
Bauhaus-Universität Weimar
Faculty of Media
Degree Programme Medieninformatik

Requirements engineering for
natural-language annotation tasks

Bachelor’s Thesis

Vincent Söllner

1. Referee: Prof. Dr. Benno Stein
2. Referee: Prof. Dr. Andreas Jakoby

Submission date: May 17, 2021

Declaration

Unless otherwise indicated in the text or references, this thesis is
entirely the product of my own scholarly work.

Weimar, May 17, 2021

. .
Vincent Söllner

Abstract

In the field of natural language processing it has become the norm to utilize
various forms of annotation software to help with collecting, creating and cu-
rating of an ever growing mass of data. The increasing amount of various
annotation tasks has led to a similarly increasing quantity of different annota-
tion software, such that the selection of suitable tools for an annotation task
has become a non-trivial task of its own.

This thesis examines the current landscape of software solutions for NLP
annotation tasks by identifying recurring tasks and phenomena, comparing ex-
isting annotation software with respect to commonalities and differences, and
by identifying core functionalities needed for most annotation tasks. We pro-
pose a new type of annotation pattern to formalize the process of task analysis
for annotation software, creating a catalogue of requirements for annotation
software in the process.

Contents

1 Introduction 1

2 Background 4
2.1 Related research . 4
2.2 Phenomena . 5

2.2.1 Properties . 8
2.2.2 Requirements for annotation 9

3 Review of existing software 13
3.1 Existing annotation software for textual data 13
3.2 Overview . 14

3.2.1 Common annotation tasks 15
3.2.2 Common features . 16

4 Software patterns 21
4.1 Interaction Design patterns . 22

4.1.1 Import & Export . 23
4.1.2 Automation . 28
4.1.3 Source document management 30
4.1.4 Annotation level interactions 32
4.1.5 Quality assurance . 34
4.1.6 Mode of interaction/modality 36

4.2 Software Design patterns . 39

5 Annotation patterns 41
5.1 Proposal for new pattern structure 41
5.2 Annotation patterns . 42

5.2.1 Selecting markables . 43
5.2.2 Creating labels . 44
5.2.3 Selecting markables via label 45
5.2.4 Editing annotations . 46
5.2.5 Deleting annotations . 47

i

CONTENTS

5.2.6 Creating directed relations between markables 48
5.2.7 Creating undirected relations between markables 50
5.2.8 Selecting relations . 52
5.2.9 Editing relations . 52
5.2.10 Deleting relations . 53
5.2.11 Reusing annotations . 54

6 Conclusion and Future Work 56

A Documentation 57
A.1 Documentation of annotation tasks in the tested software 57
A.2 Documentation of the installation process 57
A.3 Documentation of known interface issues in the annotation soft-

ware . 57

B List of phenomena 58

Bibliography 63

ii

Chapter 1

Introduction

A trend observable nowadays in most areas of research is the steadily increasing
amount of data. Every single day, video footage worth years of viewing time
is uploaded to various internet platforms, and millions of pictures are posted
on social media. Thousands of songs and other audio recordings are released,
and millions of tweets, status-updates and other text-based posts appear on
social media and forums. Vast quantities of books, papers and articles are
being published, numerical values such as measurements of weather stations
are catalogued, transaction data of various cryptocurrencies are made public
on their respective blockchains, and point-clouds and 3D models are created
and shared. In each and any domain of knowledge, data is being created and
shared at any given moment.

The present thesis will be focusing on textual data, since efforts to annotate
this type of data have not only started long before the rise of more modern
forms of media, and therefore practices of annotation are well established.
Furthermore, it is in most cases easier to apply the observations about textual
data to more complex data than it is to do the reverse. Most of the textual
data comes in the form of raw data, which often is not of immediate use for
research purposes, because many research applications make use of tools or
methods which necessitate the raw data to be augmented in order for it to be
usable.

For textual data there are three main steps to be considered:

• Data acquisition: How the data is collected, e.g. by scraping websites,
scanning physical documents, importing existing text corpora, etc.

• Data cleaning: How unnecessary information is removed from the col-
lected data, e.g. by stripping out formatting, removing duplicate ele-
ments (if the existence of the duplicate is not useful information), re-
moving incomplete records (if identifiable as such), etc.

1

CHAPTER 1. INTRODUCTION

DebateGuy9000; 2021:02:06; 12345; Pro; Another reason why we
should abolish copyright all together is that it prevents my favourite
movie "Ninja snakes" from entering public domain until 2087, I
hate that! Unrelated note: I heard they’re currently filming Ninja
snakes 2????? Can’t wait to see it!

Figure 1.1: Example of raw textual data

Figure 1.2: Example of argument text annotated in WebAnno

• Data enrichment: How existing data is enhanced by adding additional
information, e.g. by annotating the document, adding metadata, putting
the data into a context with or a relation to other data, etc.

Consider the following example: a system is supposed to be trained to
recognize pro and con arguments in argumentative texts. For this purpose
example text segments are required that represent pro and con arguments. In
the data acquisition step a selected debate website is scraped for its contents.
The raw textual data may contain individual forum posts, see Figure 1.1.

The text does contain information useful for the intended task, but in the
current form it is not in a state that is immediately evaluable by most software,
hence some preparation is still needed.

There are tools for the tasks of cleaning, structuring and labelling the data,
but they tend to be very specialized and were often developed with only one
single use case in mind. In our example there are different ways the task of
data cleaning could be approached: e.g. not to scrape all arguments indis-
criminately, but filter beforehand for certain completeness conditions such as
an existing stance. Another example would be to strip all posts after scrap-
ing that do not fulfill certain criteria, such as a post having a certain stance
towards the argument associated.

In our example, various kinds of information that are scattered throughout
the text may need to be marked with labels, such as who posted the argument,
when it was posted, what the stance on the overarching topic was, which part
of the text actually is an argument and which part may be unrelated, or phrases
that hint towards strong feelings about the topic, etc. Figure 1.2 shows what
the same text looks like after applying labels to the appropriate parts of the
text.

2

CHAPTER 1. INTRODUCTION

Which tools the annotation software provides often depends on the area the
software was developed for, with the spectrum of available tools being as varied
and specialized as the spectrum of available fields of research. In the field of
Natural Language Processing (NLP for short) annotation software tends to
provide tools for the annotation of various, recurring language phenomena and
tasks, such as part-of-speech-tagging, identification of time, dates and named
entities, etc.

Not all annotation problems and tasks are of recurring nature however, this
resulting in a large variety of extremely specialized annotation software, often
developed by a research group to tackle a single specific annotation project.
This trend of creating new tools for every research task (instead of relying on
preexisting solutions or expanding existing software), points to an underly-
ing problem of annotation software as a research field. The latter is severely
lacking a structure that would allow researchers to make use of existing knowl-
edge and software, rather than writing annotation software for a single specific
annotation project or trying to make an existing solution work that was not
designed to be usable for a wide range of tasks.

In this thesis we develop and formalise overarching annotation categories,
annotation tasks and annotation-related software patterns by examining var-
ious NLP phenomena, comparing existing annotation software for differences
and commonalities and expanding existing software pattern formats. We lay
the groundwork for future research efforts by facilitating the identification of
existing solutions to similar annotation problems, and proposes a new approach
to designing annotation software based on patterns. We contribute a collec-
tion of linguistic phenomena observed in various NLP related research papers,
detailed documentation of annotation tasks in a various annotation tools, doc-
umentation of the installation process of all annotation software tested in this
thesis and a collection of observed interface issues and annotation edge cases
in various annotation tools. We also define several new Interaction Design
patterns about annotation-adjacent tasks, and several Annotation Patterns in
a newly developed Annotation Pattern format.

3

Chapter 2

Background

2.1 Related research
A myriad number of raw data exists nowadays that in many cases only be-
comes valuable for research through enrichment and interpretation. The way
we interpret data is strongly influenced by the knowledge domain it belongs
to and the form of data, e.g. audio, images, videos, 3D models, text, etc. One
of the ways data is interpreted, or meaning and structure is extracted from
it, is by means of annotation. In this recent thesis we focus purely on the re-
quirements of annotation tasks in the field of NLP on textual data. However,
annotation software also exists in other areas of research and is being devel-
oped for non-textual data. Nixon and Troncy (2014) surveyed semantic media
annotation tools in regards to Linked Media principles. Media annotation tools
possess requirements that do not apply to the annotation of textual data, e.g.
support for pixel annotation for image or video based instance segmentation
tasks (Watanabe and Wolf (2019)), time-series annotation for audio labeling
tasks (Coviello et al. (2011)) or point-cloud annotation for 3D annotation tasks
(O’ Mahony et al. (2019)).

The ACL Anthology (2021), as of time of writing, hosts “[. . .]64745 papers
on the study of computational linguistics and natural language processing” and
was one of the most useful sources for discovering papers during the course of
research for this thesis. Various areas of research exist that utilize annota-
tion tools for textual data, but introduce domain-specific requirements which
cannot be described as requirements for natural-language annotation tasks at
large, e.g. biomedical annotation (Jovanovic and Bagheri (2017); Neves and
Leser (2012)). Complaints about missing functionality in these tools were
taken into consideration during the development of basic annotation units and
patterns for this thesis, but their influence was limited; most complaints were
of universal nature and were also observed in general purpose annotation tools,

4

CHAPTER 2. BACKGROUND

e.g. insufficient documentation, installation problems and proprietary import
and export formats.

This observed universal nature of usability complaints was one of the main
motivations for this thesis. Previous efforts in this field try to approach the
problem from different angles. Neves and Seva (2019) curated a list of 78
different annotation tools, 15 of which they reviewed in detail according to
a proposed list of evaluation criteria. This list of criteria directly influenced
the formulation of some of the annotation patterns proposed in chapter 5.
Reidsma et al. (2004) curated a similar list of criteria, as well as a list of
properties of annotation problems, and discussed how they can influence the
design of annotation software. Burghardt (2012) evaluated three annotation
tools and formulated a list of usability recommendations based on problems
observed during the review of the tools. These recommendations were the
basis for various annotation-adjacent patterns proposed in section 4.1.

Lin (2016) notes that “[t]here has not been careful consideration of software
complexity in current annotation tools. Due to the problems of complexity,
new annotation tools must reimplement common annotation features despite
the availability of implementations in open sourced tools.”. He further in-
troduces a ClojureScript library called Notate, which according to the paper
“provides pure functions for building annotation tools with”. Unfortunately we
were not able to locate the Notate library, but only the paper describing the
functionality of this library.

The Text Encoding Initiative (TEI (nd)) define a community-developed
text encoding format, used by various annotation projects. Unfortunately
it is just one of many competing formats, rather than a definitive industry
standard. The lack of a single universally accepted file format was one of the
motivations for comparing file formats across multiple annotation tools tested
for this thesis (Figure 3.2).

Folmer (nd) and Gamma et al. (1994) defined different pattern formats
and terminology that were used as basis for the patterns proposed in this
recent thesis. These patterns are intended to be used in combination with
existing User Interface patterns like the ones provided by Toxboe (nd) during
the development of annotation software.

2.2 Phenomena
The scope of research in the framework of the present thesis was limited to the
annotation of textual data. However, NLP is still a large field with many dif-
ferent annotation tasks and various types of source documents. Consequently,
a myriad number of phenomena exist that would be candidates for annotation,

5

CHAPTER 2. BACKGROUND

with new ones regularly being discovered or selected for annotation for the first
time. Moreover, it is worth considering that many phenomena have overlaps,
are poorly or insufficiently defined, or are so complex or domain-specific that
they are incomprehensible to non-experts. Therefore, when trying to compile
a list of existing NLP phenomena, it is impossible to ensure any completeness
of such a list. Ide and Pustejovsky (2017) describe linguistic annotation as
follows:

“Linguistic annotation involves the association of descriptive or an-
alytic notations with language data. The raw data may be textual,
drawn from any source or genre, or it may be in the form of time
functions (audio, video and/or physiological recordings). The an-
notations themselves may include transcriptions of all sorts (from
phonetic features to discourse structures), part-of-speech and sense
tags, syntactic analyses, named entity labels, semantic role labels,
time and event identification, co-reference chains, discourse-level
analyses, and many others.”

In this thesis the focus is limited to the annotation of textual data, not con-
sidered are data in the form of time functions. A list of phenomena is gathered
below; it is sorted according to the level at which annotation takes place. The
selection of phenomena included in the list is exemplary and intended to illus-
trate common sizes of annotation units in NLP annotation projects. A more
exhaustive list of phenomena was produced during the research of this thesis,
this extended list including sources can be found in Appendix B.

These phenomena have been gathered from various papers on topics related
to NLP, such as annotation guidelines, linguistic annotation, argumentative
text analysis, etc. This results in a collection of phenomena of varying granu-
larity and specificity. In this chapter we include a few examples of phenomena
of various annotation unit sizes. The list is intended to illustrate possible lev-
els of granularity of annotation, and to highlight the possibility that different
levels of granularity are one of the reasons for the wide range of annotation
software.

We categorize the phenomena according to the following levels: sub-word
level, word level, clause level, sentence level and discourse level. We propose
these categories based on observations made during the collection phenomena
for this paper. A considerably longer list of linguistic phenomena was collected
during the research of this thesis, the complete list including sources can be
found in Appendix B.

• The sub-word level contains any phenomenon comprised of annotation
units smaller than a word, e.g. characters or syllables.

6

CHAPTER 2. BACKGROUND

• The word level contains any phenomenon annotated via one annotation
unit of the size ’word’.

• The clause level contains any phenomenon comprised of the annotation
unit ’clause’.

• The sentence level contains any phenomenon annotated via one annota-
tion unit of the size ’sentence’.

• The discourse level contains any phenomenon at the discourse level.
Nordquist (2021) defines discourse as follows: “In linguistics, discourse
refers to a unit of language longer than a single sentence”.

We emphasize that most phenomena can be annotated at different levels.
These phenomena therefore fall into different categories, depending on the
granularity chosen by the annotator for the annotation task.

Consider the following example: an English sentence and its German trans-
lation are annotated in a text-alignment task. The annotation project might
decide to annotate on the word- or even sub-word level and align words with
their translated counterparts. However, it is also thinkable that the sentences
were already aligned in a previous annotation project as preparation for this
annotation task. An English document was paired with its German trans-
lation, and in this previous work the text alignment was annotated on the
sentence-level. Both are text-alignment tasks containing the same sentences,
yet they are annotated at different levels.

Sub-word level: character-level annotation in the Chinese language, as de-
scribed by Li et al. (2019).

Word level: named entity annotation. Consider the following example: in
the sentence "Sebastian was born in Berlin" the named entity "Sebas-
tian" and "Berlin" would both be annotated at the word level. Sebastian
would get labelled as entity-type Person, while Berlin would get labelled
as entity-type Location.

Clause level: subordinate clause annotation. Consider the following exam-
ple: in the sentence "Sebastian had a Bavarian dialect, despite being
born in Berlin" the subordinate clause "despite being born in Berlin"
would be annotated at the clause level.

Sentence level: comparative illusion. Consider the following example: the
sentence "more people have visited Sebastian in Berlin than I have"
seems grammatically correct at first glance, but does not actually have

7

CHAPTER 2. BACKGROUND

any understandable meaning on closer consideration. Annotation would
likely take place at the sentence level, and the entire sentence would get
labelled as comparative illusion.

Discourse level: argument annotation. Consider the following example: the
sentences "Sebastian should move out of Berlin. He can barely afford
the rent there." contains an argument, which is made up of a conclusion
(Sebastian should move out of Berlin) and a premise (He can barely afford
the rent there). The argument would get annotated at the discourse level.

2.2.1 Properties

The present study seeks to identify common properties of the phenomena col-
lected. Since the starting point for collecting phenomena was the selection
of already existing annotated phenomena, it is necessary to acknowledge an
inherent selection bias: the present collection does not - and cannot - contain
phenomena which are not currently annotateable. Any generalizations derived
from the collected list of phenomena are not applicable to phenomena which
are not annotateable.

One of the most important properties of any phenomenon is their annota-
tion unit size. In the previous section the collected phenomena were ordered
according to these annotation unit sizes. While the categories chosen for the
grouping of phenomena are motivated by the linguistic nature of the phenom-
ena collected, they are not definitive. Other groupings are conceivable and are
potentially better fits for differently sized collections of phenomena.

Regardless of the chosen grouping size, two distinct types of phenomena
can be identified:

• Phenomena annotateable via a single annotation unit (e.g. word level).

• Phenomena only annotateable via a collection of annotation units (e.g.
multi-sentence level).

