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Abstract

This work describes the design and evaluation of a conditional independence
test for categorical data towards causal discovery. Conditional independence
(CI) testing is at the crux of a causal discovery framework. Constraint-based
causal discovery algorithm suite such as PC (Spirtes et al. [2000]), PCMCI
(Runge et al. [2019]), PCMCIplus (Runge [2020b]) and LPCMCI (Gerhardus
and Runge [2020]), all use CI tests to infer causal relations from purely ob-
servational data. The theoretical performance of these algorithms is usually
measured by assuming an ’oracle’ CI which readily has the knowledge of de-
pendence or independence. However, in practice this is not available and the
performance of the causal discovery algorithm heavily depends on the perfor-
mance of the CI test under different distributions of the data. Therefore the
design of a calibrated CI test is paramount. Here, particular focus is on the
case of categorical data and a test is presented based on conditional mutual in-
formation (CMI) combined with a local permutation scheme - CMISymbPerm.

The test is formulated as a hypothesis test of independence - X |= Y | Z
while any or all of the variables may be multivariate. The test is evaluated
using a Bayesian Network with link strength as a data generating process and
numerical experiments are run over different parameter configurations from
50 upto 2000 samples, number of symbols upto 6 and dimensions of Z up
to 4. The experiments demonstrates that the test reliably approximates the
true null distribution. Numerical experiments also include the comparison of
CMISymbPerm with G2 test statistic which approximates the null as a χ2 dis-
tribution. Results show that CMISymbPerm and G2 converge in type I error
for large samples. The permutation scheme grows O(cn) in time complexity
with number of samples as compared to G2 O(1). CMISymbPerm should be
preferred for lower sample sizes, larger dimensions and higher number of sym-
bols, while G2 should be preferred for larger sample sizes or when time is a
constraint. The PC algorithm with partial correlation test is then applied on
Open Academic Graph 2.1 (OAG [2020]) to investigate causal links in Biblio-
metrics data of continuous variables.

The work on categorical CI testing is heavily based on CMIknn (Runge
[2018]), a non-parametric test for continuous data. All the methods imple-
mented are contributed as part of the package TIGRAMITE 1.

1https://github.com/jakobrunge/tigramite
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Chapter 1

Introduction

1.1 Motivation
The field of causality formally studies the notion of causation and causal re-
lationships amongst phenomena. Causal inference, specifically observational
causal inference concerns with discovering and inferring causal relationships in
the data generated by a phenomena of interest. The notion of causation goes
a step beyond correlation 1, which so far has been the foundational principle
behind most machine learning algorithms. But, as with the popular phrase
’correlation does not imply causation’, it is important to differentiate flow of
association (correlation) and causation when modeling a phenomenon from
observational data. Analysis using purely correlation based estimates may
lead to biases as the differences may be due to a third factor (confounder)
or the sampling itself may be biased or inconsistent (selection bias). Causal
inference provides the necessary scientific framework to perform such analyses
and infer causal structures that generated the data, and consequently - how
actions, interventions and treatments affect outcomes of interest. These ideas
are formally studied under Causal Discovery and Cause-Effect estimation re-
spectively. This has been widely applied in numerous fields. In epidemiology
- how effective a vaccine is in curing a disease or if a new drug is indeed the
cause of a side effect and not a pre-existing medical condition. In advertising -
if a change in website’s functionality and color scheme brought more customer
engagement. In economics - if a new economic policy with a target at middle
class households increased their purchasing power. Causal inference enables
the discovery of such key insights.

1A more precise term is ’association’ since it is a general term that defines all statistical
dependencies. Here, the terms are interchangeably used.
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CHAPTER 1. INTRODUCTION

The importance of causal inference is particularly evident in the case of
Simpson’s paradox - a statistical phenomenon where an association between
two variables in a population emerges, disappears or reverses when the pop-
ulation is divided into subpopulations. Consider the example in Table 1.1.
Say, a decision has to be made on prescribing a treatment (A/B). The data
in Table 1.1 contains mortality rate (Y ) based on specific treatment (T ) given
to a population with the severity of the condition (C). The goal is to make
a decision on choice of T that reduces Y considering C. If the total effect
is looked at, the decision to choose Treatment A is obvious considering lower
mortality rate. But, when the data is looked at within subpopulations, the
choice of Treatment B is more obvious. This is caused by unequal weighting of
the data within different sample sizes. This can be well explained by looking
into the two different causal structures in Figures 1.1 and 1.2, both generat-
ing the same data in the Table 1.1. In Figure 1.1, the treatment B is chosen
since the condition influences both the mortality rate and the treatment, while
in Figure 1.2, the treatment influences both the outcome and the condition
(say longer wait times with Treatment B worsens the condition), in which case
Treatment A is preferred. Therefore, the right decision highly depends on the
underlying causal structure and not on the observational data alone. This
analysis is particularly important in the field of epidemiology where the cost
of a decision involves risks to human lives (Neal [2020]) .

Previously such a causal analysis was done by means of a randomized con-
trolled trial, proposed by Wright [1921]. Here, a group is randomly split into
control and treatment groups where only the latter is subjected to some treat-
ment (also called intervention). Then, measurements are taken and if the
measurements are significantly different between the two groups, then one can
isolate that the treatment is indeed the cause of the measured changes in the
variable. But these studies may be expensive, unethical, time consuming and
in many cases infeasible - for example, in the case when the group has to be
re-treated going back in time. Pearl [1988] revolutionized the field by intro-
ducing formal mathematical notions to causality (Pearl [2009]) which made
such analyses possible circumventing the issues mentioned before. The con-
cept of Structural Causal Models together with the ideas form Probabilistic
Graphical Models paved way for the suite of algorithms in Causal Discovery
and Cause-Effect estimation.

1.1.1 Summary

The suite of causal discovery algorithms reconstruct the underlying casual
structure as a Directed Acyclic Graph (DAG) which entails a joint probability
distribution. The algorithms are built on assumptions, specifically - Markov

2



CHAPTER 1. INTRODUCTION

Table 1.1: Simpson’s paradox

Condition

Mild Severe Total

Treatment A 15% (210/1400) 30% (30/100) 16% (240/1500)
Treatment B 10% (5/50) 20% (100/500) 19% (105/550)

C

T Y

Figure 1.1: Causal Structure 1

equivalence, faithfulness and minimality (Peters et al. [2017]). Under the as-
sumption of faithfulness, finding sets of random variables that are independent
of each other given a conditioning set is equivalent to being d-separated in the
DAG. The d-separated variables are then used to construct a causal graph by
removing links and using orientation rules. Hence, an essential part of finding
d-separated variables is testing independence. This is then formulated as a hy-
pothesis test of conditional independence (CI) - X |= Y | Z. The CI test needs
to be well calibrated in order to then calibrate the estimated causal graph.
In this endeavor, this work proposes the design of a CI test - CMISymbPerm
for categorical random variables and evaluates it using Bayesian Network as
a SCM that generates ground truth data. We also compare with other well
established method such as G2 test statistic. Finally, we apply the causal
discovery algorithm in discovering causal links in Open Academic Graph.

In the next section we introduce formally categorical data, hypothesis test-
ing, evaluation metrics used as well as the PC algorithm. Chapter 2 describes
the synthetic data generating process, specifically structural causal models
which encodes the one way causal relationships amongst variables. We then

CT

Y

Figure 1.2: Causal Structure 2
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CHAPTER 1. INTRODUCTION

formally define Bayesian Networks and Causal Bayesian Networks with im-
portant distinctions between them. We then introduce link Strength - η as a
parameter which controls the effect size in case of dependence and also auto-
matically generates conditional probability tables which helps expert elicita-
tion.

In Chapter 3 we define the CMISymbPerm - An information theoretic de-
pendence measure with a permutation scheme for generating the null distri-
bution and the G2 test statistic. In Chapter 4 we evaluate the performance
of permutation scheme in null distribution approximation. The chapter also
includes a comparison of the proposed CI test with G2 test statistic. In Chap-
ter 5, we look into Bibliometrics, a study of scientific publications. Here, we
apply the causal discovery algorithm on data from Open Academic Graph 2.1
to discover causal links amongst features like h-index, number of publications,
number of citations and so on. Finally, in chapter 6 we conclude with a brief
on our findings and provide an outlook into further work.

1.1.2 Categorical data

A categorical random variable is a random variable which can take on values
from a predefined set of categories or symbols. Each sample in a categorical
data then belongs to a category that the random variable can take. There are
no relationships between the categories except that they can be taken up by
a random variable. Examples for a categorical random variable are different
countries in the world, or different blood types. In the rest of the work, we use
the word categories and symbols interchangeably.

1.1.3 Hypothesis testing and errors

In statistical test theory, a hypothesis test helps infer whether the data un-
der consideration supports a particular hypothesis. The probabilistic decisions
help make inferences about the population that the samples were derived from.
Hypothesis test is foundational for many fields - communications, signal pro-
cessing, psychology, economics, biology. A statistical error (Wikipedia [2022c])
is part of hypothesis testing. The test compares two hypotheses, the null hy-
pothesis, denoted by H0 and the alternate hypothesis, denoted by H1. This
is conceptually similar to the judgement in a court trial. The null hypothesis
corresponds to the position of the defendant: is presumed to be innocent until
proven guilty. So, the null hypothesis is presumed to be true until the data pro-
vide convincing evidence against it. The alternative hypothesis corresponds
to the position against the defendant. In the hypothesis test of conditional
independence, the null and alternate are:

4



CHAPTER 1. INTRODUCTION

Detected

Actual

P(H1 is true) N(H0 is true)

P
′

True
Positive
(1-β)

False
Positive
(α)

N
′

False
Negative
(β)

True
Negative
(1-α)

Table 1.2: Confusion matrix

H0 : X |= Y | Z

H1 : X ⊥̸⊥ Y | Z

H0 is the null hypothesis that X and Y are independent conditioned on
Z, and H1 is the alternate hypothesis that X and Y are not independent
conditioned on Z, implying dependence.

