Bauhaus-Universitat Weimar
Faculty of Media
Degree Programme Medieninformatik

Systematic analysis of
testing-related publications
concerning comparability and
reproducibility

Bachelor’s Thesis

Artur Solomonik

1. Referee: Prof. Dr. Norbert Siegmund
2. Referee: Prof. Dr. Martin Potthast

Submission date: May 17, 2019

Declaration

Unless otherwise indicated in the text or references, this thesis is
entirely the product of my own scholarly work.

Weimar, May 17, 2019

Artur Solomonik

Abstract

Software Testing has always been a crucial part of the software development
life cycle. Choosing a testing system that will most-likely identify faults in im-
plementation might heavily influence either the cost and outcome of a project.
As a matter of fact, authors provide empirical evaluations to showcase the ma-
jor fortes of their frameworks. By classifying such publications and revealing
strategies based on not only intrinsic attributes of a paper but also their role
in the bibliographic network, it is possible to trace shared tasks and priorities
of certain software testing research areas. Understanding the major qualities
and flaws of the current software testing research community may lead to a
decisive improvement of the software development process as a whole. In this
thesis, common strategies behind assessing testing systems are analyzed. The
main goal of the research is to find a common ground for software testing
contributions in order to understand the latest situation of state-of-the-art
software testing tool evaluations. By reflecting on properties that influence
the reproducibility of an evaluation, publication data is created that can be
observed in detail in a node-link-directed visualization. The collected data and
insight is used to determine whether referencing patterns in certain research
areas occur and can be used to imply properties of a publication concerning
their reproducibility and overall quality.

Contents

Introduction

Background and Related Work

2.1 Software Testing Paradigms
2.1.1 Dynamic Execution
2.1.2 Static Analysis L
2.1.3 Symbolic Execution
2.1.4 Concolic Execution

2.2 Reproducibilityo o

2.3 Graph Database Models

24 Related Worko

Publication Data Network

3.1 Publication Data Acquisition.
3.1.1 Paper Collection
3.1.2 Paper Classification
3.1.3 Reference and Evaluation
3.1.4 Data Modification

3.2 Publication Data Processing
3.2.1 Visualization
3.2.2 Graph Queryingo
3.2.3 Data Refactoring

Results and Analysis

4.1 Classified publication data
4.1.1 Classification Statistics
4.1.2 Graph Database

4.2 Publication Graph oo
4.2.1 Structural Properties
4.2.2 Benchmark References
4.2.3 Referencing and Benchmarking Patterns

10
10
10
11
13
15
15
15
17
18

CONTENTS

5 Discussion

6 Threats to Validity and Future Work
6.1 Threats to Validity
6.2 Future Work

Bibliography

i

44

47
47
47

49

List of Figures

2.1

3.1

4.1

4.2
4.3

4.4

4.5

4.6
4.7

4.8

4.9

4.10

4.11
4.12

4.13

4.14

Elements of a research process influencing the reproducibility
metric 6

Basic interface of the visualization including a query input, con-
trol check boxes, a view revealing node information, a pie chart
for the distribution of contributions and the current sub-graph . 17

Amount of collected papers (blue) with amount of classified pub-
lications (red) from 1996 until 2018 22
Proportions of contributions over time from year 2010 until 2018 23
Amount of evaluated open (orange) and closed (blue) source

software testing tools from 2015 until 2018 24
Distribution of selection and modification causes of sub-check
systems 26
Distribution of modifications made depending on the selection
CAUSE . v v e e e e e e e e e e e 26
Main focus of evaluation based on the chosen metric. 28
Amount of used metrics in functionality- and performance-based
evaluations L 30

Amount of papers having a main focus on either performance or
functionality (left) and whether they are comparing evaluations

ornot (right) 31
Amount of papers annotated errors with regard to the kinds of
metricsused 32
Graph representation of query after mutation testing publica-
tions and their bibliographic references in Neo4J 33
Whole graph representation of the dataset 34
Multiple layouts of the visualization revealing different kinds of
insight on the relevancy of anode 36
Example of a relevant paper being highly connected within the
network highlighting direct and transitive relations 36

Central layout of only direct relations of anode 36

il

LIST OF FIGURES

4.15
4.16

4.17
4.18

4.19

4.20

4.21

4.22

4.23

4.24
4.25

4.26

Temporal layout of the references of and by a paper
References between test generation (blue) and symbolic execu-
tion (lime) papers
Bibliographic references on a selected symbolic execution paper
Selection of every benchmark (dark blue) connected by their use
in an evaluation of a paper (green)
Queried node that references on a paper with documented bench-
marks but does not use them
Constellation of three related nodes without any shared bench-
mark
Mutation testing papers with their references between each other
and to other contributions
Distinguishable areas of a view on a graph in terms of their
contribution, e.g. references of different contributions (blue),
papers of the same contribution with their respective, individual
references (orange) and shared, unclassified references (green)
Vanishing point pattern implying a highly cited paper and its
fundamental qualities as related work
Shared references between papers of the same researchers
Multitude of shared references between two completely unre-
lated publications L
Yellow path denoting different researchers continuously refer-
encing each other o000

v

List of Tables

3.1
3.2

4.1
4.2

Explanation for classifying selection causes of sub-check systems 13
Explanation for classifying modification causes of sub-check sys-

tems L 14
Overall amount of papers for each contribution. 21
Tabular representation of a CYPHER query of mutation testing

publications and their bibliographic references 33

Chapter 1

Introduction

With the ongoing technological evolution in delivering software that suffices
the needs of a customer, software testing systems have majorly grown in pop-
ularity. Presenting numerous coverage metrics to clients unversed in software
development has turned into a major trend, whereas empirical evaluations of
testing tools greatly vary in their core strategy. Even though software en-
gineering as a research field is highly connected to the current industry, the
quality of an evaluation is a major indicator for choosing a suitable tool for
development. Not only is the term reproducibility a highly discussed one when
it comes to assessing empirical result data, but identifying the author’s and
developer’s evaluation strategy should be paid attention to during any litera-
ture review.

With a rising amount of papers with every venue, understanding the state
of research in a particular time period is essential for conducting a literature
overview. Therefore, bibliographic networks have gained in popularity because
of the extensive insight on references between publications.

In this bachelor’s thesis common evaluation strategies in software testing pa-
pers are analyzed based on a number of attributes concerning not only the
assessment part but also many different aspects of the publication itself. By
taking resource availability, data set state and, most importantly, bibliographic
referencing patterns and comparability into account, an ambivalent view on
each paper can be established. Moreover, more complex data sets than simple
bibliographic metadata may lead to a better understanding of testing tool eval-
uations while also enabling the improvement of current publication networks.
This research is conducted with the following questions in mind. What strate-
gies do authors use when evaluating their testing tool? A very common ap-
proach of evaluations in scientific papers is to apply the implemented algorithm
or system on a chosen data set while presenting the gathered data and the re-
sulting metrics. That leads to the question of which data set to choose, why

CHAPTER 1. INTRODUCTION

to use it and how to make it available for the reader. Moreover, with common
metrics like precision and recall, how are they reflected in software testing eval-
uations? As testing a testing tool is a more complex undertaking, measuring
the amount of errors might not suffice which gives place to other metrics.

By the fact that evaluations heavily depend on the results of their related
work, it is important to find out whether that is apparent in evaluations of
software testing papers. As a paper might mention another publication of the
same contribution in their related work, thus, comparing oneself to it, it seems
logical to reuse the evaluation data and metrics in one’s own evaluation. More
specifically, when comparing oneself to the work of others with improvement
in mind, comparing oneself to the reference’s data should be a common ap-
proach. With this hypothesis in mind, how relevant is related work in software
testing research and what role does comparison play when evaluating a testing
system?

Another vital part of comprehending evaluations is the factor of reproducibility.
As in most parts of scientific research, making the gathered data reproducible
is a key effort for a valid research. That factor highly depends on a great num-
ber of aspects of the research including the exact methodology, the software,
the time of conductance, the metrics used as well as proper documentation
of every step. This research is interested in finding properties of papers that
influence their reproducibility considerably. How much of importance is repro-
ducibility in the research domain of software testing and how can it possibly
be improved on?

This thesis explains the approach of working with bibliographic data in differ-
ent ways to understand the nature of software testing tool evaluation. After a
thorough literature review and development of a data set including numerous
properties concerning the state of the evaluation and the paper itself, the first
insight on trends and contributions of the software testing research commu-
nity could be established. By making use of a graph database and multiple
visualization techniques, already existing takes on publication networks are im-
proved on in terms of the new properties defined during the literature review.
By refactoring the data set using the publication graph and inspecting the
strategies of authors of the community, patterns regarding citations, bench-
marks and the overall state of the papers are established.

The results of the literature review are available as a Google spreadsheet on-
line. !. The publication network visualization TeLO-S can be viewed from the
internal network of Bauhaus University 2 or can be forked from GitHub 3.

thttps://docs.google.com /spreadsheets /d /1CI2MTmAbCTIJPBuCV4Rfk4Kvn2dEaR-
JeehCLbteh0/edit?usp=sharing

Zhttp://webislabl0.medien.uni-weimar.de/

3https://github.com/Arduqq/testing-paper-visualization

Chapter 2

Background and Related Work

2.1 Software Testing Paradigms

Software testing systems have evolved over the past decades when it comes to
their fundamental approaches. In a perfect development process, most errors
are eliminated early on to avoid highly expensive end-to-end and acceptance
tests. For the main strategy lies in inspecting the smallest unit component
up to the whole system, each step has to be implemented individually with
the most fitting testing approach in mind. When discussing a software test-
ing tool, one can mostly classify its model as either dynamic, static, symbolic
and concolic. Each model has its benefits in different areas of the software
testing process which leaves the developers many opportunities of combining
them. By understanding the basic concept of a software testing tool, making
assumptions on their evaluation is a lot more feasible.

2.1.1 Dynamic Execution

The basic concept behind testing lies in exploring every way the execution
might turn out. As a matter of fact, taking the dynamic approach of exploring
each execution path is based on the actual execution of a program under test,
dynamic data flow analysis, and function minimization methods [Korel, 1990].
The test data is created by providing the execution with actual values and
its data flow is monitored constantly. As soon as there is any termination or
undesired flow, a path is annotated as such and will be reported as flawed. A
consequent data flow analysis determines the input values that led to the un-
desired behaviour. That technique is due to the intuitiveness and performance
predominantly used in many modern software testing frameworks.

