
Universität Leipzig
Faculty of Mathematics and Computer Science
Degree Program Computer Science

Neural Netspeak – Exploring the
Performance of Transformer
Models as Idiomatic Writing

Assistants

Bachelor’s Thesis

Fabian Thies

1. Referee: Jun.-Prof. Dr. Martin Potthast

Submission date: December 2, 2020

Declaration

Unless otherwise indicated in the text or references, this thesis is
entirely the product of my own scholarly work.

Leipzig, December 2, 2020

. .
Fabian Thies

Abstract

Since writing is a difficult task, authors often resort to sophisticated tools -
writing assistants - to help them with spelling, grammar, style checks, or word
choice. Query-based writing assistants offer the experienced writer an easy
way to work with complex resources, like dictionaries, phrase-books, and id-
ioms from a corpus, by providing a query language for context-sensitive search
and a transparent ranking. Netspeak uses an index over the Google N-gram
dataset to retrieve matching phrases ordered by frequency of occurrence in the
dataset. However, the use of n-grams imposes a limit on Netspeak, requiring
the queries not to exceed five words, limiting the context that can be captured
in a single query. Also, the longer the queries are, the lower is the probability
of finding matching n-grams. Here we show that using the Transformer-based
BERT language model, trained on masked word prediction, we can circumvent
these two limitations and, depending on the type of query, increase the number
of answered queries dramatically. On 140,000 queries generated from four cor-
pora of different domains, our language-model based result retrieveal strategy
increases the number of answered queries by up to 81 % compared to Net-
speak on the same queries. Given additional context through longer queries,
we are able to answer up to 100 % queries more than Netspeak. However, we
are not able to rank the expected result as high as Netspeak most cases, even
with additional context. Our results demonstrate how certain capabilities of
language models can independently be used even without further fine-tuning
to improve certain aspects of a query answer retrieval process.

Contents

1 Introduction 1

2 Theoretical Foundation 3
2.1 Transformer Model . 3

2.1.1 Model Architecture Overview 4
2.1.2 Attention . 4
2.1.3 Encoder and Decoder . 8
2.1.4 Embedding and Positional Encoding 10

2.2 BERT . 12
2.2.1 Pre-Training . 13
2.2.2 Fine-tuning . 15

3 Related Work 16
3.1 Writing Assistants . 16
3.2 Netspeak . 19

3.2.1 Valid Netspeak Queries 20
3.2.2 Result Retrieval . 21

3.3 Writing Assistants using Transformers 23

4 Methodology 24
4.1 NeuralNetspeak . 24

4.1.1 Query Processing with BERT 25
4.1.2 Query Scoring Strategies 27
4.1.3 Subquery Processing . 29
4.1.4 Mask Prediction and Scoring 29
4.1.5 Implementation and Integration in Netspeak 35
4.1.6 Limitations . 37
4.1.7 Expected Improvements 38

4.2 Datasets . 39
4.2.1 Sentence Selection . 39
4.2.2 Query Generation . 40

i

CONTENTS

4.3 Experiment Design . 45
4.3.1 Performance Metrics . 45
4.3.2 Result Evaluation . 46

5 Experiment Results and Discussion 47
5.1 Quantitative Evaluation . 47
5.2 Qualitative Evaluation . 56

6 Conclusion 60

A Appendix 62
A.1 Multi Mask Scoring Strategies 62
A.2 Synonym Retrieval Strategies 62
A.3 Query Examples . 63

Bibliography 67

ii

List of Figures

1.1 NeuralNetspeak . 2

2.1 Transformer model architecture 4
2.2 Self-attention mechanism . 5
2.3 Self-attention mechanism with vectors 6
2.4 Steps required for self-attention calculation 7
2.5 Multi-Headed Self-Attention . 8
2.6 Layer-normalization . 9
2.7 Transformer model architecture 10
2.8 Transformer Encoder Layers . 11
2.9 Visualization of Positional Encoding 11
2.10 Differences between bidirectional and unidirectional language

models and one with two unidirectional LSTMs 13

3.1 Netspeak Webinterface . 19

4.1 NeuralNetspeak . 36
4.2 Updated User-Interface for NeuralNetspeak 37

5.1 Recall graph comparing Netspeak to NeuralNetspeak 51
5.2 Recall graphs for the different operators across different thresholds 52

iii

List of Tables

3.1 Netspeak query language tokens 21

4.1 Query Examples . 44

5.1 Experiment Result Overview - Whole-word operators 48
5.2 Experiment Result Overview - In-word operators 49
5.3 Results comparing Netspeak to NeuralNetspeak (long) on com-

mon queries . 54

A.1 Multi Mask Prediction Experiment Results 62
A.2 Synonym retrieval experiment results 62
A.3 Query Examples . 63
A.4 Query Examples where NeuralNetspeak outperformed Netspeak 64
A.5 Query Examples where Netspeak outperformed NeuralNetspeak 65
A.6 Query Examples where NeuralNetspeak performed better with

more context . 66

iv

Chapter 1

Introduction

Since writing texts is a challenging task, authors often resort to sophisticated
tools - writing assistants. There is a wide variety of different assistants available
at the writer’s fingertips to help them with spelling, grammar, style checks, or
word choice. They are specialized in one or more of these tasks and provide
appropriate interfaces with which people can interact most intuitively.

Query-based writing assistants offer the experienced writer an easy way
to work with complex resources, like dictionaries, phrase-books, and idioms
from a corpus, by providing a query language for context-sensitive search and
a transparent ranking. Netspeak (Potthast et al. [2010]) is such a query-based
assistant and lets users search the Google N-gram dataset using a custom
query language. Its result retrieval works by searching a reverse index over the
n-grams for possible matches, which are then shown sorted by the n-gram’s oc-
currence frequency in the corpus in descending order. Netspeak thereby allows
users to search for phrases commonly used on the web with their frequency as
a measure. However, since the Google N-gram dataset only contains n-grams
with 1 ≤ n ≤ 5, the queries Netspeak can process are limited to a length of five
words. Also, the longer the query, the less likely it is to find matching results
because n-grams get sparse the larger the n is due to the number of different
word combinations. This out-of-vocabulary problem, where no results can be
retrieved, is further amplified for queries contains uncommon or phrases, or
ones that are not contained in the n-gram dataset.

In this work, we propose NeuralNetspeak, a new result retrieval strategy
based on an NLP language model to circumvent these two issues. We use
a pre-trained version of the BERT language model (Devlin et al. [2018]) to
process Netspeak queries and return a sorted list of results. This language
model is based on the Transformer architecture (Vaswani et al. [2017]), which
unlike previously dominant language model architectures, such as Recurrent
Neural Networks (RNNs, Mikolov et al. [2010]) or Long-Short-Term-Memory

1

CHAPTER 1. INTRODUCTION

Container

gRPC

Server
Query Pre-processing
Processing with BERT
Collect & Sort Results

NeuralNetspeakRequest

Response

Query

Results

Figure 1.1: A macroscopic overview of the NeuralNetspeak software.

models (LSTMs, Peters et al. [2018]), process the whole input sequence in
one step and allows for pre-training generic language models. The pre-trained
language models have learned different features of natural language while being
trained on vast amounts of texts. However, to take advantage of the model’s
capabilities, we have to pre-process the Netspeak queries before letting them
run through the language model. Then, we use the model’s ability to predict
masked words and to calculate a score for the inputs to process the queries
further and rank the resulting phrases by the calculated score. Finally, we
show these phrases to the user in the same user-interface Netspeak uses.

To evaluate our approach and compare its results to Netspeak’s n-gram
based result retrieval, we generate Netspeak queries from four corpora of dif-
ferent domains. Then, we send these queries to both Netspeak and our new
backend for the Netspeak web user-interface, which answers the same queries
with the help of BERT as described above. Our results show, that using our
approach we can lift the limitation of Netspeak queries to five words and ob-
viate the out-of-vocabulary problem, answering up to two times the number
of queries compared to Netspeak. However, NeuralNetspeak is not a complete
replacement for the n-gram based result retrieval strategy of Netspeak yet.