If the result of the test corresponds with reality, then a correct decision has
been made. However, if the result of the test does not correspond with reality,
then an error has occurred. There are two situations in which the decision is
wrong. The null hypothesis may be true but we reject H0. On the other hand,
the alternate hypothesis H1 may be true, whereas we do not reject H0. These
are formally defined as type I error and type II errors.

A positive result "true" corresponds to rejecting the null hypothesis, while
a negative result corresponds to failing to reject the null hypothesis (or ac-
cepting the null hypothesis). Thus, "false" means the conclusion drawn is
incorrect. Consequently, a type I error is equivalent to a false positive, and a
type II error is equivalent to a false negative. In terms of the hypothesis test
of independence, the type I error is then wrongly concluding conditional inde-
pendence, and type II error is incorrectly detecting conditional independence.
The type I error is usually denoted by α, also called the significance level,
while the type II error is denoted by β. The power of the test, or probability
of a ’true positive’, i.e, correctly rejects H0 when the alternate hypothesis H1

is true is then 1 − β. Consequently, 1 − α is then the probability of a ’true
negative’, i.e, correctly not rejecting the null hypothesis. The descriptions are
summarized in the confusion matrix 1.2.

5



CHAPTER 1. INTRODUCTION

Given that the null hypothesis is true, when the probability of obtaining
a test statistic as extreme as the one obtained is lower than α, then the test
is said to be calibrated. This probability under the null is then defined as
p-value.

1.1.4 Metrics for evaluation

A major design principle behind statistical hypothesis testing is that we try to
control type I error rate. When we fix α we are attempting to ensure that when
we repeat the test over many samples, at most α of true null hypotheses are
incorrectly rejected. Thus, a controlled hypothesis test has a type-I error at
most α. In other words, the probability of making a type I error is represented
by α, which is the p-value below which the null hypothesis is rejected. A
secondary goal of hypothesis testing is to minimise β - the type II error rate.
Since power is defined as 1 − β, we look to maximise the power of the test
which is equivalent to minimising the type II errors. Therefore, in order to
quantify the performance of the hypothesis test at α, we look at evaluation
metrics that provide a way to quantify the trade offs between the type I error
and the power of the test given a significance value or threshold. We look
at the evaluation metric - True Positive Rate (TPR) and False Positive Rate
(FPR) (Navarro [2015]).

TPR and FPR Both metrics are derived from the confusion matrix in table
1.2. The true positive rate (TPR) is the total number of correctly detected
positive results out of all the positive samples performed in a test, also called
the sensitivity.

TPR =
True Positive

True Positive+ False Negative

The false positive rate (FPR) is the total number of incorrectly detected
positive results out of all the negative samples performed in a test, also denoted
by 1 - specificity.

FPR =
False Positive

False Positive+ True Negative

Both the metrics evaluate with respect to a given significance value α over
varying parameters of sample size, number of symbols and dimensions of the
conditioning set.

6



CHAPTER 1. INTRODUCTION

1.2 Causal Discovery from Observational Data
Causal Discovery or structure learning or structure identification is a technique
that infers the causal relationships amongst random variables from observa-
tional data. These causal relationships are represented by Directed Acyclic
Graphs. We specifically focus on constraint-based causal discovery algorithm -
The PC algorithm (Spirtes et al. [2000]). The is built on the principle that the
structure of the causal graph imposes constraints in the observational distribu-
tion, e.g. conditional independencies. Detecting these constraints can then be
used to infer the causal graph. In order to build this algorithm, we first define
some required graphical ideas and necessary assumptions (Gerhardus [2021],
Neal [2020]).

d-separation In order to define d-separation, we first define what a ’blocked
path’ is in graphical models. A path between nodes X and Y is blocked by a
(potentially empty) conditioning set Z if either of the following is true:

1. Along the path, there is a chain · · · → W → · · · or a fork · · · ← W →
· · ·, where W is conditioned on (W ∈ Z).

2. There is a collider W on the path that is not conditioned on (W /∈ Z)
and none of its descendants are conditioned on (de(W ) ⊈ Z).

The unblocked path is then a path that is not blocked where association
flows.

Definition 1 (d-separation) Two sets of nodes X and Y are d-separated by
a set of nodes Z if all of the paths between any node in X and any node in Y
are blocked by Z.

If all the paths between X and Y are blocked, then we say that X and
Y are d-separated. And if there exists at least one path between X and Y
that is unblocked, then we say that X and Y are d-connected. The notation
X ▷◁ Y | Z is used to denote d-separation in a graph G.

Assumption 1 (Data generation by a Structural Causal Model) We as-
sume that a structural causal model C exists that generates the observational
distribution P as well as interventional distributions.

Assumption 2 (Acyclicity) The structural causal model C that generates
the data is Acyclic.

7



CHAPTER 1. INTRODUCTION

Assumption 3 (Markov Assumption) Given that P , a joint probability
distribution over X and Y is Markov with respect to a graph G, if X and
Y are d-separated in G conditioned on Z, then X and Y are independent in P
conditioned on Z. This is denoted as, X ▷◁ Y | Z =⇒ X |= Y | Z

Assumption 4 (Faithfulness) X |= Y | Z =⇒ X ▷◁ Y | Z. This assump-
tion helps infer d-separation in the graph from independencies in the distribu-
tion and consequently infer causal graphs.

Assumption 5 (Causal Sufficiency) There are no unobserved confounders
for any variables in the graph.

Under the above assumptions, we can partially identify the causal graph,
CPDAG (Completed Partially Directed Acyclic Graph). Different graphs within
the CPDAG can entail the same probability distribution. These graphs are
said to be Markov equivalent. Two structural qualities that we can use to dis-
tinguish graphs from each other are skeletons and colliders. A graph’s skeleton
is the structure one gets when all of its directed edges are replaced by undi-
rected edges. Two graphs are Markov equivalent if and only if they have the
same skeleton and same colliders. A PC algorithm learns the CPDAG.

1.2.1 The PC causal discovery algorithm

A PC algorithm starts with a complete undirected graph, where all the nodes
are adjacent to each other. In the first phase, it uses conditional independence
tests of the form (X |= Y | Z) to identify the skeleton. In the second phase,
the colliders are identified and oriented. The third phase builds on identified
colliders to further orient the other edges using logical rules. The three phases
of a PC algorithm are shown in algorithms 1, 2 and 3 (Runge [2020a]).

8



CHAPTER 1. INTRODUCTION

Algorithm 1 The PC causal discovery algorithm - Skeleton discovery
PC algorithm Phase 1/3: Skeleton discovery.
Require: Conditional independence information among variables in X.

Form complete graph C with edges o-o; define adj(Xj) for all Xj in C.
p = 0

while any adjacent pair (X i, Xj) in C satisfy |adj(Xj) \Xi| ≥ p do

Select new ordered and adjacent pair (X i, Xj) with |adj(Xj) \Xi| ≥ p

while (X i, Xj) are adjacent and not all S ⊂ adj(Xj) \Xi with |S| = p have
been considered do

Choose new S ⊂ adj(Xj) \Xi with |S| = p

if X |= Y | S then

Delete X i o-o Xj from C

Store sepset(X i, Xj) = S

end if

end while

p = p + 1

Compute adj(Xj) for Xj in C

end while
return C, sepset

Algorithm 2 The PC causal discovery algorithm - Orienting colliders
PC algorithm Phase 2/3: Orienting colliders.
Require: Skeleton C, sepset.

for All Unshielded triples X i o-o Xk o-o Xj with non-adjacent (X i, Xj in C
do

if Xk /∈ sepset(Xi, Xj) then

Orient X i o-o Xk o-o Xj as X i → Xk ← Xj

end if

end for
return C, sepset

9



CHAPTER 1. INTRODUCTION

Algorithm 3 The PC causal discovery algorithm - Apply orientation rules
R1-R3
PC algorithm Phase 3/3: Apply orientation rules R1-R3.
Require: Partially oriented C. Exhaustively (repeat until no further orienta-
tions can be made) apply following rules

1. Orient X i → Xk o-o Xj as X i → Xk → Xj whenever (X i, Xj) are
non-adjacent

2. Given X i → Xk → Xj and X i o-o Xj : Orient X i o-o Xj as X i → Xj

3. Orient X i o-o Xj as X i → Xj whenever there are two chains X i o-o Xk

→ Xj and X i o-o X l → Xj such that Xk and X l are non-adjacent

return C, sepset

1.3 Related Work
Here, we survey some of the approaches towards categorical data generating
process (DGP) and CI testing. In DGP [2022], the authors generate categorical
variables by transforming the continuous variables with an internal covariance
structure. Here, the numerical values are min-max scaled and treated as prob-
abilities. These values are then used to draw from multinomial distributions.
The likelihood of a category depends on the variance of a continuous variable.
However, this data discretization may lead to information loss. This method
also assumes that the continuous dependent variables are all readily available.
This can be a limitation when generating categorical time series. In Huegle
et al. [2022], the authors introduce a mixed additive noise model as a data
generating process. The model can generate mixed discrete-continuous as well
as nonlinear data. They formalize it as a functional causal model in order to
introduce the notion of causal relationships amongst variables. The categorical
DGP involves a simple modulo over the number of symbols. This can be quite
limiting to generate varying distributions according to complexity of domains.
Log-linear models and Markov Chains are other modeling techniques to gen-
erate multivariate categorical data. But, they do not provide the mechanism
to encode one way causal relationships which the Bayesian Networks help ad-
dress. The extension to Dynamic Bayesian Network can also generate causal
models for time series.

In Tsagris [2017a], the author proposes a conditional independence test of
two variables with categorical data using Poisson log-linear models. The au-
thor considers the G2 statistic as test of conditional independence with a time

10



CHAPTER 1. INTRODUCTION

optimization on generating contingency tables for observed and expected fre-
quencies using a Poisson log-linear model. In Tsamardinos and Borboudakis
[2010a], the authors take a similar approach as ours to compare permutation
based exact test with the G2 asymptotic test. They propose semi-parametric
permutation tests that improves the time complexity of a conventional per-
mutation test. They also evaluate the improvement in learning the Bayesian
network that models the observed data. Our approach in CMISymbPerm in-
cludes the information theoretic based dependence measure along with the
permutation scheme.