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.2 Static Analysis

A contrary approach to directly executing software to detect possible faults
is the use of static analysis techniques. When working with static analysis,
one has to inspect a system on its structure, form, context or documentation
to identify possible errors. [Electrical and Engineers, 1990] Originally, such
tasks would be performed manually in dedicated inspections on possible un-
caught exceptions, memory leaks, redundancies and other possible causes of
future problems. Even though such techniques exist, they were strikingly of-
ten ignored by developers leading to errors in production that could have been
circumvented by simply inspecting the code like in the Apple security vulner-
ability called the goto fail [Synopsys, 2014].

In their article, Sadowski et al. explain that developers tend to ignore static
analysis techniques because of the high cost of removing found errors or their
inability to comprehend possible warnings. Therefore, companies like Google
take simple static analysis tools into consideration compared to more sophisti-
cated ones while presenting their own way of working with it. Because of the
on-going trend of automating every software development process, Zheng et al.
evaluate the economic importance of including automated static analysis in the
software development process showing that, for the time being, ASA was not
efficient due to the high amount of maintenance to separate true errors from
false positives. Therefore, over the past few years, researches take an effort
in implementing the process into many different areas of software testing like
GUI testing [Arlt et al., 2012] or web security testing [Medeiros et al., 2016|
effectively.

2.1.3 Symbolic Execution

Compared to conventional methods of testing software, symbolic execution
makes use of a different concept. In their paper, Cadar and Sen explains that
the main goal is to explore as many testing paths as possible in a considerable
amount of time while generating the concrete input tuples that were used and
the corresponding errors that might have happened. Symbolic execution does
not rely on directly given values as their input; more specifically, the program
deals with symbolic values instead of concrete ones and represents each vari-
able as a so-called symbolic expression. Applying that strategy to a common
software test means creating test inputs for every possible execution path there
is; as a result, all possible inputs making an assert fail will be identified.

[Baldoni et al., 2018] A path is defined by a binary sequence denoting at which
point the paths branch out. The sum of execution paths represents an execu-
tion tree. Consequently, fully traversing the tree and taking each path at least

CHAPTER 2. BACKGROUND AND RELATED WORK

once is the main goal of that approach. In order to adjust and control the
execution, a testing process makes use of a symbolic state and a quantifier-free
first-order formula called the symbolic path constraint. After each execution
of a symbolic execution path, a constraint solver generates an explicit input for
the symbolic execution. As soon as the execution returns an exit statement or
an error even, the program terminates and the constraint solver clarifies which
inputs will result in either a flawless run or an error. As symbolic execution
results in an infinite loop when exploring for-loops, one has to define certain
control variables such as the number of loop iterations and paths to explore or
the exploration depth.

With the idea of using symbols and generating inputs after the execution,
symbolic execution has an advantage in finding errors compared to approaches
relying on concrete input values at first hand. Up until today, symbolic ex-
ecution might be a popular choice when generating test cases and sequences.
The main problem, on the other hand, lies in the scalability of the technique.
Consequently according to Baldoni et al., the focus of the research lies in
parallelizing symbolic execution tasks.

2.1.4 Concolic Execution

As a consequence of test generation techniques being either concrete or sym-
bolic, concolic execution was established as a combination of the two. Execut-
ing the program with both symbolic and explicit values results in a sequence of
path constraints as explained above. The concrete execution serves a support-
ing role at the point where the symbolic execution reaches its limits. As soon
as the constraint solver is unable to find fitting concrete values satisfying the
constraint, symbolic constraints are simplified by replacing some of the sym-
bolic values with concrete values. [Sen, 2007] Such unsolvable values mostly
come from external code not traceable by the executor, as well as from com-

plex constraints involving non-linear arithmetic or transcendental functions.
[Baldoni et al., 2018]

2.2 Reproducibility

The main concern of designing experiments in empirical studies is the reten-
tion of reproducibility. The idea is that by reading any study there is, the
reader is able to completely recreate the results. In most cases, the Method-
ology section of a paper is perceived as the best-suited place to explain how
to end up with the presented data. Unfortunately, documenting the process
of conducting the experiment is certainly not enough when it comes to more

CHAPTER 2. BACKGROUND AND RELATED WORK

extraction

Processed
Dataset

study

Data Source parameters

Raw Dataset

/

Results
Dataset

retrieval analysis

Figure 2.1: Elements of a research process influencing the reproducibility metric

complex data and different software systems |Gonzélez-Barahona and Rob-
les, 2012]. During the last years, the topic of reproducibility has gained a
great interest in the empirical software engineering community. As a result,
repositories like Notre Dame SourceForge Research Repository ! and the Helix
software evolution data set 2 have been established to facilitate the reproduc-
tion of studies. Gonzélez-Barahona and Robles propose multiple elements of
scientific research influencing reproducibility. By assessing attributes of the
different stages a data set goes through and the corresponding modification
techniques, a simple grading metric of reproducibility is achieved. In specific,
2.1 showcases the important parts of the research process. Each data set is
assessed regarding certain attributes. Identification explains where the data
can be obtained. Description shows with what level of detail the element is
explained to the reader. Availability is the ease of accessing or obtaining the
element. Persistence states whether the element will be available in the fu-
ture and Flexibility denotes how adaptable the data is in new environments.
Regarding different kinds of data, these attributes are not universal. A data
source clearly can be assessed by the reader, whereas parameters are limited to
their Identification and Description. By applying that technique to scientific
research, the ease of reproducing the data can be estimated.

http://srda.cse.nd.edu/mediawiki/index.php/Main_Page
2http://www.ict.swin.edu.au/research/projects/helix/

http://srda.cse.nd.edu/mediawiki/index.php/Main_Page
http://www.ict.swin.edu.au/research/projects/helix/

CHAPTER 2. BACKGROUND AND RELATED WORK

2.3 Graph Database Models

Graph database models are popular approaches for organizing data structures
to manage information for certain use cases. According to the survey of An-
gles and Gutierrez, such a model relies on graphs and similar abstractions for
their schema and instances with their respective operations. In most papers,
a graph database is defined as a whole underlying graph in which nodes, links,
labels and directions represent the abstracted data [Graves et al., 1995]. More-
over, Angles and Gutierrez explain that a graph database model separates the
description of the schema from the respective instances in most definitions.
Manipulating and querying data is expressed by transforming the graph with
operations on graph primitives like paths, neighbourhoods, subgraphs, pat-
terns, and statistics like diameter, depth and centrality. Most importantly,
integrity constraints enforcing the consistency of the data can be defined on
top of the data structure.

In this case, the database is defined as a graph whose nodes represent instances
of the schema and are labelled with their attributes and unique names [Graves
et al., 1995|. Each node is connected to other nodes with directed edges that
are, as well, labelled by the respective attributes.

The use and advantage of graph databases lie in their representation of rela-
tionships making the description of dependencies very clear. Information is
condensed into a single node that is connected to others using arcs; conse-
quently, more natural modelling of the data is achieved. Moreover, querying
data does not require much knowledge of the schema as the graph structure
seems rather intuitive when working with more complex rules for the selection.
Graph databases are used in many state-of-the-art infrastructures. Many
database models have difficulties with the way they visualize connectivity and
complex objects. Therefore, systems with their work based on networks tend
to choose graphs as their underlying structure for their data. For instance,
social networks would represent users as their nodes with all kinds of relation-
ships between each other. Information networks that depend on information
flow like cited papers would be obvious users of graph databases because of
the similar structure of the data.

2.4 Related Work

The research is motivated by the rising importance of software testing and
the existence of many different branches of the research field itself. In their
case study, Kitchenham et al. explain the fundamental steps of a case study
regarding the evaluation of presented tools regardless of the functionality and
how important it is for a lasting improvement of the work. Poston and Sexton

CHAPTER 2. BACKGROUND AND RELATED WORK

emphasize the need for wholesome evaluations and information on the soft-
ware so that companies actually consider to buy them. They also include the
fact that the problem may come from a severe lack of communication while
presenting possible strategies behind avoiding badly documented software and
how to determine the most suitable testing tools.

Visualizing paper citations is a common approach when it comes to analyzing
data. de Solla Price presented such networks as a way to get insight into cer-
tain research fields as the incidence of references and actual citations are rarely
congruous. Moreover, heavily cited papers that appear as "classic" tend to be
referenced even more in the future whereas others are never referenced again.
He claims that every scientific paper ever published is cited about once a year
which indicates a long-lasting growth of such a network.

That approach was adapted to many popular citation network visualizations
like VOSViewer 3, Semantic Scholar 4 and Paper Embedding Visualization.
VOSViewer is a very popular tool for visualizing the publication landscape.
The user can query the network by specific keywords which generate filtered,
colour- and size-coded nodes that are connected by their citation, bibliographic
coupling, co-citation, or co-authorship relations.

Such network visualizations are useful for analyzing large amounts of data as
mainly core aspects of the many papers are visualized. That simplification
tends to be a double-edged sword as a loss of information is inevitable. For
instance, when a citation network is constructed, it is possible to see who is
citing whom while the cause of the citation of another paper may be ignored.
Therefore, citation networks should be used as a complement to expert judg-
ment and only in times where a simple look at the raw data is overwhelming.
Moreover, the research on publication networks branches into three main is-
sues, that being the effort of visualizing great amounts of bibliographic data,
the increase of interactivity for the sake of exploration and the dynamic visu-
alization of the network evolution over time van Eck and Waltman [2014].
Semantic Scholar released a paper [Ammar et al., 2018] on their strategy on
constructing a literature graph for proper algorithmic manipulation and discov-
ery. They especially focus on the extraction of important structural, semantic
data of papers using different node and link types. Not only do they take pa-
pers and their authors into account, but also entities for the different concepts
presented in the paper and their respective mentions. Links are classified by
the node types that are linked, e.g. citations, authorship, entity-entity rela-
tionships. In their paper, Waltman et al. describe their strategy on mapping
and clustering the nodes in a network to enable proper insight on the rela-
tion of the research field and their development over time. As mapping is

3http://www.vosviewer.com/
‘https://www.semanticscholar.org/

http://www.vosviewer.com/
https://www.semanticscholar.org/

CHAPTER 2. BACKGROUND AND RELATED WORK

well-suited for obtaining the structure of the network, relations are displayed
poorly. Clustering, on the other hand, does not suffer from dimensional re-
strictions, yet continuous dimensions cannot be visualized. Consequently, a
unified approach is presented.

