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Abstract

Article retrieval is a topic widely studied in computer science. Many unique
approaches have been developed to retrieve articles for a given query. This
work describes, implements, evaluates, and compares three different ap-
proaches to retrieve related articles on Wikipedia. The keyquery approach
incorporates a search engine to find a query that will retrieve a set of doc-
uments. The graph approach creates a graph from Wikipedias’ structure
and finds similar articles based on its topology. The text similarity approach
incorporates several measures comparing Wikipedias’ articles by their bodies.
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1 Introduction

Wikipedia has grown to be one of the most widespread encyclopedias on
the internet. With more than 6.4 million articles (regarding the English
Wikipedia only), its knowledge spans many topics.
Because of this fact, Wikipedia is widely studied in computer science. Many
algorithms have been created to cluster/analyze and- or compare Wikipedias
articles.
Averagely 586 articles are added daily to the encyclopedia [1]. With this
amount of (new) data, an inherent problem arises regarding the importance
of its articles information.
The problem might be as simple as reading up on a topic for a school report.
An excellent place to start researching is the article about the topic itself.
However, where to go from there?
Depending on the information in the article, one can semi-randomly read
through linked articles and hope to find all the relevant information. Still,
relevant articles may not be found if pertinent information is buried deeper
into Wikipedias link-tree. This problem is the core of this thesis and can be
stated as follows:

Given one or more articles about a specific topic, find the most relevant
articles related to this topic.

1.1 Motivation

Wikipedia offers a wide variety of topics. From history to physics - from
mostly resolute- to highly innovative fields of research. This thesis’ focus
primarily lies on the latter.
Innovation in this sense is defined as: ”all material or symbolic artifacts,
which are observed to be novel and an improvement relative to what is cur-
rently existing.” (Braun-Thürmann) [2]
CRISPR is an excellent example of innovation. It is a highly inventive topic,
with lots of new research being published every year.
An innovation researcher might now want to read up on CRISPR. Instead
of opening the Wikipedia article and browsing through links, they could be
presented with a list of related articles. This list of articles would inform
them about the fundamental concept of CRISPR with a certain percentage
of accuracy.
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1.1.1 Tracing Innovations on Wikipedia

Tracing Innovations on Wikipedia is a project led by the Webis Group in
Weimar. With Wikipedia at the center of this project, the goal is to find
out if Wikipedia is a valid medium to analyze an innovation’s dynamics and
profile/character.
This thesis concerns itself with the retrieval part of this project: finding,
implementing, and evaluating ways to retrieve related articles on Wikipedia.
The information collected on the success of these approaches can help deter-
mine which approach will be used to form a ground truth of articles that will
be analyzed.

1.1.2 Retrieving Relevant Articles

Researching a given topic can be a demanding task. Starting at the topics
main-article is an obvious choice. From there on out, most people would
probably take advantage of Wikipedias link-tree and try gathering all the
valuable information they find.
More avid users possibly consider the See also and Category section ’hidden’
at the bottom of the page.
Besides that, there is no information available on which articles to read first-
or even at all. Much time can be spent on finding the correct articles instead
of collecting information.

1.2 Innovative Articles and Evaluation

When trying to retrieve related articles for innovative topics, it is sensi-
ble to evaluate these retrieval approaches on a set of innovative articles on
Wikipedia. A list of twenty articles: L, spreading over a variety of fields-of-
study [3] have been selected:

L = {African-American history, Animal language, Bitcoin, Brexit, Cen-
tral solar heating, Climate change, Computational fluid dynamics, CRISPR,
Garbage patch, Holocene extinction, Identity formation, Large Hadron Col-
lider, Ocean acidification, Prosthesis, P versus NP problem, Social disorga-
nization theory, Spread of Islam, Targeted therapy, Trap music, Universal
basic income}

To achieve the best results for the keyquery approach: a ground truth of
four articles, including the article itself, has been selected for every article
a ∈ L.
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Articles have been retrieved and evaluated for each of these topics in L. For
each respective approach, the top-20 results have been extracted and labeled
’1’, ’2’ or ’3’ regarding the article a they have been retrieved from. ’1’,
meaning that the retrieved article is semantically dissimilar- and ’3’ that the
retrieved article is insightful towards a. Overall, 3058 unique article pairs
have been retrieved.

When discussing the results of different evaluation measures, a question
arose. The evaluation measures implemented score based on a binary choice:
whether a document is to be regarded as relevant or not. Using three scores
to evaluate: a lower bound regarding the accepted relevancy of a document
must be set. Therefore, the question is: Should documents labeled ’2’ be re-
garded as relevant? In the context of this work, two answers to this question,
therefore two tables will be shown.
Regarding the evaluation, it is also important to note that no specific metric
was in place to determine which pair of articles should receive which score.
Specifically labeling researchers (actors) who have contributed to a field-of-
study was challenging. One ’metric’ did eventually emerge regarding the
evaluation of actors: the article-pair should receive a higher score (≥ 2) if
the actor is mentioned in the body/references of the article.
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2 Background

Document retrieval is a problem inherent to the age of internet technology.
With the internet containing an inconceivable amount of structured- and
unstructured data, finding relevant documents, articles or webpages is an
ever-important task.
The first search engines came alive in the early 1990s, with Yahoo! Search
being the first popular one [4].
In 1996 the first algorithm using hyperlinks to assert scores was introduced
and patented by Robin Li [5]. This approach was superseded by Page et al.
[6] two years later, creating the now most used search engine: Google.
Document retrieval today takes many forms, using many different approaches
to the problem. The following describes an overview of the implemented
approaches.

2.1 Keyquery Retrieval

Keyqueries have been introduced by Gollub et al. [7], focusing on the retrieval
of a singular document in the top-k ranks. They have been proposed as
document classifiers, returning the same set of documents when sending the
same query repeatedly. This is built upon in [8]: using keyqueries to compress
a set of documents; and [9]: generating keyqueries as labels for document
classes.
The approach implemented in this work focuses on keyquery retrieval: using
a set of documents to generate keyqueries that find these documents in the
top-k ranks. Hagen et al. [10], establish the implemented approach, mainly
using two algorithms to find related scholarly articles.

2.2 Graph Retrieval

Graph retrieval uses the graph’s topology to create a pairwise similarity score.
The internet, for example, can be regarded as a graph with every website
being a vertex and every link being an edge. Page et al. [6] introduced
PageRank. Using PageRank to score documents based on queries, Google
became one of the most visited websites.
Ollivier et al. [11] introduce a method to retrieve articles building upon the
use of PageRank. The paper also cites Kemeny et al. [12], using Green
functions to calculate electric potential in a system. Using this method,
calculating scores centered at a vertex u, can be thought of as creating a
charge in an analog electrical system and observing the charge distribution.
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2.3 Text Similarity Retrieval

Text similarity measures compare documents based on their textual infor-
mation. TF-IDF, credited to the joint work of Hans Peter Luhn and Karen
Spärck Jones [13, 14], is a well known method of scoring terms against their
corpus with many retrieval methods implementing it for its success.
Mikolov et al. introduce Word2Vec [15], a model to encode words and
phrases into a vector space so that similar words have close vectors. Based
on Word2Vec, they introduced Doc2Vec [16], a model to encode texts
into vectors.
Universal Sentence Encoder (USE) [17], for example, uses Word2Vec
to embed words into vectors to train its encoding models [18, 19].