11



Chapter 2

Data generating process

This section defines a formal model towards synthetic data generation. This
is intended as a ground truth model to benchmark the designed conditional
independence test. Here, particular focus is on the generation of categorical
data. A number of standard categorical data models (statistical models) are
surveyed that can be interpreted as a causal model (assuming causal assump-
tions and causal mechanisms Peters et al. [2017]) - modulo, log linear, Markov
Chain etc. This additionally requires the formal definition of structural causal
models which provide the framework to encode causal relationships leveraging
the above models within functional causal models (Pearl [2009]).

A causal model differs from the classic probabilistic model in that it en-
codes causal relationships amongst variables, allowing for interventions. The
emphasis is on the ability to generate observational data that follows complex
distributional models based on expert knowledge and intuition. Particular fo-
cus here is on Bayesian Network (Koller and Friedman [2009]), a probabilistic
graphical model which provides flexibility to elicit intricate expert knowledge
through conditional probability tables (CPTs). A causal Bayesian Network
is then a case of Bayesian Network that additionally encodes statistical and
causal assumptions by allowing for interventions. It inherits most of the prop-
erties from a Bayesian Network. This is explained in the later section on
Bayesian Networks in detail.

2.1 Structural Causal Models
A formal method of describing and encoding causal relationships are Struc-
tural Causal Models (SCMs) or Structural Equation Models (SEMs) (Peters
et al. [2017]). An SCM also describes the data generating process. The
SCM entails a joint distribution over all the observables. A structural causal
model C := (S,PN) consists of a collection S of d (structural) assignments
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CHAPTER 2. DATA GENERATING PROCESS

Xj := fj(PAj, Nj), j = 1, 2, ...d,, where PAj ⊆ X1, ..., Xd are called parents
of Xj, and a joint distribution PN = PN1 , ..., PNd

over the noise variables are
jointly independent.

The variables in PAj cause Xj through a functional mechanism (Pearl
[2009]) fj while Nj accounts for all the background factors outside the model.
The joint independence of the noise variables is sufficient to describe the causal
relationship among all variables.

A Causal graph is then G(C), a directed graph with set of nodes X and
directed edges from each variable in PAj to Xj for all j, representing causal in-
fluences. Structural Causal Models can help answer counterfactual statements
and cause-effect estimation.

2.2 Bayesian Network - A categorical data model
A Bayesian Network (BN) is a graphical model that represents a set of vari-
ables and their conditional dependencies via a Directed Acyclic Graph (DAG)
(Koller and Friedman [2009]). In a DAG G, each node represents an event or
a random variable and each directed edge between nodes encodes the causal
influence of one variable over the other. The dependencies are quantified by
conditional probabilities for each node given its parents in the network. A
Bayesian Network typically models associations through a joint probability
distribution - the probability of every possible event as defined by the values
of the parents. The joint distribution of p nodes, where each node xi has
parents pai is,

P (x1, x2, ..., xp) =
∏
i

P (xi|pai)

The Bayesian Network achieves compactness in complexity by factoring the
joint distribution into local, conditional distributions for each variable, given
its parents. This is the property of the Local Markov Assumption,

Assumption 6 (Local Markov Assumption) Given its parents in the DAG,
a node X is independent of all its non-descendants.

In the example in figure 2.1 below, the local Markov assumption factorizes
the joint probability distribution as,

P (x1, x2, x3, x4) = P (x1)P (x2|x1)P (x3|x2, x1)P (x4|x3)

13
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X1

X3

X2

X4

Figure 2.1: An example of a Bayesian Network with 4 random variables. X3 has
parents X1 and X2.

2.2.1 Causal Bayesian Networks

Bayesian Networks are often used to represent causal relationships, but this
need not be the case. A directed edge from nodes XA to XB does not require
that XB be causally dependent on XA. The two Bayesian Networks, x → y
→ z and x ← y ← z are equivalent, imposing the same conditional indepen-
dence requirements. Only changing or intervening on y reveals the two graphs.
Therefore, a causal Bayesian Network has the requirement that the relation-
ships be causal. A variable is actively caused to be in a given state and the
probability density function changes to that obtained when the links from the
parents of that node are removed, and setting the variable to the caused value.
This is formally described in Pearl [2009] as below.

Let P (v) be a probability distribution on a set V of variables, and let Px(v)
denote the distribution resulting from the intervention do(X = x) that sets a
subset X of variables to constants x. Denote by P∗ the set of all interventional
distributions Px(v), X ⊆ V , including P (v), which represents no intervention
(i.e, X = null). A DAG G is said to be a causal Bayesian Network compatible
with P∗ if and only if the following three conditions hold for every Px ∈ P∗ :

1. Px(v) is Markov relative to G

2. Px(vi) = 1 for all Vi ∈ X whenever vi is consistent with X = x;

3. Px(vi|pai) = P (vi|pai) for all Vi /∈ X whenever pai is consistent with
X = x, i.e each P (vi|pai) remains invariant to interventions not involving
Vi.

The above definition imposes constraints on the interventional space P∗
that permit us to encode the vast space economically, in the form of a single
Bayesian Network G. These constraints enable us to compute the distribution
Px(v) resulting from any intervention do(X = x) as a truncated factorization,
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Px(v) =
∏

i|Vi /∈X

P (vi|pai)

for all v consistent with x, which follows from and implies conditions 1-3, thus
justifying the family deletion procedure on G.

2.3 Link Strength
A Bayesian Network encodes the causal beliefs of an expert’s knowledge by
means of Conditional Probability Tables (CPTs). CPTs relate the state dis-
tributions of the child nodes to that of their parent nodes by means of entries
for all combinations of parents and children. The causal links can be encoded
by eliciting probabilities of the CPT relating each parent and child. But, the
size of the CPT grows exponentially both with the number of parents and the
number of symbols for each child. If a child node has p parent nodes, and both
the child node and the parent node have m symbols each, the total number of
entries in the CPT is mp+1. Even for moderate dimensions, say p=3 and m=5,
the size of the CPT is already 625 entries. Eliciting probabilities for relatively
large networks is then manually cumbersome. Therefore there is a need to
automate generation of CPTs. One approach is to generate random stochastic
matrices as CPT entries. Although they encode independence, the dependence
reflects in the measured strength only over large samples. This is especially
true when the number of symbols is higher requiring larger samples for better
representation of all symbols. This also has the drawback that it is hard to
control the effect size especially in presence of a confounder. There could be
an analytical approximation that quantifies the effect with this method which
is considered under future work.

The strength of the causal link can be parameterized providing an easier
way for the expert to encode causal beliefs. This section adapts the ideas in
Kokkonen et al. [2005] and proposes a single parameter link strength, η that
combines the ideas of Varis and Kuikka [1997] and the generalised Noisy-Or
model of Srinivas [1993] to derive the entire CPTs. η defined here ranges
between 0 to 1 as compared to −1 to +1 originally defined in Kokkonen et al.
[2005] and is given per link with the assumption that all the symbols are
equally likely. The complexity of the elicitation reduces from mp+1 to p. η
provides the means to control the effect size in order to test the effectiveness
of the CI test, especially in the case of dependence. Also, link strengths can be
particularly useful in eliciting causal beliefs where the knowledge of strengths
are only known relative to each other.
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The following properties are desired in the relationship between link strength
parameters and the resulting derived CPTs

1. η = 0 denotes the case when the child is independent of the parent.

2. η1 = η2 denotes both parents have equal effect on the child node.

3. When all η = 0, the CPT is non-informative, i.e. all probabilities are
equal to the inverse of the number of symbols in the child node.

Generalized Noisy-Or model with link strength

The generalized noisy-or model, in figure 2.2 derives the conditional proba-
bilities relating the symbols of the parent and the child nodes, where each
node may have arbitrary number of symbols. However this work assumes that
all parents and children have m symbols (this can be extended to arbitrary
number of symbols in future work). The symbol of each of n parents ui in
[ui]i=1,2,...,n is passed through a line failure probability matrix P (u

′
i|ui) repre-

sented by Ni in the schematic, each being a square matrix of size = m x m,
producing [u

′
i]i=1,2,...,n. The u

′ is then passed through F that does a weighted
average over the symbol indices of u′

i to produce P (x|u), where x is the child
node.

The P (u
′ |u) and F can be parameterized by aid of a single parameter link

strength η and is the only parameter required for each link. η is defined be-
tween 0 to 1 where 1 means strong influence while 0 means no influence. η
relates to P (u

′|u), F and P (x|u) as,

P (u
′

i(r)|ui(c)) =


1
m
+ ηi

(
1− 1

m

)
if r = c

1
m−1

[
1− 1

m
− ηi

(
1− 1

m

)]
if r ̸= c

(2.1)

When the η increases from 0 to 1, the diagonals of the CPT increases from
1/m to 1, and the remaining probability mass is distributed evenly over the
off-diagonal elements of the CPT. This is from the intuition that the parent is
likely to continue to retain its symbol with probability 1/m.

And the F as,
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u1
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u3

ui
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N1

N2

N3
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u
′
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u
′
i

u
′
n

F x

Figure 2.2: Schematic of the generalized Noisy-Or model.

F (u
′
) = x

(
ceiling

(
1∑
i ηi

∑
i

[ηiI(u
′

i)]

))
(2.2)

F (·) denotes the symbol of child node x, I(u′
i) is the numerical index of the

symbol u′
i, m is the number of symbols of the node. ceiling(.) is a roundup

function to the closest index. x(j) denotes the jth symbol of the child node x.
The symbols of the child node x relate to that of the parent nodes u,

P (x|u) =
∑

u′ :x=F (u′ )

P (u
′|u) =

∑
u′ :x=F (u′ )

∏
u′

P (u
′

i|ui) (2.3)

This means that we go through the search space of all permutations of
(u, u

′
) over m symbols and sum the joint probabilities of each permutation

that results in a category in x. The Algorithm to generate P (x|u) for a child
x given ui=1,2,...,n parents is described in algorithm 4.