Figure 1.1 shows an overview of the NeuralNetspeak software product we
built and deployed to evaluate our approach. It is enclosed in a docker con-
tainer, which can easily be deployed on any server or computer, accepting
gRPC requests following the same specification as Netspeak. This way, it can
be used as a drop-in replacement or alternative for the current Netspeak back-
end with very few changes to the existing web interface. A working version of
NeuralNetspeak can be found at https://netspeak.org/demo/.

2

https://netspeak.org/demo/

Chapter 2

Theoretical Foundation

2.1 Transformer Model
The Transformer architecture, as proposed by Vaswani et al. in 2017, marked
a significant leap forward in natural language processing (NLP).

Similar to other sequence to sequence language models, such as ELMo
(Peters et al. [2018]) or OpenAI’s GPT (Radford [2018]), the Transformer
has an encoder-decoder structure. The encoder takes the input sequence and
produces a fixed-length representation, which is then fed into the decoder,
where the output sequence is constructed from that representation. The core
of the encoder and decoder is a stack of attention layers, which allow the model
to individually weigh the influence of different words in the input sequence have
when processing a word from the sequence. Although the concept of attention
is not new to this architecture (Bahdanau et al. [2016]), the Transformer is the
first language model that only relies on the attention mechanism. Previous
language models included recurrent components such as RNNs (Mikolov et al.
[2010]) or later LSTMs (Peters et al. [2018]). While models based on LSTMs
can achieve a similar effect as attention, it only works on words the model
has previously already seen left to the word being processed. A solution to
this is the introduction of language models using two separate LSTMs, one
processing the input forward while the other processes it backward. However,
they still have to process the input sequentially word by word because of the
recurrent nature of LSTMs. Transformers, on the other hand, can process the
entire input at once, with the attention layers attending to the words of the
input sequence based on the learned weights. Since the attention does not rely
on the results of the previous or next words, the attention calculations can be
done at once using matrix operations. This significantly improves the degree
of parallelization compared to recurrent architectures and makes it possible to
train a state of the art translation model in twelve hours on eight P100 GPUs.

3

CHAPTER 2. THEORETICAL FOUNDATION

Figure 2.1: A simplified overview of the Transformer model architecture, derived
from the complete illustration of the architecture from the paper by Vaswani et al.
[2017].

2.1.1 Model Architecture Overview

Figure 2.1 shows a simplified overview of the Transformer model architecture,
with the encoder (left) and the decoder (right). The encoder is a mapping
from the input symbol sequence (x1, ..., xn) to a fixed-length, continuos se-
quence of internal representations z = (z1, ..., zn). By analogy, the decoder
then generates an output sequence (y1, ..., ym) of symbols from z, one element
at a time.

Both the encoder and the decoder consist of multiple layers stacked on
top of each other. Before an input (output) enters the encoder (decoder), the
model generates an embedding of the text sequence into tokens of the model’s
vocabulary and adds an encoding to the embedding, which the model then can
use to infer the relative position of the words in the input sequence. After the
model has processed the input, it converts the resulting token sequence back
to a sequence of words and assigns a probability to each word of the output.

2.1.2 Attention

In the realm of the transformer, attention provides the answer to the question,
on which part of the input it should focus most while encoding or decoding a
given piece of the input. It allows the transformer to look at other parts of the

4

CHAPTER 2. THEORETICAL FOUNDATION

Figure 2.2: A visualization of the self-attention mechanism on an example sentence
(Alammar [2018]). When processing the word "the animal", the focus of the attention
mechanism is most strongly on the word "it". This information will be encoded in
the output of the attention layer.

input sequence to improve the encoding of a given word. The self-attention,
therefore, is a similarity measure, describing how similar or relevant another
part of the input is in terms of context, and captures contextual relationships
between words in the input sequence. A visualization of this behavior can be
seen in Figure 2.2.

The self-attention function takes an input vector, calculates a set of vectors
(composed query, key, and value vector), and returns an output vector. This
multi-step process can be broken down into six parts (Alammar [2018]).

First, three new vectors are calculated by multiplying the input with trained
weight-matrices, as shown in Figure 2.3. These new vectors are a query vector
q, a key vector k, and a value vector v. They are calculated for each input
vector x by multiplying it withWQ,WK , andW V for the query, key, and value
vector respectively. These three result vectors are smaller in dimension than
the input vector, with the query and key vector having the same dimensionality
dk and the value vector being of dimension dv. The difference in dimensionality
is not necessary but is a conscious decision to make the calculations for the
multi-headed attention easier.

Then, a score gets calculated for each word in the input sequence for the
given input x. The higher the score, the more focus should be placed on that
part of the input sequence while encoding x. The score is calculated by taking
the dot product of the query vector q with the key vector k of the respective
word the score should be calculated for. In summary, given a word at index i,

5

CHAPTER 2. THEORETICAL FOUNDATION

Figure 2.3: A vector and matrix-based visualization of the self-attention used in
the Transformer. The query, key, and value vectors are created for each of the two
vectors x1 and x2, which are derived from the two input words after the embedding,
by multiplying the input vectors with the corresponding weight matrices WQ, WK

and W V . Source: Alammar [2018]

the score for the word in position j would be calculated as

scorei(j) = qi · kj.

Once the score is calculated, it gets divided by
√
dk (the square root of

the key/query vector’s dimensionality) to reduce the differences between the
individual scores, resulting in more stable gradients. The result is then passed
through a softmax operation, normalizing the results so they are positive and
add up to 1. The score of a word for itself is higher than for all other words
in the input sequence, as it is most similar to itself, without adding any infor-
mation.

The normalized score is then used to multiply each value vector by it. This
will bring the components of the value-vectors representing words, which are
irrelevant for the considered position, close to zero, and give more weight to
those vectors, whose words are of greater relevance.

Finally, the sum of the weighted value vectors is calculated, which is the
output zi of the self-attention layer at the position i. This whole process is
illustrated in Figure 2.6 for a short example sentence.

Since the operations to calculate the score for each position are the same, they
can be calculated simultaneously by packing the query vectors into a matrix

6

CHAPTER 2. THEORETICAL FOUNDATION

Figure 2.4: A breakdown of the steps required to calculate the self-attention vector
for a single word of an example sentence. Source: Alammar [2018]

Q, and the key and value vectors into a K and V matrix respectively. Now
dealing with matrices only, all the steps described above can be condensed into
one single function to calculate the outputs Z of the attention layer:

Attention(Q, V,K) = softmax(
Q×KT

√
dk

) · V = Z

Multi-Headed Self-Attention As mentioned above, the self-attention scor-
ing function will assign the highest score to the word itself. However, this high
score doesn’t add any useful information but rather outweighs scores indicating
a strong relationship to other words. To counteract this, the queries, keys, and
values are projected linearly on h times with different, learned linear projec-
tions on the dimensions dk, dk, and dv respectively. The resulting projections
are h different sets of WQ, WK , and W V matrices. These projections give the
attention layer multiple "representation subspaces" to encode the attention
differently, but also result in having h output matrices Z1 to Zh, which are
called attention heads. Figure 2.5 shows the positions of the input sequence
the different color-coded attention heads attend to when processing the word
"it". The different words the individual attention heads attend to show their
specialization on detecting different learned features in the input sequence.

To get a single output matrix as expected by the feed-forward layer, the
output matrices are first concatenated and then multiplied by yet another
trained weight-matrix WO.

MultiHead(Q,K, V) = Concat(head1, ..., headh) ·WO = Z,

7

CHAPTER 2. THEORETICAL FOUNDATION

Figure 2.5: A visualization of the different attention heads that attend to different
positions of the input sequence when processing the word "it". Source: Alammar
[2018]

where headi = Attention(Q · WQ
i , K · WK

i , V · W V
i). The resulting output

matrix Z contains information from all the attention heads.

Feed-Forward Network The output generated by the multi-headed at-
tention layer gets passed into a fully-connected feed-forward neural network.
This network is applied identically and independently from each other to the
attention vectors of each word of the input sequence, allowing for parallel
computation.

Add and Norm Layers Each self-attention and feed-forward sublayer has
a residual connection around it and is followed by a layer-normalization step,
where the output gets normalized by taking into account the sublayer’s input
vector.