Paper Embedding Visualization is a cluster overview of a variety of papers
and their affiliation with each other. Nodes are mapped by the distance to
each other implying similar embeds. By colour-coding papers, one can easily
make out papers of similar contributions, yet it is not explicitly annotated. Us-
ing Doc2vec [Shperber, 2017] and Latent Semantic Analysis [Landauer et al.,
1998|, the documents are represented numerically in a vector and compared
to each other on how close they lie semantically to each other. The visualiza-
tion represents a machine learning cluster approach on paper networks and the
proximity of documents independent of only certain regions of the document
like the evaluation specifically.

Chapter 3

Publication Data Network

In order to retrieve a network of publications, its references and the corre-
sponding benchmarks that were evaluated on, reading and classifying a great
amount of testing-related papers was a necessity. The process was split into
different phases in which relevant papers were acquired, classified in terms of
our research questions, modified for our graph database and visualized accord-
ingly.

Based on this, our network could be developed using a graph database in which
all of the references and properties of each paper could be visualized. By query-
ing the database to content, the data on publications and benchmarks can be
improved and used to determine common referencing and evaluation patterns.

3.1 Publication Data Acquisition

The primary goal was to create a thorough base for the research; moreover, col-
lecting an exhaustive amount of testing-related publications had a high priority
throughout the work. Different methods were used to create valid references
between the different entities to enable carefree maintenance and improvement
of the data. In the following, the strategy behind finding, filtering, organizing
and classifying the publication data is presented.

3.1.1 Paper Collection

The research was conducted systematically in which a variety of publications
of well-known software engineering conferences of the past seven years was col-
lected and organized in a repository depending on their venue. Because of their
connection to the research field of software testing and software engineering in
general, popular conferences and journals were selected. In specific, papers of

10

CHAPTER 3. PUBLICATION DATA NETWORK

the Association for Science Education (ASE), European Conference on Object-
Oriented Programming (ECOOP), European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE),
Fundamental Approaches to Software Engineering (FASE), International Con-
ference on Software Engineering (ICSE), International Symposium on Software
Testing and Analysis (ISSTA) and conference on Systems, Programming, Lan-
guages and Applications: Software for Humanity (SPLASH) were taken into
consideration within the time period from 2013 up until 2018. In order to
retrieve the papers that were relevant for the task, a Python script that would
parse each PDF-file was written and publications containing certain keywords
would be filtered. As described in chapter 2.1, papers containing approaches
on dynamic, symbolic and concolic execution as well as static analysis seemed
desirable for our prior activities. On top of trivial keywords involving software
testing, we also filtered publications concerning popular testing techniques like
regression, mutation or acceptance testing. Additionally, we involved papers
on different testing levels too e.g. unit, integration and system testing.

By using a low global threshold for the minimal amount of keyword matches
required, an optimistic selection of relevant papers for further processing could
be constructed. Every paper is tagged with its year of publication and venue.
Any further modification of the data set was conducted manually; moreover,
irrelevant publications in the first reading sessions were eliminated. Over the
time, numerous publications were added to the list; for instance, papers of the
tools that were used as a comparing factor in certain publications and every
paper that was ever referenced by any of the testing-related ones got part of
the data set. Additionally, some publications of the two journals Empirical
Software Engineering (ESE) and Transactions on Software Engineering and
Methodology (TOSEM) were added.

Even though everything was documented in the spreadsheet, not every refer-
enced paper could be stored. Therefore, only classified files were stored in a
separate repository.

3.1.2 Paper Classification

The main documentation and analysis of each paper took place in a spreadsheet
in which every record holds the corresponding classification of the paper. In
the following, the classifying attributes are explained in their relevancy.

Basic Information

Every record holds trivial metadata that was extracted using science-parse,
dblp or Python; that being title, year, conference, authors, BibTex entries

11

CHAPTER 3. PUBLICATION DATA NETWORK

and a URL to the paper itself. Right now, most of the hyperlinks lead to a
repository in the Webis GitLab *.

Testing Tool Information

Each paper was classified in terms of their methodology of executing test cases
making them either dynamic, static, symbolic or concolic. These paradigms are
explained in Section 2.1. Uncertain cases were left untouched. The question
of availability and whether the source code of the presented software testing
frameworks was accessible to everyone or not turned out to be a major task in
further proceedings. Unfortunately, not every reference turned out to be up-to-
date; thus, it was not possible to prove the availability of each paper. In case
the source code could not be accessed, the record was tagged as closed-source.
Otherwise, a URL was added to every publication featuring an open-source
testing framework. In case of a new version of the testing tool in which major
features were added or reworked, the version number was documented as well.

Sub-Check System Information

Sub-check systems and benchmarks were a major part of the analysis. There-
fore, a separate table dedicated to benchmarks, their names and their source
code was added. On top of that, each record yields the used version num-
ber of the benchmark if mentioned in the paper. Unfortunately, documenting
every sub-check system was not possible. Evaluations that would reference
big amounts of unnamed GitHub repositories or loose code snippets were not
taken into consideration. Therefore, a boolean control variable was used to
tag papers with named sub-check systems. Several frameworks turned out to
be under closed source; accordingly, such cases were left without a reference.
In order to not completely lose track of unnamed or unspecified benchmarks,
an attribute on the amount of sub-check systems was added.

Sub-Check System State and Reasoning

A major detail that turned out to be even more relevant was the state of the
data set itself and whether it was modified or not. While reading, the modifi-
cation causes and the intention of choosing said data set for the evaluation was
extracted and added to the spreadsheet. Moreover, we determined the amount
of sub-check systems used in every evaluation. In Table 3.1, the different clas-
sifications of the reasoning behind using a sub-check system are explained. As
a matter of fact, modifications of sub-check systems are similarly reasoned to

"https://git.webis.de/

12

https://git.webis.de/

CHAPTER 3. PUBLICATION DATA NETWORK

Table 3.1: Explanation for classifying selection causes of sub-check systems

Classification Explanation

Defectiveness

The system is known for being faulty with a number of already
defined deficiencies. The errors are mostly documented through
issues in a VCS. Possible weaknesses can be either functional or
depending on the performance.

Popularity

The system or the systems were chosen based on their popularity
as a software testing benchmark or their relevancy ranking in a
VCS. These tend to be unnamed because large amounts of such
repositories are used in the evaluation (e.g. 50-100). Otherwise, the
popularity comes from the ubiquity of the framework (e.g. MySQL,
Apache Commons or Firefox).

Suitability

The system is proclaimed to be fitting for the evaluation. Especially
with very specific contributions, frameworks with that specific issue
or a certain use case are chosen for the evaluation.

Quantity

The evaluation takes up a large number of repositories, projects or
functions regardless of their content and faultiness. That is useful
for load testing systems that depend on large data sets and their
performance metrics.

Quality

The system was chosen for its complexity. Many sub-modules, high
amounts of possible paths and difficult operations are the key factor
for the evaluation.

Miscellaneous

The system was chosen under a different factor that depends on
specifications by the framework, the tool or the venue.

justify possible disadvantages in the prior choice for selecting a benchmark in
the first place. The explanations are given in Table 3.2.

3.1.3 Reference and Evaluation

Creating the reference network required a complete list of many-to-many re-
lationships between all of the publications; therefore, every bibliography of
each read publication was extracted using the open-source tool science-parse

2

. A separate Python script was used to collect these references in Comma-

separated values (CSV) file using both titles as foreign keys in our relationship.

Zhttps://github.com/allenai/science-parse

13

CHAPTER 3. PUBLICATION DATA NETWORK

Table 3.2: Explanation for classifying modification causes of sub-check systems

Classification

Explanation

Inject Defects

The system was artificially aggravated. As a result, the eval-
uator knows where the errors that need to be determined by
the system are situated. That is predominantly achieved us-
ing mutation testing tools.

Dismiss Irrelevant

Complex and bloated benchmarks are reduced to the most
important modules. That is especially useful with bigger sub-
check systems that are especially faulty in certain regions.
Consequently, the evaluator has a lot more control over the
outcome of the results.

Made Suitable

The original implementation of the sub-check system was
not sufficiently adapted to the evaluated system. By adding
and modifying certain features some authors tailor a changed
benchmark that is more appropriate to the task.

Compatibility

The sub-check system might be very suitable for the evalua-
tion but is due to a lack of support or exceptions not working
with the evaluated tool, hence they are reworked or new mod-
ules are added.

14

CHAPTER 3. PUBLICATION DATA NETWORK

By using the API of dblp 3, BibTeX entries were extracted for each relevant
testing publication and its corresponding venue. Each part of the data was
imported into a Google Spreadsheet *. Accordingly, a separate table was used
to model the foreign keys of the corresponding titles using a simple VLOOKUP ().

3.1.4 Data Modification

Most of the classified data was not perfectly suitable for importing the CSV files
of each table into a graph database, hence certain modifications were made. In
order to enforce a clean relational structure, separate tables of many-to-many
relationships were added yielding each edge. In the process of importing all of
the references of the papers, many undesired duplicates occurred. That and
certain parsing errors were eliminated from the spreadsheet. The relationships
between benchmarks and publications were reworked in the same manner. The
data set was examined for errors concerning inconsistencies, spelling mistakes
and semantics. As soon as these unwanted artefacts were eliminated, the data
set was mostly ready for importing flawlessly.

3.2 Publication Data Processing

3.2.1 Visualization

For the first approach to creating a suitable visualization of the data, a graph
database was created. By using Neo4j ®, a common platform for working with
various kinds of graph visualizations, importing the modified spreadsheets from
the CSV files was uncomplicated and fast. Firstly, each paper was stored as a
node in the database containing an identification, the title and the correspond-
ing contribution, hence that was the first priority for the visualization. Each
kind of relation, whether it was a citation, a paper reference or a benchmark
reference, was stored as a directed edge. Relations leading to benchmarks were
classified based on the author’s choice and reasoning behind using and mod-
ifying the benchmark itself. Therefore, proper colour coding was a necessity
to enforce proper examination and interaction with the graph. By using the
Community Edition of the Neo4j Server, first graphs and overviews of the data
could be created and interacted with.

In order to finalize the graph, the most relevant properties of each paper were
imported. The visualization had to fulfil certain requirements for the next

3https://dblp.uni-trier.de/
“https://www.google.de/intl/de/sheets/about/
Shttps://neodj.com/

15

https://dblp.uni-trier.de/
https://www.google.de/intl/de/sheets/about/

CHAPTER 3. PUBLICATION DATA NETWORK

steps.

First of all, one has to be able to discriminate papers that were actually clas-
sified and papers that were just a reference. In that way, it would be easier
to identify common research questions, missed opportunities for comparisons
within the evaluations or relevant candidates for further improvement and ad-
dition to the framework itself.

