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Abstract

This thesis explores the potential of transformer models to estimate corpus
statistics by training them to predict word probabilities based on short con-
texts. A theoretical analysis demonstrates that training a transformer on con-
tradicting examples, the Cross-Entropy loss is minimized if the prediction of
the transformer exactly matches the distribution of the contradicting answers,
opening the door for simple training algorithms. We further show that stochas-
tic gradient descent successfully finds this minimum for both toy problems and
transformer models. Experiments on Wikitext and Google n-gram show that
when training on subsets of their n-gram distribution, memorization happens,
i.e. the tranformer predicts the correct distribution of words for the training
n-grams. While large improvements in the predictions on a test set promise
generalization, we find that these improvements are independent of the training
set used, showing that these improvements are not due to an adoption of the
Corpus statistics. The results indicate that our methods are not yet ready to
extrapolate the exact enumeration of n-gram distribution to unknown queries
but provide insights into potential paths with larger transformers models.
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Chapter 1

Introduction

In the field of Natural Language Processing (NLP), corpora play a pivotal role
as the foundation of modern language tools. A corpus refers to a large and
structured collection of text samples that is organized for linguistic analysis
and computational processing. These corpora can either serve as valuable
resources for understanding various aspects of language or train large scale
language models that perform translation tasks, sentiment analysis, and text
generation. Omne of the essential statistical techniques employed in corpora
analysis is n-gram statistics, where n-grams refer to contiguous sequences of
n items, which are typically words in the case of language analysis. N-gram
statistics provide insights into the frequency of word combinations, thereby
shedding light on the co-occurrence of patterns or collocations within a given
corpus.

The usage of co-occurring patterns in a language is something that native
speakers are familiar with. However writing in a foreign language has many
pitfalls. Depending on the level, it can be difficult to understand how native
speakers use certain expressions or continue their sentences. A potential help
in this regard can either be a translation tool that fully translates the native
language into a foreign language or a writing assistants tool, that suggests
a word at specific position or a continuation of the current sentence. With
the emergence of powerful translation tools a full translation of your native
language into foreign texts is a useful option. However, it comes at the cost of
losing the ability to understand a foreign language on your own. Using writing
assistance that suggests the use of specific words is different in this regard, as
it allows you to construct your own text and potentially improve your language
understanding.

A realization of such a writing assistance can be based on the n-gram
statistics. By analyzing which words are being used in the corpora, given
context of the writer, a set of suggestions is created. This approach is taken
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in Ref. [Stein et al., 2010] where given a query q with q = "What is ?" it is
possible to see what words were used at the position of "?" in some underlying
corpora. The words are ranked by their probability of occurring in this position
to quickly suggest relevant words. Using different symbols than "?" it is also
possible to get several words, word alternatives to an already used one, or
other query based features.

While this exact evaluation of the underlying corpora is a powerful tool,
it falls flat for small corpora as many relevant queries might no be present
leading to irrelevant or no suggestions. But even for large corpora the number
of patterns in the corpora that match the query falls off exponentially with
the query size n leading to irrelevant or no suggestions at all for queries of size
n > 5 [Wiegmann et al., 2022].

A potential solution to this problem is to extrapolate from the data of the
corpora to queries that have no or unreliable statistics using language trans-
former models [Vaswani et al., 2017|. The goal of this thesis is to evaluate to
which degree a transformer is able to mimic the exact statistics of an under-
lying corpus and if the extrapolation to unseen queries of such a transformer
yields additional insight into the language used in the corpora. We show with
analytic calculations in Chapter 3 that the loss minimum given a set of contra-
dicting examples in a classification task for the cross-entropy loss is given by
the prediction that follows exactly the presented example distribution. This
means that if we train a transformer on the contradicting queries ”i love
[mask]” with the answers "cats” (three occurrences) and ”dogs” (seven oc-
currences) the prediction with minimal global loss is (0.3,0.7). The finding is
verified numerically in Chapter 4 where we also show that this minimum is
not only theoretical, but is also found by stochastic gradient descent.

These findings allow for a relatively simple training technique where a
transformer is trained with masked language modeling on contradicting short
queries. After some training time we expect the transformer to perfectly model
the distribution of the presented n-grams. The results in Chapter 4 show that
memorization of the n-gram distribution happens as expected for our training
method. Moreover, predictions of the transformer on a test set were improved
significantly, however, as these improvements were independent of the under-
lying corpus used to train the transformer a final statement on the adoption
of a hidden underlying distribution of the corpus could not be drawn.



Chapter 2

Background and Related Work

In the following we will discuss some of the theory on how transformer models
are able to process natural language. This will help us to understand the
later parts of this thesis where transformer models are trained to predict the
statistics of a given corpus and help as a writing assistance. We will discuss
the concept of the different layers involved and mainly focus on the original
architecture presented in |Vaswani et al., 2017].

2.1 Tokenization

Before we can process words with a transformer model, we must first trans-
late them into numbers. The first step in this translation is done by a human
designed tokenizer. The two most common approaches are word-level tokeniza-
tion and subword-level tokenization. Upper case is converted to lower case to
avoid additional tokens. By going through the training data, we start adding
words or subwords to the vocabulary continuously. Each of the new words gets
an integer as a representation. Depending on the algorithm we can also neglect
some symbols to keep the vocabulary in reasonable size. In the end we have a
mapping that is able to map most of the training data into integers. When the
architecture is fixed and we come to deployment of the model or fine-tuning
there might still be words that are not characterized by tokenization. However,
this is solved by a special token which is identified with all word that are not
recognized.