It is technically possible to annotate phenomena with more annotation units
than necessary (e.g. annotating a word level phenomenon not with the anno-
tation unit size ’word’, but with a collection of annotation units of the size
’character’). However, it was assumed here that the definitions of phenomena
typically follow Occam’s razor and attempt to explain the phenomena in the
simplest form possible. Similarly, while it is technically possible to annotate
any phenomenon with a single annotation unit by introducing more compli-
cated annotation units, it was assumed here that the definitions of phenomena
typically attempt to keep the annotation units necessary to annotate the phe-
nomenon as simple as possible.

8

CHAPTER 2. BACKGROUND

2.2.2 Requirements for annotation

To enable researchers to annotate the observed categories of phenomena, def-
initions of fundamental annotation units of textual annotation are needed.
We observe that annotation units are typically defined by research teams for
their specific annotation projects. This results in a large variety of defini-
tions for annotation units referred to by similar terminology. An example of
this are guidelines for two different coreference annotation projects, Lanfranchi
et al. (2013) and Hirschman (1997). Both use project-specific definitions for
"markables", with slight differences between the definitions, despite the al-
ready very specific task of coreference annotation. Other definitions for the
term "markable" exist outside the area of coreference annotation, with even
bigger differences.

In our research we managed to identify Dipper et al. (2004b) as the only
paper attempting to generalize annotation units across several annotation
projects. To quote their paper:

The SFB "Information structure: the linguistic means for struc-
turing utterances, sentences and texts" consists of 12 individual re-
search projects from disciplines such as theoretical linguistics, psy-
cholinguistics, first and second language acquisition, typology, and
historical linguistics. The overarching objective of these projects
is the investigation of information structure (IS). This is an area
well-known to be prone to terminological or even conceptual con-
fusion – many different theories of how to partition utterances into
IS-relevant segments compete with each other, and, furthermore,
there is little agreement on what level(s) of utterance representa-
tion IS should be located.

Our thesis attempted to use the definitions proposed in the paper wherever
possible, but modified and expanded the definitions when it became clear that
some formulations were insufficient to describe some annotations identified
during its research.

We extend the existing definitions based on our observations.

Markables are considered to be the basic units of annotation of textual
data. This thesis proposes the following definition for markables:

Markables (segments): The basic units referenced by the annota-
tion are defined by inclusion/embedding (e.g., <markable>...</markable>)
within the source material that is to be annotated vs. specify-
ing a set of start and endpoints (e.g., <markable span="id1..id4[,

9

CHAPTER 2. BACKGROUND

id7..id12]"/> or specifying a set of start-points and offsets (e.g.,
<markable span="id1+3[, id7+5]"/>), which refer to character
positions within a separate source document that is to be anno-
tated.

The definition is derived from the markable definition by Dipper et al.
(2004b). The proposed modification addresses several issues with the original
formulation:

Markables (segments): The basic units referenced by the annota-
tion are defined by inclusion/embedding (e.g., <markable>...</markable>)
vs. specifying a start and endpoint (e.g., <markable span="id2..id4"/>).

The original definition describes markables in two different ways: referenced
by embedded tags (commonly referred to as "inline") and markables referenced
by specified start and endpoints (commonly referred to as "stand off"). The
reason for the inclusion of both is the incongruity of both approaches. Dipper
et al. (2004b) note that conflicting hierarchies, such as overlapping markables
or trees, may only be represented by markables which are referenced by their
start and endpoints. Despite this limitation and the adoption of stand off-
annotation as best practice, annotation based on inline markables still exists
and therefore needs to be included in a definition of the term markable.

The proposed modification attempts to address other limitations of this def-
inition of markables. Various phenomena are composed of discontinuous text
spans, that is to say, segments of text which are interrupted by other text seg-
ments which do not belong to the phenomena that is supposed to be annotated.
Annotators have worked around this issue by annotating such phenomena with
separate markables. However, such a workaround is counter-intuitive to an-
notators as it does not represent the properties of the annotated phenomenon
accurately. Another risk of this approach to annotating discontinuous text
spans is the distortion of Inter-Annotator Agreement (IAA) calculation, as
illustrated in Figure 2.1.

To address this limitation, the new definition allows for the inclusion of
several start- and endpoints in a single markable in a stand off-format. The
annotation of discontinuous spans remains a limitation in the inline format.

Another limitation is the incomplete definition of markables in a "stand-
off" format. Specifying a start and endpoint is sufficient to describe a text
segment, but an alternate specification via startpoint and offset also exists.
The modified definition addresses this oversight by expanding the definition to
include this alternate specification with start-points and offsets.

10

CHAPTER 2. BACKGROUND

Figure 2.1: Example of agreement distortion for implementation of phenomenon
as one discontinuous markable, vs. two continuous markables

Labels are a store of properties, typically assigned to markables or other
annotation units to annotate attributes of the annotation unit. "Labels" is a
common term for this functionality, but no universally valid definition of the
term seems to exist. This problem stems from the fact that several competing
terms exist, many of which are synonymous, adjacent, or overlapping in their
meaning. Even terms which aren’t technically synonymous are often used in-
terchangeably, likely due to the fact that few papers about annotation actually
focus on the minute differences between low level terminology, and instead ex-
plain higher level functionality. In these cases, the usage of terms like label,
tag, property and similar terms is often considered self-explanatory through
context. Terms often used in a similar manner include, but aren’t limited to:
labels, tags, flags, properties and attributes.

The paper by Dipper et al. (2004b) is very abstract in this regard. The
closest thing mentioned to labels is a given example of part-of-speech tags as
a data structure:

Secondary data This criterion concerns properties of the annota-
tions. [...]
(5) Data structure: Secondary data consist of:
(a) atomic features of a markable (e.g., part-of-speech tags)
[...]

11

CHAPTER 2. BACKGROUND

No explanation of what other atomic features a markable might possess is
given. This definition is abstracted to a degree that we find unwieldy.

This thesis proposes a new definition for the term "label":

Label: A store of properties in key-value format which describe a
markable.

This new definition is inspired by the entity-attribute-value model, a well
established logical data model used by various databases. The markable here
assumes the role of the described entity.

Relations are another fundamental building block of annotation projects,
describing relationships between annotation units.

Dipper et al. (2004b) define relations by example:

Secondary data This criterion concerns properties of the annota-
tions. [...]
(5) Data structure: Secondary data consist of:
[...] (b) relations between markables: (undirected) relations, point-
ers

While the definition is sufficient to describe all known relation types (di-
rected and undirected), the definition is hindered by its formatting as subitem
in a list. To provide a more readable definition and emphasize the possibility
of a markable to have a relation to itself or more than one other markable, we
propose the following new definition:

Relation: a directed or undirected link between a markable and
itself or an arbitrary amount of other markables.

This new definition is inspired by the definition of vertices in graph theory,
a well established field of research. In combination with our proposed defini-
tions for markables and labels, it should theoretically be possible to implement
annotations as graphs, which in turn would allow the transfer of graph-based
algorithms into the field of annotations.

To our knowledge, no previous efforts to define annotation units for the
annotation of textual data in a graph-like structure exist. The closest efforts
appears to be limited to Zhao et al. (2017), who propose "[...]a dynamic graph
visualization that enables meta-analysis of data based on user-authored anno-
tations", as well as Maeda et al. (2001), who propose "[...] an efficient and
expressive data model for linguistic annotations of time-series data". If previ-
ous efforts exist, we weren’t able to identify them. It is worth pointing out that
internet searches about this topic are severely complicated by the existence of
various papers about the topic of annotating graphs (plots).

12

Chapter 3

Review of existing software

3.1 Existing annotation software for textual data
To help with the annotation of language phenomena, various annotation tools
were developed. Annotation software often developed naturally along the lines
of the research focus the developers had, at times becoming increasingly specific
tools for niche annotation tasks, other times getting expanded to support a
variety of annotation tasks. Many of these tools were originally only intended
for internal use, and only got released to the public at a later point, resulting
in a lot of parallel development and redundant solutions to similar problems.
A few tools with more general annotation capabilities established themselves
over time as standard go-to tools for annotation tasks. However, if limited
capabilities or complicated workflows make the tools unsuited for the intended
annotation project, researchers often decide to develop their own annotation
software from scratch instead. This results in a large collection of annotation
tools with limited audience.

Various attempts to catalogue and/or evaluate this plethora of annotation
software exist, such as Neves and Seva (2020), Neves and Seva (2019), Neves
and Leser (2012) (focused on biomedical literature) and Nixon and Troncy
(2014) (focused on semantic annotation of media resources). Surveys like these
help in getting an overview over the existing annotation software landscape and
in the selection of existing tools suited for specific annotation tasks, if such a
tool exists. Our thesis however focuses on the identification of commonalities
between some of these annotation tools. We attempt to develop common
terminology to communicate recurring features commonly found in annotation
software, allowing the developers of future annotation tools to make use of
existing solutions to known problems, saving time and resources in the process.

For this purpose a sample of annotation tools were selected based on a com-
bination of previous familiarity with annotation software, frequent mentions in

13

CHAPTER 3. REVIEW OF EXISTING SOFTWARE

other annotation papers, and reported popularity according to recent survey
(A survey of NLP Annotation Platforms, 2020). The tools were compared in
regards to support of the basic annotation units as defined in subsection 2.2.2.
We checked for support of markables, whether one or multiple labels could be
applied to a markable, whether the software supported highlights as a differ-
ent store or properties (compared to labels), whether these types of storage
could be combined, support for relations (directed, undirected and chains) and
compared the results across the tested tools.

3.2 Overview
For this thesis we tested Appraise (Federmann (2012)), brat (Stenetorp et al.
(2012)), CorA (Bollmann et al. (2014)), doccano (Nakayama et al. (2018)),
FLAT (van Gompel et al. (nd); van Gompel and Reynaert (2013)), INCEp-
TION (Klie et al. (2018)), MMAX2 (Müller and Strube (2006)), Swan (Gühring
et al. (2016)), WAT-SL (Kiesel et al. (2017)), WebAnno (Eckart de Castilho
et al. (2016)) and Yedda (Yang et al. (2018)).

Each software was locally installed for testing. The documentation of the
installation process, thoroughly documented for each annotation software, can
be found in section A.2. In cases where the installation failed, installation was
attempted a second time on different hardware. Installation failed for two of
the selected tools, Appraise and CorA.

An unfortunate observation during the testing process was that even the
tools we did manage to install were often not trivial to install. Outdated or
incomplete documentation were a recurring issue, as well as outdated depen-
dencies in pip-based installations breaking the installation process;

The problem is illustrated by observations of Neves and Seva (2020) and
Neves and Seva (2019), who included ease of installation and (in)ability to
install in their evaluation of annotation tools.

A major contribution of this thesis was the examination and documentation
of the interface, supported formats and various features of each software, as
well as the curation of known interface issues in various annotation tools.

• A full documentation of annotation tasks in the tested software can be
found in section A.1.

• A full documentation of the installation process of the tested software
can be found in section A.2.

• A full documentation of known interface issues in annotation software
can be found in section A.3.

14

CHAPTER 3. REVIEW OF EXISTING SOFTWARE

3.2.1 Common annotation tasks

Annotation tasks are just one part of the workflow of a typical software-driven
annotation project; they need to be distinguished from annotation-adjacent
tasks that commonly occur in the same project, but aren’t directly involved
with the annotation. The process of a typical annotation project can be split
into three stages: data gathering, data cleaning and data annotation.

• Data acquisition contains all tasks regarding the collection of documents
and creation of a corpus of source material for later annotation. The
tasks during this step depend on the source of the data. E.g. website
scraping, document digitization, document extraction from an existing
dataset, etc.

• Data cleaning contains all tasks regarding the preparation of the collected
data for annotation. The tasks during this step depend both on the
source of the data and the details of the intended annotation in a later
step. E.g. stripping unwanted or incorrect data, automated tokenization,
normalisation, stemming, etc.

• Data annotation contains all tasks regarding the actual annotation of
data. The tasks during this step depend on the annotation guidelines.

Annotation guidelines are often written iteratively. One method for this is
the MATTER methodology as described by (Pustejovsky and Stubbs, 2012,
p.23-32), though the training and testing steps can be ignored in the case
of non-algorithmic annotation. Researchers typically start the development of
their annotation guidelines by describing an initial model for what they want to
annotate. Annotation schemes for specific phenomena are created, then tested
on example documents. The proposed annotation scheme is evaluated for
potential issues and results between annotators are compared. Once the causes
of problems with the proposed scheme are identified, a new iteration of the
annotation guidelines is proposed and the process starts from the beginning.
These steps are repeated until the guidelines are sufficient to produce correct
annotations in a repeatable manner.

These annotation schemes are then, if the chosen annotation software al-
lows, converted into annotation types for the annotation project. In modern
annotation projects it isn’t unusual for annotation guidelines to be developed
alongside specific annotation software. This development of annotation guide-
lines in tandem with the annotation software can speed up the development
process, but can also introduce limitations to the annotation scheme, as soft-
ware limitations are transferred into the annotation schemes. It is this stage
after the creation of the annotation guidelines that existing annotation tools

15

CHAPTER 3. REVIEW OF EXISTING SOFTWARE

tend to be designed for: annotating documents using predefined annotation
schemes, by selecting markables within the document, assigning labels and
indicating relations between markables. Comparing and correcting the anno-
tations of different annotators and exporting the resulting corpus.

Optional, role-dependent and non-sequential steps can exist within this an-
notation workflow. For example, the tasks of an administrator in an annotation
project might be to set up the annotation project within one of the selected
annotation tools, but not necessarily to participate in the actual annotation
themselves. In contrast, a crowd sourced annotator might get on-boarded onto
the project after the guidelines are finalized to annotate the phenomena, but
wouldn’t be involved in the design of the actual project. Project-specific tasks
might be related to methods such as the use of crowd-sourcing for annota-
tion, e.g. making the annotation guidelines, corpus and software available to
workers via some crowd-sourcing platform. Some annotation projects utilize
automation, which has to be programmed or setup using existing tools, some
projects make use of live data and require different data pipelines. And as di-
verse as the projects and associated workflows are, as diverse are the existing
annotation tools and requirements or wishes researchers have for them.

An software to fulfill every step of the annotation workflow would be
the preferred working environment for some researchers, while others prefer
lightweight annotation tools for each individual task of the process, allowing
for greater flexibility by choosing the appropriate tools for each step.

This chapter will focus on the part of the workflow addressed by all ex-
amined annotation software, the annotation tasks. However, even with this
limitation differences between the tools already become apparent. The most
basic annotation tasks can be categorized into two types: assigning labels to
markables, and creating relations between markables.

3.2.2 Common features

One of the common features of the examined annotation tools, implemented
differently across software, were the support for various import and export for-
mats. As mentioned in section 2.2.2, two different ways of annotating mark-
ables exist: via inline annotation or stand off-annotation. Each of the formats
have their own benefits and downsides, but stand off-annotations are consid-
ered the best practice nowadays.

Inline annotations require the source document or a working copy of the
document to be modified when working on it. Markables are inserted directly
into the text at the locations they respond to. This way of working with
annotations has several benefits:

16

CHAPTER 3. REVIEW OF EXISTING SOFTWARE

Figure 3.1: Overview of support for basic annotation types in tested software

• Simple annotations (just assigning labels to markables) and the visual-
ization of them are very easy to achieve.

• Annotations in the inline format remain readable to human annotators
even outside of annotation software.

• Modifications to the source document, such as fixing typos or grammar,
are relatively easy to implement.

Annotators nowadays tend to consider the downsides to outweigh the ben-
efits. Downsides include, but are not limited to:

• It is harder to implement relations.

• It is harder to implement the deletion of markables.

• Conflicting hierarchies of markables are impossible to implement.

• It is significantly harder to combine multiple sets of annotations.

One example of inline annotation is the FoLiA-format as described in (van
Gompel, 2019, p.88-108).

Stand off-annotations do not require the modification of the source doc-
ument. Annotations are stored in relation to character positions within the
document, e.g. the start-point of the annotation is at character position 1000,
and the endpoint of the annotation is at character position 1024. This way of
working with annotations has several benefits and is widely considered to be
the best practice:

17

CHAPTER 3. REVIEW OF EXISTING SOFTWARE

• It is possible to implement conflicting hierarchies.

• It is easy to combine multiple sets of annotations.

• It is easier to implement relations.

• It is easier to implement the deletion of markables.

• Changes are easy to revert due to a non-destructive workflow.