Some changes from the Kokkonen et al. [2005] and issues to be considered
in future work

1. The η originally proposed is between -1 to 1, however this work only
considers between 0 to 1. Since the main intention of link strength was
to control the effect size in a CI test, η between 0 to 1 suffices.
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2. The ceiling(·) function in equation 2.2 is introduced in order to convert
the float argument into an integer index of the symbol. This will intro-
duce a bias towards the higher index.

Algorithm 4 Derive the CPT P (x|u)
Require: Given a child node x and parents ui=1,2,...,n with link strengths
ηi=1,2,...,n and each node having m symbols each

1. For each parent ui, generate P (u
′
i|ui) given m and ηi using equation 2.1

2. Generate all L = m2p permutations of (u, u′
)

3. For each permutation perm in L of (u, u′
), find xperm = F (u

′
)

4. Compute the joint probability P (u
′ |u) for each xperm with

∏
perm P (u

′
i|ui)

5. Compute the total probability P (x|u) =
∑

xperm
P (u

′ |u) for each symbol
of x
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Chapter 3

Conditional Independence Test

Conditional independence (CI) test concerns with the problem of testing in-
dependence between random variables X and Y accounting for the confound-
ing random variable Z, where all the variables are categorical and are either
uni-variate or multivariate in nature. We look at the general definition of
CI where the conditional probability mass function factorizes: p(X, Y |Z) =
p(X|Z) p(Y |Z). The CI test is usually formulated as a hypothesis test with
the null hypothesis representing independence and the alternate hypothesis
representing dependence,

H0 : X |= Y | Z (3.1)

H1 : X ⊥̸⊥ Y | Z (3.2)

Consider the case with n i.i.d tuples (Xi, Yi, Zi), defined in a high-dimensional
space (Xi×Yi×Zi) in Zdx ×Zdy ×Zdz . Conditional independence test statistic
T : X × Y × Z → R summarizes the evidence in the observational data with
respect to the H0 : X |= Y |Z with a real-valued scalar which is a dependence
measure. Its value from observed data, compared to a defined threshold (sig-
nificance level - α) under H0 then determines a decision of whether or not to
reject the null hypothesis H0. Hypotheses tests can fail in two ways:

1. Type I error : rejecting H0 when it is true.

2. Type II error : not rejecting H0 when it is false.

A significance value, α (usually at 0.05) provides the acceptable threshold
for type I error. When the type-I error is within α, the test is said to be
calibrated.
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3.1 Asymptotic and Exact tests
In hypothesis testing, one generally has two broad choices: an asymptotic test
or an exact test. In asymptotic tests, the properties of the estimator and
tests are evaluated approximately for large sample sizes (under the limit of
samples n → ∞). A p-value that is then calculated using an approximation
to the true distribution is called an asymptotic p-value. In exact tests, if the
null hypothesis is true, then all assumptions made during the derivation of the
distribution of the test statistic are met (Wikipedia [2022a]). Thus, a p-value
calculated using the true distribution is called an exact p-value. Using an exact
test provides a significance test that maintains the type I error rate of the test
at the desired significance level α of the test. In contrast, an approximate test
maintains the desired type I error only approximately. This approximation
may be made close to α by making the sample size sufficiently large. Thus, for
large sample sizes, the exact and asymptotic p-values are very similar, while
for smaller sample sizes they can be quite different and can lead to different
conclusions about the hypothesis of interest.

There are different types of categorical data tests available that can be
classified under the above two cases. Here, we name a few.

• Asymptotic tests

Likelihood ratio test - G2 test

Chi-square test (χ2)

Multinomial test

• Exact tests

Permutation test

Fisher exact test

Barnard’s exact test

Boschloo’s test

We choose one test from each case - G2 test from asymptotic class and Per-
mutation test from the exact class and evaluate the performance with respect
to a Bayesian Network used as a data generating process. We are particularly
interested in understanding the type I error control over number of symbols,
nsymbs and dimensions of Z, Dz.

The G2 is a general likelihood ratio test in the asymptotic class. Although
the χ2 test is most commonly used, G2 test approximates to the theoretical
chi-squared distribution better. It is being increasingly used for goodness-of-fit
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tests as well since it is less sensitive to small cell frequencies compared to χ2

test.
Permutation tests are a general class of re-randomization based exact tests.

They exist for any test statistic, regardless of whether or not its distribution
is known. Thus, one is always free to choose the statistic which best discrim-
inates between hypothesis - null and alternative. The only assumption that
permutation tests make is that the labels are exchangeable. They are usually
more computationally expensive as compared to an asymptotic method.

3.2 The Likelihood Ratio test
(Wasserman [2010]) The likelihood describes the extent to which the samples
provide support for any particular parameter value of a distribution. Higher
support corresponds to a higher value of a likelihood. The likelihood-ratio
test assesses the goodness of fit of two competing statistical models based on
the ratio of their likelihoods, specifically one found by maximization over the
entire parameter space and another found after imposing some constraint. If
the constraint (i.e., the null hypothesis) is supported by the observed data,
the two likelihoods should not differ by more than sampling error. Thus the
likelihood-ratio test tests whether this ratio is significantly different from one,
or equivalently whether its natural logarithm is significantly different from
zero.

Suppose that we have a statistical model with parameter space Θ. A null
hypothesis is that the parameter θ is in a specified subset Θ̃ of Θ. The alter-
native hypothesis is then that θ is in the compliment of Θ̃, i.e Θ\ Θ̃, denoted
by Θ̃c. The likelihood ratio test statistic for the null hypothesis H0 : θ ∈ Θ̃ is
given by,

λLR = −2 ln
supθ∈Θ̃L(θ)

supθ∈ΘL(θ)
= 2 ln

L(θ)

L(θ̃)
(3.3)

a ratio of the maximum likelihood estimate (MLE) and the MLE when θ
is restricted to lie in Θ̃

3.2.1 G2 test

G2 test of independence is a likelihood ratio test. It is also known as the
log-likelihood ratio test, or the G-test. It belongs to the class of asymptotic
tests of independence. We can derive the general formula for the G2 test
from the log-likelihood ratio in equation 3.3, where the underlying model is a
multinomial model (Wikipedia [2022b]). Suppose we have random variables
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X = (X1, X2, ..., Xn) and we consider a sample x = (x1, x2, ..., xn) where each
xi is the number of times an object i was observed, i.e, the entries of a contin-
gency table. The probability mass function for the multinomial distribution is
given by,

P (X1 = x1, X2 = x2, ..., Xn = xn) =
N !∏n
i=1 xi!

n∏
i=1

θxi
i (3.4)

where, xi are non-negative integers such that N =
∑n

i=1 xi is the total
number of objects observed. θi are constants with θi > 0 and

∑n
i=1 θi = 1.

This would be the likelihood function of L(θ̂) and L(θ̃).
Then, the test statistic in equation 3.3 is then,

2 ln

(
L(θ̂|x)
L(θ̃|x)

)
= 2 ln

(∏n
i=1 θ̂i

xi∏n
i=1 θ̃i

xi

)
(3.5)

For a multinomial model, the MLE of θ̂i given some data is defined by
θ̂i =

xi

n
and we may represent each null hypothesis parameter θ̃i as θ̃i =

ei
n

This in equation 3.5 leads to

2 ln
n∏

i=1

(
xi

ei

)xi

= 2
n∑

i=1

xi ln

(
xi

ei

)
(3.6)

(Tsamardinos and Borboudakis [2010a]) The general formula for G2 in case of
test of independence between X and Y is

G2 = 2
∑
xy

Nxy ln

(
Nxy

Exy

)
(3.7)

Nxy = observed frequencies of X = x, Y = y.
Nx = marginal total of X = x.
Ny = marginal total of Y = y.
N = Total sample size.

Exy =
NxNy

N
= Expected frequencies under the assumption of independence.

Two likelihoods are estimated - the likelihood of the observed frequencies
under a multinomial distribution, and the likelihood if it is assumed that row
and column classifications are independent. Twice the natural logarithm of this
ratio is equal to G2. Given the null distribution that the observed frequen-
cies result from random sampling from a distribution with the given expected
frequencies, the distribution of G2 is asymptotically distributed as chi-square
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(χ2) distribution with f = (|X| − 1)(|Y | − 1) degrees of freedom. In practice,
the observed and the expected frequencies are derived by constructing a con-
tingency table. The G2 is preferred over χ2 because it is less sensitive to small
cell frequencies (Finkler [2010]).

G2 test of conditional independence The above formula can be easily
extended to the case of conditional independence, X |= Y | Z, where Z can be
multivariate (Z1, ..., Zk). The test statistic is given by,

G2 = 2
∑
xyz

Nxyz ln

(
Nxyz

Exyz

)
(3.8)

Nxyz = observed frequencies of X = x, Y = y, Z = z, where z = (z1, ..., zk).
Nxz = marginal total of X = x, Z = z.
Nyz = marginal total of Y = y, Z = z.
N = Total sample size.

Exyz =
NxzNyz

Nz

= Expected frequencies under the assumption of independence.

The G2 components over each Z = z are added together to arrive at the
final statistic value. The degrees of freedom of the asymptotic χ2 distribution
is then f = (|X| − 1)(|Y | − 1)

∏k
i=1 |Zi|, where |X| denotes the number of

symbols that X can take.
The Chi-squared test is an approximation of the log-likelihood ratio on

which G2 tests are based on. G2 ≈ χ2 when the observed frequencies are close
to the expected frequencies. When the difference is large, the χ2 approxima-
tion begins to break down. Here, the effects of outliers in data will be more
pronounced, and this explains why χ2 tests fail in situations with little data.
For samples with reasonable size (1̃000), the G2 and χ2 tests will lead to the
same conclusions. However, the approximation to the theoretical χ2 distribu-
tion for the G2 test is better that the Pearson’s chi-square test. It is not hard
to show that G2 can also be expressed in terms of mutual information.