It is important to distinguish different kinds of relationships; therefore, not
only is a proper colour coding between the three kinds of relationships impor-
tant, but also a separation between benchmarks and papers has to be made.
In that case, navigating and selecting important nodes is significantly easier.
The last and most important requirement is the ability to prioritize only nodes
with certain properties, whether we are interested only in open source frame-
works, papers of static analysis or simply publications from 2016. That was
achieved by selective querying described in the next section.

While working with Neo4j as the main tool for visualization, certain limi-
tations were reached. Modifying data with a certain property turned to be
laborious, especially with a continuously growing network. Additionally, the
visualization itself does not give the user a lot of freedom when it comes to
styling the graph to content aside from the editable GRASS-file in the En-
terprise version of the tool. Therefore, on top of the running Neo4j server, a
D3-visualization takes the graph data from Neo4j and simply processes it in
an even more wholesome manner.

The fact that one node may contain many properties as described in Chapter
3.1.2, each node has to represent the most important information in specific.
Furthermore, different layouts of the graph aside from the common D3 Force
Layout were created. For instance, each node can be sorted by the publica-
tion date to get an overview over referencing trends over the years, influential
publications and the amounts of papers with shared contributions in a certain
year. In that way, it was easier to comprehend which software testing field
of research was explored more extensively than any other over the past half
decade.

In addition, one can highlight certain parts of the graph by hovering nodes,
such that, it is a lot easier to keep track of a certain node. By selecting and
querying, finding connections between the individual contributions is possible
while opening up a new angle for the research.

On top of that, a user can get a fundamental analysis of interesting papers
surrounding one node. By clicking on a node, the visualization reveals paths
that might be relevant in connection with said node. With additional high-
lighting options and colour-coding, the many dimensions of the data can be
further explored. By right-clicking a node one can immediately query after

16

CHAPTER 3. PUBLICATION DATA NETWORK

TESTING LITERATURE OVERVIEW

Figure 3.1: Basic interface of the visualization including a query input, control
check boxes, a view revealing node information, a pie chart for the distribution of
contributions and the current sub-graph

the selected publication revealing a network of papers that are related to the
selected one. That selection is mainly based on the transitive dependency. In
Figure 3.1 the final

3.2.2 Graph Querying

With 8000 records in our collection, getting a practical view of the data is
rather tedious without selecting only specific nodes and relationships. There-
fore, Cypher queries were used to not only group nodes by their properties
but also help with identifying attributes of papers where the classification was
uncertain the first time around. Cypher is a declarative query language that
is mostly used in processing property graphs like our network. While some
characteristics of SQL were adapted, most of the language relies on intuitive
and easier to comprehend.

By selecting nodes of the same contribution, the process of finding shared tasks
and most-used references was trivial. By highlighting outliers and adding other
related contributions, papers with overlapping software testing paradigms and
techniques could be determined. Filtering the nodes only by their connection
to benchmarks was the best way to find common evaluation data and led to an
overview of papers using specific real-world data on their evaluation instead of
mentioning a variety of file repositories. Moreover, by aggregating the data,
statistics were easily established and shown in the visualization.

17

CHAPTER 3. PUBLICATION DATA NETWORK

3.2.3 Data Refactoring

With the help of the graph database, a proper visualization and extensive
querying of the data, adding information on unfamiliar, solely referenced pub-
lications was much more precise and efficient than picking unrelated confer-
ences and topics.

By exploring the graph and taking deeper looks on papers and their relations,
possible initial errors could be found and proofread. On top of that, missing
properties could be added and disturbing inconsistencies could be removed
quicker.

By closing such information gaps, the network could be extended by papers
that are relevant while opening up new routes and prominent topics for the dif-
ferent domains of software testing. In that manner, creating a dynamic work-
flow consisting out of traversing the graph, finding highly-referenced nodes,
classifying them and adding the information to the network can be estab-
lished. The more cycles of the routine are accomplished, the more extensive
the network itself is, which enables a better insight into the research strategies
of the broad field of software testing and software engineering itself.

18

Chapter 4

Results and Analysis

In the light of progress towards attaining a sufficient amount of consistent
and comprehensive data, the spreadsheet and the corresponding visualization
yielded a list of results. By making use of the methods explained in Chapter
3 the publications could be analyzed in terms of their intrinsic classification,
their justified choice of benchmark, their strategy of evaluation and their defi-
nition of working with errors and their annotation. On top of that, patterns in
the referencing between each publication give a better insight into the differ-
ent software testing research tasks. By classifying such patterns, one is able to
make assumptions on certain properties of publications that were not classified
in the first place. The analysis enables a clear view of the trends of evaluating
state-of-the-art software testing frameworks and emphasizes referencing strate-
gies throughout the year.

The analysis of the data is conducted with the following research questions in
mind.

RQ1 What are predominant evaluation strategies in the research field of soft-
ware testing?

RQ2 How are comparing evaluations conducted?
RQ3 How is related work reflected on in the evaluation?

RQ4 Is it possible to make assumptions on evaluation strategies based on
certain classifications of individual publications?

RQ5 What are the limits for reproducibility of software testing systems when
it comes to their evaluation?

During the analysis, we expect that testing-related research has its own
mannerisms compared to other areas of software engineering. With evalua-
tions being conducted similarly, metrics might significantly vary. We assume

19

CHAPTER 4. RESULTS AND ANALYSIS

that in case recent literature of the same research field was mentioned in the
related work sections, it is somehow reflected in the evaluation. With that be-
ing said, using the resulting data from the citation is obligatory for conducting
a comparing evaluation. Moreover, we hope that by looking at references and
classification attributes of a paper, indications on the state of the evaluation
can be made. We do not consider the assumptions to be complete or correct
even. It rather is help for simplifying the literature review process and algo-
rithmic learning processes. Lastly, we do expect most papers to be difficult to
reproduce regarding the high effort and the fact that aged researches were not
confronted with reproducibility at all.

4.1 Classified publication data

In this section, statistics of the raw tabular data is presented. The results give
insight on predominant classifications and characteristics that stood out in the
process of annotating and refactoring the data set.

4.1.1 Classification Statistics

By creating an overview of the data and making use of plotting libraries like
matplotlib! and pandas?, a proper analysis of the data could be conducted.
The main goal was to (1) give insight on how the proportions for each charac-
teristic have changed over the years, (2) determine relevant factors for authors
to use sub-check systems and benchmarks, (3) identify which metrics are rel-
evant to which research field, (4) find out whether faults are annotated in
sub-check systems by their respective author and (5) assess when and whether
papers are reproducible.

Fundamental Characteristics

Figure 4.1 shows the number of papers that were read and classified compared
to the overall amount of papers gathered in the data set. As the number of
publications was rising because they were unclassified references of the read
papers, the following statistics will focus on papers that were certainly read.
The main goal is a regular addition of new papers that might open up new
references to new and especially already classified publications.

In Table 4.1 and Figure 4.2 the proportions of each software testing contribu-
tion found are visualized. Certainly, test generation is a predominantly studied

Thttps://matplotlib.org/
2https://pandas.pydata.org/

20

CHAPTER 4. RESULTS AND ANALYSIS

Contribution #
test generation 67
symbolic execution 45
mutation testing 20
static analysis 18
regression testing 17
web testing 14
multithreaded testing 11
performance testing 10
test automation 9
fault localization 8
gui testing 8
test selection 8
mobile testing 8
concolic execution 8
test coverage 6
systematic testing 5
test prioritization 4
integration testing 3
race testing 3
defect detection 3
compiler testing 3
test-suite reduction 3
dynamic execution 3
test case reduction 2
dynamic analysis 2
data flow testing 2
others 17

Z 305

Table 4.1: Overall amount of papers for each contribution

field whereas more specific research fields like fault injection, test oracles or
dependency detection are not very present in the data. Nonetheless, it is im-
portant to state that especially test case generation expands to many different
other research fields like mutation testing, symbolic execution or test automa-
tion. The classification is more of a hint on the primary research field. Based
on the fact that we can be sure that many papers tend to elaborate on multi-
ple areas of software testing, a proper visualization in a graph can be beneficial.

Figure 4.3 showcases the open source trend from 2012 until 2016. It is safe
to say that even though the amount of papers with publicly available source
code has risen over the years, it is still improvable regarding the number of
researches with a closed source. More importantly, a lot of research results
and the source code is simply unreachable rather than unpublished.

The data shows that even though there is an on-going trend towards providing
the reader with the source code, it is often neglected like in this paper [Alipour
et al., 2016].

RQ1 The research field of software testing is invested in finding different
ways to generate tests. Over the past years, the interest in automating test
generation has risen with regard to mutation testing as a popular technique.
Moreover, symbolic execution is a popular research area even though it is not
often used in the industry. Even though most modern testing libraries rely on

21

600

500

400

300

200

100

CHAPTER 4. RESULTS AND ANALYSIS

2010

1996 -

1997 -

1998 -

2011

1999 -

2000 -

2001 -

year
2012 2013 2014 2015 2016 2017

—__ 1 II ‘l ‘l ‘l ‘l ‘l ‘\ ‘l ‘\ —_

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
™~ [aa] =t [Fa} =} ~ @ =] =] — ~ [} < w =} ~
(=] [=] (=] [=] (=1 (=1 (=1 o — — — — — — — —
(=] (=] (=] (=] (=] (=] (=] (=] (=] (=] (=] (=] (=] (=] (=] (=]
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Figure 4.1: Amount of collected papers (blue) with amount of classified publications
(red) from 1996 until 2018

22

2018 -

CHAPTER 4. RESULTS AND ANALYSIS

|
-
-
-
-
so .
-
-
-
-
-
-
-
-
U
-
-
-
-
-
] Jp—
-
-
-
-
-
20 =
-
-
-
-
-
-
-
10 =
|
-
-
-
0
2011

contribution
acceptance testing
compiler testing
concolic execution
concolic testing

configuration error detection

continuous testing
data flow testing
defect detection
dependency detection
dynamic analysis
dynamic execution
fault injection

fault localization

gui testing
hypothesis testing
integration testing
memaory leaks
mobile testing
multithreaded testing
multithreaded-testing
mutation testing
oracle testing
performance testing
race testing
regression testing
software verification
state pollution

static analysis
statistical testing
stochastic testing
symbolic execution
systematic testing
test automation
test case derivation
test case reduction
test coverage

test dependence
test generation

test oracle

test prioritization
test selection
test-suite reduction
web testing

2012

Figure 4.2:

2013 2014 2015 2016 2017
year

Proportions of contributions over time from year 2010 until 2018

23

2018

40

30

20

10

CHAPTER 4. RESULTS AND ANALYSIS

availability
mm closed
e open

™~ m
— —
(=] (=1
~ ~

Figure 4.3: Amount of evaluated open (orange) and closed (blue) source software

testing tools from 2015 until 2018

T 2014

24

2015

2016

CHAPTER 4. RESULTS AND ANALYSIS

dynamic execution, other topics are researched a lot more frequent. With that
being said, software testing is a broad field of different applications that are,
in fact, increasingly influenced by the current industrial trends. As a result,
availability is a major issue with the presented tools as the open source trend
is not significant. Since many libraries and testing systems are developed with
a closed source by third-party companies, it is difficult to access not only the
source code but also the evaluation objects which is described in a later chapter.