2.2 Transformer-Encoder

After tokenization replaced the words by a first set of numbers, the Encoder
starts its work by further transforming this set of numbers into hidden states,
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which are encoded as vectors in a high dimensional space. These vector repre-
sentations should still represent the meaning of the original words but must be
learned during training. In detail, this is done by having an embedding matrix
in which each row represents one of the tokens that the tokenization process
is able to create. This means that there are as many rows in the matrix as
we have words/sub-words in our vocabulary, while the number of columns is
given by the dimension of the word embedding. This vector representation
of a word or sub-word has the main advantage that, in comparison to integer
numbers, they can express contextual similarity by spacial distance. The val-
ues contained in the matrix which map tokens to embeddings are parameters
that a transformer must learn and are hence unclear at its first creation. On
top of this learnable transformation we also add positional encoding to the
vectors by adding different "time-vectors” to the embeddings, depending on
their position. These "time-vectors” are fixed from the start of training such
that the network learns to interpret their meaning.

After calculating the word embeddings and the additional time-vector, the
transformer has an "attention” layer. This layer works by mapping each of
the embeddings (emb;) to another vector by also considering the surrounding
words. This is done by calculating a query @; = Q(emb;) a key K; = K(emby)
and a value V; = V(emby;) for each of the embeddings via three matrices such
that

Qi = Q X embi Ki =K x embi Vi =V x embi s (21)

where the index ¢ is running over all embeddings and the parameters of the
matrices must be learned. The relations between the words are now expressed
by calculating a new vector R; for each of the original embeddings. This is
done by scoring the relation that one embedding has to another with the dot
product of the query, key pair. These relation scores are transformed into to
"probabilities” F;,, by applying the softmax function to these scores. Hence,
the P, are defined as
exp(Q; x K,,)

22, exp(Qi * K;)

where a normalization factor is omitted. Given the matrix P;, that encodes
the relations that each word has with each other word, we can express the new
embeddings R; after the attention layer as

P, = (2.2)

Ri=> PuxVi. (2.3)

These new embeddings contain mostly their own V; embedding if the score
with itself (Q;K;) was high, but they can also contain significant portions of
the other ones. While this describes the concept of attention, transformer use



CHAPTER 2. BACKGROUND AND RELATED WORK

multihead attention which means that they have several attention matrices
Q,V, K each producing there own attention mechanism leading to several
new embeddings for each word.

After putting a lot of information in the individual vectors-groups by first
mapping an integer representation of words to a space that encodes contex-
tual similarity and second, adding an multihead attention layer that directly
considers surrounding word we apply identical convolutional feed-forward neu-
ral networks to each of these vector-groups. This naturally produces another
set of embeddings. However, after all these operations these embeddings are
only loosely related to the original words or sub-words. To keep the con-
nection to the original embedding-word and to improve learning in this deep
transformer architecture the concept of residual learning [He et al., 2016] is
adapted. This works by adding the original word embedding to the output of
the feed-forward neural network. This reduces the complexity of learning as
the network parameters can be driven to zero without losing information about
the input. Furthermore, a batch normalisation layer is added before and after
the feed-forward neural network to keep the variance of the neuron activations
in a range which the neural network can easily interpret. This concept has
proven to be useful in conventional feed-forward networks and is adopted in
transformers |Ba et al., 2016].

In Figure 2.1 a schematic drawing of the computation from the original
word embeddings (Positional Encoding) through the self-Attention layer into
the batch normalisation is presented. The dotted line represents the residual
connection which adds the original embedding to the output. This is followed
by the feed forward neural networks and another batch normalisation. Again
we have a residual connection such that the output that the attention layer
produces directly contributes in the final result. A fully functional encoder is
obtained by stacking several of these layers. In the original paper of [Vaswani
et al., 2017] this number is six.

2.3 Transformer-Decoder

The Decoder part of the model uses a lot of the components that we already
spoke above, but it also adds a so-called encoder-decoder attention layer to
the stack of layers. As an input, the Decoder takes the embeddings of the
previously computed words or, in case where no word has been predicted yet,
a special "start of output" embedding. We again add a time vector to the
embeddings to encode their position in the created sentence. The already pre-
dicted words are again put through a multihead attention layer with additional
residual connection and batch normalization afterwards. In the following so-
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Figure 2.1: Schematic drawing of the flow that two input tokens take through a
single encoder stack. The positional encoding goes through a residual connection
and the self-attention layer into the batch normalisation. This is followed by another
residual connection and a feed-forward neural network which are added together and
normalized to complete a full block of the encoder. Figure adopted from Reference
[Alammar, 2018|.

called encoder-decoder attention layer the information about the input enters
the Decoder. This is again realized by having three matrices Q KV that create
a query, key and a value. However, this time only the query is calculated based
on the output of the previous attention mechanism. The key and the value
are obtained by the output of the Encoder! This way we connect the already
produced output of the Decoder with the information that was given to the
Encoder resulting in new embeddings that contain both information. Again
a residual connection together with batch normalisation is added. After the
encoder-decoder attention layer, we find another feed-forward neural network
similar to the architecture of the Encoder.

The schematic drawing of the Decoder can be seen in Figure 2.2. We
clearly see the similarity to the Encoder with the only difference being that
the Encoder-Decoder Attention layer adds the information of the Encoder to
the Decoder (indicate by small dotted arrow). A complete Decoder again
consists of several of these blocks stacked behind each other.