2.1.3 Encoder and Decoder

Figure 2.7 shows the whole Transformer model architecture, with the encoder
(left) and the decoder (right) with all its sublayers.

The encoder is a stack of N = 6 identical layers, which consist of two sub-
layers each: the multi-head self-attention layer and a simple fully-connected
feed-forward layer. All outputs of these sub-layers are normalized (Ba et al.
[2016]) before they are handed off to the next layer. Since these operations work
on vectors, all outputs of the sub-layers and embedding-layer are of dimension

8

CHAPTER 2. THEORETICAL FOUNDATION

Figure 2.6: A visualization of a Transformer encoder with its sublayers and inter-
mediate vectors. The LayerNorm operation found in the "Add & Norm" sublayers
is shown in detail. Source: Alammar [2018]

dmodel = 512. In contrast to other language models, which read the input
sequentially, the Transformer encoder reads the entire input sequence of words
at once.

Similar to the encoder stack, the decoder consists of N = 6 identical layers
as well. In addition to the two sub-layers of the encoder layers, the encoder
adds another multi-head self-attention layer to the beginning of each layer.
In this additional layer, masking is introduced, so that a given position can’t
attend to any subsequent positions, making the predictions for position i only
depended on the known outputs for the previous positions.

Figure 2.8 shows one of the encoders in the encoder stack with its self-attention
layer and feed-forward neural networks. In this example, the encoder receives
the two input vectors (x1 and x2), which are first passed into the self-attention
layer, then into the individual but same feed-forward neural networks. The
output (r1 and r2) of these layers is then sent to the next encoder in the
encoder stack as input.

9

CHAPTER 2. THEORETICAL FOUNDATION

Figure 2.7: The Transformer model architecture. Source: Vaswani et al. [2017].

2.1.4 Embedding and Positional Encoding

To process the input or output sequence tokens, they get mapped to vectors
of dimension dmodel. Only using the embedding as is would result in losing
essential information, since the same word can have a different meaning de-
pending on its position in the sentence. Therefore, a positional encoding vector
is added to the embedded input vector. This allows the model to retain in-
formation about each word’s position in the input sequence and the relative
distance between words.

The positional encoding vector is built with the following two sine and
cosine functions:

PE(pos, 2i) = sin(
pos

100002i/dmodel
) and

PE(pos, 2i+1) = cos(
pos

100002i/dmodel
),

where pos is the position of the token in the sequence and i is the dimension
of the vector component. The resulting vector has values of alternating sines
and cosines of increasing frequency in its components of ascending dimension,

10

CHAPTER 2. THEORETICAL FOUNDATION

Figure 2.8: The structure of an encoder layer with its sublayers from the encoder
stack of a Transformer, showing the flow of two example input vectors x1 and x2
through the encoder. Source: Alammar [2018]

which allows the model to infer the relative position of two words of the input.
A visualization of the encodings for 20 tokens are shown in Figure 2.9. Each
token (from top to bottom) has a similar structure as the one above but is
pushed (left) into greater embedding dimensions.

Figure 2.9: A visualization of the position encoding for 20 tokens with a dimension
of 64 with the sine and cosine functions presented by Vaswani et al. [2017].

11

CHAPTER 2. THEORETICAL FOUNDATION

2.2 BERT
In 2018 Google open-sourced their BERT model, an NLP language model fo-
cussed on pre-training using plain text from Wikipedia articles and built upon
the Transformer (see section 2.1) architecture. The name BERT is an initialism
for Bidirectional Encoder Representations from Transformers. Taking advan-
tage of these pre-trained models, one can easily fine-tune existing models to fit
their specific task’s needs with very little data and computational resources1.
The models originally provided by Google Brain themselves, BERTBASE and
BERTLARGE, were trained on the BooksCorpus and English Wikipedia articles
respectively on both masked-word and next-sentence prediction tasks.

BERT leaves the underlying Transformer structure almost completely un-
changed from the original structure described in section 2.1. What distin-
guishes the two models, are the number of layers in the encoder and decoder
stack, the hidden size, and the number of self-attention heads. BERTBASE

uses half the layers in the encoder and decoder stack and half the hidden size
compared to BERTLARGE, while also using one quarter fewer attention heads
than the large model, to match the OpenAI GPT language model (Radford
[2018]).

In contrast to all previous Transformer-based language models, including
the OpenAI GPT model, "BERT is the first deeply bidirectional, unsuper-
vised language model, pre-trained only using a plain text corpus" (Devlin
et al. [2018]). Pre-trained language models can either be context-free or con-
textual. Context-free models generate a single word embedding for each word
in the vocabulary, independently from the surrounding words. As an example,
the word "bank" has the same embedding in "bank account" as in "bank of
the river", while the meaning of this one word in both phrases is completely
different. Contextual models use context clues from surrounding words to gen-
erate an embedding for each word. They can be divided into two categories:
unidirectional and bidirectional language models, as seen in Figure 2.10. Uni-
directional models, like the OpenAI GPT, can only use the words either left
or right of the word when generating an embedding for it, while bidirectional
models, like BERT, can use all words of the input sequence to generate the
embedding. Similar to the example above, unidirectional models represent the
word "bank" in "I accessed the bank account" based on "I accessed the" but
not "account". Bidirectional models can also use the word "account" to gener-
ate an embedding for the word "bank". There have also been efforts to achieve
the same using a concatenation of two independent unidirectional LSMTs, as
e.g. ELMo (Peters et al. [2018]), but their performance has been exceeded by

1"[...] about 30 minutes on a single Cloud TPU, or in a few hours using a single GPU"
(https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html)

12

CHAPTER 2. THEORETICAL FOUNDATION

Figure 2.10: Differences between bidirectional (BERT, left) and unidirectional
(OpenAI GPT, middle) models, and a language model concatenating two indepen-
dently trained unidirectional LSTMs, one left-to-right and one right-to-left (ELMo,
right).

BERT.
BERT is the first successful bidirectional language model. Bidirectionality

allows the model to indirectly see the word it should predict through the
previous prediction steps, as the model can see not only the words left of
the word to predict but also the words to the right, including the word that
should be predicted in the next prediction step. BERT’s solution to this issue
is to mask some words in the input, then condition each word to predict the
masked word. This idea has been around since the 1950s under the name of
the Cloze task (Taylor [1953]), but it was first applied successfully in BERT.

2.2.1 Pre-Training

The BERT models were pre-trained on two different tasks, one requiring only
one sentence as input and the other requiring two sentences concatenated to
one input sequence. BERT uses WordPiece embeddings (Wu et al. [2016])
rather than whole word embeddings, to improve the handling of rare words.
Using WordPieces, a rare word can be disassembled into multiple common sub-
word units consisting of multiple characters. As an example, the word "em-
beddings" is split up into the 4 WordPiece tokens "em" "##bed" "##ding"
"##s". WordPieces that should be concatenated to the previous WordPiece
are prefixed with two hash symbols. This way, the vocabulary can be dramat-
ically reduced compared to whole-word embeddings. BERT uses a vocabulary
of 30,000 tokens. Each input sequence starts with a [CLS] token (classification
token) and ends with a [SEP] token (separator token). The separator token
is also used to separate two sentences from each other in the input sequence.
Also, there are two special tokens more in BERT’s vocabulary: (1) the [MASK]
which is used for masking a specific position, and (2) the [UNK] token which
is used when a word of the input sequence can’t be tokenized with any of the
WordPieces in the vocabulary.

13

CHAPTER 2. THEORETICAL FOUNDATION

Let s1 and s2 be sentences from which a input sequence should be created,
which s1,1 . . . s1,m and s2,1 . . . s2,n being the tokenized WordPieces of s1 and s2
respectively. An input embedding only containing s1 would be

x = ([CLS], s1,1, . . . , s1,m, [SEP]).

Similarly, when both sentences should be packed into one input sequence, that
sequence would be

x = ([CLS], s1,1, . . . , s1,m, [SEP], s2,1, . . . , s2,n, [SEP]) .