RQ4 The availability of the presented tool is crucial for a reproducible
evaluation. The causes of not providing the reader with the source code are
numerous. Aside from dead links and expired domains, a library might be
seen as unfinished by the author, hence it is finalized in later publications.
Furthermore, presented concepts might be just theoretical and not yet imple-
mented. Unfortunately, as those are understandable causes for not providing
an open source, many authors tend to neglect that their code is unavailable.
Nonetheless, the decision making behind that topic should be mentioned in
the paper.

Benchmark and Sub-Check System Properties

For their evaluation, most authors do use benchmarks that are available for
everyone. Nonetheless, not every benchmark is annotated with their corre-
sponding version number or name even. In our selected data set of 148 files,
only 118 papers were found to be with a named benchmark and only 23 with
annotated version numbers. Corresponding to that, the amount of complete
references including version and name is rather low.

A common convention in selecting benchmarks is the explanation of why a
certain sub-check system has been chosen for evaluation purposes. As many
papers tend to tailor their sub-check systems to their evaluation, some of the
evaluation subjects are modified. Defining the cause of the modification is use-
ful when it comes to understanding basic evaluation strategies. The Sankey
Diagram in Figure 4.4 visualizes the predominant reasoning behind choosing
and modifying a data set. From the whole data set, 143 papers could be de-
termined in which the chosen sub-check systems were justified. The different
classifications are explained in Table 3.1 and 3.2.

The selection cause for 42 papers was classified as Miscellaneous. Some justi-
fications involve a very specific context like using a sub-check system provided
by a venue or using systems that were utilized by the related work. For ex-
ample, Tonella et al. do introduce five different benchmarks that are used for
multiple reasons. Each sub-check system is properly referenced and purpose-
fully picked based on the related work. With that in mind, in many cases, it

25

CHAPTER 4. RESULTS AND ANALYSIS

Made Suitable: 2
Miscellaneous: 42 Miscellaneous: 42
Quality: 19 Quality: 19
Unmodified: 112
Unmodified: 112
Papers: 143 Dismiss Irrelevant: 17
Suitability: 38 IS 142 Suitability: 38
Compatibility: 2 =
Defectiveness: 9 I
Quantity: 16

ismi: : Quantity: 16
I Defectiveness: 9 Dismiss Irrelevant: 17 I Y

. ified: - Inject Defects: 9
Popularity: 8 " . Modified: Bdpularity: 8
I Modified: 31 Inject Defects: 9

Compatibility: 2
Made Suitable: 2

None: 11 None: 11

Figure 4.4: Distribution of selection Figure 4.5: Distribution of modifica-
and modification causes of sub-check tions made depending on the selection
systems cause

was not trivial to explicitly classify, yet again, the classification is a mere aid
for further analyses.

38 papers chose their sub-check systems for the sake of the suitability for the
evaluation. That means that the benchmarks were chosen because they fulfil
certain properties or are easily adaptable to the presented testing system. For
instance, Yandrapally et al. present their approach to automatically modular-
izing GUI test cases. As they explain common difficulties of automating GUI
tests, AJAX-style applications and their forthcoming deficiencies are taken
into consideration within the implementation of their tool. As a matter of
fact, the evaluation consists of either AJAX and JSP applications. For these
sub-check systems are specifically chosen because of their technical relation
to the system, the paper’s selection cause was classified as suitability. Con-
sequently, the evaluation is not conducted with any other web technology for
dynamically generating web pages e.g. PHP, PERL or ASP.

With only 11 papers without any cause of selection, all of them conduct an
evaluation in which the sub-check system was additionally modified. That in-
dicates that an approach exists, in which sub-check systems are chosen without
any strategy and are purposefully adapted to the evaluation.

RQ1 A common strategy in making use of benchmarks and sub-check

26

CHAPTER 4. RESULTS AND ANALYSIS

systems is their justification. By explaining the thought behind using and
modifying the evaluation objects, the author facilitates the evaluation’s pur-
pose as that choice is crucial for the experimental results. Most papers choose
software that is suitable for their own system which implicates that it is pos-
sible that not every SUT may be equally well-tested as in the evaluation. A
very common approach in choosing a benchmark is connected to the popular-
ity and quantity of the sub-check system. Some researches tend to simply use
very popular repositories while not even naming them. That leads to many
misconceptions and is a major issue in reproducibility of the results.

RQ2 + RQ3 Some authors tailor their evaluation data based on their
related work [Tonella et al., 2014|. Not only does it represent a lot of connec-
tivity between authors and their research, but it enforces reproducibility. By
using the same benchmarks as the related work the author implicitly compares
himself to other work. This, on the other hand, is just speculation, as some
benchmarks simply feature many different qualities that may benefit each re-
search in a different way. For instance, one paper may work with a popular
database system based on the LOC measure while another one references an
unusual error that occurred in the research while evaluating their way of indi-
cating the specific bug.

RQ4 Classifying the cause for selecting and modifying a benchmark may
be crucial for understanding the relationship between the paper and their ref-
erences. Not only is it possible to get an idea of why certain sub-check systems
are relevant in a certain research field or explicit study tracks. It gives also
additional insight on the relation to related work and the way they are used
as a comparison. Taking for granted a benchmark was used multiple times
by many studies, different justifications for their choice and a correspondence
between the papers may reveal that presented errors in one paper may be the
main aspect of the other.

Evaluation Metrics

In order to find out which metrics were mainly used in which cases, 4.6 shows
the number of papers over the year that had either functionality, performance
or both as the main focus of the evaluation. It is obvious that most papers ei-
ther want to evaluate the functionality of the tool rather than the performance
only. As most software testing systems are designed to correctly identify errors,
the functionality being the main focus of most researches is understandable.

Most of the performance evaluations came from many different research

27

CHAPTER 4. RESULTS AND ANALYSIS

35

30

25

20

15

10

choice_of metric
mmm functionality
mam performance
mmm performance and functionality

2010 II

— ~ m < s} [l=}

— — — — — —

[= [= [= [= [= [=

~ ~ ~ ~ ~ ~
year

Figure 4.6: Main focus of evaluation based on the chosen metric

28

CHAPTER 4. RESULTS AND ANALYSIS

fields which implies that performance is the main issue in many areas of soft-
ware testing. Publications featuring an evaluation based on both aspects are
mostly present in test generation papers as that is the most popular research
area. Not only do their authors want to improve the correctness of generated
test suites but also show how rapidly they can be created.

One possibility of why performance-based evaluations are not as common was
the idea of them being exclusively comparing ones. By comparing the run time
of a tool compared to another one, the measured data could be a convincing
metric for the contribution. Figure 4.8 shows the distribution of the comparing
evaluations depending on their choice of metric. Contrary to the hypothesis of
performance evaluations being rather comparing, they mostly are not. Publi-
cations featuring a two-fold evaluation, on the other hand, are most likely to
compare themselves to each other.

By the fact that different key aspects of evaluation might be using different
metrics, Figure 4.7 showcases the metrics that were predominantly used in
functionality- and performance-driven evaluations. It has to be stated that
with the low amount of performance-only evaluations, proper data could not
be determined. It is mostly clear that many papers have different ways of
showcasing their performance, whether it be a simple time measure or mutant
kill rates. As metrics like test suite size and number of wins shows, many
metrics are adapted to the system’s forte which might be very one-sided. Cov-
erage, on the other hand, is a very broad term which, again, is defined by most
papers individually. By specifically looking into the papers, it gets clear that
branch and path coverage are frequently used, whereas code or line coverage
is not used too often. With that being said, the mutation score or the amount
of killed mutants is a popular measure for assessing software testing systems.

RQ1 Software testing is not only a matter of functionality but also of
performance. In order to create test suites as fast as possible, many authors
evaluate their software in their run time. Even though the functionality lies in
the centre of attention, papers covering both aspects tend to compare them-
selves to other publications frequently.

RQ2 By looking at specific papers of either functionality- and performance-
based evaluations it is revealed that they mainly vary in the metrics used.
While performance is usually determined by the exact execution time, functionality-
based evaluations are ambivalent. Even though coverage of any kind is a
predominant metric in software testing, authors find many different ways to
evaluate very distinct properties of their tool. Nonetheless, it can be said that
most systems are evaluated using branch, line or path coverage or even a muta-
tion score based on the mutants killed. Surprisingly enough, with three papers

29

CHAPTER 4. RESULTS AND ANALYSIS

rejection rate
mutation score
killed mutants
constraints
tests generated
precision
feasibility
scalability
accuracy
performance
branch coverage
bugs found
time

coverage

o
[N]
I~

6 8
Performance and Functionality Metrics

=
(=]
-
[N}

bugs found

time per task

time

mutant kill rates
execution time
number of wins

test suite size

time to correct error
fidelity

performance

o
o
o
o
N
w

0.50

e
~
w

1.00 1.25 1.50 1.75
Performance Metrics

[ng
=}
=}

path coverage
recall

code coverage
test cases generated
effectiveness
time

faults detected
bugs found
mutation score
mutants killed
branch coverage
coverage

o
-
N
w

4 5 6 7
Functionality Metrics

Figure 4.7: Amount of used metrics in functionality- and performance-based eval-
uations

30

performance and functionality 69

functionality

performance

CHAPTER 4. RESULTS AND ANALYSIS

67

Figure 4.8: Amount of papers having a main focus on either performance or func-
tionality (left) and whether they are comparing evaluations or not (right)

only, code coverage was not used as a metric too often, even though it is an
extremely relevant measure in the industry.

RQ4 Papers evaluating only the functionality of their tool are rarely com-
paring themselves to other work. That comes either from the fact that they
are simply incompatible in terms of their basic idea or it is simply neglected
because of performance metrics being a lot more suitable for comparisons.