Another difference to the Encoder is that after several of the blocks de-
scribed in Figure 2.2 we have a fully connected feed-forward neural network
that connects all the outputs of the last block. While the number of parameters
in this fully connected neural network can vary, the output dimension is again
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Figure 2.2: Schematic drawing of a Decoder in a Transformer model. The dotted
arrow from the left indicates the information coming from the Encoder while the
bottom entries are the output that has already been generated. Figure adopted from
Reference [Alammar, 2018]

of the size of the vocabulary. Each of the output neurons encodes a token and
after applying the softmax activation function we can interpret these outputs
as probabilities that the specific token that is represented by the neuron should
be the next one in the output sequence. To generate the output, we can choose
the token with the highest probability and reenter the new output sequence
into the Decoder until an "end of output" token is created. When generating
text it is also possible to take a different word than the one with the highest
probability to avoid repetitive behaviour. This will be discussed later.
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2.4 Bert-Architecture

In this thesis we will primarily be dealing with the architecture of a Bert-like
transformer |Devlin et al., 2018|. For this reason we will briefly discuss the
specialties of this architecture here.

The initial input is embedded using WordPiece [Wu et al., 2016|, then
an additional vector is added that indicates the positional encoding. This
representation of thee words is given to the Encoder stack which works just
as described above. However, this time we are missing the decoder side and
interpret the output of the last Encoder as the embedding of a predicted word.
These embeddings are transformed into tokens using a final fully connected
layer.

One of the advantages compared to the full transformer architecture is that
information about words can now flow bidirectional e.g. from left to right and
from right to left in a text. In the Decoder of the classical transformer model
this was not the case. To train such a network the paper suggests Masked-
Language modelling which hands the network a sequence of tokens, say [123,
456, [Mask], 826] and asks the network to predict the correct token at the
[Mask] position based on the information given by the surrounding words.
When applying the softmax activation function to the logits prediction of the
transformer we get a probability distribution for what the masked word could
be. This probability distribution is then treated as a classification task. The
cross-entropy loss function is computed, and the derivative with respect to the
logits is backpropagated through the network. Here, the missing words can be
interpreted as one-hot encoded examples where the token that was maksed in
the example is the correct answer.

2.5 Generating Text

The above discussed new transformer architecture lead to great improvements
in the field of natural language processing as for example in question-answering
problems [Haque et al., 2022|. We already discussed how next word predic-
tion can be done on a bert-like transformer using masked language modelling.
A general Encoder-Decoder architecture predicts the next words in a similar
fashion as it considers all the past output to generate a new word. The training
case of the transformer can easily be utilized as text generation by iterative
next word prediction. In the best case scenario, we would get a structured
answer to our input just by next word prediction. However, when always tak-
ing the word with the highest logit value, and hence also highest probability,
as the next word prediction in text generation, the model might get stuck in
certain loops or produce meaningless output [Holtzman et al., 2019].
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Other methods are based on sampling from the top k& words, where the sam-
pling can be uniform or be weighted by probability [Holtzman et al., 2019].
The later case has clear benefits as the number k can be chosen much larger
in this case without producing unrelated output. However, we find that in the
case of Netspeak [Wiegmann et al., 2022| the prediction of the next word dis-
tribution of a transformer model often disagrees with the actual probabilities
in natural language on which it was trained. It appears that the top words
are too likely, while other words are suppressed. This has the issue that prob-
ability based sampling is not really an option when generating text using the
transformer. In the following we will analyze why the probability distributions
predicted by the transformer could differ from the distribution found in the
training text.



Chapter 3

Feasibility Assessment

We want to look at a setup where a transformer is given a query g="’text
[Mask] text’” and has to predict the word hidden under [Mask]. In the
training process we might train the transformer with the query ’A [Mask] B’
where the correct answer for [Mask] is >’dog’’ in six of the ten occurrences,
while the four other examples have [Mask]=""Human’’ and >’[Mask]=""Cat’’. It is
now a question of principle how a transformer or even any other neural network
is answering the question ’A [Mask] B’’ after training sufficiently long on the
examples to reach a (potentially local) loss minimum. Two possibilities appear
reasonable:

e The neural network tries to be as correct as possible on the majority and
predicts *’dog’’ as a certain answer with nearly 100%.

e While ’dog’’ is the favorite with 60% the other examples did mark their
spot and receive their 40% probability.

An important note is that even though neural networks can approximate any
function |[Hornik et al., 1989] it is not a priori clear that the second case will
be realized as we are not approximating a function as there are two different
labels for the same example. We are not actually training it to be the function
realized by the second case (even though this would be possible by merging
the examples and having a probability distribution as a label).

3.1 Proof that Distributional Learning Happens
with Cross-Entropy

When training the transformer, we move the weights in a high dimensional
weight space to minimize the loss. In our case we have a classification task

10
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with the network h and the Cross-Entropy loss function. The examples will be
denoted as £“ and the corresponding labels are o®. This gives the global loss

L™, 0%) = > 3" ~or log(h(€")) (3.1

In the case where we want to optimize this loss for a query where different one
hot encoded solutions exist we can rewrite the loss as a sum over all possible

Zp ) log(h(&)1.,) (3.2)

where p(c®) is the probability of ¢ to occur as a solution in the examples
and the sub index 1, denotes the index where the label of the example is
one. Calculating the minimum of this expression also reveals how the other
contradicting examples are minimized as the loss is additive. For the above
equation we want to know what prediction h(£) minimizes the loss under the
constrain that the prediction is a probability distribution i.e. the entries are
non negative and sum to one. Further simplifying the notation, we now write
p(«) for the probability of ¢® to occur in the examples and z,, for the output
of the network at the position where the solution o requires a one. This gives
us the simple equation