Downsides of working with stand off-annotations include:

• It is almost impossible to modify the source document. If such function-
ality is implemented, it needs to include functionality to update all an-
notations on the document afterwards, as the modification of the source
document can falsify the calculation of offsets.

• Annotations in the stand off format can be hard or even impossible to
read for human annotators outside of annotation software.

• It is comparatively harder to implement simple annotations (just assign-
ing labels to markables).

One example for stand off annotation is the brat standoff format as de-
scribed in (the brat documentation).

Most annotation software nowadays use formats that belong to the stand-
off category, though exceptions exist. There is however not one, but a large
variety of different formats that store annotations in a stand-off format. Even
further, certain formats may appear similar at first glance (e.g. two formats
being both stand-off having an XML file extension), but still be incompatible.
In Figure 3.2 the different import and export formats of the tested software
are listed, in which we clustered formats according to underlying technical
implementations (JSON, CSV, XML, plaintext, other), this however doesn’t
necessarily mean that two XML based import format of two different annota-
tion tools are compatible with one another. To determine cross-compatibility
between all tools and formats would’ve exceeded the scope of this thesis, but
might be worth considering for future research.

We also documented ’noteworthy’ formats, ’noteworthy’ being the loosely
defined criteria whether we noticed the adoption of a format by other software,
which implies some useful properties of the format recognized by users in the
specific knowledge domain. It was surprising to note that few of the tested
tools had exactly the same export and import formats.

One important feature of annotation software is the ability to present rele-
vant information to annotators. A common implementation of this is to show

18

CHAPTER 3. REVIEW OF EXISTING SOFTWARE

Figure 3.2: Overview of supported import and export formats in tested software

additional information about any selected annotation to the user. We doc-
umented which interactions by users triggered the display of such additional
information for the three most common annotation categories. The informa-
tion can be found in Figure 3.3. One surprising observation was that single
clicks triggering the display of additional information tended to be inconsistent
across different types of annotations within the same software.

We also documented which type of information specifically was communi-
cated via tooltip. Most tools had a predefined set of information on display
in their tooltips, with FLAT being a notable outlier, in that it allowed the
customization of the information being displayed.

19

CHAPTER 3. REVIEW OF EXISTING SOFTWARE

Figure 3.3: Overview of support for additional information display after mouse
interactions in tested software

Figure 3.4: Overview of type of information displayed in tooltips of tested software

20

Chapter 4

Software patterns

The principle of design patterns in software development is a well-known one.
We examined various types of design patterns to determine their usefulness for
the development of annotation software. We tested various annotation tools
as described in chapter 3 and gathered various complaints about and known
issues in annotation software (see section A.3) to identify the appropriate level
of abstraction of design patterns for this thesis. The stated goal of this thesis
is to compile the requirements to annotation software for the purpose of being
usable to fulfill natural-language annotation tasks.

It was determined that User Interface patterns (UI patterns for short) and
User Experience patterns (UX patterns for short) tended to be too specific
to be useful in the development of these requirements, generally describing
specific forms of an interface (e.g. navigation tabs) rather than describing in-
teractions with the software or the structure of underlying data. We concluded
that Software Design patterns (SD patterns for short) and Interaction Design
patterns (ID patterns for short) would be better suited for these purposes. UI
patterns and UX patterns can be described as a Interaction Design-adjacent,
as they tend to be motivated by Human-Computer Interaction principles and
problems.

By describing observed patterns in the more abstract ID pattern format,
we ensure that existing UI and UX patterns can be used as solutions for the
formulated problems.

For certain core annotation tasks however, the ID and SD pattern formats
ended up being too abstract and thus sub-optimal for attempting to document
requirements of the given field in detail. We propose a new pattern format for
these annotation tasks, which we describe in detail in chapter 5.

21

CHAPTER 4. SOFTWARE PATTERNS

4.1 Interaction Design patterns
We contribute a list of patterns for annotation adjacent tasks in the ID pattern
format. Patterns for core annotation tasks were instead formulated In the
present study a modification of the ID pattern definition by Folmer is used.
An overview can be seen in table 4.1.

Pattern name This section wasn’t included in the original definition, but
was implied.

Author We excluded this part of the pattern format, as all patterns were
written by the same author.

Problem "Problems are related to the usage of the system and are relevant
to the user or any other stakeholder that is interested in usability."

Use when "a situation (in terms of the tasks, the users and the context of
use) giving rise to a usability problem. This section extends the plain
problem-solutions dichotomy by describing situations in which the prob-
lems occur. "

Principle We excluded this part of the pattern format. Not only was the
definition confusing, but we could also not find an example of any other
ID pattern using this particular section of the format.

Solution "a proven solution to the problem. A solution describes only the
core of the problem, and the designer has the freedom to implement it
in many ways. Other patterns may be needed to solve sub problems. "

Why "How and why the pattern actually works, including an analysis of how
it may affect certain attributes of usability. The rationale (why) should
provide a reasonable argument for the specified impact on usability when
the pattern is applied. The why should describe which usability aspects
should have been improved or which other aspects might suffer. "

Examples Each example shows how the pattern has been successfully applied
in a real life system. This is often accompanied by a screenshot and a
short description.

Implementation We excluded this part of the pattern format, as this section
turned out to be mostly redundant with the "Examples" section.

Table 4.1: Structure of the Interaction Design pattern format

22

CHAPTER 4. SOFTWARE PATTERNS

We decided to forgo redundant formulations in the "Use when" section of the
pattern, as every pattern would include a variation of “the objective is designing
an application to annotate textual data in documents, wherein users [. . .]”.

4.1.1 Import & Export

Import file formats

Problem: users want to import documents in a certain data format.

Use when: the application usually has a default data format or preferred
way to handle the data behind the scenes, which differs from the file
format of the documents the user intends to import. The users typically
prefer a flexible system that allows for a variety of common formats to
be imported.

Solution: support for different import formats. The software contains sup-
port for the most common (and preferably also for some uncommon) file
formats and automatically transfers the data from these file formats into
that of the application-internal data storage.

Import options: certain formats are not standardized and allow for vary-
ing interpretations about how the import should be done (e.g. .txt files
that separate text spans either by newline, or tabs or other separator
characters such as commas). To ensure that the file is correctly im-
ported, a menu offering different options on how to interpret the file can
be shown to the user.

Conversion tool for different formats to a default import format: the
software only contains support for one standardized import file format,
but comes bundled with a different application that allows the conversion
of various file formats into this standardized import file format.

Why: removing the need for users to worry about file formats shortens the
workflow for annotating documents by one step. It makes the application
more accessible to users who are not as familiar with the differences
between file formats, and allows for easier integration of one annotation
tool into a larger annotation pipeline.

Examples: INCEpTION allows users to choose from a variety of different file
formats when importing documents.

23

CHAPTER 4. SOFTWARE PATTERNS

Export file formats

Problem: users want to export annotations in a certain data format.

Use when: the application usually has a default data format or preferred way
to handle the data behind the scenes, which not always is the preferred
data format the user wants to export their annotation data in. The users
typically prefer a flexible system that allows for a variety of common
formats to be exported.

Solution: support for different export formats. The software contains support
for the most common file formats and allows the application-internal data
storage to be exported in any of these formats.

Why: removing the need for users to worry about file formats shortens the
workflow for annotating documents by one step. It makes the application
more accessible to users who are not as familiar with the differences
between file formats, and allows for easier integration of an annotation
tool into a larger annotation pipeline.

Examples: INCEpTION allows users to choose from a variety of different file
formats when exporting documents.

24

CHAPTER 4. SOFTWARE PATTERNS

Saving of an incomplete document

Problem: users want to stop annotating and resume at a later date.

Use when: the document length may sometimes be too large to annotate
comprehensively in one single sitting, or different users may want to share
incomplete or work-in-progress annotations. The users will prefer to have
an option that allows them to resume work on incomplete annotations
instead of having to start over from scratch.

Solution: support for annotation data import. The software contains support
for import formats that do not contain just the source documents, but
also allow the user to import annotations.

Why: removing the need for users to worry about completing annotations in
one go makes it easier to annotate large documents. It is also more in line
with expectations users have from using other software (e.g. familiarity
with office software). It makes the annotation process more resilient
to data loss facilitates integration of annotation software into a larger
annotation pipeline.

Examples: PDF Annotator (GRAHL software design (nd)) allows users not
only to import annotations, but also to transfer them from one document
to another.

25

CHAPTER 4. SOFTWARE PATTERNS

Partial saving

Problem: users want to only save parts of a document, or not repeat the
saving process for annotations they already saved earlier.

Use when: the document length may sometimes be so large that the saving
process takes a considerable amount of time. The users will prefer an
option allowing them to only save those parts of the document in which
changes occurred - this e.g. in order to reduce load on the workstation.

Solution: the software contains support for partial saving. In partial saving,
the user designates a portion of the document which is supposed to be
saved, and only annotations for this range of the document are updated
in the saved annotation file.

Why: giving the users more flexibility in how they want to save their docu-
ments allows expert users to prevent system slowdowns and to become
more efficient in their workflow.

Examples: Stata (not an annotation software, LLC (2021)) contains support
for partial saving.

Background saving

Problem: users want to save large annotation projects without having to stop
their ongoing annotation.

Use when: the document length may sometimes be so large that the saving
process takes a considerable amount of time. The users will prefer an
option that allows them to save the document and/or its annotations
without having to wait for the saving process to complete before resuming
their annotation work.

Solution: the software contains support for background saving. In back-
ground saving, the software keeps a copy of the data in storage at any
given time, and upon the save-command starts to export the data, with-
out blocking the access of the user to the other tools of the annotation
software.

Why: removing the need for users to wait for the annotation software to finish
its export shortens the time needed for annotating documents. It makes
the annotation workflow more resilient to data loss by automatic and

26

CHAPTER 4. SOFTWARE PATTERNS

frequent saving. It also facilitates integrating the application into an
annotation pipeline working on real time data.

Examples: Adobe Photoshop (not an annotation software, Inc. (nd)) allows
users to save files while continuing to work on them.

Automatic saving

Problem: users seek to regularly save their annotation progress.

Use when: the users would prefer an option that allows them to schedule
saving operations to occur in regular intervals.

Solution: the software contains support for automatic saving. The user can
select a time interval after which the current and ongoing work is auto-
matically saved.

Why: adding the option for automatic saving renders the annotation workflow
more resilient to data loss.

Examples: Adobe Photoshop (not an annotation software, Inc. (nd)) allows
users to set a save interval.

Export visualization as image

Problem: users want to export the visualization of data within the annotation
software.

Use when: users can visualize certain aspects of the annotation, such as

• relations

• structures

• common properties

27

CHAPTER 4. SOFTWARE PATTERNS

• overviews

The users may prefer an option that allows them to export these visual-
izations.

Solution: built-in screenshot support – The software helps with the creation
of screenshots by including options such as auto-scrolling + stitching of
screenshots, disabling of interface elements, etc.

Visualization rendering – the software creates a vector-based representa-
tion of the document and its annotations and provides options to either
export the vector image and/or rasterize it to common image formats.

Why: adding the option to export visualizations makes it easier for annotators
to present the results of their annotation projects. It also saves time if the
alternative would be to recreate visualizations in third party software, or
to use third party screenshot tools to take screenshots of the annotation
tool’s built-in visualizations.

Examples: brat (brat contributors (ndc)) offers the option to export visual-
ization as .svg or .png file.

4.1.2 Automation

Preprocessing

Problem: users want to preprocess documents in a certain way to fit their
annotation needs.

Use when: the users would prefer an option that allows them to automati-
cally preprocess documents.

Solution: the software contains support for various common preprocessing
operations, such as:

• Segmenting

• Stopword removal

• Tokenization

• Lowercasing

• Stemming

• Lemmatization

• Normalization

28

CHAPTER 4. SOFTWARE PATTERNS

• Sanitisation/noise removal
• Text enrichment (adding information not previously in the text, e.g.

part-of-speech-tagging)

Alternatively, or in addition, the software contains support for custom
scripts.

Why: allowing the user to preprocess their documents increases the quality
of the resulting dataset and speeds up the annotation process. It also
facilitates integrating the application into an annotation pipeline.

Interactive learning of making annotations

Problem: users want the annotation software to automatically suggest anno-
tations.

Use when: the users would prefer an option that offers suggestions for anno-
tations.

Solution: the software contains support for active learning systems that an-
alyze existing annotations and offer suggestions based on them.

Why: enabling the user to select suggestions for annotations can speed up the
annotation workflow, and it can make the annotation process simpler.
Integrating active learning systems into the annotation software allows
annotators to accomplish two tasks at the same time: annotation as well
as machine learning model training.

Examples: Prodigy (Montani and Honnibal (2018)) offers interactive learning
support.

29

CHAPTER 4. SOFTWARE PATTERNS

Scripts

Problem: users want to automate certain annotation tasks.

Use when: the users would prefer the option to run custom scripts, these
scripts automating functionality.

Solution: the software contains support for scripts that allow the user to
interface with the data within the documents, with the annotations, and
with the software itself, as well, via a simple API.

Why: allowing the user to customize the software and expand its functionality
via scripts can speed up the annotation process.

Examples: WebAnno supports customizable automation (The We-
bAnno Team (nd)).

4.1.3 Source document management

Editing the source document

Problem: users want to directly edit the source document in an annotation
project instead of just adding an annotation on top.

Use when: the document possibly contains simple mistakes (such as spelling
errors, typos, etc.) the user may want to correct instead of just marking
as errors, and would therefore prefer an option that allows for directly
editing the source document. This would avoid having to do editing
manually outside the annotation software and avoid re-importing the
document and breaking any already existing annotations.

Solution: the software contains support for editing the source document and
updating annotations in standoff format. Updating the document au-
tomatically recalculates the character offsets in standoff annotation file
formats to ensure that the annotations remain valid and correctly posi-
tioned after editing the source document. If an automatic recalculation
is not possible because it would introduce ambiguity, the software shows
a menu with options for the user to manually realign the annotations.

Why: removing the need for users to manually edit the source documents
outside the annotation software (in case changes are needed) increases the
speed of the annotation workflow. It renders the annotation workflow less

30

CHAPTER 4. SOFTWARE PATTERNS

prone to errors by ensuring that the annotations and document remain
valid after applying the changes. It makes it easier to integrate the
application into an annotation pipeline working on real time data.

Importing large amount of small documents

Problem: users desire to import a large amount of individual smaller docu-
ments in sequence.

Use when: the documents are possibly of very short length, which may result
in the mere importing of documents taking up a significant amount of
the total annotation time. The users will prefer an option allowing for
importing several documents in one single process step.

Solution: the software contains support for batch importing. The user can
specify import options in a menu – and then import multiple documents
at once using the same settings.

Why: removing the need for users to manually import every single document
of many speeds up the annotation workflow considerably.

Examples: Adobe Photoshop (not an annotation software, Inc. (nd)) allows
for batch processing of files.

Switching to next document within source

Problem: users may want to edit several documents in sequence, without
importing them all at once.

Use when: the documents may possibly be of very short length, resulting
in the mere importing of documents taking up a significant amount of
the total annotation time. The users will prefer an option allowing for

31

CHAPTER 4. SOFTWARE PATTERNS

quickly switching to the next document in line, without having to use
the import options every time.

Solution: the software contains support for designating a source of documents
(e.g. a folder) and an option that allows for opening the next document
in line using the same import options as the current document.

Why: removing the need for users to manually import every single document
speeds up the annotation workflow considerably.

Examples: WebAnno allows for fast switching to the next or previous docu-
ment via dedicated buttons.

4.1.4 Annotation level interactions

Customizing visualization

Problem: users seek to visualize annotated data in a certain way.

Use when: the users will prefer to have an option to customize visualizations
to suit their needs.

Solution: the software contains support for customized visualization options,
which allow the user to change how different types of markables are
displayed.

Why: allowing the user to customize the visualization of annotations makes it
easier to explore datasets using the software. It speeds up the annotation
process when reviewing existing annotations for errors.

Examples: brat has rudimentary support for the customization of annotation
visuals (brat contributors (nda)).

Changing visualization focus

Problem: users want to be able to focus on parts of their annotations, while
masking out others.

32

CHAPTER 4. SOFTWARE PATTERNS

Use when: the users will prefer an option that allows for focusing on and
thus visualizing only a subsection of all annotations.

Solution: the software contains a filter option that either highlights annota-
tions matching the filter criteria, or disables or tones down the visual-
ization of annotations that do not match the filter criteria, or includes a
combination of both.

Why: allowing the user to focus on only a subsection of all annotations allows
for an easier exploration of annotation datasets by reducing unnecessary
visual clutter.