Error Annotation

Figure 4.9 showcases the ratio between publications specifically annotating
their errors in the data set which the evaluation is conducted on and the pub-
lications that rely on either specific characterizations of their benchmarks like
faultiness and prior fixed issues or nothing at all. The latter is by no means

31

102 False

44 True

CHAPTER 4. RESULTS AND ANALYSIS

choice_of_metric
mmm performance and functionality

50 mem functionality
mmm performance
40
€
> 30
o
E
<
20
10
0 - --

Not annotated Annotated
Error Annotation

Figure 4.9: Amount of papers annotated errors with regard to the kinds of metrics
used

an insured gap in the evaluation itself as it is possible that the main research
of the presented system of the paper may not be necessary depending on an-
notated errors. For instance, some authors focus on the performance of their
system including load and system tests that would not need any annotated
errors. In most cases, even both aspects are relevant to the results.

RQ1 A common way of creating a suitable evaluation object is annotating
which error should occur at which path of the execution. That practice is
mostly used when a benchmark is provided for authors just like the SV-Comp
benchmark. As a matter of fact, mutation testing is used more frequently,
because mutators are explicitly assigned within the code. Therefore, error an-
notation is an infrequent practice in evaluating testing software.

RQ5 Annotated errors are a big influence on the reproducibility of an

evaluation. Not only is it possible to recreate the results by their metric, but
one can easily determine which exact parts of the code will produce which

32

CHAPTER 4. RESULTS AND ANALYSIS

error.

4.1.2 Graph Database

By using a graph database, an abstraction of the tabular data is achieved in
which we can make use of the entity-relationship model to get a better insight
into references and connections between papers. The possibilities of querying
the data in both tabular and node-link directed format open up multiple views
on the data as shown in Table 4.2 and Figure 4.10. By using special aggregate
functions an overview of the distribution of the nodes along with their contri-
bution, venue and classification can be achieved.

Paper Referenced Paper

"Analyzing the [..]" "How effective are mutation [...]" @g @

"Analyzing the [...]" "QTEP: quality-aware test [...]" @

"Finding Deep [...]" "A Survey of Symbolic [...]" e@

"Finding Deep [...|" "Toward understanding |...]" <

"Finding Deep [...]" "Type Regression Testing [...]"

"Finding Deep |[...]" "Guided, stochastic [...]"

"Predictive Mutation [...]" "Isomorphic Regression [...]" e

"Faster Mutation [...]" "A Large-Scale Empirical [...]" @ @ e p

"Faster Mutation [...]" "Comparing and Combining [...]" @ @ @

"Faster Mutation [...]" "Selective Mutation |[...]"

"Faster Mutation [...]" "Balancing Trade-Offs [...]" e
Table 4.2: Tabular representa- Figure 4.10: Graph representa-
tion of a CYPHER query of muta- tion of query after mutation test-
tion testing publications and their ing publications and their biblio-
bibliographic references graphic references in Neo4J

4.2 Publication Graph

Improving on the graph database by creating a custom visualization of the
data brought up great additional insight into the data revealing many aspects
of the multidimensional data. In the following, the findings from using a graph
as a fundamental visualization strategy with its provided querying language
are described. The results consist of the overall insight given by the force-link-
directed layout and specific selections of sub-graphs representing important
evaluation and referencing strategies in software testing.

33

CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.11: Whole graph representation of the data set

4.2.1 Structural Properties

Figure 4.11 shows the whole data set in node-link-directed force-based layout.
With around 8300 nodes of which 350 are classified publications and 205 are
sub-check systems.

Obviously, examining the whole structure is rather tedious; therefore, queries
were used to isolate nodes of interest. Figure 4.16 shows two clusters of two
different contributions with a number of other related papers. By clicking on
the individual nodes, one can follow the respective references. Red paths reveal
publications that reference the selected node as shown in Figure 4.17, whereas
black ones highlight the bibliographic references. By navigating through the
graph and the number of links, one gets the impression of a well-connected
network.

That is especially clear when using the force layout of the visualization. Pa-
pers that are frequently cited are found in the centre because of the many links
connected to them. By using a temporal layout in which every node is ordered
by its publication year, it is easier to clearly understand the references on the
paper throughout the year. As Figure 4.13 shows, a paper on regression testing
using mutation is frequently mentioned within the network. The many transi-
tive relations imply that its related work is very relevant within the currently
displayed domain, which is mutation testing. As we are currently not inter-
ested in finding any transitive links, Figure 4.14 shows only the direct relations
of the node revealing not only many citations but also numerous references on
the paper. With that being said, the node can be seen as well-implemented
into the network as it reveals a lot of information of the paper as well as its
relevancy just by its spatial arrangement. By ordering the nodes by their year
of publication like in Figure 4.15, it is easy to make out the relevancy of the
paper over time. Moreover, very old references are not in the focus which
reduces the visual load. That view on the data also helps with understanding
why papers with the same contributions do not reference each other. Such

34

CHAPTER 4. RESULTS AND ANALYSIS

patterns will be explained in a later chapter.

RQ1 It is safe to say that a lot of related work of software testing papers
comes from old venues. Here, fundamental issues are still relevant to the re-
search which implies that many tasks of the many contributions have stayed
very consistent. It also has to be stated that consistently shared tasks lead to
similar evaluation approaches as the authors are keen on tailoring their exper-
imental setup to said task.

RQ2 Not only do nodes with many shared references imply a good implemen-
tation within the network but also their possible relevance to the evaluation of
others. If a node has a central role in the graph, it can be seen as a "classic"
paper. [de Solla Price, 1965] On the other hand, such papers and their result
data is rarely used as a comparison. The more time lies between two publica-
tions, the lower the comparability. Even though their fundamental ideas might
be relevant for modern researchers, their results are simply dated or not good
enough to stress any significant improvement.

4.2.2 Benchmark References

Figure 4.18 shows a selection of benchmarks documented in our database con-
nected to every paper they were ever used as a sub-check system. Querying
after the papers referencing said benchmarks reveals the number of papers
that were referencing the publications while not using their benchmark (e.g.
Figure 4.19). Another constellation like Figure 4.20 reveals a similar pattern.
The yellow node represents a paper on dynamic analysis [Samak et al., 2016|
in which either dynamic execution and static analysis is used to find complex,
concurrent bugs. Clicking on the node reveals that no implementation of their
tool could be found during the classification process. Moreover, the paper
compares itself to their related work which, on the other hand, is not reflected
in their evaluation which consists of a number of popular java classes. While
looking closer into the related work, it is revealed that a lot comes from for-
mer work of the same author. That also explains the predominant use of Java
classes as evaluation objects. As shown in the figure, the two other papers of
the constellation Samak et al., 2015, 2016 are both referenced and written by
Samak et al. and do have similar java classes as benchmarks but not the same
ones. As a matter of fact, authors tend to tailor their evaluation subjects to
the approach they present rather than strictly depending on the comparison
to other work.

RQ1 Benchmarks tend to be used without any basic system in mind. Ev-

ery author decides which benchmark is the most useful in which cases. As
a result, many authors stick with their choices and use the same sub-check

35

CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.12: Multiple layouts of the visualization revealing different kinds of insight
on the relevancy of a node

o P o
Q o g o/ o
Q Q@ °/o ®
®
\ [/ o
. .o.\\\\\\(é{_. -
o—o0—=— N\
R - 07/ l’ N o
O N °
Sy O
O @ ®) O ®
¢ Ble \° %
© o ©
Figure 4.13: Example of a relevant
paper being highly connected within
the network highlighting direct and Figure 4.14: Central layout of only

transitive relations direct relations of a node

Figure 4.15: Temporal layout of the references of and by a paper

36

CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.16:

execution (lime) papers

Figure 4.18: Selection
of every benchmark (dark
blue) connected by their
use in an evaluation of a

paper (green)

References between
test generation (blue) and symbolic

paper
) °
o .
Figure 4.19: Queried

node that references on
a paper with documented
benchmarks but does not
use them

37

Figure 4.17:
ences on a selected symbolic execution

Bibliographic refer-

B
/ o ®
/- - @
° °
Figure 4.20: Constel-

lation of three related
nodes without any shared
benchmark

CHAPTER 4. RESULTS AND ANALYSIS

systems over the years. Other authors rarely share benchmarks with others.

RQ2 + RQ3 A comparing evaluation strongly depends on the benchmarks
used by the paper that is used as a comparison. Whereas some authors used
the same benchmarks, many parts of the subgraph showed that the comparison
is conducted with new benchmarks which negatively impacts the comparabil-
ity of the paper.

RQ4 By examining the benchmarks used throughout a research area one
can make assumptions on the evaluation. Since some sub-check systems are
closely related to a research field, they can be used to determine what the
train of thought of the author was and which qualities of his tool he wants to
emphasize.

RQ5 With the fact that many papers badly annotate the version numbers
of the benchmarks and references to unnamed sub-check systems are not clear,
it is difficult for authors to conduct a comparing evaluation. As a result, some
code turns inaccessible to the reader making the evaluation harder to recreate.

4.2.3 Referencing and Benchmarking Patterns

The insight one gets from working with node-link force-directed graph visual-
izations is especially useful with data sets that heavily depend on relationships.
By combining such a layout to colour-coded attributes, it is possible to get a
better view of the reference network. In 4.21 every mutation testing paper
in the database is shown with their respective references to other contribu-
tions. As Figure 4.22 shows, the view on the graph can be distinguished into
three areas: references to other contributions, publications of the considered
contribution with their individual citations and the unclassified publications
they reference. The goal of the classification process would be to continuously
evolve the network by taking the unclassified, shared nodes into consideration.

The resulting hierarchy can be used to determine how many other con-
tributions seem relevant for a contribution and which highly-cited references
are representative of the network. For instance, Figure 4.23 shows a paper on
mutation-based regression testing [Zhang et al., 2012| which is referenced by
six other mutation testing papers. That implies relevance in the research field
and is most likely to be read compared to other nodes. We call this structure
a vanishing point pattern which implies a strong relevance for the research be-
cause of the high amount of references to it. Vanishing points can be found
throughout the network and are extremely helpful for classifying new papers

38

CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.21: Mutation testing papers with their references between each other and
to other contributions

because of them being heavily cited and therefore fundamental. Hereby it is
important to state that these papers are mostly cited as early related work as
they can be rather dated. Consequently, it is not crucial to use their evaluation
data as a comparing factor in 2018.

Another noticeable structure within a sub-graph are nodes that do fall under
a certain contribution or classification while not being referenced by any of the
other papers present in the sub-graph. Even though the querying did not show
any particular connection to other papers, the sub-graph around that particu-
lar paper may be insightful. Such an outsider pattern implies a connection to
another contribution or a misclassification.