Zp ) log(a)- (3.3)

We find the minimum of the above equation with respect to the x, and the
probability condition by rewriting the loss with Lagrange multipliers

Zp )log(za) + A (1 - Zxa> . (3.4)

Calculating the derivatives yields

oL !
o\ _1—;%_0 (3.5)

/
O _ —p(@) |\ Ly = bla), (3.6)
01, T T
We find that the only set of x,, that fulfills the second equation for all « are the
ones given by x, = p(a) X ¢ where ¢ = 1 is fixed to one by the first equation.
We hence showed that
T = pla) (3.7)
minimized the loss function. So even though the top prediction will always
be given by majority vote of the examples, the loss landscape is aware of the
example distribution and (if the minimum is found and cross entropy is used)
the network will correctly display the probability distribution of the examples.

11
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Figure 3.1: Distribution of the labels onto the ten classes for the symbols
{A,B,C,D,E}. A variety of distributions is tested from simple one class solutions
(symbol E) to a more divided distribution (symbol B) or overlapping distributions
(symbols C, D).

3.2 Objective Minimization

We showed in the previous section 3.1 that when a neural network is trained
with cross entropy on contradicting examples, i.e. there are different (one-
hot encoded) target vectors for identical input encodings, the minimum of the
loss function is given by the network output that models the distribution of
the labels for the given example. We might assume that such a minimum is
found by gradient descent, however, to make learning feasible we will only do
stochastic gradient descent i.e compute the gradient based on small parts of
the training set. This training protocol induces an additional uncertainty on
if the "correct” minimum can be found as showing contradicting examples in
different batches might lead to poor learning in general.

3.2.1 Fully Connected Networks

To test this experimentally we will first construct a simple neural network
which is trained on symbols with contradicting one hot encoded labels. The

12



CHAPTER 3. FEASIBILITY ASSESSMENT

10 - . ! 1 1 - ]
fully connected network |

---=final error value: 0.00471

=)
(0}
T

<
o)
————
|

Absolute Error
-
~

S
(\®)
e
!

0.0 -".“.'T"'."“."T."*.“.'. .
0 20 40 60 80 100
Epoch

Figure 3.2: Learning progress of a simple feed forward neural network when trained
on contradicting examples. The absolute error is given by the Manhattan distance
between the output distribution given by the network and the actual distribution
of the labels as given in the training data. We find perfect learning which is in
agreement with the theoretical prediction.

neural network is a simple feed forward architecture with an input size of
five, three hidden layers of size [100, 50, 50] and output layer of size 10. The
activation function is ReLLU for all but the last layer where a softmax activation
is used. The weights are initialized Glorot uniform [Glorot and Bengio, 2010],
we use a learning rate of 0.005, momentum of 0.95 and the learning rate decays
exponentially with decay constant 0.95 per epoch. We use a batch size of one
to make it as hard as possible for the network. We define five symbols as

A=11,0,1,1,0], B=][0,0,1,1,1], C=][1,1,1,0,0],
D=10,1,0,1,1, E=1[1,1,0,0,1]
and the related distributions are given in Figure 3.1. Symbol A has a 50%,
50% split over the classes one and two, symbol B has a distribution which is

split over the classes three to six and symbol C' and D share a distribution on
the classes seven and eight where C' is unbalanced and D is not. As a final

13
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Table 3.1: Final prediction of a transformer that was fine tuned on the queries
below. In (x|y) the x is the probability predicted by the network, and the y is the
probability of this answer to occur in the training set.

‘ ‘ Answer 3 ‘
) | ) | dog (0.1140/0.125) |
| we ? chill | always (0.3747/0.37) | love (0.3099]0.333) | never (0.3120/0.296) |
| 7isdead | he (0.3967/0.4) | humanity (0.3829]0.4) | god (0.205250.2) |

‘ Query ‘ Answer 1 Answer 2

| thisisa ? | god (0.6314/0.625) | human (0.2510]0.25)

testing symbol we have E which is always combined with class ten. Class nine
remains empty. The network is now trained on fifty examples per epoch, each
symbol having ten examples with one hot encoded labels. For the symbol A
we have five examples which have one as the correct label five with label two.

We are now interested in the progress that the network A makes in learning
the probability distribution of each example. To monitor the progress, we
define the distributional error e as

e= > |h()=p(i)h/2 (3-8)

i €{A,B,C,D,E}

where p(i) is the vector which encodes the distribution given in Figure 3.1 and
the norm is the sum over the absolute values of the differences also know as the
Manhattan distance. This error is in the range of [0, 1] where zero corresponds
to perfect agreement and a value of one indicates that no overlap exists at all.
The error can be intuitively interpreted as the probability weight that is put
into the wrong class.

The results when evaluating this metric over 100 epochs are shown in Figure
3.2. As theoretically analyzed we find that the network perfectly learns the
probability distribution given by the labels.