Examples: FLAT support multiple views of the same annotation project.

Summaries/Overviews/Basic stats

Problem: users prefer to be able to see meta-information about their anno-
tations.

Use when: the users would prefer an option allowing for an overview regard-
ing all the annotations.

Solution: the software contains support for collecting statistics about the
annotations in a document or project, and also visualization options
that enable displaying these statistics in a way supporting readability
for humans.

Why: allowing the user to see statistics about the annotations in a document
facilitates insights into the annotation task which otherwise would not
be possible.

Examples: WebAnno offers support for project monitoring.

33

CHAPTER 4. SOFTWARE PATTERNS

4.1.5 Quality assurance

Computing inter-/intra-annotator agreement

Problem: users seek to get an overview regarding the similarity of results
from several annotators.

Use when: in an application where multiple users can annotate their own
copies of the documents, the users would prefer an option to determine
similarity between the annotations.

Solution: the software contains a support for the calculation of various met-
rics which indicate agreement, such as

• Cohen’s Kappa

• Fleiss’ Kappa

• Scott’s Pi

• Krippendorf’s Alpha

Why: enabling the user to calculate the agreement between different annota-
tions on the same document is helpful when trying to construct a gold
standard corpus, and to find faults in the individual annotations. It will
result in a higher quality dataset and speeds up the process of finding
consensus on the correct annotation.

Examples: GATE offers the option to calculate IAA (The University of
Sheffield (nd)).

WebAnno includes an entire agreement section:

Comparing results from multiple annotators

Problem: users want to compare the results of several annotators.

Use when: in an application where multiple users can annotate their own
copies of the documents, the users will prefer an option to compare the
results of different annotators with one another.

34

CHAPTER 4. SOFTWARE PATTERNS

Solution: the software contains a visualization option in which multiple anno-
tation files for the same document are compared and differences between
the annotations are highlighted.

Why: allowing the user to compare different annotations regarding the same
document is helpful when trying to construct a gold standard, and to
find faults in the individual annotations. It will result in a higher quality
dataset and speeds up the process of finding consensus on the correct
annotation.

Examples: brat supports side-by-side view of annotated documents:

(source: official brat documentation brat contributors (ndb))

Error detection

Problem: users want to be able to spot mistakes in their annotations to fix
them.

Use when: the users will prefer to have an option that warns them if their
annotation contains mistakes, such as not meeting certain requirements.

Solution: the software contains an annotation scheme editor, in which the
user can specify requirements for certain types of annotation. The soft-
ware also contains visualization options notifying the user if annotations
of a given type do not meet the requirements specified in the scheme.

Why: allowing the user to compare different annotations regarding the same
document is helpful when trying to construct a gold standard, and to
find faults in the individual annotations. It will result in a higher quality
dataset and speeds up the process of finding consensus on the correct
annotation.

Examples: brat includes support for error messages:

35

CHAPTER 4. SOFTWARE PATTERNS

4.1.6 Mode of interaction/modality

Annotating via keyboard

Problem: users want to annotate with a minimal amount of mouse clicks
slowing them down.

Use when: the users would prefer to have an option to complete the anno-
tation process without the need to select markables or data fields using
the mouse.

Solution: the software supports the use of keyboard shortcuts that fulfill the
same functionality as usually achieved using the mouse. Such shortcuts
could include (but are not limited to):

• Selecting the next/previous markable

• Selecting the next/previous existing annotation

• Selecting the next/previous data field

• Creating new annotations

• Deleting existing annotations

• Switching to the next document

Why: allowing the user to use keyboard shortcuts instead of the mouse speeds
up the annotation process. It makes the software more accessible, since
people with certain motor disabilities are incapable of using a mouse, but
have alternative means of entering text (e.g. via speech recognition).

Examples: Yedda is usable entirely via keyboard.

36

CHAPTER 4. SOFTWARE PATTERNS

(source: Yedda documentation Yang et al. (2018))

Automating annotations

Problem: users seek to automate annotations.

Use when: the users would prefer an option to automate (parts of) the an-
notation process.

Solution: the software supports the use of macros and/or rulesets which au-
tomate repetitive tasks.

Why: enabling the user to automate parts of the annotation workflow speeds
up the annotation process and allows the annotator to focus on complex
annotation tasks which aren’t possible without human intervention. It
facilitates integrating the annotation software into a larger annotation
pipeline.

Examples: WebAnno offers an automation category.

37

CHAPTER 4. SOFTWARE PATTERNS

Annotating via mouse/pointing device

Problem: users want to annotate documents using a mouse/pointing device.

Use when: the users would prefer an option to complete (parts of) the an-
notation using a mouse or other pointing device.

Solution: the software contains menus which can be operated using a
mouse/pointing device.

Why: allowing the user to use a pointing device to complete (parts of) the
annotation renders the interaction with the annotation software more
intuitive compared to a keyboard-only approach.

Examples: (Webanno)

Annotating via touchscreen

Problem: users want to annotate documents using a touchscreen.

38

CHAPTER 4. SOFTWARE PATTERNS

Use when: the users would prefer an option to use the annotation software
on a device using touchscreen.

Solution: A: touchscreen annotation via a native application. The software
is capable of running on touchscreen devices such as smartphones or
tablets. The software is designed to make use of this input option.

B: Touchscreen annotation via a web-based application. The software is
split into two sections, a server part and a client part, with the software
only required to be installed on the server-side, but being usable by
the client via any browser. The interface of the web-application avoids
interactions which cannot be used on touch-based (or are difficult to
be replicated on them), such as double-clicking, right clicking, etc., or
features alternative interactions.

Why: enabling the user to use a touchscreen to complete (parts of) the an-
notation renders the annotation process more intuitive. This is impor-
tant to consider for crowd-sourcing annotations, as the number of smart-
phones and tablets has long surpassed the number of desktop PCs.

Examples: Crowdsource app for Android

doccano being served via browser.

4.2 Software Design patterns
In the introductory section of chapter 4 we concluded that ID and SD patterns
are useful pattern formats in the development of requirements for annotation
software, but with the caveat that the formats were too abstract for the de-
velopment of patterns about certain core annotation tasks. We deemed the
SD pattern format too abstract, because the proposed patterns are based on
observations in the area of natural-language annotation tasks, and therefore
validity of the proposed patterns outside this context was not considered. SD
patterns, which are generally applicable in all areas of software design and are
independent from domain specific considerations, would therefore be too re-
stricting for the purposes of this thesis. Abstraction attempts of requirements
exclusive to natural-language annotation tasks would cause issues, either by
abstracting away the domain-specific requirements, or by introducing these re-
quirements into patterns that appear to be generally applicable, even though
these requirements might not exist outside this field.
However, SD patterns are a well established concept in the field of software
design, and the structure of these patterns can inform the formulation of a
pattern structure more suitable for the needs of this thesis. In table 4.2 we

39

CHAPTER 4. SOFTWARE PATTERNS

briefly introduce only the sections of the Software Design pattern format by
Gamma et al. (1994) which influenced the Annotation pattern format proposed
in chapter 5.

Pattern Name and Classification “The pattern’s name conveys the
essence of the pattern succinctly. A good name is vital, because it will
become part of your design vocabulary. [. . .]”

Intent “A short statement that answers the following questions: What does
the design pattern do? What is its rationale and intent? What particular
design issue or problem does it address?”

Motivation “A scenario that illustrates a design problem and how the class
and object structures in the pattern solve the problem. The scenario will
help you understand the more abstract description of the pattern that
follows.”

Consequences “How does the pattern support its objectives? What are the
trade-offs and results of using the pattern? What aspect of system struc-
ture does it let you vary independently?”

Implementation “What pitfalls, hints, or techniques should you be aware of
when implementing the pattern? Are there language-specific issues?”

Related Patterns “What design patterns are closely related to this one?
What are the important differences? With which other patterns should
this one be used?”

Table 4.2: Structure of the Software Design pattern format by Gamma et al. (1994)

40

Chapter 5

Annotation patterns

5.1 Proposal for new pattern structure
In this thesis we want to formalise annotation patterns. We observe similar-
ities to software patterns and find that both the ID pattern format and the
SD pattern format contain attributes useful or necessary for the description of
patterns about annotation tasks. However, these pattern formats are individ-
ually ill suited to describe the observed patterns in the core annotation tasks.
We propose a new Annotation Pattern format (AP format for short) for this
purpose, adapting aspects and terminology of both the ID pattern format and
SD pattern format. This renders the new format easily understandable for
anyone already familiar with one or both of the previously mentioned formats.
The new format also facilitates comparison between the formats, encouraging
the adaption of existing patterns into this domain.
The AP format as depicted in section 5.1 offers all the attributes necessary to
describe an annotation pattern in its entirety.

41

CHAPTER 5. ANNOTATION PATTERNS

Pattern name: a descriptive and unique name that is conductive to identi-
fying and referring to the pattern.

Intent: a description of the goal behind the pattern and the reason for using
it.

Use when: a scenario consisting of a problem and a context in which this
pattern can be used.

Solution: a proven solution to the problem. This solution describes only the
core of the problem, and the designer has the freedom to implement it
in many ways. Other patterns may be needed to solve sub problems.

Consequences (optional): a description of the results, side effects, and
trade offs caused by using the pattern, if they are known.

Related patterns (optional): a description of, if known, how the pattern
interacts with other annotation patterns and discussions of known dif-
ferences to similar patterns.

Examples: a list of examples illustrating how the pattern has been success-
fully applied in a real life system. In many examples a screenshot and a
short description is included.

Table 5.1: Structure of the Interaction Design pattern format

During the development of the AP format, we compared the terminology and
descriptions of Folmer (nd); Nguyen (nd) and Gamma et al. (1994) to deter-
mine useful sections for the proposed pattern. We chose to adapt existing
terminology and descriptions whenever possible, and decided to use the most
descriptive and easily understood terms if similar sections existed in the dif-
ferent pattern formats.
We contribute a list of patterns for annotation tasks in the newly proposed
Annotation Pattern format.

5.2 Annotation patterns
We decided to forgo redundant formulations in the "Use when" section of the
pattern, as every pattern would include a variation of “the objective is designing
an application to annotate textual data in documents, wherein users [. . .]”.

42

CHAPTER 5. ANNOTATION PATTERNS

5.2.1 Selecting markables

Intent:

when creating annotations, it is necessary to specify which part of the docu-
ment the user is trying to annotate.

Use when:

the users need to be enabled to specify which part of the document they want
to annotate to complete this task.

Solution:

the software contains support for selecting subsections of a document. Inter-
acting with the markables of a document by highlighting parts of the text
visually indicates which part of the text has been selected. This is done via
clicking and dragging the mouse cursor. A representation of the selected mark-
ables is temporarily stored in memory, e.g. by storing start and end indexes
of the selection.

Consequences:

since the pattern requires interaction with a markable to create a selection,
it becomes an issue if such an interaction is not possible or non-trivial, e.g.
interacting with zero-width-characters.
Since clicking and dragging the mouse cursor does not necessarily follow the
reading direction of the text in a document, the start index (where the mouse
was pressed) can occur positioned after the end index (where the mouse was
released). In the implementation, start and end indexes may require inter-
changing and, if the direction of the selection matters, the direction is to be
stored separately.

Related patterns:

this pattern is often used in combination with the "Creating labels" pattern
(see 5.2.2).

43

CHAPTER 5. ANNOTATION PATTERNS

Examples:

(WebAnno)

5.2.2 Creating labels

Intent:

creating labels is the most basic functionality of any annotation software. Users
will want to annotate a selected markable.

Use when:

users need to be able to create annotations.

Solution:

the software contains support for creating annotations. Interacting with a
selection opens a menu to create an annotation for the markables within the
selection, or enables the use of a designated button or shortcut for creating
annotations.

Consequences:

since the pattern requires a selection to create annotations, there is a problem
if a user wants to create an annotation prior to selecting the markables the
annotation is intended for. An example would be automated recurring an-
notations in a live-updating feed, where selection at a given point in time is
not possible since the markables do not exist yet. A possible solution might
be to allow the creation of annotations without any selection, this requiring,
however, an assignment of the annotation to a selection for the annotation to
become valid.

Related patterns:

• This pattern requires the "Selecting markables" pattern (see 5.2.1).

44

CHAPTER 5. ANNOTATION PATTERNS

• This pattern is the counter-pattern to the "Deleting annotations" pattern
(see 5.2.5).

• This pattern is often used in combination with the "Editing annotations"
pattern (see 5.2.4).

Examples:

in WebAnno a label is created upon releasing the left mouse-click while text
is selected.

5.2.3 Selecting markables via label

Intent:

at times the user needs to interact with existing annotated markables. For this
purpose the ability to select labels is necessary.

Use when:

the users need the ability to select existing annotations of the document as a
prerequisite for other actions (see the related patterns section for details).

Solution:

the software contains support for selecting labels.
Interacting with a label of an annotated markable by clicking or double-clicking
on the label selects the annotation visually represented by the label.
It is suggested to indicate an active selection by visually distinguishing the
label of a selected annotation from the label of an annotation that is not
currently selected.

Related patterns:

• This pattern requires the "Creating labels" pattern (see 5.2.2).

45

CHAPTER 5. ANNOTATION PATTERNS

• This pattern is a prerequisite for the "Editing annotations" pattern (see
5.2.4).

Examples:

(WebAnno)

5.2.4 Editing annotations

Intent:

the user may need to modify an existing annotation.

Use when:

the users will prefer an option to update and change the properties of markables
they have already annotated.

Solution:

the software contains support for editing existing annotations.
Selecting an existing annotation opens a menu (or switches the contents of a
form showing the properties of the currently selected element) that allows the
user to modify properties of the selected annotation.

Consequences:

certain types of relations can be restricted to be valid only between annota-
tions that fulfill certain properties (e.g. annotating a certain phenomena). If
a relation between two annotations was created, and the annotation is edited
afterwards, relations between this annotation and others can potentially be-
come invalid. It is suggested that by confirming any changes to the properties
of an annotation, any relations or other structures which are dependent on the
annotation receiving an alert regarding the change. This way such relations or
other structures can react to the change (e.g. by triggering a validity check,
alerting the user to possible changes of these relations, etc.)

46

CHAPTER 5. ANNOTATION PATTERNS

Related patterns:

• This pattern requires the "Selecting annotations via label" pattern (see
5.2.3).

Examples:

(WebAnno)

5.2.5 Deleting annotations

Intent:

the user may need to delete an existing annotation.

Use when:

the users require the ability to delete existing annotations.

Solution:

the software contains support for deleting existing annotations.
Selecting an existing annotation opens a menu (or switches the contents of a
form showing the properties of the currently selected element), allowing the
user to delete the selected annotation.

Consequences:

relations are only valid if the annotations they are referring to exist.
If a relation between two annotations was created, and one of the two an-
notations is deleted afterwards, relations between this annotation and others
become invalid. It is suggested that by confirming the deletion of an annota-
tion, any relations or other structures which are dependent on the annotation
receive an alert regarding the change. This way these relations or other struc-
tures can react to the change (e.g. by triggering a validity check, alerting the
user to possible changes of these relations, etc.)

47

CHAPTER 5. ANNOTATION PATTERNS

Related patterns:

• This pattern requires the "Selecting annotations via label" pattern (see
5.2.3).

Examples:

(WebAnno)

5.2.6 Creating directed relations between markables

Intent:

the user may want to annotate the relation between annotated markables of a
document, wherein the direction of the relation is of importance.

Use when:

the users require the ability to annotate which annotated markables of the
document are related to one another and the ability to differentiate between
relations in one direction or the other.

Solution:

the software contains support for creating relations between annotated mark-
ables.
Interacting with one annotated markables of a document by clicking and hold-
ing on the associated label indicates that this annotated markable was selected
as the source of the relation. Then moving the cursor while still holding to
another label indicates that a relation between the two annotated markables
is being created. Releasing the click over the target label indicates that the
annotated markable associated with this label was selected as the target of the
relation.
It is suggested to indicate a directional relation between two annotated mark-
ables. This is done by displaying a link with an arrowhead between their
associated labels, with the link originating at the source label and pointing at
the target label. While creating the relation, the arrowhead should point at
and follow the cursor until the click is released over the target label.

48

CHAPTER 5. ANNOTATION PATTERNS

Consequences:

since the pattern requires two labels to visualize a relation, modification or
deletion of one of the labels becomes an issue. In case a label is modified
and its visual representation changes, the link between the labels needs to be
updated to ensure the arrowhead points to the correct label.