While prior language models only transferred sentence embeddings to down-
stream tasks, the pre-trained BERT models expose all internal parameters for
fine-tuning.

Masked Word Prediction

The first task used for pretraining the BERT models is masked word prediction.
Preparing the dataset of unlabeled sentences, 15 % of WordPiece tokens of
each input sequence are selected for prediction. These tokens are replaced
with a mask token 80 % of the time, a random token 10 % of the time, or left
unchanged 10 % of the time. The input sequence is then passed to the BERT
model, which tries to predict the original tokens at the masked positions, based
on the context given by the other non-masked words in the input sequence.
After the input went through the encoder, the linear vocabulary embedding
layer, and the softmax layer, each position of the output has scores for each
word of the vocabulary assigned to it. For the next word prediction, only the
positions of the mask tokens are considered, and the word with the highest
score at this position is the word that fits best according to BERT.

Next Sentence Prediction

The other task the BERT models were pre-trained on is next sentence predic-
tion. The training data for this task consists of pairs of sentences. Half of these
pairs of sentences are two subsequent sentences from the original document,
for the other half of sentence pairs a random sentence from the corpus is cho-
sen as the second sentence. The assumption here is that random sentences are
contextually disconnected from each other. Receiving these pairs of sentences
as the input, the model has to predict if the second sentence in the pair is the
subsequent sentence in the original document.

Additional information is added to the sentence pairs is added before train-
ing to help the model to distinguish between the two sentences. First, a [CLS]
token is inserted at the beginning of the input sequence, and a [SEP] token

14

CHAPTER 2. THEORETICAL FOUNDATION

is inserted at the end of each sentence. Then, a sentence embedding is con-
structed to assign each token of the input to one of the sentences. Sentence
embeddings are similar in concept to token embeddings with a vocabulary of
2. As the last step, a positional encoding is applied to each token to indicate
its position in the sequence using the mapping described in section 2.1.4.

When predicting if the second sentence of a given input could be the sen-
tence subsequent to the first one, the entire input sequence is passed through
the transformer. Then, the output of the classification token is transformed
into a 2x1 shaped vector, from which the probability of the second sentence
being contextually connected to the first sentence is calculated.

2.2.2 Fine-tuning

Due to the underlying attention mechanism from the Transformer, a pre-
trained language model can easily be fine-tuned to accomplish downstream
tasks involving single word sequences or a pair of word sequences. Given a
general pre-trained BERT model and task-specific training data, all that needs
to be done to fine-tune the model to that specific task is to feed the inputs
and outputs from the training data to BERT and fine-tune all parameters at
once. The outputs of the BERT model are fed into an output layer for token-
level tasks, while the output of the [CLS] token is used for classification, e.g.
sentiment analysis or entailment, as input for another output layer. For the
results presented in the paper, BERT was fine-tuned on four different tasks
(GLUE2 benchmark, SQuAD3 v1.1 and SQuAD v2.0 question answering, as
well as choosing the best from four sentence continuations from the SWAG4

dataset). However, fine-tuning a BERT model is not part of this work, since
we want to evaluate the performance of the BERT model itself for answering
Netspeak queries.

2General Language Understanding Evaluation
3SQuAD is an acronym for the Stanford Question Answering Dataset
4Situations With Adversarial Generations

15

Chapter 3

Related Work

3.1 Writing Assistants
There is a wide variety of software solutions at an author’s disposal that assist
them in improving the quality of their texts. Some of them oversee the written
text directly, others assist the writer in choosing the right words or phrases
to convey the intended meaning. The resulting tasks and types of writing
assistants can be organized in an ontology of increasing complexity, expanding
on Potthast et al. [2010]:

1. Spell checkers

2. Next-word suggestion

3. Word choosing assistants

4. Grammar checkers

5. Style checkers

6. Discourse organizer and text structuring assistants

Using the least amount of context, spell checkers can further be divided into
(1) spelling checkers themselves and (2) spelling correctors (Peterson [1980]).
While the former can only be used to detect spelling mistakes, the latter can
also show the user correction options or, as is common with many smartphones
today, automatically replace misspelled words. However, both do not require
any context beyond the checked word itself and are expected to provide results
in real-time. There are many different approaches on how to detect misspelled
words, e.g. using a dictionary for searching each word using tree traversal and
informing the user of any words that don’t match. Also, more sophisticated

16

CHAPTER 3. RELATED WORK

solutions have been developed in recent years, e.g. by training a model Besides
being used as a writing assistant, spell checkers can also be used to correct
OCR1 errors (Zhuang et al. [2004]) or search engine queries (Martins and Silva
[2004]) and are included in popular text processing programs like Microsoft
Word®.

Using the previous few words as context, writing assistants for next-word
suggestion present the user with an ordered list of fitting words. Due to the
minimal context constraints, this task can be achieved using an indexed list
of n-grams, which are searched for the past few words. The next words of the
best matches are then presented to the user. With the rise of neural network-
based language models in recent years, they have also been used for next-word
suggestion tasks.

Word choosing assistants suggest synonyms and other words to the writer
that might fit in the context better. To show relevant alternative words, those
assistants require at least the surrounding words as context. An example of
word choosing assistants is the search-engine Netspeak Potthast et al. [2010].
It uses an index of n-grams searched using a custom query language that can
be used to search for synonyms, whole words, and more to present the user
with a list of results sorted by frequency of occurrence in the Google N-gram
dataset.

Requiring even more context, some writing assistants help the writer to
correct grammatical errors. These grammar checkers require parts of the sen-
tence or even the whole sentence as context to check for grammatical errors, as
certain words can influence the grammatical structure of distant parts of the
same sentence. In general, there are three approaches to checking a given word
order for grammatical errors. First, there is syntax-based checking (Jensen
et al. [1993]), which parses the sequence into a tree structure. If this parsing
fails, the sequence is considered to have grammatical errors. Then there is
statistics-based checking (Atwell and Elliott [1987]). In this approach, a cor-
pus representative for a given language is POS-tagged and using these tags,
a list of POS tag sequences with their frequency is built. When checking a
sentence, the less frequent a sequence of POS tags within that sentence is, the
more likely it contains an error. However, the most common grammar checkers
nowadays, such as LanguageTool2, use rule-based grammar checking. Using
a set of pre-defined rules, a given sequence of POS tags is matched against
each rule. If one match fails, the sequence is considered grammatically incor-
rect. Since these set of rules can be quite extensive, even for a rather simple
language like English (Quirk et al. [1985]), there have been efforts to automat-
ically derive rules from vast amounts of texts using machine learning, such as

1Optical Character Recognition
2https://languagetool.org

17

https://languagetool.org

CHAPTER 3. RELATED WORK

Miłkowski [2012].
Requiring a deep understanding of the language for different idioms, style

checkers aid the writer to use the correct tone of voice when addressing a
specific audience. Therefore, they need to oversee the whole text, spanning
across multiple sentences. One popular example of style checkers is the ser-
vice Grammarly3. It not only incorporates a style checker but can also check
for grammatical errors, provide alternative words, and correct misspellings.
Also, Grammarly is related to this work as it is using Transformer models
for grammar checking (Alikaniotis and Raheja [2019]), improving upon earlier
rule-based approaches.

Lastly, there are the classes of discourse organizer and text structuring
assistants.

The former can be used to help a moderator to organize discussions, such
as reviewing discourses on Wikipedia articles, and can prevent spam from
interrupting the discussion. To accomplish this task, they have to have a
broader view of the whole discussion. One example that is widely used by
well-known companies is Discourse4.

The latter is more of a hypothetical type of writing assistant. It has to
understand the whole text of a long document completely to be able to identify
different parts of the text and help the writer improve the overall structure
of the text. Since this is a very comprehensive task requiring not only to
understand the context of each word in each sentence, but also the greater
context of the sentences within the document, there is no example for this
type of assistant at the time of writing.

In conclusion, there are many different kinds of writing assistants available,
and some of them have switched from more traditional algorithms and metrics
for detecting linguistic mistakes to using neural network-based approaches, as
we do in this thesis. In the field of search engines assisting in word choice, this
work will also explore the capabilities of neural networks for a task formerly
accomplished by using n-grams.