3.2.2 Transformer Models

To further strengthen the empirical results additional simulations on the pre-
trained distill-bert! [Sanh et al., 2019] are made. The examples that the model
was trained on are found in Table 3.1 where the >’?’’ denotes the >’ [Mask]’’
token and the three possible answers that where assigned as correct (with cor-
responding probability) are shown in the remaining columns. We again use one
hot encoded labels where the number of examples per label exactly mimics the
probability distribution. The examples are put in a pytorch dataset and we use

"https://huggingface.co/distilbert-base-uncased

14
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Figure 3.3: Learning progress of a transformer trained on three queries, each having
a different distribution of possible answers. The training is performed with full batch
learning on the one hot encoded examples. We find that even though it is harder to
find the optimal weights of the network, perfect learning is possible.

the same metric as defined in Equation 3.8 to evaluate the training progress
of the transformer. To keep the computational effort small we only train the
model head. We use the AdamW optimizer with full batch learning and a
learning rate of 5e — 5 to optimize the weights of the model head. The result
are shown in Figure 3.3 where we again find almost perfect learning. The final
absolute error of ~ 0.03 means that only 1.5% of probability is put into wrong
words. Further improvements are certainly possible when simply adjusting the
hyperparameters. To accurately find the final minimum a decaying learning
rate might be the key as fluctuations are high. The final predictions of the
finetuned transformer are shown in Tabel 3.1.

While a direct comparison of the training time might be misleading due to
the different optimizers, batchsizes and models it is still interesting how many
epochs are necessary for the transformer to fully memorize the three queries.
Given this insight together with the analytic result we might already be able to
tell why the predicted distribution of words on a finetuned transformer differs
from the distribution it was trained on. The training time was simply not
sufficient to learn the examples by heart.

15



Chapter 4

Experimental Evaluation

We showed in the previous chapter 3 that it is theoretically possible to finetune
a sufficiently large transformer on a corpus to a degree where the answer of
the transformer to a given query is identically to scanning the whole corpus for
the exact probability distribution of the possible words. In terms of fast query
evaluation on a given corpus, this is already an interesting result. However, it is
still an open question if a transformer that is fitted to such a high degree is still
able to produce useful answer to queries that where not shown in the training
data. In the best case scenario, a transformer would adopt the language of the
corpus and speak similarly on unknown queries. In the worst-case scenario,
the transformer would forget the rules of the language and produce outputs
which only use the most frequent words of the training data in situations where
they might not fit. In the following we will investigate this question on several
datasets and training setups.

4.1 Wiki-Text

We will start with a subset of the corpus 'wikitext-103-v1’ [Merity et al., 2016]
by constructing a train and a test set. We train the transformer on the training
set and test afterwards if the answers of the transformer became similar to the
answers of the queries in the test set.

4.1.1 Dataset

The dataset construction is done by splitting the text into chunks of similar
length, where the length is defined based on the number of white spaces. We
discard strings with non-alphabet characters. Afterwards, we create as many
examples as there are words in the query by masking each of the words once.
As this procedure creates large amounts of queries rather fast, we only consider

16
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the first 200 rows of "wikitext-103-v1"! to keep training feasible. To get the
distribution of answers for each query we have to group all identical ones. We
then split the collection of grouped queries into a train and a test dataset
such that no query of the train dataset is contained in the test dataset. For
example: Given the three previous queries: *’this is a ?’, ’'we ? chill”
and ’? is dead’’, we might train the network on all examples containing the
queries*’this is a 7’ and’we 7 chill’’ and check the generalization error
with the query ’? is dead’”’. An inconvenient part of this training setup is
that if we want to know the training error we need a training evaluation set
containing the probabilities for each query as we can not evaluate the training
error on the one hot encoded examples during training.

The training set contains (2/3) of the data while the test set gets the other
(1/3) such that the queries of the test and train data are disjoint sets. We
create based on these two sets the correct distributional answer for each query
and use the distributional answers for training and test data evaluation.

4.1.2 Training and Evaluation

To keep the training fast we will only train the model head using the AdamW
optimizer with a learning rate of 5e — 5. We still use the Manhattan distance
between the prediction and the correct distribution as an evaluation metric as
described in Equation 3.8. We again train on “distilbert-base-uncased”? from
Hugging face.

We see in Figure 4.1 that the training error converges to zero after around
800 epochs, which shows that perfect learning is possible even for a large
number of different examples. Furthermore, we find that the network does
not loose its ability to generalize to the fitting procedure. The generalization
performance increases monotonically with the memorization of examples from
the same underlying text which is surprising as one could expect overfitting
to set in at some point. Just by complete memorization of queries from a text
the transformer is able increase the prediction accuracy on other queries of the
same text. This raises the question whether complete fitting of a training set
might give the best generalization with respect to the style of the training set.

Some critique to the testing procedure could be raised as the creation of
the dataset does not separate training and testing data perfectly. While "[A B
C 7 E]" is in the training set "[A B 7 D E]" might be in the test set. In the
following we will consider further datasets and also fix the issue of a potential
train-test leakage.

Thttps://huggingface.co/datasets/conceptofmind /wikitext-103-v1-clean
’https://huggingface.co/distilbert-base-uncased
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Figure 4.1: Training and test error on a dataset consisting of ~ 12,000 training
queries with potentially different one hot encoded answers and ~ 6,000 test queries
with distributional answers. We find a perfect fit of the training data and a mono-
tonically decreasing generalisation error.

4.2 Google n-Grams

The dataset Google n-gram that we will use in the following is based on the
Google Books n-gram Viewer® where the occurrence of words or phrases in
books ranging from the year 1500 up to 2019 is analyzed in their relative
frequency. The resulting database initially consisted of ~ five million books
reaching up to the year 2012 [Michel et al., 2011] and has since been expanded
with books to the year 2019.