3 Handling the Wikipedia Corpus

Due to its size, it is inefficient to directly work with Wikipedias’ website.
Several APIs have been implemented to send requests to Wikipedia and re-
trieve articles. Still, too many requests would be needed for the implemented
approaches to work.
To work with the entire Wikipedia corpus, Wikimedia, Wikipedia’s parent
company, provides XML dumps [20]. These XML dumps represent a monthly
created snapshot of Wikipedia, with it being an approximately 19GB large
compressed XML file when downloaded. It contains every article, link, redi-
rect1, etc., found on Wikipedia, including the metadata of every article.
When looking at the contents of the XML file, two things can be gathered:

(1) The article bodies grossly differ from Wikipedia’s actual bodies and
need to be formatted

(2) The formatting of the bodies is inconsistent

1A redirect page is an almost empty page, only displaying one link: the page it redirects
to. The link ’Anarchist’ found on a page might, for example, be redirected to ’Anarchism’.
This can be done to preserve sentence structure.
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3.1 Formatting Articles

Naturally, the contents of the XML dump are formatted (1) to represent the
actual article on the Wikipedia website. For example, the introduction of
the article ’Anarchism’ :

’”Anarchism’” is a [[political philosophy]] and [[Political
movement|movement]] that is skeptical of [[authority]] and rejects all
involuntary, coercive forms of [[hierarchy]]. Anarchism calls for the abolition
of the [[State (polity)|state]] which it holds to be undesirable, unnecessary
and harmful.

Figure 3.1: Excerpt from Wikimedia Dump

The single quotes alter the boldness of the word while the words/phrases in
square brackets are links to other articles, with the words appearing after ’|‘
being shown on Wikipedia. Those are easily formatted. But looking at a
citation that might occur in the text,

{{sfnm|1a1=Merriam-Webster|1y=2019|...|3a1=Sylvan|3y=2007|3p=260}}

Figure 3.2: Citation found in Wikimedia Dump

it is harder to extract useful information, especially because of inconsisten-
cies (2) between those citations.
Overall, inconsistencies have been an issue while formatting the dump, for
example, some brackets are opened and never closed, making perfect, auto-
mated formatting not possible.

After formatting the dump, every article can be split into its elements: id,
title, links, categories, sources (citations), and urls.
The articles are stored in JSON files with their respective id as a key.
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4 Retrieving Articles with Keyqueries

Keyqueries are a concept introduced by Gollub et al. [7]. Given a search
engine, they are defined as minimal queries that return a document in the
top-k ranks.
Adjusting the definition slightly to fit the problem: a keyquery for a set of
documents is defined as a query, consisting of a set of keyphrases, that re-
trieves these documents in the top-k results. Keyphrases here are defined as
words or phrases extracted from a document that retrieve that document in
the top-k results.
The concept of keyquery retrieval lies in the idea that if the queried doc-
uments are retrieved in the top-k results, the other documents retrieved in
this range might be related to the initial documents.

4.1 Elasticsearch as a Search Engine

Elasticsearch [21] is a search engine based on the Lucene library. It allows its
users to perform requests on the indexed data. Elasticsearch uses the JSON
format to index data: every article can be mapped to an Elasticsearch-field,
which then can be queried.

4.1.1 Ranking Documents

The Elasticsearch library has several similarity measures already implemented.
In this work, three of Elasticsearch’s prewritten measures have been tested.

BM25 [22] is the similyrity measure Elasticsearch uses by default. It retrieves
scores for documents based on a terms frequency and its inverse document
frequency.

BM25(q, d) =
n∑
i=1

IDF (qi) ·
freq(qi, d) · (k1 + 1)

freq(qi, d) + k1 · (1− b+ b · |d|
avgdl

)
, (4.1)

where d is the document that is to be scored regarding the query q con-
sisting of keywords {q1, ..., qn}. freq(qi, d) is the number of occurrences of qi
in d. |d| is the length of document d and avgdl the average document length
in the corpus. k1 and b are parameters chosen for optimization: here k1 = 1.2
and b = 0.75 by default.
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IDF (qi) is the inverse document frequency.

IDF (qi) = ln
( |C| − n(C, qi) + 0.5

n(C, qi) + 0.5
+ 1
)
, (4.2)

where |C| is the total amount of documents in the corpus C and n(C, qi)
is the number of documents in C containing qi.

DFI (Divergence from independence) [23] measures the dependence/inde-
pendence of a term from a document. Dependence means that the term
contributes more information to a document. It does so by calculating the
expected word frequency under independence and measuring the divergence
from that value.

DFI(q, d) =
n∑
i=1

DFI(qi, d), (4.3)

DFI(qi, d) =
freq(qi, d)− e(qi, d)

e(qi, d)
, (4.4)

e(qi, d) being the expected frequency of qi in d:

e(qi, d) =
n(C, qi) · |d|
|Cw|

(4.5)

where |Cw| is the vocabulary size of C

LMDirichlet [24] is a language modeling approach using Dirichlet smooth-
ing (LMDirichlet). It is assumed that a query q is generated by a probabilis-
tic model from a document d and p(q|d) estimates the probability that q is
generated by d. The smoothed model can be stated as:

p(q|d) =
n∏
i=1

p(qi|d), with (4.6)

p(qi|d) =

{
pµ(qi|d) , if d contains qi

αd p(qi|C) , otherwise.
(4.7)

p(qi|C) being the portion of documents in C containing qi and

pµ(qi|d) =
freq(qi, d) + µp(w|C)

|d|+ µ
, (4.8)

αd =
µ

|d|+ µ
(4.9)
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µ = 2000 by default.

Articles can be retrieved using these similarity measures by passing the
article’s title to an Elasticsearch query. This approach will be called the
Keyphrase approach.

4.2 Finding Keyqueries

Keyqueries q = {q1, ..., qn} will be generated by concatenating keyphrases
extracted from the set of documents selected as the ground truth for every
a ∈ L. There are several ways to find keyphrases for a document. In this
work, three keyphrase-extractors have been tested.

4.2.1 Keyphrase Extraction

RAKE (Rapid Automatic Keyword Extraction) [25] applies scores to candi-
date keyphrases by calculating the degree and frequency of their occurrence.
Given a document d, a list of stopwords and delimiters: d can be split into
candidate keyphrases Q = {q1, ...qn}. Every qi ∈ Q (|qi| ≥ 1) then gets
scored based on their frequency and degree in d.
The degree of qi is the total number of occurrences of qi alone and combined
with other words w = w1...wn so that qiw or wqi is not interrupted by a
delimiter. The score for qi is then calculated as:

scoreR(qi) =
∑
w∈qi

deg(w)/freq(w) (4.10)

YAKE! (Yet Another Keyword Extractor!) [26] combines statistical- and
contextual information to calculate a score for keywords.
First, YAKE! starts preprocessing the text, and word tokenization is applied.
Then, a set of five features is calculated for each term. The features consid-
ered are Casing (WCase), Word Position (WPos), Word Frequency (WFreq),
Word Relatedness to Context (WRel), and Word DifSentence (WDifSentence).