3https://grammarly.com
4https://www.discourse.org

18

https://grammarly.com
https://www.discourse.org

CHAPTER 3. RELATED WORK

Figure 3.1: The Netspeak search engine web interface.

3.2 Netspeak
As mentioned in the last section, Netspeak is a search engine for commonly
used word phrases on the internet. Figure 3.1 shows the web-accessible user-
interface for Netspeak with the search bar for queries and some example
queries. These examples show the seven basic operators of Netspeak queries,
which are described in detail in section 3.2.1.

The frontend fetches data from an API that is made available by the Net-
speak backend. Both systems communicate using gRPC5, with functions and
data types defined in Google’s protobuf format.

The backend has access to multiple billion pre-indexed n-grams, with n ≤ 5,
together with their occurrence frequency in the Google N-gram Corpus6. When
the API receives a Netspeak query, it searches the indexed n-grams for matches
and returns a list of results, sorted descending by the n-gram’s occurrence
frequency. With its specialized index and search algorithm, Netspeak achieves
retrieval times in the milliseconds.

Netspeak consists of these three main components:

1. A query language to formulate n-gram patterns,

2. an index of frequent n-grams on the web,
5https://grpc.io, an open-source high-performance framework for RPC (Remote Pro-

cedure Call)
6http://storage.googleapis.com/books/ngrams/books/datasetsv3.html

19

https://grpc.io
http://storage.googleapis.com/books/ngrams/books/datasetsv3.html

CHAPTER 3. RELATED WORK

3. a probabilistic top-k retrieval strategy to find n-grams that match a given
query.

3.2.1 Valid Netspeak Queries

Netspeak queries consist of words and operators to formulate patterns, which
Netspeak uses to search the indexed n-grams for matches. They can include
one or more of the seven basic different operators, which can be built using
the tokens shown in Table 3.1. The seven basic Netspeak query operators we
will refer to throughout this work are:

• single-word wildcard (example: how to ? this)

• multi-word wildcard (example: see ... works)

• single-character wildcard (example: it fl?w away)

• multi-character wildcard (example: m...d the gap)

• synonym operator (example: and knows #much)

• word options operator (example: it’s [great well])

• order operator (example: { more show me })

There are also other operators available to formulate valid Netspeak queries,
but their functionality can be reproduced using the seven basic operators from
above and are therefore ignored in this thesis.

Valid Netspeak queries can be divided into two groups: (1) fixed-length
queries and (2) variable-length queries. The former only contains queries with
words and operators that represent a fixed number of words or characters,
such as the single-word wildcard or order operator, while the latter contains
queries with one or more operators that are expanded into a variable number of
words. This can be best described with the following example: The query fine
? me is a fixed-length query, since it can only match n-grams with a length of 3,
while the query fine ... me can match n-grams with lengths of 2, ..., 5 and is
therefore considered a variable-length query. To be able to process fixed-length
and variable-length queries the same, variable-length queries are reformulated
into a set of fixed-length queries and processed in parallel. The results are then
merged in the end. For the aforementioned example the reformulated queries
are the following:

• fine me,

• fine ? me,

20

CHAPTER 3. RELATED WORK

Table 3.1: Netspeak query language tokens

Token Description
? Wildcard for either a character or a whole word
... Wildcard for either multiple characters or two to three words
Compare synonyms for the word after the operator
[] Compare the word alternatives enclosed by the square brackets
{ } Find the best order of the words enclosed by the curly brackets

• fine ? ? me and

• fine ? ? ? me.

3.2.2 Result Retrieval

To search the billions of n-grams online in a reasonable time, the n-grams have
to be indexed offline. Netspeak uses an inverted index µ, that is sorted by
decreasing frequency of the n-grams in the corpus and enables an O(1) access
to n-gram sets that fulfill the following constraints: (1) the n-gram has to
contain the word w, (2) have the length n and (3) w has to be at position
p in the n-gram. Including these three attributes as a tuple in µ allows for
direct access through the indices. Let V denote the set of all words found in
the n-grams D and let D∧ denote the set of integer references to the storage
positions of the n-grams in D on the hard disk. The inverted index µ maps
each word w ∈ V onto a postlist πw, containing references to the n-grams that
contain w:

µ : V × {1, . . . , n} × {1, . . . , n} → P(D∧).

For a given query q, the matching n-grams are at the storage positions

µq = ∩w∈qµ(w, |q|, p)

with p being the position of w in q.
With the example from above, the indices for the query q = fine ? me

are given by µq := µ(fine, 3, 0) ∩ µ(me, 3, 2). First, all indices are selected
for n-grams of length 3, which have the word fine at position 0. Then, all
indices from n-grams of the same length, which have the word me at position
2, are removed from the first list. The resulting indices µq contain references
to 3-grams that start with fine and end with me, which are already sorted by
frequency as the index list itself is also sorted as described above.

21

CHAPTER 3. RELATED WORK

Postlist Pruning

Netspeak uses postlist pruning to reduce the number of operations needed
for intersecting each word’s postlist πw to get the final list of indices µq for
a query q. Let f : D → N be a mapping from the n-grams D to their
respective occurrence frequency in the dataset. Using this mapping f , each
postlist µ(w, ·, ·) is sorted in decreasing order of f . This allows for two types
of postlist pruning: (1) head pruning and (2) tail pruning.

Head Pruning Given a query q, let τ denote an upper limit for the fre-
quencies of the n-grams in the result set of q. τ is the minimal frequency of
all non-terminal n-grams (n-gram not containing any Netspeak operators) in
q. Since no n-gram matching q can have a higher frequency than τ , as the re-
sulting n-grams have to contain that n-gram n of q with the lowest occurrence
frequency, and n-grams containing n have to be less frequent since each longer
n-gram containing n also contributes to the frequency of n.

For example, in the query q = "sounds fine ? me", the two maximum,
non-terminal n-grams are the 2-gram "sounds fine " and the 1-gram "me",
which have the occurrence frequencies f(”sounds fine”) = 45,817 and f(”me”)
= 566,617,666 Since no n-gram matching q can have a frequency larger than
the minimal frequency of the two maximum, non-terminal n-grams, which is
in this example τ = f(”sounds fine”) = 45, 817, all entries of µ(”sounds”),
µ(”fine”), and µ(”me”) whose n-grams have a higher frequency than τ can be
skipped.

Tail Pruning Since Netspeak users look for n-grams commonly found on
the web, very rare n-grams are of less interest. If a postlist is too long to
be loaded into memory at once, tail pruning is applied. Netspeak uses three
different strategies for tail-pruning:

1. stop after a specified number of matching n-grams have been found,

2. stop after a specified number of entries from a postlist have been read,

3. stop after a specified quantile of a postlist has been read.

Using the described offline indexing and postlist pruning, Netspeak can not
only retrieve results in milliseconds but gives the user also the ability to extend
the pruned search results to retrieve the complete result list.

22

CHAPTER 3. RELATED WORK

3.3 Writing Assistants using Transformers
Since the Transformer architecture has only been released in 2017, few at-
tempts have been made to use it in a writing assistant besides the original use
as a translator or more general sequence to sequence conversions.

One prominent example where the performance of Transformers has been
compared to a part of a traditional writing assistant is the already mentioned
tool Grammarly. The research team at Grammarly Inc. used a Transformer to
build a grammatical error correction system for their assistant (Alikaniotis and
Raheja [2019]). In their work, they used BERT to calculate the probabilities of
different versions of a sentence from an automatically generated confusion set
and use this probability as an indication for potential grammatical errors. The
proposed yet not ideal approach to calculate this probability is to iteratively
mask each word in the sequence and sum the log probabilities of those words.
Additionally to BERT, the researchers tested OpenAI’s GPT and GPT-2 mod-
els as well and compared the results to BERT and previous work. Concluding
the test results, the researchers state that Transformer-based language mod-
els, trained on vast amounts of unlabeled texts, achieve nearly state-of-the-art
performance in grammatical error correction with only a very limited amount
of annotated data.