By indexing the occurrence of n-grams from Google n-gram, the writing
assistant Netspeak is able to give advice on which words are being frequently
used in a certain context. The resulting dataset is stored by sorting queries
of equal length alphabetically while additionally storing their frequency in the
database. A search algorithm on sorted data can hence quickly find all answers
to a given query and rank them by their occurrences. This allows for a word
suggestion that is in line with commonly used language. However, for a larger

3https://books.google.com/ngrams/
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context, the amount of data available diminishes such that suggestions might
become odd or simply not available at all. In this context it could be help full
to have a transformer that memorized the dataset such that the answers of
Netspeak and the transformer align in the case of frequently occurring phrases.
In cases where the query is poorly represented in the data due to length or
other factors, the hope is that a transformer would still give good suggestions
that align with "common language understanding”.

4.2.1 Absolute Frequencies Dataset

To train a transformer on this indexed dataset using masked language mod-
elling we must first convert the indexed phrases back into examples from which
a transformer could learn. One simple approach would be to convert each in-
dexed phrase ’hello world 30,765 into exactly as many examples as the
phrase occurred in the Corpus, i.e. 30,765 examples of ’hello [mask]’’ and
’[mask] world”’. However, this method is completely unfeasible as, even if
we limit our self to only 3-gram queries, we have 98 data files containing only
3-gram queries each containing ten million indexed queries, meaning that the
total number of examples would be ~ 10! if we estimate the average number
of occurrences of a phrase in the corpus to be 100 (verified in Subsection 4.2.2).
One possible approach to make the training more feasible is to divide the
number of occurrences for each n-gram by a constant number ¢. This clearly
reduces the number of created examples by a factor similar to ¢ but has the
drawback that rare words might not be considered if ¢ is chosen to large. To
obtain a first grasp on how large the dataset is compared to our computa-
tional resources and how good the memorization and generalization of the
transformer work, we consider the following setup: We restrict ourself to n-
grams of the size three and neglect all n-grams which contain non alphabetic
characters. Furthermore, we neglect queries which would have a multi token
answer, restricting our self to a more simple language. Finally, we only create
examples based on the last word i.e. for ’hello world 30,765’ we create
3,076 examples ’hello [mask]’’ as c is chosen to be ten. As the size of the
dataset still remains to large to experiment with quick training runs, the final
reduction cuts the file-length to 50,000 lines, a reduction by a factor of 200.
In Table. 4.1 we see how increasing the number of considered training files
increases the number of examples we are training on. For small numbers of
files the relation is non-trivial as the strict criterion that needs to be fulfilled
for an example to be in the training set can easily exclude a whole file as
it is seen when going from one to two or from three to four files where no
increase in the number of examples is seen at all. Furthermore, we find that
our estimate of having around 100 examples per line is roughly verified as we
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Table 4.1: Number of training examples generated from a certain number of con-
sidered 3-gram files. The examples are generated by masking the last word of a
phrase and adding as many examples to the training set as their count divided by
ten. The second column denotes the number of one hot encoded examples while the
third column counts how many different queries are in the training set independent
of the answers and how often they occur.

#Train Files +#Examples #distr. Examples

0.01 4,684 100
1 686,556 6,818

2 686,556 6,818

3 2,072,607 13,584
4 2,072,716 13,585
5 2,072,716 13,585
6 3,635,813 19,419
20 25,455,548 70,572
40 48,437,190 136,126

consider 40 x 50,000 lines yielding 48,437,190 x 10 examples meaning we are
at around 50 examples per line.

4.2.2 Training and Evaluation

We test the memorization of the training examples as in previous setups of
Chapter 4 via the distribution of possible answers given a query. The error
given the distributional answers is again measured using Equation 3.8. We also
consider a "generalisation error” where we exclude a specific file from the train-
ing process and look if the predictions of the transformer start to align better
with this file during the training process. The idea behind this improvement
would be that the corpus has a corpus specific language whose patterns are
to some degree learned during training. To find this potential generalization
in dependence of the size of the training dataset, we consider the pre-trained
transformer Distill-Bert? [Sanh et al., 2019] and train it on a varying number
of files containing 3-grams, while the test-file is always excluded.

We start with pretrained-weights to get results faster and find a potential
adaption to the language of the dataset. To vary the size of the dataset, we
include increasingly many files alternating from one to 40 files where training
with 40 is already close to what is trainable in one day on an Nvidia Ampere-
100 GPU.

‘https://huggingface.co/distilbert-base-uncased
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Figure 4.2: Training and test error on subsets of Google n-gram. The number
indicates how many training files where considered in the training process. The
testing was done one a separate file which was not considered during training. The
training error is shown in dashed while the test error is a full line.

The considerations in Subsection 4.2.1 about the unequal distribution of
examples in the files help us to understand the results displayed in Figure 4.2
where we show the training process of the pretrained distill-bert model when
training with different numbers of files. A first finding is that for relatively
small amounts of training data (see Table 4.1 for details) significant improve-
ments on the test data (full lines) are obtained. This is most likely not due to
the model learning a language similar to the one represented by Google n-gram
but the model learning the preprocessing patterns of the data. Non-alphabet
strings and complicated multi token words are never the correct answer mean-
ing that just learning this pattern could give clear improvements. However,
beside this potential effect, we find that increasing the amount of training data
clearly reduces the generalization error. The reason for the early ending of the
curves 720”7 and 740”7 is due to computational limitations. The shown results
are in good agreement with the hypothesis that the language model learns a
more general distribution of words in Google n-gram, hence reducing the test
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Table 4.2: Number of training examples generated from a certain number of consid-
ered 3-gram files. The examples are created by grouping identical queries, calculating
the probability distribution of the answers to then create one example per 2% prob-
ability that a given one-hot encoded answer is correct. The second column denotes
the number of one hot encoded examples while the third column counts how many
different queries are in the training set independent of the answers.