WRel scores based on the words surrounding the phrase to be scored, and
WordDifSentence quantifies the amount a word appears in different sentences.
After these features have been extracted, each candidate word w can be
scored by combining these heuristics.

scoreY (w, d) =
wRel · wPosition

wCase +
wFreq

wRel
+

wDifSentence

wRel

(4.11)
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Lastly, candidate keyphrases q can be generated. Given a sliding window of
size k, candidates of size 1, 2, ..., k can be scored by:

S(q) =

∏
w∈q S(w)

freq(q, d) ∗ (1 +
∑

w∈q S(w))
(4.12)

KP-Miner [27] extracts keyphrases from documents in three steps: Can-
didate Keyphrase Selection, Candidate Keyphrase Weighting, and Keyphrase
Refinement. First, the text is split by punctuation and a list of stopwords,
generating a list of phrases. To filter out candidate keywords: a phrase must
have appeared at least n times in the document. By default, n = 3.
A cut-off constant limits the field in which keyphrases are to be searched for.
In the second step, the candidate keyphrases are weighted using TF-IDF.
Additionally, a boosting factor Bd is applied when scoring candidates.

Bd =
|Nd|
|Pd|· ∝

, (4.13)

if Bd > σ then Bd = σ,

|Nd| is the number of candidate terms in document d, |Pd| is the number of
candidate terms whose length exceeds one and∝ and σ are weight adjustment
constants. By default ∝= 2.3 and σ = 3.
Finally the weight for candidate keyphrases q can be calculated:

scoreKP (q, d) = freq(q, d) · idf(q, d) ·Bd (4.14)

RAKE has been implemented using the rake-nltk library [28]. YAKE! and
KP-Miner have both been implemented using the python keyphrase extrac-
tion toolkit (PKE) [29].

4.2.2 Generating Keyqueries

Given the keyphrase extraction- and Elasticsearch’s similarity algorithms,
keyqueries for the ground truth I can be generated. Hagen et al. [10] intro-
duce the retrieval approach using mainly two algorithms: Related Work
Search and Keyquery Cover, a subroutine of the first algorithm. Ad-
ditionally to I, the keyquery approach has three parameters: k, l, and r,
which will be explained in context.
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Algorithm 4.1: Solving Keyquery Cover

Input : Set D of documents and W of keyphrases, keyquery
generality parameters k and l

Output: Set Q of keyqueries covering W
foreach w ∈ W do

if w returns less than l results then W ← W\w
q ← ””
foreach w ∈ W do

q ← q ◦ w
if q is keyquery then Q← Q ∪ {q}, q ← ””

if q 6= ”” then
foreach w ∈ W do

if @q′ ∈ Q : q′ ⊂ q ◦ w then
q ← q ◦ w
if q is keyquery then Q← Q ∪ {q}, break

return Q

First, keyphrases that retrieve less than l documents are removed. l, there-
fore, is the lower bound of documents that need to be retrieved for every
query.
Then, keyphrases are concatenated to an at first empty query q. After each
concatenation, it is checked if q is a keyquery; that is, q retrieves every doc-
ument in D in its top-k ranks, and q retrieves more than l documents. k,
therefore, is the upper bound rank of documents regarded as relevant.
If q is not empty after the first iteration step, a phrase w is tried to be
concatenated to q so that none of the already existing keyqueries q′ ∈ Q is
contained in q ◦ w.

Algorithm 4.2: Related Work Search

Input : Set I of documents, keyquery generality parameters k and
l, number r of desired related documents

Output: Set R of candidate articles
for i← |I| down to 1 do

foreach D : D ∈ 2I , |D| = i do
W ← combine keyphrrases of documents in D
Q← Keyquery Cover(D,W, k, l)
R← combined top-l results of each q ∈ Q
R ← R∪R
if |R| ≥ r then break

return C
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While the documents in I are expected to be found, the number of found doc-
uments, after keyqueries for I have been generated, might be < r = 100 · |I|.
Therefore, Related Work Search tries to retrieve documents for the sub-
sets of the power set of I while choosing the next smaller subset with each
iteration so that r articles are found.
To extract keyphrases, for every document in D, an exact-match query is sent
to Elasticsearch using the document’s title. The exact-match query only re-
trieves one document with the exact same title.
Keyphrases are extracted from the document’s body using one of the keyphrase
extractors discussed. Every extracted keyphrase is then ranked against the
document it originates from using Elasticsearch.
After keyphrases are combined into W , Keyquery Cover is executed, and
the list of keyqueries is stored in Q. Each q ∈ Q is then queried using Elas-
ticsearch, saving the top-l results.

Elasticsearch allows boosting search results using the indexed fields. The
boosted fields2 are the title, links, categories, and redirects for every in-
dexed article. If, for example, the query q =CRISPR is passed to the query-
template, the document with dtitle =CRISPR will be boosted in its rank.

2The values by which documents did get boosted were mostly set based on intuition
and a vague explanation in the paper.
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5 Retrieving Articles with Wikipedias Graph

Wikipedia can be regarded as a directed graph when considering its articles
and their linkage. In this case, every article would be a vertex and every link
a directed edge.
Numerous graph-based algorithms already exist, ranking nodes based on
their connectedness. PageRank [6] is probably the best-known candidate.
The appeal of PageRank and similar implementations, including the im-
plemented approach here, is that they may simulate the behavior of a person
(surfer) surfing the web. Given a starting point: these algorithms visit the
links similarly to a surfer looking through Wikipedia. The similarity between
two vertices u and v might then, for example, be regarded as the probability
of a person starting on vertex u and ending up on v after n steps.
Ollivier et al. [11] introduce the implemented approach to find similar articles
using Green Measures [12].

5.1 Creating the Wikipedia Graph

The graph is implemented using the graph-tool library [30]. Many graph-
based algorithms, including PageRank, have already been implemented in
graph-tool. Additionally, users can assign attributes (PropertyMaps) to ver-
tices, edges, and the graph itself.
The terms article and vertex will be used interchangeably. While ’vertex’
will always correspond to a vertex in a graph including all its properties and
’article’ corresponds to a Wikipedia article with its title, body, etc., both
terms represent the same concept.