23

Chapter 4

Methodology

4.1 NeuralNetspeak
NeuralNetspeak is what we call our version of Netspeak based on neural lan-
guage models. In contrast to Netspeak, NeuralNetspeak doesn’t use an indexed
n-gram dataset but pre-processes the queries so a language model can predict
word-placeholders and assign a score to the output. The synonym retrieval
required for processing Netspeak queries also makes use of a neural network.

This should allow NeuralNetspeak to show more relevant results based on
the context given in the query while also lifting the query length limitation
of Netspeak. In this iteration of NeuralNetspeak, we use the BERT language
model (see section 2.2), because the training objective it was pre-trained on,
namely whole word masking, closely correlates with one of Netspeak’s tasks:
predicting word wildcards. We can also use BERT to score a given input
and use that score to make a statement about the linguistic quality of that
input. Then, we use this score to sort the results, showing the best result first.
This score can also be shown to the user as a replacement for the frequency
measure used by Netspeak to give the user a feeling for how good a particular
result is compared to other results. Further changes to the user interface
and differences in the featureset of NeuralNetspeak compared to Netspeak are
discussed in section 4.1.5 and section 4.1.6 respectively.

As described in the introduction, the goal of NeuralNetspeak is to be a
drop-in replacement or a supplement for the n-gram based backend Netspeak.
To accomplish this, NeuralNetspeak uses the same API definition as Netspeak.
A working example of NeuralNetspeak with Netspeak’s frontend can be found
at https://netspeak.org/demo/.

24

https://netspeak.org/demo/

CHAPTER 4. METHODOLOGY

4.1.1 Query Processing with BERT

We use BERT for processing Netspeak queries in two ways: (1) to calculate a
score for several or single words in the context provided by the query, and (2) to
predict a set of words at certain positions, using the score of each prediction as
an indication for the linguistic quality of the resulting output. The scores are
retrieved from BERT by averaging the probabilities it assigned to the several
words or single word in BERT’s final softmax layer. In this thesis, we refer to
the probability of a single word w with scoreword(w).

The whole result retrieval process for a valid Netspeak query can be divided
into five steps: (1) tokenization and pre-processing, (2) scoring, (3) mask pre-
diction, (4) synonym retrieval, and (5) result collection. First, the query is to-
kenized based on regular expressions to determine the positions of the different
Netspeak operators in the query. This tokenized query is then pre-processed,
resulting in multiple subqueries that are derived from the original query by
replacing specific operators with possible results and only contain mask and
synonym tokens, as well as words considered final. These subqueries are then
processed in parallel by first calculating a base score for the words considered
final, then predicting all masked words, and finally retrieving synonyms for
words marked with the synonym operator. The synonyms are retrieved and
scored after the mask prediction to minimize the work needed to be done for
mask prediction since that task is very expensive in terms of computational
cost and retrieving the synonyms first would result in multiplying the number
of mask predictions that have to be made by the number of synonyms found
for each word. As the synonyms of a word are typically quite close to the
original word’s meaning, this shouldn’t affect the masked-word prediction re-
sults. Finally, all results are collected and sorted by the score assigned by the
language model before the result list is returned.

Tokenization and Query Pre-Processing

To tokenize a query, it is matched word by word against a list of regular
expressions, each identifying one of the seven operators supported by valid
Netspeak queries. Words that do not match any of the regular expressions are
marked as final since they only provide context and should appear unchanged
in the output. The result of the tokenization step is a sequence of words, each
assigned a number, which either identifies it as final or assigns it one of the
operators.

Using the tokenized query, multiple pre-process subqueries are generated
sequentially by iterating over all words. Each iteration step uses the partial
pre-process subqueries of the previous iteration and appends one or more words
or tokens to it. Depending on the word or query operator at a given position in

25

CHAPTER 4. METHODOLOGY

the query, one of the following operations is executed for that word or operator:

• Words tokenized as final are just appended to each of the previous step’s
partial pre-process subqueries.

• Multi-mask operators are appended once as two and once as three BERT
[MASK] tokens, which we call a mask group. This doubles the number of
partial pre-process subqueries compared to the previous step.

• Single-mask operators are appended as a mask group containing only one
BERT [MASK] token, as only one word should be predicted. Since the
language model we use operates on WordPiece and not whole words, us-
ing a single [MASK] token may cause longer words to not being predicted.
In future works, it could be evaluated if adding multiple [MASK] tokens
here and only considering WordPieces (indicated by the prefix ##) as
valid predictions for these additional tokens in the mask prediction step
yields better results or improves the recall.

• There are two types of in-word mask operators, that Netspeak queries can
contain: (1) a placeholder for exactly one character and (2) a wildcard for
multiple characters. Both of them are processed similarly. First, regular
expressions are generated from words containing those in-word mask op-
erators by replacing the single in-word mask operator with an expression
to match exactly one word-character and the multi in-word mask opera-
tor with an expression matching more than one word-characters. These
expressions are then used to retrieve matching words from the vocabu-
lary of the language model. Although the model’s vocabulary is limited
to about 30.000 words and contains not only words but also word-pieces
and single characters, it also allows us to test the suitability of the lan-
guage model alone for answering Netspeak queries. The results could
likely be improved either by searching a dictionary of words for matches
or relying on Netspeak for retrieving fitting words. However, using the
latter option would only allow statements about the result ranking of
Netspeak and NeuralNetspeak, since the results themselves would be the
same. Another approach would be to mask the word which includes
the placeholder operator and filtering the words predicted by the lan-
guage model for valid matches, though this would also further decrease
the amount of context-providing words, especially for short queries or
queries containing multiple operators which result in mask tokens. Or,
since BERT operates on WordPiece-level, masking the character(s) in
question and filtering the predictions for these masks for WordPieces
could be a conceivable yet for this work too elaborate approach.

26

CHAPTER 4. METHODOLOGY

Each matching word is appended once at a time to each previous pre-
process subquery, multiplying the number of resulting pre-process sub-
queries by the number of matching words. To prevent this number from
exploding, the number of possible matches could be limited using heuris-
tics, e.g. by using only those up to x words, which are most similar to
the original word.

• Words marked with the synonym operator are appended to the pre-
process subquery without the operator.

• Word alternatives to be compared are appended one by one to each of the
partial pre-process subqueries from the previous iteration, multiplying
the number of resulting subqueries by the number of word alternatives.

• To determine which order of the words enclosed by a word order operator
is the best, each one of the possible permutations is appended to each
pre-process subquery generated from the previous step, multiplying the
number of resulting subqueries by the number of possible permutations.

After the last iteration step, the subqueries don’t contain any Netspeak
operators anymore and can directly be used as inputs for BERT for masked
word prediction and query scoring, which are the next steps in processing the
subqueries.

4.1.2 Query Scoring Strategies

The different scoring strategies used by NeuralNetspeak are (1) sum scoring
and (2) batch scoring. In both strategies, scoreword(w) is the score of a spe-
cific word w from a word sequence q as determined by BERT. In practice,
scoreword(w) is the probability of the word w at its position in the softmax
layer of BERT after giving it q as an input.

Sum Scoring

With sum scoring, the score for a single query q is given by

scoresum(q) =
∑

w∈W⊆q

scoreword(w),

where W ⊆ q are the words which should be considered when calculating the
score. This way, we can ignore specific words in our score calculation.

27

CHAPTER 4. METHODOLOGY

We use this scoring strategy among other things to calculate the base
score scorebase(s) of a word sequence s with

scorebase(s) =
∑

w∈Wf⊆s

scoreword(w).

For the base score, we only take into account the final wordsWf ⊆ s, which are
all words that aren’t either a [MASK] token or a word marked with the synonym
operator in the initial Netspeak query from which s was built as described in
section 4.1.1. Following the definition of sum scoring, the base score is defined
as If all words of s are final, so if Wf = s, the base score is the final score of
the result and is displayed to the user without further modifications.

