:

ρq,p = 1
d

∑
i

(
Xi,q − µq

σq

)
·
(

Xi,p − µp

σp

)
(4.4)

The correlation coefficient ρq,p indicates the strength and direction of the linear
relationship between the two queries’ frequency functions. The value of ρq,p

ranges from -1 to 1, where -1 indicates a perfect negative correlation, 0 indicates
no correlation and 1 indicates a perfect positive correlation. Since the time
spans are aligned, we are looking only for positive correlations as an indicator
of similarity. We compute the temporal correlation for each query in the
AQL with respect to its counterpart in Google Trends. In Table 4.13 we
display the resultig correlation coefficients. The table shows that most queries
have a positive correlation with their counterpart in Google Trends, but the
correlation coefficients are mostly very low. In addition, there are also some
queries with a negative correlation. To get a visual impression of the similarity,
we plot the two time series that refelct the highest correlation.
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# Query ρq,p # Query ρq,p # Query ρq,p

1 google 0.22 2 yahoo 0.16 3 weather 0.24
4 youtube 0.17 5 hotmail 0.01 6 facebook 0.04
7 gmail -0.02 8 news 0.01 9 you 0.09

10 ebay 0.07 11 amazon 0.20 12 games -0.04
13 free -0.11 14 twitter 0.27 15 translate 0.40
16 mp3 -0.01 17 maps 0.06 18 msn 0.11
19 fb 0.17 20 mail 0.19 21 instagram 0.28
22 map -0.06 23 face 0.25 24 video 0.01
25 juegos 0.09

Table 4.13: The table displays the resulting correlation coefficients of the temporal
popularity. For a given query q in the AQL, the correlation coefficient ρq,p is com-
puted with respect to its counterpart p in Google Trends. The table shows that most
queries have a positive correlation with their counterpart in Google Trends, but the
correlation coefficients are mostly very low. In addition, there are also some queries
with a negative correlation, indicating that the temporal popularity of queries is
substantially different between the AQL and Google Trends.
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Figure 4.11: The figure shows temporal popularity of the queries “translate”,
“instagram”, “twitter” and “face” in the AQL and Google. We consider these 4
queries because they have the highest correlation coefficients, showcasing that even
the highest correlated time series are quite different.
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Chapter 5

Discussion

In this chapter we briefly discuss the results of the three parts structure-related,
inference-based and temporal-based analysis. We summarize the results and
give an outlook on future work.

Structure-related Analysis
The structure-related analysis shows that the AQL exhibits similar distribu-
tions especially for the rank-size distribuitions of linguistic elements. In this
regard, the AQL fits to the comparison group sinc its mean Wasserstein dis-
tance is smaller than the mean Wasserstein distance of the comparison group.
Concerning length-related measurements of linguistic elements we can observe
rather dissimilar distributions. For all considered length-related measurements
the AQL exhibits a higher mean Wasserstein distance than the comparison
group. Especially the distribution of characters per query seems anomalous.
Moreover, the top queries of the AQL are quite different from the top queries
of the AOL, which is our only reference point in this regard. It is striking that
the most popular queries in the AQL seem quite random and are even hard to
interpretate whereas the top queries of the AOL are easy to understand and
make sense. For the top words in turn, the AQL is arguably similar to the
comparison group. We can detect an average intersection of 9 words of the
top 25 words between AQL and the comparison group. However, the average
intersection of top words within the comparison group is even higher with 12
words. As a last aspect, we analyzed the presence of search operators in the
query logs. However this comparison lacks meaningfulness as search operators
were barely found in the comparison group. The absence of search operatos
in the comparison group is due to preceding filtering processes during data
generation.

49



CHAPTER 5. DISCUSSION

In summary, one could argue that similrities were found in the structure-
related analysis, but the AQL is rather not on par with the comparison group.

Inference-based Analysis
The inference-based analysis shows that the AQL exhibits similar distributions
especially for its query intent and question distributions. In this case, a lower
Wasserstein distance than the comparison group was found. Concerning the
distribuition of PII entities, we can observe rather dissimilar distributions.
The AQL exhibits a higher mean Wasserstein distance than the comparison
group. Summarizing the results, we can argue that the AQL is similar to the
comparison group since it matches the distributions of the comparison group
in two of the three cases.

Temporal-based Analysis
The temporal-based analysis shows that the AQL exhibits a very different
temporal query popularities compared to the comparison group. From the
list of top 25 monthly google queries, we could find overall low correlations
of temporal patterns between AQL queries and google queries. The highest
found correlation is 0.4 which is not significant. the correlation of most query
popularities are around 0, indicating dissimilar temporal patterns. Regarding
the annual top queries, we could observe only a tiny intersection of AQL queries
and google queries.

Future Work
In this work we have characterized queries by structural features, temporal cor-
relations and some prevalent taxonomies. To capture even more information of
queries, especially semantic information, one could employ sentence embedding
models that are used for semantic search. These models have shown to create
meaningful representations of text semantics and could be used to compare
embedding distributions of the AQL with the comparison group. This may
be done by measuring Wasserstein distances or one could perform clustering
algorithms on the embeddings to detect present topics in the query logs.
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