The graph can be created in two iterations using the JSON files from the
Wikimedia dump.
In the first iteration, the vertices are created. Every vertex gets either three
or five properties assigned.
Each vertex v has an id, title, and a boolean value: hanging, which, if true,
indicates that the vertex has no outgoing edges. If the vertex is created
from a redirect page, it has two additional properties: redirect and redto.
redirect indicates that the vertex is a redirect and redto saves the target of
the redirect.
Furthermore, graph-tool assigns its own ID to every vertex: idv. It uses this
ID to index vertices in a JSON format. vid stems from the Wikimedia dump
and is equal to the ID given to each article by Wikipedia.3 vtitle is the lowered

3It is important to distinguish idv and vid. idv is the ID assigned by graph-tool, which
is assigned incrementally for every vertex. vid is a property assigned to v.
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title of the Wikipedia page. The title is lowered because links extracted from
article bodies have no consistent casing. The same article may be linked in
different ways. Lowering the title solves these inconsistencies but creates a
new problem: If articles on Wikipedia can only be differentiated by their
titles’ casing: these articles will collide using this method. The calculated
similarities may not reflect the accurate results.
The portion of these titles is so tiny that they can be neglected though.
(∼ 6.100 of ∼ 6.2 million4).
In the second iteration, vertices are connected using the articles links, and
possible redirects are resolved.
Iterating through the JSON files, for every article u an edge is created to
every outgoing link v. This is done by getting the respective ids idu and idv
from the graph using utitle and vtitle. It is checked if v is a redirect. If it is
not, an edge from idu to idv is created, and uhanging is set to false. If v is
a redirect, an edge from idu to id(vredto) is created, and uhanging is set to false.
Doing this for every article in the file: the created graph represents Wikipedias’
complete linkage.

5.2 Preprocessing the Graph

Two conditions must be met for the algorithm to work: the graph needs to
be irreducible and aperiodic.
A graph is said to be irreducible if it is strongly connected, meaning that
every vertex v can be reached by every other vertex and vice versa.

Figure 5.1: Irreducible Graph Figure 5.2: Non-Irreducible Graph

46.2 million articles are less than the 6.4 million articles mentioned before. Not every
article is extracted from the dump. To be precise: namespaces are assigned to articles and
only articles with namespace-id= 0 (main articles, lists, redirects,...) are extracted from
the XML dump.
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A graph is aperiodic if the greatest common divisor of every cycle in the
graph is equal to one. This condition is assumed to be true due to the size
of the graph.
Before the irreducibility condition is met, a depth filter is applied to the
graph. Centered at the vertex u: the depth filter will only keep vertices
n = 2 iterations of links deep into the graph and accept all ingoing edges to
u. This is done because working with the entire graph is computationally
not feasible.
The implemented depth filter makes sure that the resulting graph has more
than 300 vertices, incrementing n if this condition is not met. Therefore, it
is also assumed that articles related to u are in the vicinity of u.

Kosaraju’s algorithm [31] is applied to find a strongly connected subgraph
of the Wikipedia graph.
The key component of this algorithm is that a DFS search is started from
vertex s, similar articles are supposed to be retrieved from, and every visited
vertex is prepended to a list LK if it was unvisited before. This implies that
if there is a forward path u → v, for u, v ∈ g, u appears later in LK than
v. The second step is the iteration through LK , so that for every u ∈ LK a
recursive subroutine Assign(u, u) is called:

Algorithm 5.1: Assign

Input : Vertex u, vertex root
if uroot is empty then

uroot ← root
for v ∈ in-edges(u) do

Assign(v, root)

Now every vertex is assigned to a root component. To extract the strongly
connected subgraph for s: every vertex not having sroot as its root will be
deleted from the graph. Graph-tool makes this easy by applying a filter using
its PropertyMaps, so that every vertex whose root differs from sroot will be
filtered out.
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5.3 Retrieving Similar Articles with Green Measures

To retrieve similar articles: the graph g, will be regarded as a Markov chain.
A Markov chain is ”a stochastic model describing a sequence of possible events
in which the probability of each event depends only on the state attained in
the previous event” [32].
Therefore the graph and its transitions are converted into a stochastic entity.
This is done by assigning transitional probabilities puv to edges. puv is the
probability to transition from vertex u ∈ g to vertex v ∈ g while holding that
for each u,

∑
v puv = 1.

This is achieved by assigning probabilities to edges in the following order:

puv =

{
1/du , if there is an edge from u to v

0 , otherwise,
(5.1)

where du is the number of outgoing edges of vertex u.

Having assigned transitional probabilities to every edge in g: the graph can
be transformed into a transition matrix M . M is an n × n matrix, with n
being the number of vertices in g. Muv is then equal to puv.
A simple random walk can be started by multiplying M with itself. M2

accords to two steps of the random walk, meaning that M2
uv would be the

probability of beginning a walk at vertex u and ending up on vertex v after
two steps. Due to the condition

∑
v puv = 1, the total sum of probabilities

in the matrix is preserved.
A row vector (probability measure) µ so that

∑
µi = 1 is introduced. Fur-

thermore, forward propagation µM is then defined by (µM)u :=
∑

u µupuv,
meaning that each vertex u sends a part of its mass (corresponding to µu)
to vertex v.
Given all these definitions and the preprocessed graph, the Markov chain M
of g has a unique probability measure ν with νM = M . This measure is
called equilibrium measure. For any measure µ with

∑
µu = 1, µMn con-

verges to ν faster than Mn as n→∞.
Looking at the definition of ν, one can see the resemblance to PageRank.
ν can be thought of as PageRank without random jumps. As stated before,
graph-tool has several algorithms already implemented, including PageR-
ank. PageRank is executed on g, and the values are stored in ν.
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To score every article in g regarding u, Green Measures are introduced. The
Green Matrix of a finite Markov chain is defined as:

G :=
∞∑
t=0

(M t −M∞) (5.2)

where M t is the t-th power of the matrix M , corresponding to t steps of
the random walk. M∞ corresponds to ν.
Because calculating the score for n×n vertices is computationally too expen-
sive, the calculation is centered at the vertex u. Gu is defined as the Green
measure centered at u. Gu corresponds to the row u of the Green matrix G.
Let δu be the Dirac measure centered at u, so that:

δuv =

{
1 , if u = v

0 , otherwise
(5.3)

By definition Gu = δuG holds. The equation above can then be rewritten as:

Guv :=
∞∑
t=0

((δuM
t)v − νv), (5.4)

where (δuM
t)v is the probability of starting a random walk at vertex u

and being at vertex v after t steps.

With every value for Gu now being calculable, the final equation S, cal-
culating the similarity between two vertices u and v, is introduced.

Su(v) := Guv log(1/νv) (5.5)

Guv is multiplied with the logarithm of νv to favor uncommon vertices.
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6 Retrieving Articles using Text Similarity

While the keyquery method of retrieving articles uses text similarity measures
to rank keyphrases and queries against documents, the respective similarity
of two documents in the corpus is unknown.
The graph-based method does generate a similarity score for a pair of docu-
ments. Still, it does so only by regarding the graph’s topology, disregarding
the articles’ textual information.
For this next section of text similarity measures, seven different methods of
scoring documents have been implemented.
The general gist of retrieval for these models is the same: given an article
a: generate a score for every article b in the corpus. Once every score is
generated, the articles are sorted by their scores to rank similar articles first.

6.1 TF-IDF Retrieval

TF-IDF [33] is probably one of the most commonly used text similarity mea-
sures. As the name (term frequency-inverse document frequency) suggests,
TF-IDF calculates values for terms in a document through ”the inverse
proportion of the frequency of the word (term) in a particular document to
the percentage of documents the word appears in.” [33] TF-IDF scores are
calculated using the following equation.