In case a label is modified by changing the properties of the underlying mark-
able, the relation could potentially become invalid. This may for example be
the case if relations are only allowed between certain types of annotation and
the type of an annotation changed. Invalid relations might need to be deleted,
brought to the annotators attention or temporarily disabled.

• For details regarding potential problems consult the "Editing annota-
tions" pattern (see 5.2.4).

In case a label is deleted, the relation becomes invalid.

• For details regarding potential problem consult the "Deleting annota-
tions" pattern (see 5.2.5).

Since labels may be very far apart in the document, it is important to dis-
play links between labels in a manner that does not negatively impact the
annotation experience.

• A negative example can be found inside section A.3.

There is no upper limit to how many relations one annotated markable can
have with other annotated markables. It therefore is important to display links
between labels in a manner that does not negatively impact the annotation
experience. Such an impact may happen in case of a large amount of relations
originating from one label, or several labels in close proximity.

Related patterns:

• This pattern requires the "Selecting annotations via label" pattern (see
5.2.3).

• This pattern is parallel to the "Creating undirected relations" pattern
(see 5.2.7).

• This pattern is the counter-pattern to the "Deleting relations" pattern
(see 5.2.10).

• This pattern is often used in combination with the "Editing relations"
pattern (see 5.2.9).

49

CHAPTER 5. ANNOTATION PATTERNS

Examples:

(brat)

5.2.7 Creating undirected relations between markables

Intent:

the user may want to annotate the relation between annotated markables of a
document, wherein the direction of the relation is not of importance.

Use when:

the users need to be enabled to annotate which annotated markables of the
document are related to one another.

Solution:

the software contains support for creating relations between annotated mark-
ables. Interacting with one annotated markables of a document by clicking
and holding on the associated label indicates that this annotated markable
will be part of the resulting relation. Then, moving the cursor – while still
holding – to another label indicates that a relation between the two annotated
markables is being created. Releasing the click over the target label finalizes
the creation of a relation between the two annotated markables.
It is suggested to indicate an undirected relation between two annotated mark-
ables. This is done by displaying a link between their associated labels. While
creating the relation, the link should appear between the label that was first
clicked and the cursor, until the click is released over the other label.

Consequences:

since the pattern requires two labels to visualize a relation, it becomes an issue
if one of the labels is modified or deleted. In case a label is modified and its
visual representation changes, the link between the labels needs to be updated
to ensure the link is still connected to both labels.
In case a label is modified by changing the properties of the underlying mark-
able, the relation could potentially become invalid, e.g. if relations are only
allowed between certain types of annotation and the type of an annotation

50

CHAPTER 5. ANNOTATION PATTERNS

changed. Invalid relations might need to be deleted, brought to the annota-
tors attention or temporarily disabled.

• For details regarding source of potential problem consult the "Editing
annotations" pattern (see 5.2.4).

In case a label is deleted, the relation becomes invalid.

• For details regarding source of potential problem consult the "Deleting
annotations" pattern (see 5.2.5).

Since labels can be very far apart in the document, it is important to display
links between labels in a manner that doesn’t negatively impact the annotation
experience.

• See negative example "brat link across several sentences".

Since there is no upper limit to how many relations one annotated markable can
have with other annotated markables, it is important to display links between
labels in a manner that doesn’t negatively impact the annotation experience
in case of a large amount of relations originating from one label, or several
labels in close proximity.

Related patterns:

• This pattern requires the "Selecting annotations via label" pattern (see
5.2.3).

• This pattern is parallel to the "Creating directed relations" pattern (see
5.2.6).

• This pattern is the counter-pattern to the "Deleting relations" pattern
(see 5.2.10).

• This pattern is often used in combination with the "Editing relations"
pattern (see 5.2.9).

Examples:

(brat)

51

CHAPTER 5. ANNOTATION PATTERNS

5.2.8 Selecting relations

Intent:

at times the user needs to interact with existing relations between annotated
markables. For this purpose the ability to select existing relations is necessary.

Use when:

the users need the ability to select existing relations between annotated mark-
ables of the document as a prerequisite for other actions (see the related pat-
terns section for details).

Solution:

the software contains support for selecting existing relations between annotated
markables.
Interacting with a relation between annotated markables of a document by
clicking or double-clicking on the link between the associated labels selects the
relation visually represented by the link.
It is suggested to indicate an active selection by visually distinguishing the link
of a selected relation from the link of a relation that isn’t currently selected.

Related patterns:

• This pattern requires the "Creating directed relations between mark-
ables" pattern (see 5.2.6) and/or the "Creating undirected relations be-
tween markables" pattern (see 5.2.7).

• This pattern is a prerequisite for the "Editing relations" pattern (see
5.2.9).

Examples:

(WebAnno)

5.2.9 Editing relations

Intent:

at times the user needs to modify an existing relation between annotated mark-
ables of a document.

52

CHAPTER 5. ANNOTATION PATTERNS

Use when:

the users would prefer an option to modify existing relations between annotated
markables of the document.

Solution:

the software contains support for editing existing relations between annotated
markables. Selecting an existing relation between annotated markables opens
a menu, or switches the contents of a form showing the properties of the
currently selected element, which allows the user to modify properties of the
selected relation.

Related patterns:

• This pattern requires the "Selecting relations" pattern (see 5.2.8).

Examples:

(WebAnno)

5.2.10 Deleting relations

Intent:

at times the user needs to delete an existing relation between annotated mark-
ables of a document.

Use when:

the users need the ability to delete existing relations between annotated mark-
ables of the document.

53

CHAPTER 5. ANNOTATION PATTERNS

Solution:

the software contains support for deleting existing relations between annotated
markables. Selecting an existing relation between annotated markables opens
a menu, or switches the contents of a form showing the properties of the
currently selected element, which allows the user to delete the selected relation
by pressing a button.
It is suggested to allow the deletion of a selected relation via a keyboard
shortcut.

Related patterns:

• This pattern requires the "Selecting relations" pattern (see 5.2.10).

Examples:

(WebAnno)

5.2.11 Reusing annotations

Intent:

at times the user wants to reuse certain annotations because of their repetitive
nature.

Use when:

the users would prefer an option to reuse the properties of previous annotations.

Solution:

Via templates:
The software contains support for creating templates, which the user can fill
with information they expect to be able to reuse several times. When inter-
acting with existing annotations or creating new annotations, a menu option
allows the user to apply the template to the currently selected markable.
Via copy & paste:
The software contains support for copying & pasting the contents of annota-
tions.

54

CHAPTER 5. ANNOTATION PATTERNS

Related patterns:

• This pattern requires the "Selecting annotations via label" pattern (see
5.2.3).

Examples:

Elan (Hellwig et al. (2021); Sloetjes and Wittenburg (2008)) support the copy-
ing and pasting of annotations.

55

Chapter 6

Conclusion and Future Work

In this thesis we proposed a new approach to designing annotation software
based on patterns. This approach facilitates the development and improve-
ment of annotation software by examining and guarding against common is-
sues found in existing annotation tools. We defined eleven new Annotation
patterns for common annotation tasks, and 23 Interaction Design patterns for
common annotation-adjacent tasks within an annotation project, categorized
by the different aspects of typical annotation projects. This thesis collected
and documented a large number of linguistic phenomena and redefined various
annotation units to fix issues caused by the previous definitions.
We selected eleven annotation tools for testing and produced a detailed docu-
mentation of the installation process for each of them. We created screenshots
of their interfaces and documented the features of nine of the tools in extreme
detail. Furthermore, we curated a list of known interface issues and edge cases.
During the research phase of this thesis and attempts to formulate patterns
based on various edge cases, we also noted that the existing landscape of an-
notation software is severely lacking in accessibility features. Only a single
tool (Yedda) was controllable using only a keyboard, in all other annotation
software we tested mouse-interactions were needed, and few tools had options
to manipulate the visual representation of annotations in the software, e.g.
increasing font size or changing colour schemes.
The patterns introduced in this thesis can act as foundation for future research
into ways of making the field of NLP and computer assisted annotation more
accessible. Using the proposed patterns as a starting point, existing accessibil-
ity UX patterns could be examined for compatibility with common annotation
tasks, integrated where possible and expanded where insufficient for the needs
of annotators.

56

Appendix A

Documentation

A.1 Documentation of annotation tasks in the
tested software

A detailed documentation of basic annotation tasks in the tested annotation
software is attached to the digital copy of this bachelor’s thesis under the
filename "A1_Appendix_Tested_Software.pdf"

A.2 Documentation of the installation process
A detailed documentation of the installation process for all tested annotation
tools is attached to the digital copy of this bachelor’s thesis under the filename
"A2_Appendix_Installation_Documentation.pdf"

A.3 Documentation of known interface issues in
the annotation software

A detailed documentation of known issues and edge-cases in regards to the
interface of annotation software is attached to the digital copy of this bachelor’s
thesis under the filename "A3_Appendix_Interface_Issues.pdf"

57

Appendix B

List of phenomena

Below we provide a list of phenomena sorted by source:

1. (Ide and Pustejovsky, 2017)

• transcriptions (phonetic features, discourse structures)

• part-of-speech tags

• sense tags

• syntactic analyses

• named entity labels

• semantic role labels

• time and event identification

• co-reference chains

• discourse-level analyses

• translation equivalents

• opinion, sentiment & subjectivity

• factivity

• spatial phenomena

• metaphor

• textual entailment

• dialogue acts

• speech

• biomedical annotations

58

APPENDIX B. LIST OF PHENOMENA

2. Li et al. (2019)

• Chinese character annotation

3. Pustejovsky and Stubbs (2012)

• syntax

• semantics

• morphology

• phonology

• phonetics

• lexicon

• discourse analysis

• pragmatics

• text structure analysis

• TreeBank tags

• Agent (these should be subitems):

• Theme/figure

• Experiencer

• Source

• Goal

• Recipient

• Patient

• Instrument

• Location/ground

4. Palmer and Xue (2012)

• syntactic structure (e.g. treebanking)

• independent semantic classification (e.g. sense tagging)

• semantic relation labeling (e.g. semantic role labeling)

• discourse relations

• temporal relations

• coreference tagging

• opinion tagging

59

APPENDIX B. LIST OF PHENOMENA

5. Karoui et al. (2017)

• irony (multilayered: activation types, categories, markers)

6. Bawden et al. (2018)

• coreference

• lexical cohesion

• lexical disambiguation

7. Dipper et al. (2004a)

• interlinear morphemic transcription

• morphosyntactic annotation

• syntactic annotation

• semantic/pragmatic annotation

8. Bada et al. (2010)

• part-of-speech tagging

• tree-banking

• noun + noun-phrase coreference

• assertional annotations between concept annotations via relations

• biomedical terminology

9. Rama et al. (2018)

• entities (e.g. family, self, index, condition, event)

• modifier entities (e.g. side, age, negation, amount, temporal)

• relations

10. Kim and Klinger (2018)

• emotion

• entity (e.g. character, event, other)

• relation (e.g. experiencer, target, cause, co-reference)

11. Zampieri et al. (2017)

• complicated word identification

60

APPENDIX B. LIST OF PHENOMENA

12. Bateman et al. (2002)

• rhetorical structure

• layout structure

• navigation structure

13. Hellwig et al. (2018)

• phonetic annotation

• morphologic annotation

• lexical annotation

• verb-argument annotation

14. Musi et al. (2018)

• taxonomic hierarchy of argument schemes

• relations (e.g. support, rebut)

15. Forbes et al. (2018)

• deeply nested event structures

• syntactic dependencies

• undirected relations

• co-reference resolution

• morphological parses

16. Letcher (2013)

• passive clause

• imperative clauses

• interrogative clauses

• complement clause

• relative clause

17. Bamman et al. (2019)

• entities (e.g. people, facilities, geo-political entities, locations, vehi-
cles, organizations)

• events

61

APPENDIX B. LIST OF PHENOMENA

• co-reference of identity

• copula

• apposition

• quotation (i.e. direct speech, speaker)

62

Bibliography

A Survey of NLP Annotation Platforms, N. (2020). A survey of nlp annotation
platforms. https://github.com/alvations/annotate-questionnaire.
3.1

ACL Anthology, A. (2021). Acl anthology. https://www.aclweb.org/
anthology/. 2.1

Bada, M., Eckert, M., Palmer, M., and Hunter, L. (2010). An overview of the
CRAFT concept annotation guidelines. In Proceedings of the Fourth Lin-
guistic Annotation Workshop, pages 207–211, Uppsala, Sweden. Association
for Computational Linguistics. 8

Bamman, D., Popat, S., and Shen, S. (2019). An annotated dataset of liter-
ary entities. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 2138–2144, Min-
neapolis, Minnesota. Association for Computational Linguistics. 17

Bateman, J., Henschel, R., and Delin, J. (2002). A brief introduction to the
GeM annotation schema for complex document layout. In COLING-02: The
2nd Workshop on NLP and XML (NLPXML-2002). 12

Bawden, R., Sennrich, R., Birch, A., and Haddow, B. (2018). Evaluating dis-
course phenomena in neural machine translation. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long Papers),
pages 1304–1313, New Orleans, Louisiana. Association for Computational
Linguistics. 6

Bollmann, M., Petran, F., Dipper, S., and Krasselt, J. (2014). CorA: A web-
based annotation tool for historical and other non-standard language data.
In Proceedings of the 8th Workshop on Language Technology for Cultural
Heritage, Social Sciences, and Humanities (LaTeCH), pages 86–90, Gothen-
burg, Sweden. Association for Computational Linguistics. 3.2

63

https://github.com/alvations/annotate-questionnaire
https://www.aclweb.org/anthology/
https://www.aclweb.org/anthology/

BIBLIOGRAPHY

brat contributors (n.d.a). Annotation comparisons. https://brat.nlplab.
org/configuration.html#visual-configuration. 4.1.4

brat contributors (n.d.b). Annotation comparisons. http://brat.nlplab.
org/new-in-v1.3.html#comparison. 4.1.5

brat contributors (n.d.c). brat standoff format. https://brat.nlplab.org/
standoff.html. 3.2.2, 4.1.1

Burghardt, M. (2012). Usability recommendations for annotation tools. In
6th Linguistic Annotation Workshop - Proceedings of the ACL 2012, pages
104–112. Association for Computational Linguistics, Jeju. 2.1

Coviello, E., Chan, A. B., and Lanckriet, G. (2011). Time series models for
semantic music annotation. IEEE Transactions on Audio, Speech, and Lan-
guage Processing, 19(5):1343–1359. 2.1

Dipper, S., Götze, M., and Skopeteas, S. (2004a). Towards user-adaptive
annotation guidelines. In Proceedings of the 5th International Workshop
on Linguistically Interpreted Corpora, pages 23–30, Geneva, Switzerland.
COLING. 7

Dipper, S., Götze, M., and Stede, M. (2004b). Simple annotation tools for
complex annotation tasks: an evaluation. 2.2.2, 2.2.2, 2.2.2, 2.2.2

Eckart de Castilho, R., Mújdricza-Maydt, É., Yimam, S. M., Hartmann, S.,
Gurevych, I., Frank, A., and Biemann, C. (2016). A web-based tool for the
integrated annotation of semantic and syntactic structures. In Proceedings
of the Workshop on Language Technology Resources and Tools for Digital
Humanities (LT4DH), pages 76–84, Osaka, Japan. The COLING 2016 Or-
ganizing Committee. 3.2

Federmann, C. (2012). Appraise: An open-source toolkit for manual evalua-
tion of machine translation output. The Prague Bulletin of Mathematical
Linguistics, 98:25–35. 3.2

Folmer, E. (n.d.). The glossary of human computer inter-
action. https://www.interaction-design.org/literature/
book/the-glossary-of-human-computer-interaction/
interaction-design-patterns. 2.1, 4.1, 5.1

Forbes, A., Lee, K., Hahn-Powell, G., Valenzuela-Escárcega, M. A., and Sur-
deanu, M. (2018). Text annotation graphs: Annotating complex natural

64

https://brat.nlplab.org/configuration.html#visual-configuration
https://brat.nlplab.org/configuration.html#visual-configuration
http://brat.nlplab.org/new-in-v1.3.html#comparison
http://brat.nlplab.org/new-in-v1.3.html#comparison
https://brat.nlplab.org/standoff.html
https://brat.nlplab.org/standoff.html
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction/interaction-design-patterns
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction/interaction-design-patterns
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction/interaction-design-patterns

BIBLIOGRAPHY

language phenomena. In Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan.
European Language Resources Association (ELRA). 15