3.2.2 Sparse contingency tables

A contingency table records the multivariate distribution of two or more dis-
crete random variables in an N-dimensional matrix. Each cell represents a
joint outcome of all the variables and has an associated joint probability. We
assume that the underlying population for this contingency table is described
by a multinomial distribution. The G2 test analyses the deviation of these
observed frequencies from the expected frequencies to produce a test statistic
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that captures association between random variables and consequently indepen-
dence or dependence through a hypothesis test. One common issue is sparsity
(or zeros) in a contingency table. Sparsity can be classified into two types -
structural zeros and random zeros. A G2 test is valid only when the expected
frequencies for each cell are at least 5. Therefore, we need to account for
sparsity by applying corrections in order to use the test reliably.

A structural zero or a fixed zero is when it is impossible to observe values
for certain combinations of the variables. This can be a constraint from the
underlying physical process or structural causal model that produced the data.
A random zero or sampling zero is when the cell probability is positive but yet
no observations are present. This can be due to sampling variations or sparse
samplings as in the case of sensor data from field. Random zeros are typical
when sample sizes are low and/or when the dimension of the data is very high
and therefore not all cells in a contingency table are filled. The G2 test is not
valid in the case of structural zeros. Henceforth, assuming that there are no
structural zeros, we look into the correction when random zeros occur.

Correction A common heuristic applied is to reduce the degrees of freedom
by one for each expected cell count that is zero in a contingency table. This
comes from the intuition that if the expected cell count for a cell is zero,
then at least one of the marginals corresponding to that cell in the observed
table must be zero. This is only possible when all the entries in the observed
table corresponding to that marginal are zero. Therefore, this reduction in
degrees of freedom would adjust the shape of the χ2 null distribution by shifting
towards zero and avoid over acceptance of the null hypothesis H0 where H0 :
X |= Y |Z and therefore avoid inflated false negatives. This however only helps
in improving the power of the test. This is the heuristic used in our work. Say
random variable X has n symbols and random variable Y has m symbols each.
The degree of freedom dof = (n− 1) ∗ (m− 1). If a marginal corresponding to
a category in Y is zero, then the dof is reduced as dof = (n− 1) ∗ (m− 1− 1).

The above heuristic was suggested by Ku [1963], Bishop et al. [2007] and
is followed by Peter Spirtes and Boomsma [1996], Kalisch et al. [2012] and
by Tsamardinos and Borboudakis [2010a]. Although Neapolitan [2003] also
quotes the same heuristic referring to Peter Spirtes and Boomsma [1996], the
example (10.39 on page 601) seems to follow a slightly different variant of
reducing the degree of freedom by one for every observed zero count. This
falsely implies that the corresponding expected count is zero and would lead
to over rejection. Bishop et al. [2007] also note that an exact general rule
for calculating the reduction of degrees of freedom given cells with zero entries
seems not to be known. Baker et al. [1985] argue against reduction of degrees of
freedom. They argue that the expected value is a population parameter which
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is unaffected by the random zeros. Brzezińska [2015] surveys other heuristics
including a modification of the Yates’s correction for continuity (Yates [1934])
and variants of adding small values to each cell. There is also a need for
consideration when the frequencies are very small but non zero, producing
biased estimates.

3.3 CMISymbPerm - Conditional Mutual Infor-
mation based permutation test

Testing for conditional independence is particularly challenging when analyti-
cal expressions for null distribution are not available or are approximated only
for large samples as in G2. Here, we propose a design of an exact CI test based
on Conditional Mutual Information (CMI) combined with a local permuta-
tion scheme for generating the null distribution - CMISymbPerm. The test
statistic used for categorical data is a CMI based on bincount histogram for
contingency table generation while the local permutation scheme is intended
to generate the null distribution accounting for Z. We later run experiments
comparing CMISymbPerm with G2 test statistic, where G2 assumes the null
to be χ2 distributed.

Within a causal discovery algorithm, H0 true signifies independence and
consequently no causal link between the variables, and H0 being false signifies
dependence under further assumptions. Hence, performance of the CI test has
a direct impact on that of the causal discovery algorithm. These algorithms
also often make use of the test statistic’s value, for example to sort the order
in which the conditions are tested. The CMI estimate here readily allows for
an interpretation in terms of the relative importance of one condition over
another (Runge et al. [2019]).

3.3.1 Conditional Mutual Information

Conditional Mutual Information (CMI) is the expected value of the mutual
information between two random variables X and Y , given the third Z with
a joint probability distribution p(x, y, z), defined as

I(X;Y |Z) =
∑
x,y,z

p(x, y, z) log

(
p(x, y|z)

p(x|z)p(y|z)

)
= H(X|Z)−H(X|Y Z)

= H(XZ) +H(Y Z)−H(XY Z)−H(Z)

(3.9)
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where H denotes the Shannon entropy assuming that the densities p(·)
exist. This measure is then used to test the hypothesis in (3.1). The CMI
IX;Y |Z = 0 if X |= Y |Z given that the densities are well defined. Here, p(.) is
approximated through contingency tables formed using bincount histogram.
This is a frequentist approach and hence the approximated p(·) depends on
the number of samples.

3.3.2 Permutation scheme for null distribution approxi-
mation

Permutation test (Wasserman [2010]) A permutation test is a non-parametric
method that involves two or more samples. This is an exact test, meaning that
it is not based on large sample approximations and hence works for lower sam-
ples as well. Consider the two sample test. Here, we explain the concept of
permutation test using the two sample test. The null hypothesis is that all
samples come from the same distribution. Suppose that X1, ..., Xm ∼ FX and
Y1, ..., Yn ∼ FY are two independent samples and H0 is the hypothesis that the
two samples are identically distributed.

H0 : FX = FY

H1 : FX ̸= FY

Let T (x1, x2, ..., xm, y1, y2, ..., yn) be some test statistic. Consider forming
all N ! permutations of the data X1, ..., Xm, Y1, ..., Yn where N = m + n. For
each permutation, compute the test statistic T = T1, ...TN !. Under the null
hypothesis, each of these values are equally likely. This null distribution P0 is
uniformly distributed and is called the permutation distribution of T . If tobs
is the observed test statistic, the p-value is then

p− value = P0(T > tobs) =
1

N !

N∑
j=1

I(Tj > tobs)

Since it is not usually practical to calculate all N ! permutations, we ap-
proximate the p-value by sampling randomly B permutations (or surrogates)
from the set of all permutations. The fraction of the times Tj > tobs among
these surrogates approximate the p-value. This method is also called surrogate
data testing and is show in Algorithm 5.

This principle is adapted to the case of hypothesis test of conditional in-
dependence. This is an effective approach in case of unconditional indepen-
dence, X |= Y where the independence is simulated by randomly permuting
all x-values in the data. In the case of conditional independence X |= Y | Z,
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Algorithm 5 A general algorithm for permutation test

1. Compute the observed test statistic tobs = T (X1, ..., Xm, Y1, ..., Yn).

2. Randomly permute the data. Compute the statistic again using the
permuted data.

3. Repeat the previous step B times and let T1, T2, ...TB denote the resulting
values.

4. The approximate p-value is

1

B

B∑
j=1

I(Tj > tobs)

we need to preserve the respective dependencies of X and Y with Z before
permuting them. In the case of discrete data, this can be done by creating
subspaces by grouping the samples within multivariate Z, called neighbors,
and then randomly permuting the xis within the neighbors having the same
Zi. Furthermore, a list keeps track of the already ’used’ indices of neighbors
while permuting within the groups of Zi in order to achieve (approximately)
sampling without replacement. This is the principle behind CMISymbPerm.
This (1) preserves the marginals (2) helps in ensuring that the dependence is
not re-preserved (in case of X ⊥̸⊥ Y |Z) in some of the samples if neighbors are
reused for permuting. However, this cannot always be ensured - for example,
when there is only one neighbor present for many samples. The performance
of this permutation scheme in generating the H0 particularly depends on the
number of neighbors available for permuting, which in turn depends on the di-
mensionality of Z, number of samples and number of symbols of each variable.
Their interdependencies are shown in the experiments section.
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Algorithm 6 Permutation based conditional independence test -
CMISymbPerm
Require: Data {xi, yi, zi}ni=1, number of permutation surrogates B, CMI esti-
mator Î(x; y|z)
Estimate Î(x; y|z) of {xi, yi, zi}Ti=1

Compute list of neighbors for each sample point i: Ni = {l ∈
1, 2, ..., n} : zl = zi in the subspace of z. List for each sample is of varying
length ki = [1, T ].

for all b ∈ 1, 2, ..., B do Initialize empty list U = {} of used neighbors

Initialize empty array x∗ of length T

Shuffle lists Ni separately for each i

Create random permutation π of {1, 2, ..., T}
for all i ∈ π do

j = Ni(0)

m = 0

for j ∈ U and m < ki − 1 do

m = m+ 1

j = Ni(m)

end for

x∗
i = xj

Add j to U

end for

Compute Îb = Î(x∗; y|z) of {x∗
i , yi, zi}Ti=1

end for

Compute p-value by p = 1
B

∑B
b=1[Îb ≥ Î(x; y|z)]

return p and test statistic value Î(x; y|z)

As described in Algorithm 2, the null distribution is estimated by applying
the CMI estimator on the permuted surrogates and the p-value is derived as
the fraction of surrogate CMIs larger or equal than the CMI of the original
data. The CMI estimator holds for arbitrary dimensions of X, Y , Z. The
local permutation scheme can be used to jointly permute multivariate X.
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Chapter 4

Experiments and results

Here we discuss the experimental setup and the results. First we describe
the experiments that map the relation of the designed link strength with the
dependence measure (conditional mutual information). We then evaluate the
performance of the two conditional independence tests with two models using
Bayesian Networks. Here, we discuss first the performance of the permutation
scheme in CMISymbPerm in generating the null distribution and its depen-
dence over number of symbols nsymbs and number of samples N which in turn
influence the number of neighbors available to permute from. We then compare
the performances of CMISymbPerm and G2 test statistics in error controls and
time complexity. We investigate results over different parameters - number of
samples N , number of symbols nsymbs and number of dimensions of Z, Dz. We
compare the tests over the control of type I error at α, power of the test 1−β,
as well as the time complexity of the method. All the experiments are run on
the computer cluster.