TF − IDF (t, d,D) = TF (t, d) ∗ IDF (t,D), (6.1)

with

TF (t, d) =
freq(t, d)

|d|
(6.2)

IDF (t,D) = log
( |D|
n(C, t)

)
(6.3)

TF-IDF has been implemented using the sklearn library [34]. In this im-
plementation, the IDF aspect is limited to two documents. For each article
a ∈ L, only a itself is indexed and therefore part of the document collection
D. For every article b that is to be scored, b is transformed into a TF-IDF-
vector based on the terms present both in a and b.
TF-IDF itself only scores terms against documents. Using sklearn’s Tfid-
fVectorizer, sklearn uses a pipeline to convert a given document into a
CountVector representing the occurrences of each term in the document
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and then creating a TF-IDF-vector based on the CountVector.
Having TF-IDF implemented this way allows one to only ever compare two
documents directly instead of comparing two documents relative to the en-
tire corpus. This saves time by not indexing the whole Wikipedia corpus and
then creating the vectors which would need to calculate their values based
on every document indexed (∼ 6.2 million).
To create scores for every a ∈ L: a vector for a is created and then for every
article in the corpus. The cosine similarity is being calculated between both
vectors, and the result is saved. After a score has been created for every
document regarding a, the scores are ranked by their cosine similarity.

6.2 Doc2Vec Retrieval

Doc2Vec has been introduced by Mikolov et al. [16] and infers vectors from
sentences, paragraphs or documents. Doc2Vec is based on Word2Vec [15]
which infers vectors from words. Vectors generated by a trained Word2Vec
model even support some form of algebra, so that:
vec(”King”)− vec(”man”) + vec(”woman”) is closest to vec(”Queen”).
This approach is implemented using the Gensim library [35] and its Doc2Vec
module.

6.2.1 Training the Word2Vec Model

Every word gets a unique vector assigned to it with every vector being rep-
resented by a column in a matrix W of all words. The column is indexed
based on the position of the words’ first appearance in the corpus. To train
the neural network using W : two models have been introduced.

The continuous bag of words model acts like a sliding window iterating over
the corpus. When the sliding window is centered at the t-th word w(t), the
neural network tries to predict w(t) using the words surrounding it in a spe-
cific range, r. So that if r = 2, the input neurons are given the vectors of
w(t− 2), w(t− 1), w(t+ 1), w(t+ 2) and the network tries to predict w(t).
The continuous skip-gram model acts analogously by using the vector of w(t)
to predict the words surrounding w(t) in a range, r.

Doc2Vec uses the continuous bag of words model to train its word vec-
tors, and by default, r = 5.
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Figure 6.1: Word2Vec Training Models

6.2.2 Training the Doc2Vec Model

The paragraph (document) vectors contribute to a prediction task similar to
Word2Vec.
First, documents are assigned a unique vector so that every document is
represented as a column in a matrix D. The column is indexed based on the
documents’ first appearance in the corpus.
The network is then trained by creating a sliding window of fixed length
over every document. For each emerging context, the documents vector is
concatenated by a range of vectors of the following words from that context.
Every emerging vector is fed into the neural network and predicts the next
word.

Figure 6.2: Dov2Vec Training
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6.3 Universal Sentence Encoder Retrieval

Universal Sentence Encoder (USE) [17] is a collection of encoding
models transforming text into vectors. USE is part of the TensorFlow li-
brary [36] and mainly incorporates two different encoding models using a
transformer -based- [18] and deep averaging network (DAN) [19] based sen-
tence encoding model. The transformer-based model promises better results
in a tradeoff for computational complexity and longer training time. The
DAN model trades less training for a less complex model.
Both models have been pre-trained by Google and are available to download.

6.3.1 Deep Averaging Network Model

The DAN model omits sentence structure to achieve faster training and em-
bedding. The training is extended using word dropout which prevents over-
fitting. Given a sentence: the model averages the word-embeddings and feeds
the resulting vector through a multi-layer neural network.

Figure 6.3: Deep Averaging Network

While training the network, words from the token sequence X are dropped
from the sequence with a probability of p. This is done to avoid overfit-
ting the network to the training data. Given a sequence X: 2|X| possible
sequences can be generated using this method.
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6.4 Failed Models

Some of the implemented models didn’t retrieve articles as expected. This
didn’t necessarily mean that the model was unfit for this task.
The following models have been implemented and checked if they do indeed
retrieve articles. These models have not been evaluated in the same sense
the others have.

6.4.1 Univeral Sentence Encoder - Transformer Model

Universal Sentence Encoders transformer model is modeled after the encod-
ing sub-graph of the transformer architecture in Attention Is All You Need
[18]. The transformer described in this paper is meant to be a sequence trans-
duction model tasked to translate sentences. The architecture is based on
an encoder-decoder model, with the encoder being connected to its decoder
through an attention mechanism.
The idea is that an English sentence is encoded into a vector, and the decoder
interprets (decodes) that vector and outputs a translated, french, sentence.

The model is designed to be as general-purpose as possible. So the same
encoding model was trained using varying training tasks. The model was
trained using a skip-thought task using running text, input-response tasks
using conversational data, and a classification task on supervised data.

• the skip-thought model uses sentences from continuous text to predict
the following sentence

• the input-response model uses questions from eMails to try to predict
appropriate answers

6.4.2 Simhash/MinHash

While Simhash [37] and MinHash [38] are two different models, they are
based on the same concept: hashing documents (creating fingerprints) and
comparing these fingerprints to find near-duplicates.

Simhash tries to solve a dimensionality problem. Similar to earlier methods,
it creates a vector from the document’s body. The document is split into k-
shingles. Where a shingle is a string consisting of k characters or words. The
word ”hippopotamus”, for example, could be divided into:
”hippo”, ”ippop”, ”ppopo”, ”popot”... with k = 5.
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Hashing these shingles to a 64-bit integer value creates a unique set of (bi-
nary) hashes Hd for every document d. An empty document-hash hd (con-
sisting of zeros) is created. For each h ∈ Hd , h is added to hd so that a bit
in hd is incremented if that same bit in h has the value 1 and decremented if
the value is 0.
hd is a vector of positive and negative values. If hd is now altered so that all
numbers greater than 0 are 1 and every other number is changed to 0, every
document has a unique binary fingerprint.

Figure 6.4: Simhash Document Vector

If a document d′ has the same shingles it has the same document-hash. If d′

has a few minor changes, hd′ may be similar but not the same as hd.
To calculate the similarity between these hashes: the hamming distance is
calculated.
MinHash, much like Simhash is also based on hashing shingles. After hash-
ing every shingle for the document d, a set of these hashed shingles: Sd has
been created. To calculate the resemblance between two documents d and
d′: the following equation is calculated.

r(d, d′) =
Sd ∩ Sd′
Sd ∪ Sd′

. (6.4)
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6.4.3 Measuring the Semantic Similarity of Articles

Courley et. al. [39] introduce a knowledge-based approach to find seman-
tically similar texts using WordNet. In WordNet, words are grouped into
sets of cognitive synonyms (synsets). Each synset expresses a concept and
has conceptual relations to other synsets in the database. Relations between
synsets are used to calculate similarities between words and ultimately be-
tween documents. This approach has been implemented using Gensim [35].