#Train Files +#Examples #distr. Examples

0.01 4,928 100
1 336,699 6,818
3 669,121 13,585
5 669,121 13585
20 3,456,103 70,572
40 6,633,559 136,126

error.

4.2.3 Relative Frequencies Dataset

As our current learning method is still rather slow in learning such a large
dataset we will look for a different method in the following. One simple ap-
proach would be to increase ¢, the number by which we divide the occurrence of
each query, to reduce the computational effort by an arbitrary amount. How-
ever, this would erase rare queries and leave us with a dataset consisting only
of omnipresent phrases. As already discussed, training with a distributional
approach is also not an option, as this leaves us with giant sparse vectors for
each query.

To combine the distributional and one-hot encoded approach, we suggest
a third method which first calculates the distributional answer for each query
and then "fine grains” this distributional answer into a set of one-hot encoded
examples. For example if "1 love [mask]” had the answers "cats (48%),
"dogs (50%)” and "wolfs (2%)”, we would use a certain resolution (1% = 1
example) to convert this distribution of queries into examples. For a lower
resolution (25% = 1 example) we might neglect the answer "wolfs” for the
benefit of having way less examples.

This method has the advantage that the example set is not dominated by
omnipresent phrases but contains a portion of everything. However, this is
also its biggest draw back as it weights all queries evenly independent on the
absolute occurrence in natural language.

The number of generated examples when taking 2% = 1 example while
keeping the rest of the preprocessing unchanged are shown in Table 4.2.
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Figure 4.3: Training and test error on subsets of Google n-gram. The number
indicates how many training files where considered in the training process. The
testing was done one a separate file which was not considered during training. The
training error is shown in dashed while the test error is a full line.

4.2.4 Training and Evaluation

The results of the training progress are displayed in Figure 4.3 where the same
testing procedure as in the previous Figure 4.2 is being used. We find that:

1. The training error (dashed lines) is much higher than in the previous
case which is not surprising as in the other training setup, learning a few
frequently occurring phrases could cover a majority of the training set
while this is not the case here anymore.

2. The more files we include the harder it is for the transformer to memorize
the training data leading to a higher training error in agreement with the
previous results.

3. The test error (full lines) is in all cases comparable with the error of
the previous method indicating that it might no make a difference which
method is being used.
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4. Interestingly the test error can be even lower than the training error if
the training set is large. This might possibly be due to the fact that the
transformer still prefers to give “simple” answers that occur frequently in
common language. However, the training data set does not weight the
“simple queries” more than the hard ones therefore making it the harder
set.

4.3 Cross-Validation on Different Datasets

To further investigate the role that the distribution of n-grams in a certain
dataset plays in the test accuracy improvements, as compared to learning
some structure of the training process, we will consider two more datasets in
the following.

4.3.1 Datasets

The first dataset is based on the New York Times Corpus [Sandhaus, 2008|
consisting of 1.8 million published articles. The second one is the Brown
Corpus [Kucera and Francis, 1967] which consist of various genres published
in 1961. Both Corpora are first converted into an n-gram count format i.e.
all text is converted into n-grams of the following format: ”"the dog barks
43" where the 43 indicates the number of occurrences of this phrase in the
corpus. Afterwards, two datasets are created based on their n-gram counts,
following the procedure of Subsection 4.2.1. The last word of each n-gram gets
masked (for the previous example "the dog [mask]” and we add count (43)
examples to the dataset with the answer being the masked token ("barks”).
Note that we do not divide the count by a constant in this case as the datasets
are already small enough.

To test the language adaption of a model to the corpus, it is trained on, we
create three datasets of similar complexity based on the three Corpora Google
n-gram, Brown and New York Times. Here, complexity means that we find
a balance between similar amounts of different queries ("the dog [mask]” vs
"a cat [mask]”) and the total number of examples. As the smaller Brown
Corpus has rather low counts on most queries as compared to Google n-gram
the total number of queries in relation to the total number of examples is quite
different for the two. The final dataset sizes are as follows: Google n-gram has
25,455, 548 examples, New York Times has 2,912, 325 examples and the Brown
dataset has 595,694 examples. Furthermore, we create three test sets based
on the three Corpora which now contain distributional answers, e.g. the for
"the dog [mask]” the correct answer answers is not a single word but a set
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Figure 4.4: Language adaption when training a transformer model on three differ-
ent datasets (Brown, New York Times, Google, left to right). We additionally keep
test sets of each of these Corpora to identify a potential generalization. We find that
no dataset specific language adoption occurs as the test results are not improved
when testing and training a language model on the same dataset as compared to
testing and training on two different ones. The most likely effect of training is the
learning of the preprocessing.

of words with different probabilities corresponding to their occurrences in the
Corpus.

4.3.2 Training and Evaluation

We keep the training identical to the one used when previously training Trans-
former models (see for example beginning Section 4.1.2). After training on one
of the three datasets, we compute the error (Equation 3.8) on each of the three
test sets to compare to which degree improvements are found only found on
the corresponding test-set, indicating language adaption, and to which degree
the improvements can be found on all test-sets, corresponding to memorization
of the preprocessing.