True underlying models Two Bayesian Network models are used in the
data generating process. The experiments denote the two models with the
parameter c.

• X |= Y | Z, denoted as c = 0.

• X ⊥̸⊥ Y | Z, denoted as c = 1.

4.1 Link strength and CMI
We look at link strength η defined in chapter 2 and dependence measure (CMI)
defined in chapter 3 for two Bayesian Networks (c = 0 and c = 1). We perform
a visual analysis to evaluate that η for a link reflects appropriately in the
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Figure 4.1: Model 1 : X |= Y | Z

CMI under different conditioning sets. Although an analytical formula can
be derived that quantifies the relation, an empirical evaluation suffices for our
needs which is to automatically elicit conditional probability tables and to
control the relative effect sizes. We look at deriving an analytical formula in
future work.

The model 1 in figure 4.1 shows the case c = 0. The first two scatter plots
show a nonlinear increase in CMI over increasing link strengths ηzx and ηzy in
range [0, 1] respectively. The third scatter plot shows when ηzy=ηzx + 0.1.

The model 2 in figure 4.2 shows the case c = 1. We make the following
observations,

• In the first two plots, we fix ηxy = 0.7, and test the effect of Z on X and
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on Y . The first plot shows increase in CMI(X, Z) over increasing ηzx.
The link ηxy and ηzy has no effect on CMI(X, Z) as intended.

• The second plot shows CMI(Y, Z | X). The effect of Z on Y is prominent
only after ηzy > 0.7. This is because, since ηxy = 0.7 and ηzx = 0.2,
conditioning on X also conditions parts of Z. Hence, up until ηzy = 0.7,
Z has an effect on Y through X which gets conditioned out, explaining
the lower CMI levels.

• The third plot shows when ηxy = 0. This is equivalent to an absent link
between X and Y . Thus, plot of CMI(Y, Z | X) over ηyz is equivalent to
CMI(Y, Z).

The two 3D surface plots show the effect on Y from X and Z individually. We
fix the link ηzx = 0.7, a relatively strong link, and vary the other two links ηzy
and ηxy over [0, 1]. The 3D surface plots visualizes the CMI over these two link
strengths. The nonlinear relationships of CMI over any of the two dimensions
of η can be observed.

• The first 3D plot shows CMI(Y, X | Z). For a fixed ηzx = 0.7, we make
the below observations.

– When ηzy is low, most of the effect on Y is from X, and hence the
CMI(Y, X | Z) increases non-linearly with increasing ηxy. This is
represented by the part of the graph with steep rise to red.

– When ηzy increases, since Z also causes X (through a fixed strong
ηzx), conditioning on Z also conditions out parts of X. This reflects
as overall decreasing CMI(Y, X | Z) over increasing ηzy. This is
shown by the red to orange part of the graph.

– The effect of Z conditioned out through X on Y also reflects for
when ηzy is high and ηxy varies, which explains the very shallow
increase from blue to orange in the graph.

– When ηxy is low, since we look at CMI(Y, X | Z), most of the effect
of Z on Y is conditioned out and there are no effects of Z on Y
through X at low ηxy. This reflects as constant very low CMI(Y, X
| Z) over all ηzy, represented by the dark blue.

The second 3D plot shows CMI(Y, Z | X). The observations here are similar
to the ones made for CMI(Y, X | Z). All the observations over varying link
strengths for the two models are as expected from the design of link strengths.

32



CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.3: H0 approximated by CMISymbPerm

4.2 CMISymbPerm

4.2.1 CMISymbPerm in approximating the null distribu-
tion

Figure 4.3 shows the performance of CMISymbPerm in approximating the null
distribution. The plot shows the Gaussian approximations of the CMI test
statistic over B=1000 surrogates, nsymbs = 3 symbols and T = 250 samples.
The orange curves represent the true H0 and the grey curves represent the true
H1, derived from the Bayesian Network models c = 0 and c = 1 respectively.
The black curves represent the permuted null distributions. While in the pink
tile, the H0 is permuted from true H0, in the white tile the H0 is permuted
from true H1. The goodness-of-fit of the black curves with the orange curves
show the effectiveness of the permutation scheme. The orange curves in the
white tile is shown to compare how close the approximation of permuted H0

is, as compared to the true H0 when permuting from H1. The 95% quantiles
are represented by the red (for true H0) and black dots (for permuted H0)
respectively. The Appendix figure A.1 shows the grid of plots with each column
showing varying number of samples = [50, 2000] while each row shows varying
dimensions of Z, Dz=[1, 4].

The permutation test highly depends on the number of neighbors available
within the subspace of Z for permutation. More the number of neighbors,
higher the choices to permute from and closer to achieving sampling without
replacement ensuring that the ties between X and Y are broken. Therefore,
high samples (> 250), lower number of symbols (< 3) and lower dimensions of Z
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(< 3) are ideal for the permuted null to approximate the true null distribution.
The figure in 4.3 shows the case corresponding to Dz = 3 and T = 250. The
approximation of the null distribution improves with number of samples, as
can be seen in the appendix figures A.1.

4.2.2 Performance of CMISymbPerm test over nsymbs, N
and Dz

Figure 4.4 shows the error controls at different nsymbs and N . Each row shows
the 3D plots of false positive rate (FPR) and true positive rate (TPR) over
N and nsymbs for a particular Dz in [1, 4]. The left column shows FPR while
the right shows TPR. The plots of FPR shows that the permutation scheme
is largely effective in type I error control at α (shown by the grey frame at
0.05), especially for N > 250 across nsymbs and Dz. The FPR shoots up at
N < 100, nsymbs > 3 and Dz > 2. This is because the permutation scheme is
highly dependent on the number of neighbors available. Lesser the number of
samples and more number of symbols leads to lower number of neighbors to
permute from. This approximates the null farther from the true null leading
to misclassification in the hypothesis test. This reflects in FPR and TPR.
One can see across plots that increased FPR translates to reduced TPR (or
power). Increased sample size improves error control. This is especially true
when the Dz > 3, where the combination of symbols in Z are well represented
by higher samples. TPR starts to improve beyond N > 100 for Dz < 3 even
for nsymbs > 4, while larger Dz = 4 requires N > 1000 for higher nsymbs > 4.

4.3 Comparison of CMISymbPerm and G2 in CI
test

4.3.1 Over N and Dz with fixed nsymbs

Figure 4.5 shows the grid of plots comparing CMISymbPerm with G2 test
statistics. The comparison is done in terms of false positive rate (FPR), true
positive rate (TPR) and time complexity. For a fixed nsymbs = 3, each row
shows the plots over varying N for a particular Dz. The Dz is varied from [1,
4]. The figures for different nsymbs is shown in Appendix A.2, A.3, A.4, A.5.
As seen in the previous plot, CMISymbPerm controls the FPR at α across
Dz, while G2 performs poorly in comparison. G2 is particularly poor for lower
samples of N < 250. This is because the χ2 distribution derived from dof
does not approximate the true null well at these parameter ranges which leads
to G2 over rejecting H0 while permutation scheme with 1000 permutations
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is data adaptive approximating the null better. This over rejection reflects in
higher TPR. The FPR of the both the tests converge only at large sample sizes
N > 1000, but only for lower dimensions of Dz < 3. However, for Dz > 3,
CMISymbPerm still performs better. CMISymbPerm is comparable to G2 in
power for Dz < 3. The TPR of both tests converge when the effective sample
size grows, especially for Dz > 3.

The performance of CMISymbPerm comes at a significant cost in time
complexity mainly due to permutation scheme used for null distribution gen-
eration. Since we look for neighbors in subspace of Z for each sample, the test
exponentially grows in time complexity with sample size N . A minimum of
N = 100 samples are required for the tests to work reliably.

Figures A.2, A.3, A.4 and A.5, show these comparisons for nsymbs = [2, 4, 5, 6].
Across all parameters, CMISymbPerm consistently performs at FPR control
at α as compared to G2. The two tests are only comparable in FPR at
nsymbs <= 3, Dz <= 2 when N > 100, and in case of nsymbs = 4, Dz <= 2 but
for N > 500. Therefore G2 could be the choice of test in these ranges since the
time complexity is O(n) = 1. Over nsymbs > 3 and Dz > 2, CMISymbPerm
is most reliable across N . In terms of power, CMISymbPerm matches to G2

only at approximately N > 500. CMISymbPerm is extremely conservative in
rejection of H0 as compared to G2. G2 can also be preferred when time is a
significant factor or when the number of conditioning sets in a causal discovery
algorithm is very high. In all other cases, CMISymbPerm could be the choice
for a better calibrated test.

4.3.2 Over Dz and nsymbs with fixed N

Figure 4.6 shows the performance over Dz for N = 250 and nsymbs = [2, 3, 4].
Here, we particularly choose standard sample size. CMISymbPerm is consis-
tent across Dz, while G2 quickly blows up in FPR with increasing Dz. The
TPR for both the tests is comparable until Dz = 3 and dips at higher Dz with
G2 less as compared to CMISymbPerm (as also seen in previous figure). This
improves as the effective sample sizes over higher Dz and nsymbs increase.
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Figure 4.4: False Positive Rate and True Positive Rate
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Figure 4.5: Over N and Dz with nsymbs = 3
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Figure 4.6: Over Dz with N = 250 and nsymbs = 2, 3, 4
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Chapter 5

Causal Discovery - Bibliometrics

This analysis is part of a project on social network analysis of researchers.
One of the tasks in the project is to analyze publication characteristics of
researchers. This requires access to dataset of publications. The aim was ini-
tially to parse web profiles of researchers and attempt to categorize them using
bibliometrics. Extracting unstructured content from web is complex. Hence,
in this work, we restrict to structured data, specifically Open Academic Graph
2.1, a knowledge graph with publications curated from 1800s to the present.
We parse this knowledge graph to curate data for each researcher, and per-
form exploratory data analyses including causal analyses. The dataset contains
around 240 million papers by 243 million authors published in around 53 thou-
sand venues across 25 thousand affiliations, all amounting to approximately
500 GB dataset. We indexed this large dataset onto Elasticsearch [2015] (ES),
a scalable search and analytics engine hosted at Webis, Bauhaus University
Weimar. ES helps manage such large datasets as indices over computer clusters
through APIs. We leverage ES’s tool ’Kibana’ to visually explore the dataset
through full Query DSL (Domain Specific Language) based on JSON. We then
use these DSL queries along with pandas (McKinney et al. [2010]) to curate
a set of 11 useful features for approximately 4800 researchers. The original
intention was to look into subset of categorical data to apply CMISymbPerm.
But data curation phase yielded that continuous valued features were more
reliable in the dataset.