Batch Scoring

We use batch scoring to score multiple results at once. For this, we leverage
BERT’s ability to process multiple sentences within a single input by sepa-
rating them with a [SEP] token (sentence/sequence separation token used by
BERT). Given a list of queries q1, . . . , qn that should all be scored at once, we
generate a query batch which can be used as the input for BERT. For this,
we start the input sequence with a [CLS] token as required by BERT, then ap-
pend the first query and a separation-token. Then, we append the next query
and another separation-token. We repeat this last step until (1) all queries are
contained in the query batch or (2) the query batch would exceed a maximum
length of l tokens if another query and a separation-token would be appended,
so the query batch only contains queries. In this work, the maximum length l
of the query batch tokens is 512, as this is the input length limit of our model.

After this process, we have a query batch token sequence b is in the following
form:

b = ([CLS], q1,1, . . . , q1,m, [SEP], . . . , qk−1,n, [SEP], qk,1, . . . , qk,o, [SEP]),

where qi,j is the j-th token of the i-th query, and k is the last query that can
fit completely in b with a separation token at the end so that |b| ≤ l.

Then, we generate a list of sequence ids which provide information about
the start and end of each query to the language model. Because the model
was trained on tasks involving only up to two sentences per input sequence,
it only accepts the sequence ids 1 and 0. This requires us to use alternating
sequences of only ones and only zeros in the sequence id list, each sequence si
containing as many same sequence ids as its corresponding query qi.

Having generated the query batch token sequence and the sequence id list,
we feed both lists into BERT. Then, we take the resulting probabilities of the

28

CHAPTER 4. METHODOLOGY

softmax layer and split them using the sequence id list to assign a probability
score to each token of each query. With the scores assigned, we then use sum
scoring to calculate a score for each query based on the probability scores of
each token of the query.

The advantages of batch scoring multiple queries at once are two-fold. First,
by concatenating all queries into a single input for BERT, we only have to let
the prediction run once to be able to calculate a score for each query. This
dramatically reduces the computation required for calculating the score for
multiple queries compared to scoring each query individually only using sum
scoring, which is critical for operation in the context of a search engine. Second,
by retrieving all scores from the same output of the same prediction, we ensure
the comparability of the results because the score for one result depends on
the entire input sequence. When the results are fed into BERT one at a time,
the scores differ from the score it assigns to the same result when it is packed
together with other results into a single input sequence.

4.1.3 Subquery Processing

After the input query has been pre-processed as described in section 4.1.1, we
calculate a base score for each subquery using the aforementioned sum scoring
approach. Note that the base score calculation ignores mask tokens and words
marked for synonym retrieval. For subqueries whose input query contained
only in-word wildcard, order, or alternatives tokens, no further processing is
required and the subquery processing is done. These subqueries are therefore
shown to the user as results with the base score as their final score. The
subqueries that have to be processed further using BERT are only the ones
containing mask tokens, generated from single or multi-word wildcard tokens,
or words marked for synonym retrieval and ranking. These further processing
steps create additional subqueries, which we call mask-subqueries in the
maks prediction and scoring step and synonym-subqueries in the synonym
retrieval and scoring step.

4.1.4 Mask Prediction and Scoring

After calculating a base score for a subquery containing mask tokens, we split
the positions of mask tokens into distinct mask groups M of tokens generated
by a single query operator. As an example, the query how ... use this ?
would produce multiple subqueries including how [MASK] [MASK] use this
[MASK], where the first two mask tokens and the last mask tokens would be
divided into two mask groups.

All mask groups are processed sequentially from left to right. Each mask

29

CHAPTER 4. METHODOLOGY

group processing step results in multiple mask-subqueries, which are created
by replacing the mask tokens of the mask group with predicted word tokens
and used as inputs for the next mask group prediction.

The subquery example from above would therefore be processed in two
steps. First, the first two mask tokens are predicted with our BERT language
model and replaced by predicted word tokens. Since BERT calculates a proba-
bility for each word of the vocabulary for each mask token, we take the k words
with the highest score for each mask token and generate a mask-subquery for
each combination. These mask-subqueries are then used to predict the last
mask token.

Mask Prediction and Scoring Strategies

We tested the following three different strategies for predicting and scoring
mask groups consisting of multiple mask tokens:

1. Combination Sum Scoring: Predict all mask tokens of the mask
group at once and build all possible combinations of the predicted words,
respecting their relative position. To calculate the score for the word
combination, sum the scores of the individual words. Add this score to
the base score.

Problem: The top predicted words for each mask token are not contextu-
ally connected, so a result constructed from these top words although not
being a sensible combination will have the highest score, as each word
has the highest score at its position, and will subsequently be shown
as the first result to the user. This could result in a high score being
assigned to word combinations that make no sense linguistically.

2. Sequential Prediction and Individual Scoring: Predict each mask
token of the mask group sequentially from left to right, taking the best
k results from the previous and use them to create new mask-prediction
subqueries which are then used to predict the next mask token.

Problem: Scoring each mask-subquery individually takes a lot of time,
which is not acceptable in the domain of search engines like Netspeak
and therefore NeuralNetspeak.

3. Combination Batch-Rescoring: Predict all mask tokens of the mask
group at once, then build all possible combinations of the predicted words
while respecting their relative position. Sort these results by the sum of
the scores of the individual words and re-score the best results using
batch-scoring.

30

CHAPTER 4. METHODOLOGY

Problem: Due to the limited input sequence length in the batch rescoring
process, some of the results may get discarded. However, since these
results have a low score due to them being sorted by score, they are
probably not as relevant as the first results anyway.

We ran all three tests with the same 4,000 queries from our data set, which
contained only the multi whole-word wildcard operator. The results can be
found in the appendix in section A.1. While the first strategy answered the
queries the fastest (845.5 seconds per 1,000 queries), it also resulted in the
worst average rank of the expected result with an average rank of 25.93 for
short and 10.06 for long queries. The second strategy ranked the expected
result considerably higher, with an average rank of 15.59 and 6.53 for short
and long queries respectively, but the execution time of 2722.5 seconds per
1,000 queries is inacceptable for our use-case as a search engine. Finally, the
third strategy ranked the expected result only slightly lower than the second
strategy, with an average rank of 16.58 and 6.51 for short and long queries
respectively, while nearly matching the execution times of the first strategy
with 904.5 seconds per 1,000 queries.

Following these results, we decided to use the third option, combination
batch-rescoring, because it constitutes a reasonable trade-off between speed
and precision. The processing speed is of great importance because Netspeak,
and therefore NeuralNetspeak, is a search engine, which makes response times
of multiple seconds not feasible.

Mask Prediction

For each mask group, the top k predictions with the highest score are re-
trieved from BERT for each masked position within that group. We denote
the collection of sets of predicted words P for a mask group i as Wi, so that
Wi = {P1, . . . , Pn}, where n is the number of masked positions within the
mask group i and ∀P ∈ Wi : |P | = k.

Since the n-th word predicted for a [MASK] token at a certain position is
not contextually related to the n-th word predicted for the subsequent posi-
tion, even within the same mask group, we build all possible combinations of
predicted words within a mask group, respecting the position they were pre-
dicted for in the original query. We define this set of word combinations for a
mask group i as

Mi := {(w1, ..., w|Wi|) | wj ∈ Pj, Pj ∈ Wi}.

After a mask group has been processed, the outputs are used to replace the
[MASK] tokens in q, resulting in a set Qm of mask-subqueries. These mask-
subqueries are then used to predict the next mask group prediction step instead

31

CHAPTER 4. METHODOLOGY

of the subquery q. While increasing the number of predictions needed for the
next mask group prediction by kn, where n is the number of [MASK] tokens
within the current mask group, we also provide BERT with additional context
to improve the quality of word predictions in subsequent steps. Since we are
using a k of 10 in the current implementation and are only testing queries with
a single mask group, we consider this a reasonable trade-off.

However, if queries containing multiple mask groups are allowed, adjust-
ments must be made to prevent the number of new sentences from exploding.
One simple approach to limit the number of newly generated mask-subqueries
Qm would be to decrease k with each processed mask group. Another possibil-
ity would be to introduce a threshold to consider only those predicted words
whose score is greater than the threshold. We have implemented the first ap-
proach in NeuralNetspeak. But since we consider in this work only queries
with a single operator token, the efficacy of this approach still needs to be
evaluated.