Several word-to-word-similarity metrics have been described in the paper
and are implemented in the WordNet library. The Wu and Palmer similar-
ity [40] has been used in this implementation.
To calculate text similarity for a given pair of texts: sets of nouns, verbs,
adjectives, adverbs, and cardinals for both texts are created using POS-tags.
Similar words between the sets of the same open class are then being de-
termined. The similarity is calculated using the Wu and Palmer similarity
for nouns and verbs. For each noun/verb, the noun/verb with the highest
semantic similarity maxSim in the other text is identified and saved. For
every other set, similar words are determined by lexical matching: the se-
mantic similarity is equal to 1 if the adjective (adverb, cardinal) is contained
in the other document, 0 otherwise. The similarity between the documents
is then calculated as:

sim(d1, d2)d1 =

∑
C∈POS

(
∑
w∈C

maxSim(w) ∗ specificity(w))∑
C∈POS

∑
w∈C

specificity(w)
(6.5)

where specificity5 is the normalized depth.
The way the similarity between two documents is being calculated here is
unidirectional meaning the scores of sim(d1, d2)d1 and sim(d2, d1)d2 differ.
To get a bidirectional score, the values are calculated and averaged:

sim(d1, d2) =
sim(d1, d2)d1 + sim(d2, d1)d2

2
(6.6)

5WordNet has no entries for some scientific terminology like ’CRISPR’ or ’Cas9’. While
POS-tagging might correctly classify them as nouns, not being able to calculate the score
for crucial terminology would corrupt the results. Because of this reason, the highest
specificity is assigned to words which have not been found in the WordNet Database.
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6.4.4 Word Movers Distance

Word Movers Distance (WMD) is a similarity measure introduced by
Kusner et al. [41], which is an optimization problem based on the Earth
Mover’s Distance (EMD). In mathematics, EMD is an optimization problem
that minimizes the cost of turning one landmass into another. Therefore,
WMD tries to calculate the minimum cost to transform one document into
another. This approach makes use of Word2Vec [15], which embeds words
into vectors so that vectors of semantically similar words are close to each
other.

Given a trained Word2Vec model on n words, the vectors are embedded
in an Rm×n matrix so that the ith column represents xi ∈ Rm, the ith word
in m-dimensional space.
Text documents can be represented by a vector vd ∈ Rn with:

v
(i)
d =

freq(i, d)∑
j∈d freq(j, d)

. (6.7)

Given this representation of documents, the vectors of semantically similar
documents will still be far apart if they don’t share the same words. To
incorporate the semantics of the documents, the word travel cost : c(i, j), is
introduced:

c(i, j) = ‖xi − xj‖2, (6.8)

This builds upon the fact, that two word embeddings xi, xj ∈ Rm×n are
close if they share meaning. To transform a document vector vd into another
document vector v′d: every word i ∈ d is allowed to transform into any word
j ∈ d′ to any extent. To keep track of these transformations, T ∈ Rn×n is
introduced so that Tij is the amount word i transforms into word j.
To ensure the complete transformation, T is subjected to two conditions
regarding its minimization.
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7 Discussion

The following section discusses the experimental results of each retrieval ap-
proach. Every approach has retrieved the top-20 results for every topic in L.
The evaluation was limited to the top-20 results because of the article-pool
size: 3058 of hypothetical 6400 (16 retrieval methods * 20 retrieved articles
per method * 20 topics)6 article pairs have been retrieved.
Against expectations, the number of retrieved article pairs seems to be lin-
early correlated with the cutoff value k of regarded ranks. Intuitively, the
approaches should retrieve similar articles in their first few ranks and scatter
in their similarity as k increases, resulting in a parabola-like shape.

(a) Total Retrieved Article-Pairs (b) Average Retrieved Article-Pairs per
Method

Figure 7.1: Retrieved Article Pairs

As Figure 7.1(a) suggests, the retrieved article pairs are disjoint for every
group of measures, resulting in a linear shape. Though 7.1(b) indicates that
the keyquery- and keyphrase approach retrieve more similar articles regarding
their respective retrieval methods, resulting in fewer new articles per regarded
rank k. This can probably be attributed to the fact that although different
similarity measures and keyphrase extractors were used, the retrieval method
is the same. Contrarily, the implemented text similarity approaches work so
differently that they averagely retrieve the second to most new articles per
regarded rank.

6The actual value is probably closer to 5560 articles because the topic itself is expected
to be retrieved in the top-20; additionally, the four given ground truth articles given to the
keyquery approach are also expected to be retrieved for every combination of similarity
measure and extractor.
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This, however, does not give any information about the quality of the re-
sults. It only shows that these methods of retrieval work in different ways
and do not necessarily retrieve the same set of articles.

When evaluating these approaches, it became apparent that the ’standard
practice’ evaluation measure recall did not contribute meaningful informa-
tion.
Because so many approaches were implemented, a variety of unique articles
(Figure 7.1) were retrieved, and therefore the ground truth for every topic in
L was rather large. Counting documents labeled ≥ 2 as relevant, the ground
truth averagely contained 91 articles, and 39 articles, when counting only
articles labeled ’3’ as relevant.
Therefore, retrieving only the top-20 articles can receive a maximum recall
score of ∼ 0.22 or ∼ 0.51, respectively. This is also why counting only doc-
uments labeled ’3’ as relevant, the stricter evaluation method, continuously
received a better recall score.
The mean Average Precision (mAP)- [42] and nDCG- [43] scores were cal-
culated to compare results. Both measures only take the retrieved articles
ranking regarding the ground truth into account. mAP does so by calcu-
lating the precision at every depth (1, ..., k) and dividing the result by the
number of ranks regarded (= AP ). Doing this for every query (topic in L)
and calculating the mean yields the mean Average Precision.

AP@k =

∑k
i=i reli ∗ prec@i

min(k, |ground truth|)
, (7.1)

where reli is the binary value indicating whether the document on rank
i is relevant and prec@i is the precision regarding the first i ranks.
nDCG calculates the Discounted Cumulative Gain (DCG) for a query and
divides that score by the ideal DCG (iDCG), which corresponds to the DCG
of the ranked ground truth.

DCG =
k∑
i=1

reli
log2(i+ 1)

(7.2)

mAP and nDCG can be regarded as the quality of retrieved information and
ranking by the retrieval methods.
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7.1 Elasticsearch Retrieval

7.1.1 Keyphrase Approach

The keyphrase approach uses the title of every article found in L and passes
it to query-template as used in the keyquery approach. Tables 7.1 and 7.2
contain the experimental results of the keyphrase approach.