When some nodes have many references in common, it is safe to say that
they must be related to each other in some way. In that case, when there is
no explicit connection between the two, it is good to compare the papers by
their publication year and their author. We call that topology the familiar
foreigner pattern as the two do share common ground, but do not actually
know each other because of them being published at the same time without
knowing or because of any other misconceptions. That behaviour implies to
our last example written by Zhang et al.. As Figure 4.24 shows, the two nodes

39

CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.22: Distinguishable areas of a view on a graph in terms of their contribu-
tion, e.g. references of different contributions (blue), papers of the same contribution
with their respective, individual references (orange) and shared, unclassified refer-
ences (green)

40

CHAPTER 4. RESULTS AND ANALYSIS

Y .v '-.
. .
. .
*%e
. ..' ° '.-. o o4 .
®. . ® P
. oo ® .
o .
. ° [
. .
. s ®* o
LIPS I)
.
. . ".'
.
. . o .
° e %o .
(] (] . [}
.
oy _*
.
.
. ° . . . %
. . .
° .
i ‘0 /
3
P
. .
s 4 ° L] . .
e, % .
. .
%%] . JRCI
. . s . .
LI o .c-.
° o o %
= .
o e
® e o0
o e® o o, LB
. L) . LA
. . .
°® ® s 40 [] .. o
. o® e o . . .
. o Qe e 4"
. . L J
. e ® o
[] * L]

Figure 4.23: Vanishing point pattern implying a highly cited paper and its funda-
mental qualities as related work

share common references (grey) and benchmarks (blue). The paper was writ-
ten by the same researchers which shows that authors do not deviate from their
choice of benchmarks and related work; moreover, the pattern implies that the
two publications are somehow related in their subject. Still, the older paper
remains unmentioned in the evaluation which leads to the idea of researchers
having their individual repertoire of relevant papers to cite and evaluation sub-
jects to use. A different example is shown in Figure 4.25. Two papers from
completely different universities and venues share a majority of references even
though one paper deals with mutation testing for Android apps and the other
with ecological species discovery using software testing fundamentals. Not only
do the two have separate research tasks, but they also conduct a different ex-
perimental setup. That might explain why the two do not reference each other
but it opens up many more questions regarding the credibility of assuming
strategies based on referencing patterns.

A common way to determine the evolution of a research area is the analysis
of papers that have referenced each other from year to year. That implies a
constant evolution of the research questions and the introduction of new issues.
We call that a chain pattern because the research of different authors is con-
nected to each other implying that the topic is somehow relevant. Figure 4.26

41

CHAPTER 4. RESULTS AND ANALYSIS

e]
ooy N\
0% o oo o, o —
s /P, © \;) ® N
olo © o ® © ° =7 ®
[] ® ° - g
//
Figure 4.25: Multitude of shared ref-
Figure 4.24: Shared references be- erences between two completely unre-
tween papers of the same researchers lated publications

is a perfect example for this behaviour. A paper from 2015 on systematic exe-
cution strategies of Android apps is referenced by an Android test automation
research that even is a comparing paper. Moreover, that paper is referenced
by a mutation testing approach on Android applications. Such a referencing
chain strongly implies that test automation depends on different execution ap-
proaches and by figuring out a way to overcome manual writing of test cases,
mutation testing can be seen as an enabler for that. Over three years, the
research has been systematically specified.

RQ3 Related work is rarely reflected in the evaluation of the nodes that
were inspected. Even though the visualization implies a strong connection be-
tween two papers, it is rarely shown in the paper.

RQ4 By defining referencing patterns, it is easier to navigate through a
bibliographic network. Vanishing points may reveal classic papers that are
used as related work but are not very comparable because of their age. Chain
patterns reveal a continuous evolution of a research field and familiar foreigners
show relationships between researchers not knowing each other. With that
being a small part of interesting patterns, the number of assumptions one
can make on the evaluation itself is enormous. They give insight into why the
evaluation was not comparing even though they clearly knew of their existence
and are closely related. Moreover, it is possible to understand the decisions of
individual authors and their multitude of publications.

42

CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.26: Yellow path denoting different researchers continuously referencing
each other

43

Chapter 5

Discussion

Evaluation strategies of software testing systems are complex and depend on
the properties of the paper itself and their place in the publication- and sub-
check-system-network. During our research, we could identify numerous strate-
gies in the evaluation of software testing tools. Papers that present their testing
systems follow a straightforward pattern in their assessment.

Firstly, benchmarks and sub-check systems are described to the reader. With
most authors trying to justify why they chose a specific evaluation object, this
part is overlooked when benchmarks are generalized. Even though version
control systems are a way for obtaining a convenient and concurrent error an-
notation through issues, bug fixes and overall history, readers cannot access
the chosen repositories when they are unnamed. The same issue comes with
lacking version numbers which turned out to be frequently forgotten. More-
over, in the case of benchmarks being properly described, their justification
varies in many aspects. As authors tend to choose evaluation objects that
would benefit their tool, it is not easy to classify their choice. Some sub-check
systems tend to be oddly specific or inaccessible to the reader. Contrary to
that, some authors simply choose popular real-world software that is sparsely
annotated or behind paywalls. As a small number of publications showed,
these problems can be circumvented by using benchmarks provided by testing
conferences or individual data sets closely related to the different research ar-
eas and contributions.

After introducing the evaluation objects, results are presented. That includes
the used metrics and data that could be collected. With coverage being a
major key issue of software testing, it is an ambivalent term. Authors need to
describe their coverage metric as different testing tools are better at improving
different parts of the test suite. It also showed that a mutation score is a pre-
dominant metric which is suitable for evaluation because of the generalizability
and automatic annotation. That also implies that the mutated code needs to

44

CHAPTER 5. DISCUSSION

be accessible to the reader.

With the resulting data set, testing papers evaluate their findings. Even though
we thought that related work would be frequently reflected in the evaluation,
many papers do not even mention the findings of their predecessors. With
that, a major issue for the comparability emerges. As soon as a paper does
not compare itself to a paper of the same research task, the improvement is
not comprehensible. Moreover, citations of publications with low comparabil-
ity disturb the continuous improvement of the research data throughout the
years.

Citations and references are an important part of a publication and its eval-
uation. By identifying different kinds of relations within the bibliographic
network, we tried to connect noticeable referencing patterns and their reflec-
tion in testing tool evaluations.

In order to improve existing takes on bibliographic networks, we classified our
papers according to numerous attributes that would deal with their semantics
and structure. Defining different kinds of relations aside from simple citations
is beneficial for any literature review. Because of the fact that references vary
in their relevance to the paper, references to publications that are actually
referred to in the evaluation are more important, hence they should be high-
lighted. Furthermore, benchmarks and sub-check systems play a vital role in
the network; consequently, more kinds of relations are revealed. For instance,
frequently used benchmarks will help authors with choosing an appropriate
evaluation object and can bring up new choice justifications aside from popu-
larity and size. As a result, researchers might use the same experimental setup
as their related work more likely.

Regarding our hypotheses for our research, most of the assumptions could be
validated. Software testing research follows many different strategies when it
comes to their evaluation. The multitude of contributions facilitates different
approaches to strengthen the arguments for your own testing system. As the
analysis showed there is no streamlined or universal experimental setup for a
testing paper as many of them try to prove a different point. With that in
mind, the research community is very consistent with their choice of metrics as
they are unique to the research field. Reproducibility remains a major issue as
it requires a lot of effort, not every researcher is willing to contribute. Unfor-
tunately, we could not validate our hypothesis on comparing evaluations being
a predominant strategy. Even though the recent research of other authors was
mentioned in the related work, it was rarely reflected in the experimental setup.

Based on the findings of our research one can say that with software test-

ing being an immensely broad field, making assumptions on the evaluation
strategy of an individual paper is non-trivial. Since one research field is re-

45

CHAPTER 5. DISCUSSION

lated to one another, making precise decisions on the classification can be im-
possible. Nonetheless, making use of explicit classifications and bibliographic
relationships reveals information that is lost in the paper as a whole and ex-
isting publication visualization techniques. By making use of that insight, it
was easier to comprehend the issues of reproducibility and comparability in
different research areas and contributions.

46

Chapter 6

Threats to Validity and Future
Work

6.1 Threats to Validity

The data acquired for the research is by no means proof of mistakes. Threats
to internal validity come from the process of the literature review. The data
set was modified and reworked multiple times in several time periods. As
the visualization showed, a more mature analysis can only be performed with
a bigger amount of classified papers. Moreover, classification mistakes are a
possibility of identifying some of the properties turned out to be non-trivial.
The process of refactoring the data means a continuous change of the data set
which inhibits the completion of the data set.

External validity comes from difficulties of generalizing the arrangements as
this research was not a typical experimental setting. With the methodology
describing a continuous process of improving the data set and tailoring the
visualization to extract certain features, controlling possible treatments was
impossible.

6.2 Future Work

The data set that was acquired from reading the software testing papers can
be expanded and improved on. With every new paper, a collection of new
references has to be classified and put into context. For instance, adding ma-
chine learning techniques for classifying the data depending on shared citations,
benchmarks, referencing patterns and evaluation objects may be beneficial for
expanding the data systematically. On top of that, the integration of the data
into the graph database and consequently into other visualization methods

47

CHAPTER 6. THREATS TO VALIDITY AND FUTURE WORK

open up new perspectives on the evolution of research domains in software
testing over time. For instance, Hierarchical Edge Bundling and Compound
Graphs are possible techniques that can reveal possibly relevant publications.
The current implementation of the network can be further improved as well.
For example, annotating referencing patterns within the graph gives the possi-
bility to interpret the data immediately. By pre-processing the data for every
node or common queries, it is possible to handle bigger graph structures. The
coherence between different views on the data (e.g. charts, statistics etc.) can
reveal even more correlations in the data when it comes to selected regions of
the graph.

Classifying contributions simplified the classification of the papers significantly.
Nevertheless, one contribution can contain many different research tasks that
have to be separated from each other. Moreover, contributions have to be
merged so that more precise assumptions on the situation of the paper net-
work can be made.