In this work, we curate the features with a pivot on the ’position’ of a
researcher (professor/associate professor/assistant professor) and analyze the
bibliometric features that influence a particular category of researcher. We
employ stratified sampling strategies to curate a total of 10 features for about
4800 researchers with around 1600 samples for each category in position. We
then build a multinomial logistic regression classifier that can predict the classi-
fication labels in position based on the features. We further analyze the model
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to list the dominant features using the method of permutation feature impor-
tance. We then use PC algorithm described in Algorithms 1, 2, 3, a prominent
causal discovery algorithm to build causal graphs with the same features over
all researchers as well as for each subgroup in position. We then compare
the features from the two approaches and understand the intra-dependencies
through causal graphs. The causal analysis reasons out confounders, mediators
and selection biases that are not apparent from a logistic regression model.

5.1 Open Academic Graph 2.1
The Open Academic Graph (OAG) 1 was generated by linking two large aca-
demic graphs: Microsoft Academic Graph (MAG) and ArnetMiner (AMiner).
The dataset collects OAG 2.1 generated in 2020. The two large graphs are
both evolving and here, the MAG July 2020 and AMiner October 2020 snap-
shots are considered. We leverage a mix of features across the two datasets
identified by linked IDs provided within the dataset.

5.1.1 Data curation

We leverage ES and pandas to curate the data. We first identify the features
relevant to each researcher (author schema). We use the field ’author’ to
refer to a researcher/academician and represents a sample point. The features
indexed are,

1. id - Author id

2. name - Author name

3. orgs - Author affiliations

4. org - Author organization

5. last_known_aff_id - Last known affiliation ID

6. position - Author position

7. n_pubs - Number of author publications

8. n_citation - Author citation count

9. h_index - Author h-index
1https://www.aminer.cn/oag-2-1 (Sinha et al. [2015], Tang et al. [2008], Zhang et al.

[2019])
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10. pubs.i - Author paper ID

11. pubs.r - Author order in the paper

We use ES’s ’match_phrase’ query to only query a subset of the authors
that are in position = {professor, associate professor, assistant professor} and
have a non-empty field in the rest of the feature list above. Through affiliation
ID, we get the location (latitude, longitude) of the organization that the author
is affiliated to. We then derive a list of publication related features through
the list of paper IDs for each author. After this phase, following removal
of outliers we now have non-empty fields for 8000 professors, 2300 associate
professors and 1600 assistant professors. We now perform stratified sampling
(using random seeds) to obtain datasets having 1600 samples for each position.
The total samples amounts to 4800 with 96% of the samples having features
within the expected range. The final 11 features for our analysis are,

1. position - Author position

2. n_pubs - Number of author publications

3. n_citation - Author citation count

4. h_index - Author h-index

5. latitude - Latitude of the affiliation

6. longitude - Longitude of the affiliation

7. avg_pos_authorship - Average position of authorship across papers

8. years_active - Years active in publishing

9. avg_collaborations - Average collaborations over papers

10. avg_citations - Average citations per paper

11. lang_count - Number of languages published in.

5.2 Multinomial logistic regression on position
We now build a multinomial logistic regression model with the above 10 fea-
tures on position using scikit-learn. We intend to build a model that can clas-
sify and consequently predict a researcher’s position in academia based on the
10 features listed. A multinomial logistic regression predicts the probability of
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a category membership on a dependent variable based on multiple independent
variables. Here, the independent variables are the continuous valued features
and the dependent variable is the field ’position’ with three categories. The
algorithm uses the one-vs-rest (OvR) scheme where the analysis breaks the
dependent variable into a series of comparisons between two categories. We
use the cross-entropy loss which is a measure from the field of information
theory. It builds upon entropy and generally computes the difference between
two probability distributions given a set of events. The input features are
min-max scaled and fed to the logistic regression which fits a model. The fit
model returns a mean accuracy score by predicting using the model, the input
training set on the classifying label. For example, a single run on the above
dataset returned 0.263. It means that about 26% of the labels were predicted
accurately.

A single run may result in a noisy estimate of model performance. The
fit classification models are evaluated using a repeated stratified k-fold cross
validation. Different splits of the data may result in different performance. A
k-fold cross validation procedure divides the dataset into k non-overlapping
folds. Each of the k folds will be used as test set while the rest are used as
training set. A total of k models are then fit and evaluated on k test sets.
Finally, the mean and the standard deviation of the scores are reported. A
repeated k-fold cross validation procedure with k=10 splits, repeated 1000
times yielded a mean accuracy of 0.582 with a standard deviation of 0.02.

Permutation feature importance We now inspect the model to analyse
the dominant features of the fitted estimator. The ’permutation feature im-
portance’ provides a model inspection technique that is model agnostic. It
is defined to be the decrease in a model score when a single feature value is
randomly shuffled. The principle is similar to the permutation scheme defined
in Algorithm 5 in Chapter 3. The method breaks the relationship between the
feature and the dependent variable. The amount of drop in the model score
(R2) is then a quantification of the dependence of the model on the feature.
Permutation does not reflect on the predictive power of a feature but only on
how important the feature is for a particular model. Here, the technique is
applied on the model fit on training data.

The parameter n_repeats=30 sets the number of times a feature is ran-
domly shuffled and returns a sample of feature importances. The dominant
features after 1000 repetitions are in Table 5.1.

The top five dominant features remain invariant over different stratified
samples. One can reason out the influence of these features on the tenureship
of an academician. Longer active years in publishing, higher h-index and publi-
cations are common notions related to professorship or promotion in academia.
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Feature Mean score Standard deviation

years_active 0.132 0.006

n_pubs 0.036 0.005

h_index 0.014 0.003

n_citation 0.011 0.004

longitude 0.010 0.003

avg_citations 0.006 0.002

Table 5.1: Permutation feature importance

But, location (specifically longitude) of a researcher seem to be a significant
feature. We would like to understand this further along with a detailed view
on the rest of the features.

One can draw parallels between this method and the method of cause and
effect estimation where the permutation scheme acts as an intervention on fea-
tures. We look at this principle formally through the theoretical framework of
causal inference, especially constraint-based causal discovery framework such
as PC (Glymour et al. [2019]) implemented in TIGRAMITE 2.

5.3 Causal discovery
The PC algorithm uses conditional independence testing to identify d-separated
paths. The choice of the CI test highly depends on the nature of data and its
interdependencies within variables. All the fields except ’position’ are continu-
ous valued. Although some of the fields such as h_index, n_pubs, n_citations
etc, can only take integer values, there are no upper bound on the values that
the variables can take. Hence, we treat them as continuous valued variables.
We analyze the 4800 samples over all positions as well as the subgroups of
1600 samples each within position.

We first perform a pairwise scatter plot to understand the nature of depen-
dencies. The top figure in 5.1 shows the pairwise scatter plot for 10 features
listed above (without position). The features are min-max scaled and repre-
sented by numbered ids. One can see over the individual plots, that almost all
features are linearly dependent, except longitude(3) and latitude(4) that are

2https://github.com/jakobrunge/tigramite
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non-linearly dependent with most variables. Figure 5.2 shows the Pearson’s
pairwise correlation matrix. We read this figure and the scatter plot together
and make the following observations.

1. h_index has a significant positive correlation with n_pubs and n_citations.
This is as expected from the definition of h_index (Bornmann and Daniel
[2007] - number of publications h having a citation value h and above.
The correlation of h_index with years_active and lang_count has to
be investigated if they indeed have a direct causal path or are medi-
ated/confounded by other variables.

2. n_citations and n_pubs has significant correlation to each other. They
are also correlated to years_active, avg_citations and lang_count. The
high correlation with lang_count points to the previous point of likely
mediation to h_index via n_pubs and n_citations.

3. Location (longitude, latitude) is loosely negatively correlated with h_index
and citation parameters. This needs to be investigated further.

4. years_active also is correlated to lang_count. One can reason that it is
likely for a researcher to publish in more languages over time in academia.

5. avg_colaborations is correlated to n_citations. avg_citations is strongly
correlated only to n_citations but loosely to longitude.

6. The figure 5.2 shows the spread of the the locations in the sample. We can
note that the samples are mostly from American, European and Asian
continents. This perhaps may introduce selection bias and is important
to note while analyzing the causal links. Plots of locations over stratified
samples within position are also similar.

7. Another possible source of selection bias is in data preparation since
samples are based on the pivot on position.

We choose the ParCorr CI test that implements the linear partial corre-
lation. The null distribution is assumed to be Student’s t distribution. We
now generate a causal graph for the entire 4800 samples (all authors) as well
as individual causal graphs for each subgroup in position (1600 each). The
parameter pc_alpha is the only tunable parameter of interest. It controls the
false positive rate in the CI test. A lower pc_alpha=0.005 makes the test less
likely to reject the null hypothesis (X |= Y | Z), i.e. more likely that a weak
link would be removed between any two variables in the causal graph. Since
we perform a stratified sampling to feed into CI test, we perform bootstrap
with 1000 iterations generating multiple causal graphs for each of the 4 cases.
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We then summarize the results and generate the summarized causal graphs in
Figure 5.3. The directed arrows ’–>’ denote the direct causal path. ’o-o’ de-
notes that the collider and orientation rules could not be applied in algorithm
3 (Markov equivalence). ’x-x’ denotes that the directionality is undecided due
to conflicting orientation rules. The auto correlation of a node is denoted by
auto-MCI, represented by the node color. The cross correlation between any
two nodes is denoted by cross-MCI, represented in the graph as link color.
The presence of a link denotes that the link was frequently present across
bootstraps. The cross-MCI is the mean of the test statistic values and the link
width is the frequency of a link over bootstraps. The plot for pc_alpha=0.05
is in Appendix in A.6.