Relevant Documents ≥ 2

Retrieval Method mAP nDCG@5 nDCG@10 nDCG@20

BM25 0.575 0.785 0.715 0.655
DFI 0.661 0.826 0.777 0.709

LMDirichlet 0.659 0.821 0.754 0.693

Table 7.1: Keyphrase Results for Relevant Documents Labeled ≥ 2

Relevant Documents = 3

Retrieval Method mAP nDCG@5 nDCG@10 nDCG@20

BM25 0.306 0.695 0.593 0.501
DFI 0.373 0.735 0.666 0.559

LMDirichlet 0.329 0.688 0.606 0.519

Table 7.2: Keyphrase Results for Relevant Documents Labeled ’3’

Regarding both evaluations, DFI scores the best results.
Disregarding the time it took to index the corpus: the keyphrase approach
retrieved its results the fastest. Querying Elasticsearch usually retrieves doc-
uments in 3-10 seconds, taking about 90 seconds per measure. This approach
can also be parallelized, querying the BM25-, DFI- and LMDirichlet index
simultaneously.
On the other hand, indexing the corpus was more time-intensive, taking
about three days per measure, with all three similarity measures being in-
dexed simultaneously.

33



7.1.2 Keyquery Approach

The keyquery approach was implemented as described. Given a list of rele-
vant articles: related articles are found.
This is the only approach that works with a set of predetermined relevant
articles for every topic in L. This has two noticable side effects: (1) a list
of articles deemed relevant must be found, (2) the results are based on these
articles.
While (1) can probably be achieved quite easily, one might argue that this
goes against the principle of article retrieval. ’If four articles have been
deemed relevant, I can read up on those articles.’ - Of course, different arti-
cles will be found using the approach, as (2) suggests though, better results
might be achieved given more articles.
How many articles should the ground truth contain? This implementa-
tion chose a ground truth of four articles, including the topics main-article.
Adding more articles to the ground truth should yield better results though.
Where should the line be drawn? If the ground truth contains, for example,
ten articles, the best scores might be achieved, but at that point, relevant
documents have been found. Not all, but maybe enough to read up on a
given topic.
Additionally, (2) comprises a problem every approach shares: the retrieved
results are based on a number of parameters that can be optimized. While
the keyquery approach has these parameters present in the similarity mea-
sures, keyphrase extractors, and the keyquery generality parameters k and l:
defining which query will be deemed a keyquery, the retrieved articles for this
approach are based on I, as discussed. A list of relevant articles for a topic
can be created with little effort, but creating a list that will yield the best
results is almost impossible. Using this approach, a list of the most relevant
articles for a topic might not deliver the best results. There might always be
a set of articles (maybe narrowly related to the topic) that will yield better
results.

Tables 7.3 and 7.4 contain the experimental results using a ground truth
of four articles for every topic, pairing each similarity measure with each
keyphrase extractor.

Regarding the two tables, YAKE! yields the best results using LMDirich-
let scoring, producing the third-highest overall score.
Articles have been retrieved using multiprocessing so that each process has
been given a ground truth and retrieved articles for every similarity measure
using one keyphrase extractor. Using this method: articles for one extractor,
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Relevant Documents ≥ 2

Retrieval Method mAP nDCG@5 nDCG@10 nDCG@20

BM25
RAKE 0.658 0.840 0.792 0.693
YAKE! 0.572 0.750 0.708 0.632

KP-Miner 0.508 0.775 0.676 0.588

DFI
RAKE 0.586 0.830 0.757 0.656
YAKE! 0.675 0.875 0.795 0.712

KP-Miner 0.570 0.824 0.750 0.648

LMDirichlet
RAKE 0.529 0.850 0.740 0.620
YAKE! 0.705 0.859 0.825 0.730

KP-Miner 0.625 0.854 0.779 0.679

Table 7.3: Keyquery Results for Relevant Documents Labeled ≥ 2

Relevant Documents = 3

Retrieval Method mAP nDCG@5 nDCG@10 nDCG@20

BM25
RAKE 0.339 0.733 0.652 0.521
YAKE! 0.291 0.672 0.575 0.472

KP-Miner 0.230 0.645 0.527 0.417

DFI
RAKE 0.322 0.723 0.616 0.502
YAKE! 0.356 0.752 0.640 0.531

KP-Miner 0.302 0.682 0.604 0.496

LMDirichlet
RAKE 0.284 0.761 0.616 0.475
YAKE! 0.384 0.791 0.691 0.560

KP-Miner 0.313 0.742 0.615 0.504

Table 7.4: Keyquery Results for Relevant Documents Labeled ’3’

paired with all the similarity measures, could be retrieved in about sixteen
hours. This was done three times - for each extractor. More parallelism can
probably be achieved, but Elasticsearch timed out when sending too many
queries in earlier tests.
Most time is spent trying to find keyqueries. Choosing k more lenient - ap-
proving keyqueries if, for example, the relevant documents only appear in the
top-50 ranks would improve the speed while probably scoring worse. Vice
versa, choosing stricter parameters could yield better results with more time
being spent finding keyqueries.
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Interestingly, the keyquery approach is the only method that didn’t retrieve
its main article on its first rank consistently. This is the case because it is
only supposed to retrieve its given ground truth in the top-k ranks.

7.2 Graph Retrieval

The graph approach of article retrieval suffered under Wikipedias size. The
corpus had to be scaled down massively to yield any results. It is hard to tell
if using the entire Wikipedia graph would have yielded much better results
but filtering the depth of the graph definitely distorted the results to some
extent. The sizes of the resulting subgraphs after Kosaraju’s algorithm is
applied vary from 215- to 11003 vertices. The second one has 14 vertices
after the first depth filter is applied, 81 after the depth is incremented, and
then 11051 after the depth is incremented further.
When comparing the results for a few examples, counting documents labeled
’3’ as relevant,

Title mAP nDCG@5 nDCG@10 nDCG@20 Graph Size

CRISPR 0.236 0.869 0.630 0.444 215
Bitcoin 0.056 0.339 0.220 0.176 10412

Central Solar Heating 0.150 0.485 0.445 0.369 11003

Figure 7.2: Comparing Graph Sizes

it is apparent, that a graph with fewer vertices can yield better results than
a larger graph. While a comparison of this size is nowhere near enough to
make any meaningful suggestions, it shows that the quality of result is not
restricted by the number of vertices a graph has.

Tables 7.5 and 7.6 contain the results of the graph approach.

Overall, this approach yielded the worst results. This may be attributed to
many things.
To avoid computational complexity: the graph was limited in its depth.
When increasing the depth, the size of the graph grew exponentially, with
many of these new vertices probably not being relevant.
Some sort of filter could be applied to select the outgoing links to follow in
every article.
Additionally, choosing varying transitional probabilities may yield better re-
sults. TF-IDF could be used to score the links against their document.
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Relevant Documents ≥ 2

Retrieval Method mAP nDCG@5 nDCG@10 nDCG@20

Graph 0.445 0.674 0.597 0.546

Table 7.5: Graph Results for Relevant Documents Labeled ≥ 2

Relevant Documents = 3

Retrieval Method mAP nDCG@5 nDCG@10 nDCG@20

Graph 0.205 0.569 0.461 0.381

Table 7.6: Graph Results for Relevant Documents Labeled ’3’

Normalizing the results would then yield transitional probabilities. Using
this method: the depth may also be increased by choosing only the first n
links by their scores for every document, where n could vary depending on
the number of links per document.