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. M. (1994). Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional, 1 edition. 2.1, 4.2, 4.2, 5.1

GRAHL software design, G. (n.d.). Automation. https://www.
pdfannotator.com/en/. 4.1.1

Gühring, T., Linz, N., Theis, R., and Friedrich, A. (2016). Swan: an easy-to-
use web-based annotation system. 3.2

Hellwig, B., Uytvanck, D. V., Hulsbosch, M., Somasundaram, A., Tacchetti,
M., Geerts, J., and Sloetjes, H. (2021). 2.16. copy and paste annotations.
https://www.mpi.nl/corpus/html/elan/ch02s16.html. 5.2.11

Hellwig, O., Hettrich, H., Modi, A., and Pinkal, M. (2018). Multi-layer annota-
tion of the rigveda. In Proceedings of the Eleventh International Conference
on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. Eu-
ropean Language Resources Association (ELRA). 13

Hirschman, L. (1997). Muc-7 coreference task definition. https://www-nlpir.
nist.gov/related_projects/muc/proceedings/co_task.html. 2.2.2

Ide, N. and Pustejovsky, J. (2017). Handbook of Linguistic Annotation.
Springer Netherlands, 1 edition. 2.2, 1

Inc., A. (n.d.). Photoshop. 4.1.1, 4.1.1, 4.1.3

Jovanovic, J. and Bagheri, E. (2017). Semantic annotation in biomedicine:
The current landscape. Journal of Biomedical Semantics, 8. 2.1

Karoui, J., Benamara, F., Moriceau, V., Patti, V., Bosco, C., and Aussenac-
Gilles, N. (2017). Exploring the impact of pragmatic phenomena on irony
detection in tweets: A multilingual corpus study. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, pages 262–272, Valencia, Spain. Asso-
ciation for Computational Linguistics. 5

Kiesel, J., Wachsmuth, H., Al-Khatib, K., and Stein, B. (2017). Wat-sl: A
customizable web annotation tool for segment labeling. In Blunsom, P.,
Koller, A., and Lapata, M., editors, Software Demonstrations at the 15th
Conference of the European Chapter of the Association for Computational
Linguistics (EACL 2017), pages 13–16. 3.2

65

https://www.pdfannotator.com/en/
https://www.pdfannotator.com/en/
https://www.mpi.nl/corpus/html/elan/ch02s16.html
https://www-nlpir.nist.gov/related_projects/muc/proceedings/co_task.html
https://www-nlpir.nist.gov/related_projects/muc/proceedings/co_task.html

BIBLIOGRAPHY

Kim, E. and Klinger, R. (2018). Who feels what and why? annotation of a
literature corpus with semantic roles of emotions. In Proceedings of the 27th
International Conference on Computational Linguistics, pages 1345–1359,
Santa Fe, New Mexico, USA. Association for Computational Linguistics. 10

Klie, J.-C., Bugert, M., Boullosa, B., de Castilho, R. E., and Gurevych, I.
(2018). The inception platform: Machine-assisted and knowledge-oriented
interactive annotation. In Proceedings of the 27th International Conference
on Computational Linguistics: System Demonstrations, pages 5–9. Associa-
tion for Computational Linguistics. 3.2

Lanfranchi, A., Crooks, K., and Hamang, M. (2013). Clinical coreference
annotation guidelines (with excerpts from odie guidelines and modified
for sharpn /thyme). http://clear.colorado.edu/compsem/documents/
coreference_guidelines.pdf. 2.2.2

Letcher, N. (2013). Linguistic phenomena annotation guidelines. http://hdl.
handle.net/11343/33329. 16

Li, Y., Gerdes, K., and Chuanming, D. (2019). Character-level annotation for
chinese surface-syntactic universal dependencies. pages 216–226. 2.2, 2

Lin, G. (2016). Building Simple Annotation Tools. PhD thesis, University of
California, San Diego, USA. 2.1

LLC, S. (2021). How can i save one or more parts of a large
dataset? https://www.stata.com/support/faqs/data-management/save-
parts-of-dataset/. 4.1.1

Maeda, K., Bird, S., Ma, X., and Lee, H. (2001). The annotation graph toolkit:
Software components for building linguistic annotation tools. In Proceedings
of the First International Conference on Human Language Technology Re-
search. 2.2.2

Montani, I. and Honnibal, M. (2018). Prodigy: A new annotation tool for
radically efficient machine teaching. Artificial Intelligence, to appear. 4.1.2

Müller, C. and Strube, M. (2006). Multi-level annotation of linguistic data
with MMAX2. In Braun, S., Kohn, K., and Mukherjee, J., editors, Cor-
pus Technology and Language Pedagogy: New Resources, New Tools, New
Methods, pages 197–214. Peter Lang, Frankfurt a.M., Germany. 3.2

Musi, E., Stede, M., Kriese, L., Muresan, S., and Rocci, A. (2018). A multi-
layer annotated corpus of argumentative text: From argument schemes to

66

http://clear.colorado.edu/compsem/documents/coreference_guidelines.pdf
http://clear.colorado.edu/compsem/documents/coreference_guidelines.pdf
http://hdl.handle.net/11343/33329
http://hdl.handle.net/11343/33329

BIBLIOGRAPHY

discourse relations. In Proceedings of the Eleventh International Conference
on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. Eu-
ropean Language Resources Association (ELRA). 14

Nakayama, H., Kubo, T., Kamura, J., Taniguchi, Y., and Liang, X. (2018).
doccano: Text annotation tool for human. Software available from
https://github.com/doccano/doccano. 3.2

Neves, M. and Leser, U. (2012). A survey on annotation tools for the biomed-
ical literature. Briefings in Bioinformatics, 15(2):327–340. 2.1, 3.1

Neves, M. and Seva, J. (2019). An extensive review of tools for manual anno-
tation of documents. Briefings in Bioinformatics, 22(1):146–163. 2.1, 3.1,
3.2

Neves, M. and Seva, J. (2020). Annotationsaurus: A searchable directory of
annotation tools. 3.1, 3.2

Nguyen, P. (n.d.). Pattern design in java. https://web.csulb.edu/
~pnguyen/cecs277/lecnotes/introduction%20to%20pattern.html. 5.1

Nixon, L. and Troncy, R. (2014). Survey of semantic media annotation tools for
the web: Towards new media applications with linked media. In Presutti, V.,
Blomqvist, E., Troncy, R., Sack, H., Papadakis, I., and Tordai, A., editors,
The Semantic Web: ESWC 2014 Satellite Events, pages 100–114, Cham.
Springer International Publishing. 2.1, 3.1

Nordquist, R. (2021). Definition and examples of discourse. https://www.
thoughtco.com/discourse-language-term-1690464. 2.2

O’ Mahony, N., Campbell, S., Carvalho, A., Krpalkova, L., Riordan, D., and
Walsh, J. (2019). Point cloud annotation methods for 3d deep learning. 2.1

Palmer, M. and Xue, N. (2012). Linguistic annotation. In Clark, A.,
Fox, C., and Lappin, S., editors, The Handbook of Computational Lin-
guistics and Natural Language Processing, volume 1 of 1, chapter 10,
pages 238–270. Wiley-Blackwell, https://www.wiley.com/en-us/The+
Handbook+of+Computational+Linguistics+and+Natural+Language+
Processing-p-9781118347188, 1 edition. 4

Pustejovsky, J. and Stubbs, A. (2012). Natural Language Annotation for Ma-
chine Learning. O’Reilly Media, Inc. 3.2.1, 3

67

https://web.csulb.edu/~pnguyen/cecs277/lecnotes/introduction%20to%20pattern.html
https://web.csulb.edu/~pnguyen/cecs277/lecnotes/introduction%20to%20pattern.html
https://www.thoughtco.com/discourse-language-term-1690464
https://www.thoughtco.com/discourse-language-term-1690464
https://www.wiley.com/en-us/The+Handbook+of+Computational+Linguistics+and+Natural+Language+Processing-p-9781118347188
https://www.wiley.com/en-us/The+Handbook+of+Computational+Linguistics+and+Natural+Language+Processing-p-9781118347188
https://www.wiley.com/en-us/The+Handbook+of+Computational+Linguistics+and+Natural+Language+Processing-p-9781118347188

BIBLIOGRAPHY

Rama, T., Brekke, P., Nytrø, Ø., and Øvrelid, L. (2018). Iterative devel-
opment of family history annotation guidelines using a synthetic corpus of
clinical text. In Proceedings of the Ninth International Workshop on Health
Text Mining and Information Analysis, pages 111–121, Brussels, Belgium.
Association for Computational Linguistics. 9

Reidsma, D., Jovanovic, N., and Hofs, D. (2004). Designing Annotation Tools
based on Properties of Annotation Problems. Number 45 in CTIT TR-04.
Centre for Telematics and Information Technology (CTIT), Netherlands.
Imported from CTIT. 2.1

Sloetjes, H. and Wittenburg, P. (2008). Annotation by category: ELAN and
ISO DCR. In Proceedings of the Sixth International Conference on Language
Resources and Evaluation (LREC’08), Marrakech, Morocco. European Lan-
guage Resources Association (ELRA). 5.2.11

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., and Tsujii,
J. (2012). brat: a web-based tool for NLP-assisted text annotation. In
Proceedings of the Demonstrations Session at EACL 2012, Avignon, France.
Association for Computational Linguistics. 3.2

TEI (n.d.). Introducing the guidelines. https://tei-c.org/support/learn/
introducing-the-guidelines/. 2.1

The University of Sheffield, U. (n.d.). Performance evaluation of language anal-
ysers. https://gate.ac.uk/releases/gate-6.0-build3764-ALL/doc/
tao/splitch10.html. 4.1.5

The WebAnno Team, W. (n.d.). Automation. https://webanno.github.
io/webanno/releases/2.3.1/docs/user-guide.html#sect_automation.
4.1.2

Toxboe, A. (n.d.). Ui patterns. http://ui-patterns.com/. 2.1

van Gompel, M. (2019). A survey of nlp annotation platforms. https://raw.
githubusercontent.com/proycon/folia/master/docs/folia.pdf. 3.2.2

van Gompel, M., Başar, E., Neumann, A., and van der Klis, M. (n.d.). Flat -
folia linguistic annotation tool. 3.2

van Gompel, M. and Reynaert, M. (2013). Folia: A practical xml format for
linguistic annotation â a descriptive and comparative study. Computational
Linguistics in the Netherlands Journal, 3:63–81. 3.2

68

https://tei-c.org/support/learn/introducing-the-guidelines/
https://tei-c.org/support/learn/introducing-the-guidelines/
https://gate.ac.uk/releases/gate-6.0-build3764-ALL/doc/tao/splitch10.html
https://gate.ac.uk/releases/gate-6.0-build3764-ALL/doc/tao/splitch10.html
https://webanno.github.io/webanno/releases/2.3.1/docs/user-guide.html#sect_automation
https://webanno.github.io/webanno/releases/2.3.1/docs/user-guide.html#sect_automation
http://ui-patterns.com/
https://raw.githubusercontent.com/proycon/folia/master/docs/folia.pdf
https://raw.githubusercontent.com/proycon/folia/master/docs/folia.pdf

BIBLIOGRAPHY

Watanabe, T. and Wolf, D. F. (2019). Instance segmentation as image seg-
mentation annotation. CoRR, abs/1902.05498. 2.1

Yang, J., Zhang, Y., Li, L., and Li, X. (2018). Yedda: A lightweight collabo-
rative text span annotation tool. 3.2, 4.1.6

Zampieri, M., Malmasi, S., Paetzold, G., and Specia, L. (2017). Complex word
identification: Challenges in data annotation and system performance. In
Proceedings of the 4th Workshop on Natural Language Processing Techniques
for Educational Applications (NLPTEA 2017), pages 59–63, Taipei, Taiwan.
Asian Federation of Natural Language Processing. 11

Zhao, J., Glueck, M., Breslav, S., Chevalier, F., and Khan, A. (2017). Annota-
tion graphs: A graph-based visualization for meta-analysis of data based
on user-authored annotations. https://www.autodesk.com/research/
publications/annotation-graphs. 2.2.2

69

https://www.autodesk.com/research/publications/annotation-graphs
https://www.autodesk.com/research/publications/annotation-graphs

Table of contents
Table of contents

Overview

Appraise

brat
Markables

Implementation
Label boxes

Single label
Default
Highlighted
Double clicked

Not logged in
Logged in (annotator view)

Single token, multi label
Default
Highlighted
Double-clicked

Not logged in
Logged in (annotator view)

Multi label
Default
Highlighted
Double-clicked

Not logged in
Logged in (annotator view)

Creation
Highlights

Overlapping spans of different lengths
Default
Highlighted

Relations
Implementation

Binary relation
Equivalence relation

Directed
Single-label to single-label

Default

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

1

Highlighted
Double-clicked

Single-label to multi-label
Separate labels/not overlapping
Stacked labels/overlapping

Multi-label to multi-label
Undirected

Single-label to single-label
Default
Highlighted
Double-clicked

Single-label to multi-label
Separate labels/not overlapping
Stacked labels/overlapping

Creation
Data formats

Documents
Annotations

doccano
Markables

Implementation
Label boxes
Highlights

Non overlapping
Default
Highlighted
Double clicked

Overlapping
Relations
Data formats

Documents
Annotations

FoLiA / FLAT
Markables

Label-boxes
Highlights

Annotation focus
Single highlight

Default
Highlighted
Clicked

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

2

Relations
Data formats

Documents
Annotations

INCEpTION
Data formats

Documents
Annotations

MMAX2
Markables

Label-boxes
Highlights

Single highlight
Default
Highlighted
Clicked

Multi highlight
Relations

Directed
Undirected

Default
Highlighted
Clicked

Data formats
Documents
Annotations

Swan
Markables

Label-boxes
Single label-box/single span type

Single label (conflicting terminology: property)
Default
Highlighted
Clicked

Multi property
Two properties
Three properties
Five properties

Multi label-box/ multi span types
Same length

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

3

Different lengths
Highlights

Relations
Single to single

Directed
Default
Highlighted
Clicked

Click on link
Click on link label
Click on first label
Click on second label

Undirected
Two links, different directions

Default
Highlighted
Clicked

Click on first label
Clicked on first label then first link label
Clicked on first label then second link label
Click on second label
Clicked on second label then first link label
Clicked on second label then second link label

Multi to multi
Default
Highlighted
Clicked

Data formats
Documents
Annotations

WAT-SL
Markables

Label-boxes
Highlights

Single highlight
Default
Highlighted
Clicked

Multi highlight
Relations
Data formats

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

4

Documents
Annotations

WebAnno
Important note
Markables

Implementation
Label boxes

Single label
Default
Highlighted
Double-clicked

Multi label
Default
Highlighted
Double-clicked

Highlights
Relations

Directed
Single-label to single-label

Default
Highlighted
Double-clicked

Multi-label to multi-label
Default
Highlighted
Double-clicked

Undirected
Note

Creation
Directed
Undirected

Data formats
Documents
Annotations

YEDDA
Markables

Label-boxes
Highlights

Single highlight
Default
Highlighted

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

5

Clicked
Multi highlight

Relations
Data formats

Documents
Annotations

Overview
Screenshots of various annotation tools and how they handle basic annotation units, tasks
and features.

Annotation features

Information communicated on mouse-over

*due to FLAT’s customizability, it is possible, but not mandatory, to include Error messages in
tooltips.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

6

Interface/display features

*Due to failure to create relations with FLAT, we weren’t able to test and document relation
tooltips.

Data formats

These overviews visualize the contents of the .csv files in which we marked down observed
properties of the tested annotation software.
The visualizations were created using a custom python script, with the goal of allowing the
combination of different .csv files into one table for easy data exploration.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

7

The script was developed for internal use only, with the intended purpose of aiding the
discovery of patterns (in the common word sense, not software pattern) across the different
tools.

Example of visual exploration:
This table is created by combining the .csv files containing the data of “annotation features”
and “data formats”, and filters for “tools which allow the annotation of multiple overlapping
properties”

In this example one observable pattern might be that none of the tools with the ability to
annotate overlapping properties seem to support JSON or CSV files for both import and
export.

Subjective observations about the tested software:
brat: straightforward
WebAnno: similar to brat, but needlessly complicated for undirected relations
Appraise: broken installation
doccano: missing most features
INCEpTION: identical to WebAnno in terms of how basic functionality is handled
FoLiA/flat: very hard to install
Swan: straightforward, some limited functionality
WAT-SL: missing most features
MMAX2: unintuitive nightmare
yedda: missing most features & visually displeasing

Note about installation instructions

We documented the installation process of each software we tested.
This documentation can be found in the “A2_Appendix_Installation_Documentation.pdf” file
attached to the digital copy of the thesis.