48

Bibliography

M. A. Alipour, A. Shi, R. Gopinath, D. Marinov, and A. Groce. Evaluating
non-adequate test-case reduction. In 2016 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 1626, Sep.
2016. 4.1.1

Waleed Ammar, Dirk Groeneveld, Chandra Bhagavatula, Iz Beltagy, Miles
Crawford, Doug Downey, Jason Dunkelberger, Ahmed Elgohary, Sergey
Feldman, Vu Ha, Rodney Kinney, Sebastian Kohlmeier, Kyle Lo, Tyler Mur-
ray, Hsu-Han Ooi, Matthew Peters, Joanna Power, Sam Skjonsberg, Lucy
Wang, Chris Wilhelm, Zheng Yuan, Madeleine van Zuylen, and Oren Et-
zioni. Construction of the literature graph in semantic scholar. In Proceedings
of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 3
(Industry Papers), pages 84-91, New Orleans - Louisiana, June 2018. As-
sociation for Computational Linguistics. doi: 10.18653/v1/N18-3011. URL
https://www.aclweb.org/anthology/N18-3011. 2.4

Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM
Comput. Surv., 40(1), February 2008. ISSN 0360-0300. doi: 10.1145/
1322432.1322433. URL https://doi.org/10.1145/1322432.1322433. 2.3

S. Arlt, A. Podelski, C. Bertolini, M. SchAf, I. Banerjee, and A. M. Memon.
Lightweight static analysis for gui testing. In 2012 IEEFE 23rd International
Symposium on Software Reliability Engineering, pages 301-310, Nov 2012.
doi: 10.1109/ISSRE.2012.25. 2.1.2

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Deme-
trescu, and Irene Finocchi. A survey of symbolic execution techniques.
ACM Comput. Surv., 51(3):50:1-50:39, May 2018. ISSN 0360-0300. doi:
10.1145/3182657. URL http://doi.acm.org/10.1145/3182657. 2.1.3,
2.14

Cristian Cadar and Koushik Sen. Symbolic execution for software testing:
Three decades later. Commun. ACM, 56(2):82-90, February 2013. ISSN

49

https://www.aclweb.org/anthology/N18-3011
https://doi.org/10.1145/1322432.1322433
http://doi.acm.org/10.1145/3182657

BIBLIOGRAPHY

0001-0782. doi: 10.1145/2408776.2408795. URL http://doi.acm.org/10.
1145/2408776.2408795. 2.1.3

Derek J. de Solla Price. Networks of scientific papers. Science, 149(3683):
510-515, 1965. ISSN 0036-8075. doi: 10.1126/science.149.3683.510. URL
http://science.sciencemag.org/content/149/3683/510. 2.4, 4.2.1

Institute Electrical and Electronics Engineers. Glossary of software engineering
terminology, ieee standard 610.12. 09 1990. doi: 10.1109/IEEESTD.1990.
101064. 2.1.2

Jestis M. Gonzélez-Barahona and Gregorio Robles. On the reproducibility
of empirical software engineering studies based on data retrieved from de-
velopment repositories. Empirical Software Engineering, 17(1):75-89, Feb
2012. ISSN 1573-7616. doi: 10.1007/s10664-011-9181-9. URL https:
//doi.org/10.1007/s10664-011-9181-9. 2.2

M Graves, E.R. Bergeman, and C.B. Lawrence. Graph database systems.
Engineering in Medicine and Biology Magazine, IEEE, 14:737 — 745, 12
1995. doi: 10.1109/51.473268. 2.3

B. Kitchenham, L. Pickard, and S. L. Pfleeger. Case studies for method and
tool evaluation. IEEE Software, 12(4):52-62, July 1995. ISSN 0740-7459.
doi: 10.1109/52.391832. 2.4

Bogdan Korel. A dynamic approach of test data generation. pages 311 — 317,
12 1990. ISBN 0-8186-2091-9. doi: 10.1109/ICSM.1990.131379. 2.1.1

Thomas K Landauer, Peter W. Foltz, and Darrell Laham. An introduc-
tion to latent semantic analysis. Discourse Processes, 25(2-3):259-284,
1998. doi: 10.1080/01638539809545028. URL https://doi.org/10.1080/
01638539809545028. 2.4

Ibéria Medeiros, Nuno Neves, and Miguel Correia. Dekant: A static analysis
tool that learns to detect web application vulnerabilities. In Proceedings of
the 25th International Symposium on Software Testing and Analysis, ISSTA
2016, pages 1-11, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4390-
9. doi: 10.1145/2931037.2931041. URL http://doi.acm.org/10.1145/
2931037.2931041. 2.1.2

R. M. Poston and M. P. Sexton. Evaluating and selecting testing tools. IEFE
Software, 9(3):33-42, May 1992. ISSN 0740-7459. doi: 10.1109/52.136165.
2.4

20

http://doi.acm.org/10.1145/2408776.2408795
http://doi.acm.org/10.1145/2408776.2408795
http://science.sciencemag.org/content/149/3683/510
https://doi.org/10.1007/s10664-011-9181-9
https://doi.org/10.1007/s10664-011-9181-9
https://doi.org/10.1080/01638539809545028
https://doi.org/10.1080/01638539809545028
http://doi.acm.org/10.1145/2931037.2931041
http://doi.acm.org/10.1145/2931037.2931041

BIBLIOGRAPHY

Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and
Ciera Jaspan. Lessons from building static analysis tools at google. Com-
mun. ACM, 61(4):58-66, March 2018. ISSN 0001-0782. doi: 10.1145/
3188720. URL http://doi.acm.org/10.1145/3188720. 2.1.2

Malavika Samak, Murali Krishna Ramanathan, and Suresh Jagannathan. Syn-
thesizing racy tests. SIGPLAN Not., 50(6):175-185, June 2015. ISSN 0362-
1340. doi: 10.1145/2813885.2737998. URL http://doi.acm.org/10.1145/
2813885.2737998. 4.2.2

Malavika Samak, Omer Tripp, and Murali Krishna Ramanathan. Directed
synthesis of failing concurrent executions. SIGPLAN Not., 51(10):430-446,
October 2016. ISSN 0362-1340. doi: 10.1145/3022671.2984040. URL http:
//doi.acm.org/10.1145/3022671.2984040. 4.2.2

Koushik Sen. Concolic testing. In Proceedings of the Twenty-second
IEEE/ACM International Conference on Automated Software Engineering,
ASE 07, pages 571-572, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-882-4. doi: 10.1145/1321631.1321746. URL http://doi.acm.org/
10.1145/1321631.1321746. 2.1.4

Gidi Shperber. A gentle introduction to Doc2Vec. https://medium.com/
scaleabout/a-gentle-introduction-to-doc2vec-db3e8cOccebe, 2017.
[Online; accessed 11-April-2019|. 2.4

Editorial Team Synopsys. A quick post on Apple Security 55471,
aka goto fail. https://www.synopsys.com/blogs/software-security/
apple-security-55471-aka-goto-fail/, 2014. [Online; accessed 04-
April-2019]. 2.1.2

Paolo Tonella, Roberto Tiella, and Cu Duy Nguyen. Interpolated n-grams for
model based testing. In Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, pages 562-572, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2756-5. doi: 10.1145/2568225.2568242. URL
http://doi.acm.org/10.1145/2568225.2568242. 4.1.1, 4.1.1

Nees Jan van Eck and Ludo Waltman. Visualizing Bibliometric Networks,
pages 285-320. Springer International Publishing, Cham, 2014. ISBN 978-
3-319-10377-8. doi: 10.1007/978-3-319-10377-8 13. URL https://doi.
org/10.1007/978-3-319-10377-8_13. 2.4

Ludo Waltman, Nees Jan van Eck, and Ed C.M. Noyons. A unified ap-
proach to mapping and clustering of bibliometric networks. Journal of In-
formetrics, 4(4):629 — 635, 2010. ISSN 1751-1577. doi: https://doi.org/10.

o1

http://doi.acm.org/10.1145/3188720
http://doi.acm.org/10.1145/2813885.2737998
http://doi.acm.org/10.1145/2813885.2737998
http://doi.acm.org/10.1145/3022671.2984040
http://doi.acm.org/10.1145/3022671.2984040
http://doi.acm.org/10.1145/1321631.1321746
http://doi.acm.org/10.1145/1321631.1321746
https://medium.com/scaleabout/a-gentle-introduction-to-doc2vec-db3e8c0cce5e
https://medium.com/scaleabout/a-gentle-introduction-to-doc2vec-db3e8c0cce5e
https://www.synopsys.com/blogs/software-security/apple-security-55471-aka-goto-fail/
https://www.synopsys.com/blogs/software-security/apple-security-55471-aka-goto-fail/
http://doi.acm.org/10.1145/2568225.2568242
https://doi.org/10.1007/978-3-319-10377-8_13
https://doi.org/10.1007/978-3-319-10377-8_13

BIBLIOGRAPHY

1016/j.j0i.2010.07.002. URL http://www.sciencedirect.com/science/
article/pii/S1751157710000660. 2.4

Rahulkrishna Yandrapally, Giriprasad Sridhara, and Saurabh Sinha. Auto-
mated modularization of gui test cases. In Proceedings of the 37th Inter-
national Conference on Software Engineering - Volume 1, ICSE ’15, pages
44-54, Piscataway, NJ, USA, 2015. IEEE Press. ISBN 978-1-4799-1934-5.
URL http://dl.acm.org/citation.cfm?id=2818754.2818763. 4.1.1

Lingming Zhang, Darko Marinov, Lu Zhang, and Sarfraz Khurshid. Regression
mutation testing. In Proceedings of the 2012 International Symposium on
Software Testing and Analysis, ISSTA 2012, pages 331-341, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1454-1. doi: 10.1145/2338965.2336793.
URL http://doi.acm.org/10.1145/2338965.2336793. 4.2.3, 4.2.3

Jiang Zheng, Laurie A. Williams, Nachiappan Nagappan, Will Snipes, John P.
Hudepohl, and Mladen A. Vouk. On the value of static analysis for fault

detection in software. IEEE Transactions on Software Engineering, 32:240—
253, 2006. 2.1.2

52

http://www.sciencedirect.com/science/article/pii/S1751157710000660
http://www.sciencedirect.com/science/article/pii/S1751157710000660
http://dl.acm.org/citation.cfm?id=2818754.2818763
http://doi.acm.org/10.1145/2338965.2336793

	Introduction
	Background and Related Work
	Software Testing Paradigms
	Dynamic Execution
	Static Analysis
	Symbolic Execution
	Concolic Execution

	Reproducibility
	Graph Database Models
	Related Work

	Publication Data Network
	Publication Data Acquisition
	Paper Collection
	Paper Classification
	Reference and Evaluation
	Data Modification

	Publication Data Processing
	Visualization
	Graph Querying
	Data Refactoring

	Results and Analysis
	Classified publication data
	Classification Statistics
	Graph Database

	Publication Graph
	Structural Properties
	Benchmark References
	Referencing and Benchmarking Patterns

	Discussion
	Threats to Validity and Future Work
	Threats to Validity
	Future Work

	Bibliography