The Wikipedia graph was created in about three hours. It was then saved
for later use.
With the graph created, the results were calculated in ∼ 12.5 hours. Most
time was spent calculating the Guv values for the largest graphs. This is to
be expected because the graph matrix M is multiplied by itself many times.
When working with matrices of this size (with many 0), it was beneficial
to use CSR matrices. CSR matrices only store values not equal to zero in
three different arrays. This helped with memory management but had the
disadvantage of slower matrix multiplication.
Per topic, about twenty minutes were spent loading the existing Wikipedia
graph back into memory, totaling about 400 minutes. This may also be
avoided by keeping the graph in memory but was of no concern on this scale.
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7.3 Text Similarity

The three text similarity measures that have been evaluated shared a similar
implementation style and retrieval method. For every topic in L, a vector
is created by the method. This vector is then compared with the vectors of
every other article in the corpus using their cosine similarity.
Of the three implementations, the Doc2Vec model was the only one receiv-
ing extra training. Trained models are available but Doc2Vec/Word2Vec
only creates vectors reliably on already seen data. If there, for example, is a
trained Wikipedia model trained one or two years ago, some of Wikipedias’
articles might have changed drastically, distorting the results yielded by the
model. While training Word2Vec on Wikipedia is a time-intensive step, it
is a necessary one.
On the other hand, Universal Sentence Encoder has several trained
models available for its two architectures: the deep averaging network and
transformer model. These models have been trained on various tasks and
should yield good results without any further training.

Tables 7.7 and 7.8 contain the three text similarity measures results with
Universal Sentence Encoder using the deep averaging network to cre-
ate vectors.

Relevant Documents ≥ 2

Retrieval Method mAP nDCG@5 nDCG@10 nDCG@20

TF-IDF 0.796 0.911 0.851 0.799
Doc2Vec 0.665 0.835 0.769 0.713

USE 0.751 0.865 0.821 0.768

Table 7.7: Text Similarity Results for Relevant Documents Labeled ≥ 2

Relevant Documents = 3

Retrieval Method mAP nDCG@5 nDCG@10 nDCG@20

TF-IDF 0.450 0.816 0.716 0.632
Doc2Vec 0.398 0.761 0.668 0.578

USE 0.419 0.786 0.692 0.604

Table 7.8: Text Similarity Results for Relevant Documents Labeled ’3’
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Surprisingly, TF-IDF, which conceptually was the easiest model, received
the best overall scores, showing that complexity does not always merit better
results.
Like every approach, these models could promise better results if their pa-
rameters were optimized. Especially Doc2Vec would benefit from longer
training, and if USE’s transformer model is supposed to generate better re-
sults, USE could outperform the TF-IDF approach.
Like the graph approach, the Universal Sentence Encoders trans-
former model might benefit from filtering information.
When passing entire articles to the model, 100 vectors are created in about
60 seconds. Assumed the performance will not vary, the entire corpus is
vectorized in 43 days. Two solutions arise: (1) - letting the program run
on 43 different machines, giving each machine some part of the corpus, and
merging the results after each machine is finished. (2) - filtering out the first
n words found in each article, creating vectors for each article’s introduction,
and reducing computational complexity.
(2) supports the belief that the most crucial information in each article is
found in its introduction, similarly to an abstract in a scientific paper.
Implementing one of these approaches, using the transformer model for USE
might score better results than TF-IDF.
Using the deep averaging network model, Universal Sentence Encoder
retrieved its results the fastest in an astounding 10.5 hours.

The Doc2Vec model was trained in about 64 hours, training for eight
epochs, a little less than the default of ten epochs.
After training, the retrieval step took about 28 more hours, totaling 92, in-
cluding training. Doc2Vec’s vectors were inferred sequentially. Using mul-
tiprocessing, this progress can be sped up by being mindful of the models’
memory consumption (> 1GB) and loading the JSON files (300MB-2GB).
Receiving the fourth-best overall score: the question arises if much better re-
sults would have been yielded if more training had been done. Compared to
TF-IDF, which received no training, finished after 26 hours, and received the
best overall results, the Doc2Vec model might (even with more training)
not hold up regarding the task of article retrieval.
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7.3.1 Failed Models

While Simhash and MinHash had no problem with scalability, it became
apparent that these models were not designed for article retrieval. Both
methods are designed to find near-duplicates in a large set of documents.
Creating document hashes based on shingles does not capture any kind of
similarity between two documents that describe the same topic in different
words. This makes Simhash and MinHash unfit for article retrieval.

Using a knowledge-based approach (WordNet) to calculate semantic simi-
larities between documents would seem to yield good results. Unfortunately,
this approach does not scale. Averagely, this implementation yields a score
every 22 seconds using a look-up table keeping track of already seen sim-
ilarities. Not limiting the table will improve the speed over time, but the
number of word-pair-similarities would need a table too big to keep in mem-
ory. Assuming that scores will be produced at that rate continuously, creating
document similarities with the entire corpus for every topic in L is unfeasible.

Word Movers Distance also struggles at scale, averagely producing 100 scores
every 25 seconds to retrieve one topic in approximately 18 days. This would
need to be done 20 times for every topic found in L.
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8 Conclusion

Three approaches to retrieve articles from Wikipedia have been implemented
and evaluated. The evaluation shows that the TF-IDF text similarity ap-
proach scores the best overall results demonstrating that model complexity
does not necessarily determine the quality of results that the model retrieves.
However, Universal Sentence Encoder shows promising results using
the DAN model yielding its results the fastest with a speedup of almost 2.5,
while scoring only slightly worse than TF-IDF. With USE’s transformer
model promising better results than the DAN model, TF-IDF might be
outperformed, trading TF-IDF’s speed for computational complexity.
The keyphrase approach, using Elasticsearch as a search engine, querying
only the articles’ title, retrieves its results the fastest, assuming that the
corpus is already indexed. Providing the right query template to boost the
articles according to the query yields results not far from the more time-
intensive keyquery approach. The keyquery approach, while receiving better
scores, has drawbacks regarding the predetermination of a list of articles it
needs to act as a ground truth. If a list of articles has already been de-
termined to be relevant, generating keyphrases for these articles does yield
better results than the keyphrase approach. If this list of articles must be
determined first, the question might arise if the retrieval is still useful. Ad-
ditionally, a perfect ground truth may never be found.
Given that the keyphrase approach retrieves its articles with arguable re-
liance, and much faster, keyqueries may not necessarily be used for article
retrieval.
The graph approaches results suggest that - besides being impaired by the
size of the Wikipedia corpus, there is a lack of information needed to retrieve
better results. Following Wikipedia’s link-tree does not produce any infor-
mation about the article’s contents but rather shows how many connections
there are from one article to another.

After reviewing these measures, it became apparent that there is an inherent
bias towards measures inferring vectors from documents. Creating a vector
for every article on Wikipedia compresses all that information into a list of
|C| vectors. This makes article retrieval easy by simply measuring the cosine
similarity between two document-vectors.
Document-to-document similarities depend on calculating that similarity based
on the given documents which tends to be more time-intensive.
Having a vector for every article on Wikipedia makes it more feasible to
calculate the pairwise similarities for a more extensive set of articles.
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