Note about screenshot attribution

All screenshots included in this document were created by the author of this thesis, unless
specified otherwise.

Appraise
https://github.com/cfedermann/Appraise

The installation instructions on the github were incorrect at the time of testing, and the official
website www.appraise.cf was not reachable during the testing phase.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

8

https://github.com/cfedermann/Appraise
http://www.appraise.cf

The github was updated on 06.05.2021 and the website seems to be reachable again, which
was only noticed during the proof-reading phase of this thesis (15.05.2021). An archived
version of the github, as available during the research phase of this thesis, can be found
here: https://web.archive.org/web/20201101143415/https://github.com/cfedermann/Appraise

Due to the incorrect installation instructions, we were unable to get the software running and
test it.

brat

Markables

Implementation
Source of screenshot and quote: https://brat.nlplab.org/standoff.html

“Each entity annotation has a unique ID and is defined by type (e.g. Person or Organization)
and the span of characters containing the entity mention (represented as a "start end" offset
pair). “

Label boxes

Single label

Default

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

9

https://web.archive.org/web/20201101143415/https://github.com/cfedermann/Appraise
https://brat.nlplab.org/standoff.html

Highlighted

Double clicked

Not logged in

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

10

Logged in (annotator view)

Single token, multi label

Default

“explain what” is one token, it is unclear why the label is split.

Highlighted

Double-clicked

Not logged in

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

11

Logged in (annotator view)

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

12

Multi label

Default

Highlighted

In the screenshot above, the cursor is on bottom label box “Person”.

In the screenshot above the cursor is on second-to-bottom label box “Divorce”

Double-clicked

Clicked on bottom label box “Person”.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

13

Not logged in

Logged in (annotator view)

Creation
In brat creating label annotations works in three different ways:

1. Double clicking a word in the text. This creates a new annotation for the entire word.
2. Highlighting an arbitrary length of text by clicking+dragging. This creates a new

annotation for the entire selected span.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

14

3. Manually editing the stand off .ann file.

Highlights
In brat annotations are always a combination of highlights and label boxes, so there are no
examples of “just highlights” - see the section for label boxes for examples.

One noteworthy observation is how brat handles overlapping text spans of different lengths:

Overlapping spans of different lengths

Default

The text is highlighted in various background colours. In the default view, where no specific
annotation is highlighted, shorter annotations cancel out the colour of the annotation they are
overlapping.
This only becomes obvious once specific annotations are highlighted, revealing the actual
length of the text span:

Highlighted

In the screenshot above the crossed-out “Report” annotation is highlighted, revealing that
the annotation actually spans the entire length of the sentence.

In the screenshot above the “Transfer money” annotation on the word “arrow” is highlighted,
revealing an annotation of the same colour as the “Report” annotation, but of different length

In the screenshot above the “Person” annotation on the words “blue bar” is highlighted.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

15

In the screenshot above the “GPE” annotation on the words “bar at the top” is highlighted,
revealing that this annotation in the default view was both overlapping and therefore
obscuring the highlight of the “Report” annotation, while at the same time being partially
overlapped and therefore obscured by the preceding “Person” annotation on the words “blue
bar”.

Relations

Implementation
Source of the two screenshots and two quotes: https://brat.nlplab.org/standoff.html

Binary relation

“Binary relations have a unique ID and are defined by their type (e.g. Origin, Part-of) and
their arguments. “

Equivalence relation

“Equivalence relations are symmetric and transitive relations that define sets of annotations
to be equivalent in some sense (e.g. referring to the same real-world entity). Such relations
can be represented in a compact way as a SPACE-separated list of the IDs of the equivalent
annotations. “

Directed

Single-label to single-label

Default

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

16

https://brat.nlplab.org/standoff.html

Highlighted

Double-clicked

Note: double-clicking relations only works when logged in

Single-label to multi-label

Separate labels/not overlapping

As highlighting and double-clicking show the same same behaviour as if there was only one
relation, we decided to not produce duplicate screenshots.

Stacked labels/overlapping

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

17

Multi-label to multi-label

Undirected

Single-label to single-label

Default

Highlighted

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

18

Double-clicked

Single-label to multi-label

Separate labels/not overlapping

In this example there is an undirected connection between “annotations” and “above” -
however, brat chooses to display this relation like this.

Stacked labels/overlapping

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

19

Creation
Relations in brat are created by click-dragging from one label-box to another.
The direction of the relation is always from the label-box clicked on to the label-box where
the mouse-click is released.

Data formats
https://brat.nlplab.org/standoff.html

Documents
Documents are stored in .txt format.

Annotations

Annotations are stored in .ann standoff format, separate from the actual document.
.ann is a plaintext-based format.

doccano

Markables

Implementation
https://github.com/doccano/doccano/wiki/Import-and-Export-File-Formats

Source of the following screenshot and quote is the GitHub-User “BrambleXu” in the
following issue discussion:
https://github.com/doccano/doccano/issues/113
(archived:
https://web.archive.org/web/20200920134252/https://github.com/doccano/doccano/issues/11
3)

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

20

https://brat.nlplab.org/standoff.html
https://github.com/doccano/doccano/wiki/Import-and-Export-File-Formats
https://github.com/doccano/doccano/issues/113
https://web.archive.org/web/20200920134252/https://github.com/doccano/doccano/issues/113
https://web.archive.org/web/20200920134252/https://github.com/doccano/doccano/issues/113

{
"doc_id": 15, "text": "EU rejects German call to boycott British lamb.",
"labels": [[0, 2, "ORG"], [11, 17, "MISC"]],
"meta": {}
}

Label boxes
Doccano doesn’t seem to feature label boxes, all annotations are on-text (highlights).

Highlights

Non overlapping

Default

Highlighted

Not an option.

Double clicked

Not an option.

Overlapping
Not supported.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

21

Relations
Not supported.

Data formats
Source of the following screenshot:
https://github.com/doccano/doccano/wiki/Import-and-Export-File-Formats

Documents
Documents can be imported as different formats, depending on the annotation task.

http://mwetoolkit.sourceforge.net/PHITE.php?sitesig=MWE&page=MWE_070_File_types&su
bpage=MWE_010_CONLL
CoNLL appears to be a plaintext-based, tab-separated file format.

Not to be confused with CoNLL-X or CoNLL-U.

Annotations

Annotations can be exported in JSON format.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

22

https://github.com/doccano/doccano/wiki/Import-and-Export-File-Formats
http://mwetoolkit.sourceforge.net/PHITE.php?sitesig=MWE&page=MWE_070_File_types&subpage=MWE_010_CONLL
http://mwetoolkit.sourceforge.net/PHITE.php?sitesig=MWE&page=MWE_070_File_types&subpage=MWE_010_CONLL

FoLiA / FLAT

Markables

Label-boxes

Highlights

Annotation focus
FLAT allows the user to change the “Annotation Focus”, highlighting different parts of the
annotation.
This is an example of the “Part-of-Speech” focus in one example project:

The available variations of “Annotation Focus” however are defined per document.

Single highlight

Default

Highlighted

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

23

Clicked

Relations
https://flat.readthedocs.io/en/latest/user_guide.html#adding-new-annotations
It is possible to add relations in FLAT, unfortunately we weren’t able to reproduce it in
practice.

Data formats
https://proycon.github.io/folia/
Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by

Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764
24

https://flat.readthedocs.io/en/latest/user_guide.html#adding-new-annotations
https://proycon.github.io/folia/

Documents
Documents can only be imported in the FoLiA format.
FoLiA is an XML-based format that combines standoff and inline annotation.

Annotations

Annotations can be exported in FoLiA format.

INCEpTION
https://webanno.github.io/webanno/info/

It appears as if INCEpTION was built on the foundation of WebAnno and doesn’t differ in its
basic building blocks, but only in higher functionality. We weren’t able to observe differences
in how markables and relations are treated when compared to WebAnno, nor any
differences in the user interface in relation to the annotation tasks we seek to document in
this file.

As a result, we decided to not include duplicated screenshots in this document, and instead
refer to the WebAnno section (we tested WebAnno before INCEpTION, which is why the
screenshots are included there, despite INCEpTION coming earlier in the lexicographic
order).

Data formats
https://inception-project.github.io/releases/0.19.3/docs/user-guide.html#sect_formats

Documents
Documents can be imported in a variety of formats.
Available formats at the time of testing:

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

25

https://webanno.github.io/webanno/info/
https://inception-project.github.io/releases/0.19.3/docs/user-guide.html#sect_formats

Annotations

Annotations can be exported in a variety of formats

MMAX2
Surprisingly MMAX2 was updated in 2020 - not feature-wise but to support a new java
version.o

MMAX2 is incredibly complex and features a user interface with multiple floating windows
and multiple tabs in each window.
Due to this complexity, unfamiliarity with the software and the time constraints of the thesis, it
is possible that, despite our best efforts, some information relevant to the annotation task
was missed and is therefore not included in the screenshots.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

26

Markables

Label-boxes
Not supported.

Highlights

Single highlight

Default

Highlighted

Not supported.

Clicked

Multi highlight
Not supported.

Relations

Directed
Directed relations are supported according to the documentation:
http://mmax2.net/mmax2quickstart.pdf

However, we weren’t able to figure out the creation process of such directed relations, and
were thus unable to document the creation process.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

27

http://mmax2.net/mmax2quickstart.pdf

Undirected

Default
Undirected relations don’t show up unless a label belonging to the chain/bridge/link is
selected.

Highlighted
Not supported.

Clicked

Data formats
http://mmax2.net/mmax2quickstart.pdf

Documents
Documents are stored in XML format.

Annotations

Annotations are stored in XML format, one XML file per markable level.

Swan

Markables

Label-boxes
Swan provides the option to assign multiple labels to a single span, and the option to stack
multiple span types.
This conflicts with our way of looking at labels and label boxes. The interchangeable use of
‘label’ and ‘property’ also becomes an issue.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

28

http://mmax2.net/mmax2quickstart.pdf

Single label-box/single span type

Single label (conflicting terminology: property)

Default

Highlighted

Clicked

Multi property

Two properties

Default:

Highlighted:

Clicked:

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

29

Three properties

Default:

Highlighted:

Clicked:

Five properties

Default:

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

30

Highlighted:

Clicked:

Multi label-box/ multi span types

Same length

Different lengths

Granularity seems to be word-size

Highlights
Not supported.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

31

Relations

Single to single

Directed

Default

Highlighted

Not an option.

Clicked

Click on link

Not an option.

Click on link label

This option only becomes available after clicking on one of the labels linked.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

32

Click on first label

Click on second label

Undirected
Not supported.

Two links, different directions

Default

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

33

Highlighted

Not supported.

Clicked

Click on first label

Clicked on first label then first link label

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

34

Clicked on first label then second link label

Click on second label

Clicked on second label then first link label

Clicked on second label then second link label

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

35

Multi to multi

Default

Highlighted
Not supported.

Clicked

Data formats
https://github.com/annefried/swan/wiki/Projects

Documents
Documents are stored in plaintext .txt format.

Annotations

Annotations can be exported in stand-off XML or UIMA XMI.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

36

https://github.com/annefried/swan/wiki/Projects

WAT-SL

Markables

Label-boxes
Not supported.

Highlights

Single highlight

Default

Highlighted

Clicked

Clicks only register on the symbol right to the segment/span/highlight.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

37

Multi highlight
Not supported.

Relations
Not supported.

Data formats
https://www.aclweb.org/anthology/E17-3004.pdf

Documents
Documents are stored in plaintext format.

Annotations

Annotations can be exported in CSV or .ann format.

WebAnno

Important note
WebAnno seems to allow customization of the editor itself.
By default it appears to utilize a brat-based editor:

As a result, many of the behaviours of WebAnno are identical to brat.
We will only document cases in which WebAnno differs from brat.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

38

https://www.aclweb.org/anthology/E17-3004.pdf

Markables

Implementation
Source of the following two screenshots and quotes:
https://webanno.github.io/webanno/releases/3.4.5/docs/user-guide.html#sect_formats
WebAnno supports various formats.
It appears as if the WebAnno TSV 3.2 File Format is the default format.
https://webanno.github.io/webanno/releases/3.4.5/docs/user-guide.html#sect_webannotsv

“Token annotation starts with a sentence-token number marker followed by the begin-end
offsets and the token itself, separated by a TAB characters.”

“Sub-token representations are affixed with a . and a number starts from 1 to N.”

Label boxes

Single label

Default

Identical to brat.

Highlighted

Identical to brat.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

39

https://webanno.github.io/webanno/releases/3.4.5/docs/user-guide.html#sect_formats
https://webanno.github.io/webanno/releases/3.4.5/docs/user-guide.html#sect_webannotsv

Double-clicked

Multi label

Default

Identical to brat.

Highlighted

Identical to brat.

Double-clicked

Highlights
Identical to brat.

Relations

Directed

Single-label to single-label

Default

Identical to brat.

Highlighted

Identical to brat.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

40

Double-clicked

Multi-label to multi-label

Default

Identical to brat.

Highlighted

Identical to brat.

Double-clicked

Identical to “single-label to single-label” behaviour.

Undirected

Note
WebAnno doesn’t have undirected relations, instead it has “chains”.
Chains seem to have some extra settings which relations do not have.
Unfortunately, the usage of chains turned out to be complicated to a degree that we weren’t
able to create custom chains, and even the attempt of recreating an existing chain relation
that comes shipped with WebAnno by default (Coreference) failed.

For this reason we have to refer to the official documentation in regards to chain behaviour:
https://webanno.github.io/webanno/releases/3.6.5/docs/user-guide.html#_chains

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

41

https://webanno.github.io/webanno/releases/3.6.5/docs/user-guide.html#_chains

Source of screenshot: WebAnno documentation

Creation

Directed
Identical to brat.

Undirected
Unable to reproduce.

Data formats
Source of the following screenshot:
https://webanno.github.io/webanno/releases/3.4.5/docs/user-guide.html#sect_formats

Documents
Documents can be imported in a variety of formats.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

42

https://webanno.github.io/webanno/releases/3.4.5/docs/user-guide.html#sect_formats

Annotations

Annotations can be exported in a variety of formats

YEDDA

Markables

Label-boxes
Not supported.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

43

Highlights

Single highlight

Default

Highlighted

Not supported.

Clicked

Not supported.

Multi highlight
Not supported.

Relations
Not supported.

Data formats
https://arxiv.org/pdf/1711.03759.pdf

Documents
Documents are stored in plaintext .txt format.

Annotations

Annotations can be exported in stand-off .ann format.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

44

https://arxiv.org/pdf/1711.03759.pdf

Table of contents

Table of contents

Installation environment

Disclaimer

brat
Github
Docker container
Installation documentation

Standalone installation
Docker

Short instructions

Cora
Installation documentation (failed)

doccano
Docker container
Installation documentation

FoLiA/flat
Docker container
Installation documentation

INCEpTION
Docker container
Installation documentation

MMAX2
Docker container
Installation documentation

Swan
Docker container
Installation documentation

WAT-SL
Docker container
Installation documentation

WebAnno
Docker container
Installation documentation

YEDDA

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

1

Docker container
Installation documentation

Installation environment
We installed the annotation software on a desktop computer running Ubuntu 18.04 inside a
virtual machine.
In cases where installation failed, we retried installation on a laptop running Ubuntu 16.04
natively.
Docker & Docker Compose are installed in both environments.

In cases where the installation failed in both environments, we tried to identify if a webdemo
of the software was available. If this also failed, we stopped testing the software.

If a docker container of the software was available, we judged whether installation with a
docker container would be easier than the official installation process and decided which
installation to use on a case-by-case basis.