The results can be seen in Figure 4.4 where the three different graphs show
the training on the three different datasets. We find that in this case, the
dataset which is being trained on only plays a minor role. The "generalization”
to the Google test set when training on the Brown dataset (first graph, yellow
line) is almost identical to the generalization to the Google test set when
actually training on the Google train set (third graph, yellow line). Similar
results are found for the other two datasets, indicating that no learning of an
"underlying language distribution” has happened but as simple adoption of the
transformer to the preprocessing. As the rather small improvements for the
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Table 4.3: Improvements when training on the three datasets Google, Brown and
New York Times for ten epochs. Looking at the columns, we find that it makes no
significant difference if the language model is trained on the dataset from which the
test set is created, or a different one.

Train Dataset Google NYT Brown
Google 0.9089 — 0.5320 0.9981 — 0.9867 0.9915 — 0.9419
NYT 0.9089 — 0.6614 0.9981 — 0.9814 0.9915 — 0.9566

Brown 0.9089 — 0.5087 0.9981 — 0.9861 0.9915 — 0.9433

Brown and New York Times dataset are hard to read of from the graphs, they
are additionally provided in Table 4.3.

The reason for why the test error of Google n-gram improves so much more
than the one of the other two is not completely clear to us. One potential
reason might be that the test error starts considerably better than the one of
the other two datasets. If, from the Transformers perspective, a set of answers
can be ruled out due to "knowledge” of the preprocessing this has a much
larger effect on the test error if there is already some knowledge of potentially
correct answers. This can be understood if one thinks about betting on to
1000 potential outcomes but we get the hint (from preprocessing) that most of
the answers are not possible but only 100 should be considered. Our chances
increase by a factor of 10 for random guessing. For non random guessing it is
a little more complicated but on average we have that the following behaviour:
If i was already rather certain before on 20 answers we improve the error from
95% (1/20) to 50% (1/2) while someone that was much more uncertain before
e.g. had 200 potentially correct answers only improved from an error of 99.5%
to 95%. A much smaller absolute improvement. Together with the effect that
the preprocessing simplifies the language, something that might benefit the
Google test set more than the others, this might explain the much higher test
accuracies.
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Chapter 5

Discussion and Conclusion

In this thesis we evaluated the potential of transformer models to estimate
corpus statistics. Specifically, we tried to train some transformer, to predict
the probability for each word that could possibly come after a short context,
such that the predicted probability matched the corpus statistics on which it
was trained. This was done by first examining the theoretical training setup
in Chapter 3. By analytically calculating the minimum of a classifier trained
with contradicting one-hot encoded examples using the Cross-Entropy loss,
we showed that the optimal prediction exactly matches the distribution of the
examples. Given ten identical training inputs of which three labels give class
one and seven labels give class three, the global loss is hence minimized by the
prediction (1 : 30%, 3 : 70%). This allows us to train networks using one-hot
encoded examples.

A second step in setting up the training with transformer models was to
check whether stochastic gradient descent would be able to find a minimum
which predicts the correct distribution, even when the gradients may vary
strongly. We found in Section 3.2 that the minimum was indeed found for
simple toy problems in multi layer perceptrons and extended the work to trans-
former models. Here, the training process took many epochs more than in the
toy case, but eventually the distribution of the training data was perfectly
mimicked.

Given the guarantee that the transformer model is able to memorize a dis-
tribution given our simple, non distributional, examples we asked the question
whether a transformer that memorized a portion of corpus adapts a language
which is similar to the one used in the corpus. In Section 4.1 we try to tackle
this question by creating a train and a test set from a subset of "wikitext-103-
v1’. By masking words in short text-chunks we created queries ’A [mask] B’’.
For the test set we group all identical queries e.g. all queries ’A [mask] B’
and examine the distribution of words that are possible at the token position
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’[mask]”’. We tracked the difference of the transformers prediction and the
correct distribution at the ’’[mask]’’ position with the surprising result that
the predicted distribution went from no alignment at all to a "somewhat simi-
lar” distribution (see Section 4.1 for details). Expanding the work towards the
large dataset Google n-grams in Section 4.2 we again found a significant im-
provement on the test set when training on disjunct one-hot encoded example
sets. Training with increasing portions of the dataset while keeping the test
set identical yield the result that more data lead to better generalization. In
4.3 the generalization results where put to the test as we used two additional
Corpora, the New York Times and the Brown Corpus for training. Training
on one Corpus while testing on the other three we found that the improve-
ments on the test set where independent of training set used, showing that the
observed improvements where based on an adaption of the transformer to the
preprocessing and not due to language adaption.

Given these results it remains inconclusive to which regards the transformer
generalizes to the distribution of the underlying corpus when memorizing the
test set. Further experiments with a less restrictive preprocessing should be
done to test whether generalization can be observed. Additionally one could
adopt how large language models are usually trained to reduce the effort in
creating the train dataset. In our case the distribution of phrases was exactly
enumerated prior to training such that the one hot encoded examples where
created before the start of training based on the know distribution. How-
ever, we believe that for training on a large dataset a simple masked language
modelling approach based on short inputs would also allow for an exact mem-
orization of the distribution while greatly reducing the effort of creating the
dataset. The training protocol would be to continuously go through a text,
feeding the network chunks in which one word is masked which is identical to
our one-hot encoded example training if done repetitively.

We conclude that the presented training methods are not ready yet to
extrapolate beyond exact enumeration of n-gram distribution in applications
where reliable statistics of Corpora are used. However, we set a theoretical
basis on how a potentially larger transformer could be trained on a Corpus to
memorize its distribution, while showing some of the difficulties in trying to
define “generalization”.
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