5.3.1 Causal interpretations

For all the authors with the causal graph in figure (a) 5.3 and the correlation
matrix in 5.1, we note some important observations.

1. There is no direct link between n_pubs and n_citations contrary to 0.56
in correlation matrix. These were confounded by other features. This
points to the notion that publishing more does not lead to more citations.
Publishing more does not also lead to more average citations directly.

2. h_index is analytically derived from n_pubs and n_citations. This is
reflected as two strong directed arrows towards h_index in the causal
graph.

3. h_index has no link to avg_citations. This is as expected since h_index
accounts only those publications having a citation equal to or above a
value. However, the correlation matrix shows a correlation of 0.25.

4. The longitude of the affiliation has a direct link to average citations. Au-
thors from certain affiliations may be cited more which in turn leads to
higher citations and higher h_index. Thus, we can observe a causal path-
way from longitude of the affiliation –> average citations –> citations
–> h-index. This is a mediated path amongst the dominant features in
the classifier.

5. More collaborations lead to more citations which then has a path to
h_index. More collaborations also lead up to higher authorship position.
This is perhaps representative of authors in mentorship roles over years.
However, this does not directly lead to more citations.
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6. Publishing in multiple languages over years lead to more publications and
consequently to h_index. But, does not have direct link to citations, But
a correlation of 0.43 can be seen in the correlation matrix.

7. years_active was the most dominant feature as seen in 5.1. The corre-
lation matrix shows the variable highly correlated to h_index, n_pubs
and n_citations. But the causal graphs reveal that it only has a direct
path to n_pubs and h_index but not to n_citations.

8. These observations may point to years_active, n_pubs, h_index and
n_citations being the only direct factors towards classifying a position. A
further encoding of position into numerical variable will help understand
this further.

In figures 5.3 (b), (c), (d), the causal graphs for each category in position
are different. This can be interpreted as varying publishing behaviors. This
points to variance amongst the features across categories which might explain
the 0.58 mean score of the logistic classifier.
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-0.12-0.12 0.03 -0.37 1.00 -0.07-0.05 0.01 -0.15-0.00

0.19 0.13 0.21 0.01 -0.07 1.00 0.19 0.19 0.06 0.10
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Figure 5.1: Top : Scatter plot of features (Numbered ids correspond to feature
names in the bottom plot). Bottom: Correlation matrix
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Figure 5.2: Locations of all authors’ affiliations in the sample.
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Figure 5.3: pc_alpha=0.005 (a) All authors (b) Professors (c) Associate professors
(d) Assistant professors
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Chapter 6

Conclusion and Future Work

6.1 Conclusion
Conditional independence testing (CI) is the crucial part of a causal discovery
pipeline. In a typical causal discovery framework (The PC algorithm, for exam-
ple), under the assumptions of sufficiency, faithfulness and markov condition,
the skeleton is discovered from a bipartite graph by employing conditional
independence tests on multiple sets of variables and consequently eliminat-
ing links that are conditionally independent. The skeleton discovered is then
passed onto the orientation phase in order to arrive at the CPDAG. There-
fore, the design of an appropriate CI test with bounds on type I and type II
errors are vital towards causal discovery. We consider the case of categorical
data for conditional independence testing. This is formulated as a hypothesis
test of independence X |= Y | Z. We design CMISymbPerm, a conditional mu-
tual information based permutation scheme which belongs to the class of exact
tests. We then evaluated the designed test using Bayesian Network (with a link
strength parameter) as a ground truth data generating process. The evaluation
is done in terms of FPR and TPR, along with a measure of time complexity.

The null distribution approximation in CMISymbPerm is dependent on
number of samples N , number of symbols nsymbs and dimensions of Z Dz.
We run experiments for N = 50 to 2000, nsymbs = 2 to 6 and Dz = 1 to 4
to find the range of these parameters where the CI test is best calibrated at
a significance level α. We find that for samples N > 250, CMISymbPerm
approximates the true null distribution well across nsymbs and Dz. We then
compare CMISymbPerm with G2 test statistic, a likelihood ratio based asymp-
totic test of independence. It uses a χ2 distribution to approximate the null
based on estimated degrees of freedom. The main advantage of this method is
that that time complexity is O(1) as compared to O(cn) for CMISymbPerm.
However, the approximation is only true for large samples of N . Numerical
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experiments show that CMISymbPerm consistently performs in FPR control
at α as compared to G2. The two tests are only comparable at lower dimen-
sions of data and higher sample sizes. We conclude the range of parameters
where CMISymbPerm and G2 can be preferred from experiments.

We then perform causal analysis on Bibliometrics data from Open Aca-
demic Graph (2.1). We parse 4800 samples over three positions in academia
from 240 million data points for 10 numerical features. We first use multi-
nomial logistic regression to build a classifier that can predict a researcher’s
position. We find the dominant features using the method of permutation
feature importance. The dominant features include years active in academia,
number of publications, h-index, number of citations, longitude of the affilia-
tion and average citations.

We then perform causal analysis using PC algorithm coupled with a partial
correlation test to find causal pathways over the 10 variables. We build causal
graphs for all authors as well as for authors within subgroups of position. We
find no direct link between n_pubs and n_citations and seem to be confounded
by other variables. We find a causal pathway from longitude of the affiliation
to h-index over average citations and n_citations. This is a stronger mediated
path as compared to the direct path between location and h-index. Years
active in publishing and citations are also confounded by other variables. This
analysis then pointed to only years active, number of publications, h-index and
number of citations to be the important parameters in classifying position.

6.2 Future Work
An evaluation of the causal discovery algorithm with CMISymbPerm would be
an immediate consequence of this work. Further, the ideas from CMIknn and
CMISymb can be used to build a CI test for the case of mixed data (arbitrary
mix of continuous and discrete variables).

The link strength parameter as well as dependence measure estimates as-
sume that the number of symbols are same for all nodes. Further work is to
relax this condition for arbitrary number of symbols. An analytical formula
leading link strength to CMI will help experiment with relative effect size in
the CI test better.

In case of permutation test, the exponential time complexity is mainly due
to the surrogate data testing. Parallelizing these over multiple cores of CPU or
over multiple nodes in a cluster can significantly speed up the null distribution
approximation. The time complexity within a surrogate is dependent on find-
ing the number of neighbors to permute from, i.e. finding the subspace of Z.
This grows for higher samples and dimensions of Z. Variants of KD trees for
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categorical data can bring the time complexity to at least O(NlogN). Approx-
imate permutation schemes in Tsamardinos and Borboudakis [2010b] can be
explored further as well. Another significant time consumption is in the com-
putation of contingency tables based on bincount histogram. KD Tree based
methods can help here as well. Contingency table prediction using Poisson
log-linear models (Tsagris [2017b]] could improve the time factor.

The calibration of CMISymbPerm over dimensions higher than 4 is impor-
tant for larger conditioning sets in large graphs. The CI test was evaluated
with only two models X |= Y | Z and X ⊥̸⊥ Y | Z. More canonical models that
are typical in a causal graph have to be evaluated. Another approach could be
evaluation over random graphs generated from random Bayesian Networks.

The analyses in Bibliometrics were done for 4800 samples for three cate-
gories in position. These were generated using simple queries for respective
positions in ES. More complex queries that incorporate natural language pro-
cessing functionalities available within ES can increase sample size significantly.
This would improve both the classifier as well as causal discovery phases which
would eliminate weak links over smaller samples as well as detect stronger as-
sociations. Improving queries also allows the expansion of the dataset to more
categories in position across academia. Further, encoding of ’position’ into a
continuous feature can be included within causal analysis which would help un-
derstand the causal graphs for subgroups in Figures 5.3 (b), (c) and (d) better.
The causal graphs generated were fixed at significance level pc_alpha=0.005
and 0.05 which is quite conservative in accepting a link. Analysis over varying
pc_alpha = [0.005, 0.01, 0.05, 0.1] could provide more insights.
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Figure A.1: H0 approximated by CMISymbPerm
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Figure A.2: Over N and Dz with nsymbs = 2
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Figure A.3: Over N and Dz with nsymbs = 4
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Figure A.4: Over N and Dz with nsymbs = 5
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Figure A.5: Over N and Dz with nsymbs = 6
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(a)

h_index

n_citation

n_pubsLatitude

Longitude

avg_pos_authorship

years_active

avg_collaborations avg_citations

lang_count

0.8 0.4 0.0 0.4 0.8
cross-MCI

0.0 0.4 0.8
auto-MCI

(b)

h_index

n_citation

n_pubsLatitude

Longitude

avg_pos_authorship

years_active

avg_collaborations avg_citations

lang_count

0.8 0.4 0.0 0.4 0.8
cross-MCI

0.0 0.4 0.8
auto-MCI

(c)

h_index

n_citation

n_pubsLatitude

Longitude

avg_pos_authorship

years_active

avg_collaborations avg_citations

lang_count

0.8 0.4 0.0 0.4 0.8
cross-MCI

0.0 0.4 0.8
auto-MCI

(d)

h_index

n_citation

n_pubsLatitude

Longitude

avg_pos_authorship

years_active

avg_collaborations avg_citations

lang_count

0.8 0.4 0.0 0.4 0.8
cross-MCI

0.0 0.4 0.8
auto-MCI

Figure A.6: pc_alpha=0.05 (a) All authors (b) Professors (c) Associate professors
(d) Assistant professors
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