Disclaimer
We documented the installation process as a mix of comments, screenshots and a protocol
of terminal commands (indicated by lines starting with “$”), following the official installation
instructions at the time of testing.
This file is included as an appendix to the thesis for the sake of completeness, and to
document solutions to installation issues we encountered during testing.
This installation documentation is supposed to be understood as complementary reading to
official documentation and attempt to support reproducibility.
We strongly encourage the use of the official and up-to-date documentation over static third
party instructions.

brat

Github
https://github.com/nlplab/brat

Docker container
Unofficial:

https://github.com/ddevaraj/docker-brat
Visit the URL for installation instructions by the maintainer of the docker container.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

2

https://github.com/nlplab/brat
https://github.com/ddevaraj/docker-brat

Installation documentation

Standalone installation

Docker

Short instructions

1. Clone the git repository https://github.com/ddevaraj/docker-brat
2. $ cd docker-brat

3.
4. $ docker build --build-arg username=<Username> --build-arg password=<Password>

--build-arg admin_email=<email ID> -t brat .
5. $ docker run --name brat_instance -p 80:80 -d brat
6. Open the browser and enter the address :

http://localhost:80/brat-v1.3_Crunchy_Frog/

Cora
https://github.com/comphist/cora

Installation documentation (failed)
1. Download prebuilt from https://github.com/comphist/cora/releases
2. Extract
3. Install Apache:
4. $ sudo apt update
5. $ sudo apt install apache2
6. Note: if Cora is supposed to be accessed from a different computer, firewall rules

have to be edited for apache - since we intend to use Cora via localhost it isn’t
necessary in this case.

7. Edit permissions for apache document folder:
8. $ sudo chmod o+w /var/www/html
9. Copy contents of ‘www’ folder from the cora release into the /var/www/html folder
10. Install PHP (5.5+ or 7+, We’ll be using version 7.2):
11. $ sudo apt install php libapache2-mod-php
12. $ sudo apt-get install php-mysql
13. Install PHP extensions:
14. $ sudo apt-get install php-xml
15. Note: php-xml contains the needed dom extension
16. $ sudo apt-get install php-json
17. Note: libxml is included in php 7 by default

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

3

https://github.com/ddevaraj/docker-brat
http://localhost/brat-v1.3_Crunchy_Frog/
http://localhost/brat-v1.3_Crunchy_Frog/
https://github.com/comphist/cora
https://github.com/comphist/cora/releases

18. Restart apache:
19. $ sudo service apache2 restart
20. Install MySQL:
21. $ sudo apt-get install mysql-server
22. Open <localhost:port>/db/configure_db.php in your browser

The installation “succeeded” insofar that we were able to open Cora in the browser.
Unfortunately we weren’t able to log into the software using the default admin:admin
user/password combination and were thus unable to use the software for annotation.
This behaviour was observed in both installation environments.
We believe that this issue might be due to a fault during the MySQL installation. However,
we were unable to determine the exact problem.

doccano

Docker container
official:
https://github.com/doccano/doccano

Installation documentation
The installation of doccano via docker was initially unsuccessful. Thankfully we were able to
identify the issue and managed to install the software after some troubleshooting.
This documentation will include the steps of the failed installation attempt as strike-through
text to help anyone who might run into the same issue.

1. Clone the git repository
2. $ cd doccano
3. $ docker build -t doccanoimage .
4. Wait quite a bit
5. Result: “Successfully tagged doccanoimage:latest”
6. $ docker images

(to check if image exists)
7. $ docker run doccanoimage

For production environment:

3. $ docker-compose -f docker-compose.prod.yml up

Error:

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

4

https://github.com/doccano/doccano

Fix:
https://github.com/bigbluebutton/greenlight/issues/228#issuecomment-545919537

Error:

Fix:
change the ports in the compose file (docker-compose.prod.yml):

4. Open doccano via localhost:port (port being the port designated in the file)

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

5

https://github.com/bigbluebutton/greenlight/issues/228#issuecomment-545919537

FoLiA/flat

Docker container
No official or unofficial docker container of FLAT exists as of time of writing.

We instead suggest the usage of LaMachine, which attempts to increase the ease of use for
various NLP tools, FLAT and foliadocserve included. LaMachine appears to be actively
maintained and comes with a more detailed documentation.

We unfortunately weren’t aware of LaMachine during the testing phase of this thesis, and
were thus unable to use it and document the installation process.

Installation documentation
https://flat.readthedocs.io/en/latest/installation_guide.html

1. $ mkdir FoLiA
2. $ cd FoLiA
3. $ virtualenv --python=python3 env

a. if virtualenv isn’t installed yet: $ sudo apt install virtualenv
b. repeat step 3

4. $. env/bin/activate
5. $ pip install FoLiA-Linguistic-Annotation-Tool

a. Error:

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

6

https://proycon.github.io/LaMachine/
https://flat.readthedocs.io/en/latest/installation_guide.html

b.
c. Fix 1:
d. $ sudo pip install --upgrade setuptools
e. If that didn’t work
f. Fix 2:
g. $ pip install --upgrade pip

6. Continue with flat configuration from here:
https://flat.readthedocs.io/en/latest/installation_guide.html#flat-configuration

7. Download settings.py from
https://raw.githubusercontent.com/proycon/flat/master/settings.py

8. install sqlite3
a. $ sudo apt-get install sqlite3

9. $ sqlite3 Database.db
a. $.databases
b. Copy path to database and enter into settings.py
c. $.quit

10. Copy path to document folder into settings.py
11. Configure the rest of of settings.py for your specific needs
12. Once done, comment out this part of settings.py:

13.
14. Copy path to folder containing settings.py
15. $ export PYTHONPATH=/your/settings/path/
16. $ export DJANGO_SETTINGS_MODULE=settings
17. $ django-admin migrate --run-syncdb

a. Ff django isn’t installed, install via
b. $ sudo apt-get install python-django
c. If django-admin isn’t installed, install via
d. $ sudo apt install python-django-common
e. You might get this error:

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

7

https://flat.readthedocs.io/en/latest/installation_guide.html#flat-configuration
https://raw.githubusercontent.com/proycon/flat/master/settings.py

f.
g. This happens if you accidentally left your python3 environment, re-enter it via
h. $. env/bin/activate
i. Repeat

Foliadocserve is also needed to run FLAT, something that the documentation fails to mention

1. $. env/bin/activate
2. $ pip install foliadocserve

To run FLAT:

$. env/bin/activate
$ export PYTHONPATH=/your/settings/path/
$ export DJANGO_SETTINGS_MODULE=settings
$ django-admin runserver

In a second terminal:
$. env/bin/activate
$ foliadocserve -d /path/to/document/root -p 8080 --git

INCEpTION

Docker container
Since INCEpTION is delivered as a java standalone file, packing it into a Docker container
would make the installation more complicated rather than simpler.

Installation documentation
https://inception-project.github.io/downloads/

1. Download INCEpTION
2. Start .jar by double-clicking
3. Run via localhost:8080

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

8

https://inception-project.github.io/downloads/

MMAX2

Docker container
The installation is very straightforward, packing it into a Docker container would make the
installation more complicated rather than simpler.

Installation documentation
1. $ git clone https://github.com/nlpAThits/MMAX2
2. $ cd MMAX2
3. $ chmod +x ./mmax2.sh
4. ./mmax2.sh

Swan

Docker container
Official (broken):
https://github.com/annefried/swan

Installation documentation
The installation failed, the dockerfile seems to contain errors (broken dependency).

Attempted installation steps:

1. Clone the git repository
2. cd into swan directory
3. Try to build dockerfile

$ docker build -t swanimage .

Explanation: -t names the image on successful build, in this case “swanimage”, “.” is the
current directory, where docker daemon will look for the dockerfile.

Error:
Got permission denied while trying to connect to the Docker daemon socket at
unix:///var/run/docker.sock: Post
http://%2Fvar%2Frun%2Fdocker.sock/v1.40/build?buildargs=%7B%7D&cachefrom=%5B%5
D&cgroupparent=&cpuperiod=0&cpuquota=0&cpusetcpus=&cpusetmems=&cpushares=0&d
ockerfile=Dockerfile&labels=%7B%7D&memory=0&memswap=0&networkmode=default&rm
=1&session=p31spqvkvzpycsbtslduco6fi&shmsize=0&t=swanimage&target=&ulimits=null&v
ersion=1: dial unix /var/run/docker.sock: connect: permission denied
Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by

Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764
9

https://github.com/nlpAThits/MMAX2
https://github.com/annefried/swan

Fix: This means we accidentally skipped this step in the installation:
https://docs.docker.com/engine/install/linux-postinstall/

Warning during installation:

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

10

https://docs.docker.com/engine/install/linux-postinstall/

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

11

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

12

We identified the problem as the following in the Dockerfile:

Java 8 on linux is fundamentally broken after some changes in licensing agreements from
Oracle, and it is no longer possible to install Oracle-JDK8 via apt-get.
Any and all Dockerfiles that try to install java8 as a dependency this way will automatically
fail.
There still are ways to manually install java8, but those don’t mesh with the automated build
approach of docker.
There’s also a replacement of Oracle-JDK8 in the form of OpenJDK8, but this doesn’t help if
developers don’t use it in their docker files.

WAT-SL

Docker container
https://github.com/webis-de/wat

An official Dockerfile is included in the github

Installation documentation

https://github.com/webis-de/wat/releases/tag/2.0.0
Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by

Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764
13

https://github.com/webis-de/wat
https://github.com/webis-de/wat/releases/tag/2.0.0

1. Download wat.jar
2. Download example-project.zip
3. Extract zip file, enter folder
4. $ java -jar <path-to>/wat.jar [<port> [<base-path>]]

Default port is 2112

WebAnno

Docker container
Since WebAnno is delivered as a java standalone file, packing it into a Docker container
would make the installation more complicated rather than simpler.

Installation documentation
https://webanno.github.io/webanno/downloads/

1. Download INCEpTION
2. Start .jar by double-clicking
3. Run via localhost:8080

YEDDA

Docker container

Installation documentation
https://github.com/jiesutd/YEDDA

1. $ git clone https://github.com/jiesutd/YEDDA.git
2. $ cd YEDDA
3. $ python YEDDA.py

a. If multiple python versions are installed, that should be python2.7
4. Error:

a.
b. Fix:
c. $ sudo apt-get update -y

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

14

https://webanno.github.io/webanno/downloads/
https://github.com/jiesutd/YEDDA
https://github.com/jiesutd/YEDDA.git

d. $ sudo apt-get install -y python-tk
e. repeat from 3.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

15

Table of contents

Table of contents

Introduction

Note about attribution

Interface elements
Label-boxes

Attributes:
Problem:
Examples:

Highlights
Attributes:
Problems:
Examples:

Overlapping highlights:
Zero width annotation:

Links
Attributes:
Problems:

Link-to-link visualization
Overlapping link identification
Visual clutter

Cross sentence boundary annotation
Large amounts of annotations

Discontinuous structure annotation
Word alignment/cross document annotation example

Interesting finds:

Introduction
This document features observations about issues in the user interfaces of various
annotation tools, as well as proposed solutions to some of these issues. This includes issues
in annotation software which we didn’t test during the research for this thesis, but found third
party reports of.

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

1

Most of these problems are annotation project specific or only appear in very niche
applications. As a result, typically not enough examples of an issue exist to formulate a
pattern based on the issue, or if it is possible, the usefulness of such a pattern would be
called into question.

The intended purpose of this document is to inform about UI and UX issues in annotation
software and serve as a starting point for QA testing of known edge cases.

Note about attribution
This document utilizes a large amount of screenshots by third parties.
To avoid repetition, a URL before a screenshot is used as short-hand to indicate the source
of the image.

Interface elements

Label-boxes

Attributes:

● Float over/under annotated text
● Can be stacked
● Ordered in some way
● Coloured
● Clickable/function as button to access annotation details
● Are anchor-points of relations

Problem:

Label-boxes represent an annotated markable, but markables can be discontinuous. It is not
trivial to display this non-continuous property with a label box.

Potential solutions:

● Multiple boxes that highlight on click to indicate shared identity.
● One label-box with different patterns to differentiate between "belongs to span" and

"doesn't belong to span".

Examples:
1. https://github.com/nlplab/brat/issues/362

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

2

https://github.com/nlplab/brat/issues/362

2. https://www.researchgate.net/figure/A-discontinuous-overlapping-annotation-using-th
e-extended-BIO-format_fig1_306396469

3. http://brat.nlplab.org/new-in-v1.3.html

Highlights

Attributes:

● Overlap annotated text
● Coloured
● Typically cannot be stacked
● Typically reserved for text spans of arbitrary length

Problems:

● It is non-trivial to display overlapping spans and proves to be a problem both visually
and from a user perspective, because selecting existing annotations for editing
becomes tedious.

● What about spans over zero-length characters?

Examples:

Overlapping highlights:

1. https://stackoverflow.com/questions/56909052/highlight-overlapping-spans-of-text

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

3

https://www.researchgate.net/figure/A-discontinuous-overlapping-annotation-using-the-extended-BIO-format_fig1_306396469
https://www.researchgate.net/figure/A-discontinuous-overlapping-annotation-using-the-extended-BIO-format_fig1_306396469
http://brat.nlplab.org/new-in-v1.3.html
https://stackoverflow.com/questions/56909052/highlight-overlapping-spans-of-text

2. https://perso.limsi.fr/mareuil/publi/788.pdf

3. https://www.elastic.co/guide/en/elasticsearch/plugins/current/mapper-annotated-text-
highlighter.html

"However, if the search term overlaps the span of an existing annotation it would break the
markup formatting so the original annotation is removed in favour of a new annotation with
just the search hit information in the results. "

Zero width annotation:

1. https://www.aclweb.org/anthology/C18-1217.pdf

(ZWNJ is a zero width unicode character, position visualized via a red marker here)

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

4

https://perso.limsi.fr/mareuil/publi/788.pdf
https://www.elastic.co/guide/en/elasticsearch/plugins/current/mapper-annotated-text-highlighter.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/mapper-annotated-text-highlighter.html
https://www.aclweb.org/anthology/C18-1217.pdf

Links

Attributes:

● Lines or arrows
● Typically from label-box to label-box
● Weighted links can have label-boxes

Problems:

Link-to-link visualization

Use cases where link-to-link connections are wanted are thinkable. It is non-trivial to
visualize or implement this, if the underlying assumption is that links require a label-box as
anchor.

Potential solution: Display a label-box over every link, this label-box could then be used as
anchor for new links. However, this introduces new problems, such as visual clutter, as in
most cases such label-boxes over links aren’t required.

Overlapping link identification

Overlapping links exist (e.g. to visualize two different relations between two labels). It must
be possible for users to easily distinguish between the links (or rather between the relations
they represent).

Visual clutter

Large amounts of links cause visual clutter, especially if links follow along the lines of text,
and the anchoring label-boxes are several sentences apart.

Cross sentence boundary annotation

https://github.com/nlplab/brat/issues/949

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

5

https://github.com/nlplab/brat/issues/949

(current version of brat)

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

6

Potential solution: Allow links to run diagonally across the screen.
https://www.aclweb.org/anthology/W18-4702.pdf

(Modified BRAT release)

Large amounts of annotations

https://www.aclweb.org/anthology/W15-0303.pdf

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

7

https://www.aclweb.org/anthology/W18-4702.pdf
https://www.aclweb.org/anthology/W15-0303.pdf

Potential solution: Local zoom/highlighting

https://www.aclweb.org/anthology/W15-0303.pdf

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

8

https://www.aclweb.org/anthology/W15-0303.pdf

Discontinuous structure annotation

As an extension of the label-box problem with discontinuous markables, it is unclear how to
visualize a link between a discontinuous markable and another markable.

Potential solution:

Wolfgang Maier aus Göppingen wrote a PhD thesis on the topic of parsing discontinuous
structures:

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

9

https://publikationen.uni-tuebingen.de/xmlui/bitstream/handle/10900/47069/pdf/dissertation_
maier.pdf?sequence=1&isAllowed=y

Word alignment/cross document annotation example

Links between annotations in different documents (e.g. for alignment tasks such as
translation) can exist and need to be displayed.

https://langsci-press.org/catalog/book/103 chapter 4

Interesting finds:

https://www.springerprofessional.de/advanced-user-interfaces-for-semantic-annotation-of-co
mplex-rela/15862862

https://link.springer.com/chapter/10.1007/978-3-319-93581-2_11

Appendix to “Requirements engineering for natural-language annotation tasks” Bachelor’s Thesis by
Vincent Söllner, Bauhaus-Universität Weimar, Matriculation Number 118764

10

https://publikationen.uni-tuebingen.de/xmlui/bitstream/handle/10900/47069/pdf/dissertation_maier.pdf?sequence=1&isAllowed=y
https://publikationen.uni-tuebingen.de/xmlui/bitstream/handle/10900/47069/pdf/dissertation_maier.pdf?sequence=1&isAllowed=y
https://langsci-press.org/catalog/book/103
https://www.springerprofessional.de/advanced-user-interfaces-for-semantic-annotation-of-complex-rela/15862862
https://www.springerprofessional.de/advanced-user-interfaces-for-semantic-annotation-of-complex-rela/15862862
https://link.springer.com/chapter/10.1007/978-3-319-93581-2_11