Applying this procedure to all n mask groups, we get a set M , which con-
tains sets of all possible combinations of predicted words for all mask groups:

M := {Mi | i ∈ {0, ..., n}}.

Mask Scoring

We use combination-batch-rescoring to assign a score to each mask-subquery.
To do so, we sort all mask-subqueries after the mask group prediction by the
score of the predicted words used in the mask-subquery. With Cj ∈Mi being
a combination of predicted words, the score for this combination is calculated
with

scorepredictions(Cj) =
1

|Cj|
·
∑
w∈Cj

scoreword(w).

The score of a combination of words predicted for a mask group i is the sum
of those word’s scores, weighted by the number of words in that combination.
The weighting makes two and three-word results, caused by a multi-word mask
Netspeak query operator, comparable.

After sorting the mask-subqueries, a new score is calculated for each mask-
subquery. We do this because a combination of the first predictions of each
masked token, sorted by the score assigned by BERT, will always have the
highest combined score, but those predictions aren’t contextually related. This
leads to a high score being assigned to word combinations that make no sense
linguistically. To combat this, we re-score the mask-subqueries using batch
scoring. Since some mask subqueries can be discarded during batch scoring due
to the limitation of the input sequence length of the language model, the above-
mentioned sorting step is necessary, although the score is not displayed to the

32

CHAPTER 4. METHODOLOGY

user and is not used in later processing steps. We call this recalculation of the
result scores after filling the masked positions with predictions combination
batch-rescoring.

We calculate the score of a mask-subquery qm given a list of mask queries
Qm = (q1, ..., qm, ..., qn) with

scoremask(qm|Qm) = σm(batchScore(Qm)),

where batchScore(Qm) is the function for batch scoring the list of mask-
subqueries Qm, resulting in a list of n scores for the n subqueries in Qm.
From this list, we select the m-th score using the selection function σm. Since
the batch scoring function calculates a score for each mask-subquery in Qm,
its results can be cached in practice and all scores can be selected from this
cached list of scores.

Synonym Retrieval and Scoring

The last step in processing the query is to find and compare synonyms for the
words marked with the synonym operator in the Netspeak query. Since BERT
itself can’t be used to retrieved synonyms for a given word, we first use spaCy1

for POS tagging and use the POS tag of the word to filter the sets of synonyms
wordnet2 provides for that word. We have tested and evaluated three different
strategies for synonym retrieval and scoring:

1. Retrieval and individual scoring: Retrieve all synonyms for the word
as described above and use them to build new synonym-subqueries by
replacing the word with its synonyms one by one. Then, use sum-scoring
to calculate a score for each synonym-subquery.

Problem: Very slow when many synonyms are retrieved for a word as
each new synonym-subquery has to be processed individually.

2. Retrieval and batch scoring: Same procedure as in the first strategy,
but using batch scoring to score the new subqueries to decrease the time
needed for rescoring significantly.

Problem: The synonym retrieval delivers an unsorted list of synonyms.
Since batch scoring may discard some subqueries due to the limited input
sequence length of our model, we can’t guarantee that we include the
most fitting synonym in the query batch which in turn means that the
results may not contain the most relevant result, which is not acceptable
for a search engine.

1https://spacy.io
2https://www.nltk.org/howto/wordnet.html

33

https://spacy.io
https://www.nltk.org/howto/wordnet.html

CHAPTER 4. METHODOLOGY

3. Filter predictions for synonyms: Replace the word with a [MASK]
token and use BERT to predict words at that position. Retrieve the syn-
onyms the same way as in the first two strategies and filter the predicted
words for those synonyms. Add the scores of the predicted words to the
score of the synonym-subquery, which is either still the base score or was
assigned in the mask prediction and scoring step, and return the results
sorted by score.

Problem: The mask prediction might not find all synonyms for the orig-
inal word, and no synonyms consisting of multiple words. However, the
synonyms that are found, should fit the query quite well as they are
predicted based on the context of the synonym-subquery.

We ran all three tests with the same 4,000 queries from our data set, which
contained only the synonym operator. The results of each test run for each
strategy can be found in the appendix in section A.2. While the first two
strategies answered the most queries (17.8 %), the test of the first strategy
had the longest execution time (355 seconds for 1,000 queries). The second
strategy, while being the fastest (212 seconds per query), ranked the expected
result considerably lower on average (rank 2.41). Finally, the third strategy
ranked the expected result the highest on average (rank 1.21 for short and
1.12 for long queries), while having similar execution times compared to the
second strategy (262 seconds per 1,000 queries) but also the lowest number of
answered queries (13.8 %).

Following these results, we decided to use the third option, filtering the
predictions for synonyms, because, although having the lowest recall for both
short and long queries, it achieves the best result ranking across short and long
queries. This drastic improvement of the average rank is worth the decrease
in recall.

We retrieve the synonyms after the mask prediction step to ensure that
no other mask tokens are included in the synonym-subquery if the original
query contained not only the synonym operator but also a word wildcard
operator. Using the original word in the mask-subqueries when predicting
masked tokens should not affect these predictions too much, since synonyms are
close in meaning. However, some synonyms may need a different preposition
as the original word, which in turn is not predicted by using mask-subqueries
with the original word. Since we only consider queries including a single query
operator in this work, investigating this behavior is out of scope for this thesis.

To calculate the score for a synonym-subquery with a predicted synonym,
we use sum scoring to calculate a score for the synonym-subquery, considering
all words other than the predicted synonym, and simply add the score of the
predicted synonym. Let q be the query, s the predicted synonym and W = q

34

CHAPTER 4. METHODOLOGY

s all words of q without the predicted synonym s. Then, the score scoresyn(q|s)
for q given s is

scoresyn(q|s) =
1

|q|

(∑
w∈W⊆q

scoreword(w) + scoreword(s)

)
.

Final Result Score

In summary, the final score of a particular result r, given the predicted words
selected for this particular result Mr and synonyms Sr, is calculated in one of
three ways, depending on the operators contained in the original query q:

1. If q contains neither whole-word wildcard operators nor synonym opera-
tors, r is one of the unaltered subqueries generated from q with the base
score as the final score.

2. If q contains whole-word wildcard operators but no synonym operators,
the final score of r given the predicted words Mr is the score of the
mask-subquery after the batch-rescoring process.

3. If q contains synonym operators, the final score of r given the synonyms
Sr (and the predicted wordsMr if q also contained whole-word wildcards)
is the score of the synonym-subquery after calculating scoresyn(q|s). Since
this score also includes all previously predicted words, if any, the words
Mr are also indirectly re-scored through the synonym score calculation.

Sorting the results by score concludes our BERT-based query processing.

4.1.5 Implementation and Integration in Netspeak

A product of this work is a version of NeuralNetspeak implemented as a python
package, which is also used for all tests and performance evaluations in the next
chapters. Figure 4.1 shows an overview of the data flow through the various
software components of the NeuralNetspeak backend.

When a user enters a query in the search field of the web interface (see Fig-
ure 4.2) it is sent as a request to the first docker container3 running an envoy
proxy4, which then forwards the request to a server running in the NeuralNet-
speak docker container. Since the frontend uses gRPC-Web5 to communicate

3https://www.docker.com
4https://www.envoyproxy.io
5https://grpc.io/docs/platforms/web/basics/

35

https://www.docker.com
https://www.envoyproxy.io
https://grpc.io/docs/platforms/web/basics/

CHAPTER 4. METHODOLOGY

Container

gRPC

Server Preprocess Query
Processing and Scoring
Collect and Sort Results

NeuralNetspeakQuery

Results

Request

Response

Container

envoy

Proxy

Tranlate between
gRPC-Web and

gRPC

Request

Response

Figure 4.1: A macroscopic overview of the NeuralNetspeak software.

with the backend, but the server in our NeuralNetspeak container only ac-
cepts gRPC6 bitstreams, the envoy proxy is needed to translate between the
JSONP-based gRPC-Web and bitstream-based gRPC protocols. It also can be
used to separate the server running NeuralNetspeak from the internet and can
be configured to access multiple servers running NeuralNetspeak instances in
a cluster. The gRPC server in the NeuralNetspeak container then extracts the
query from the request and uses a NeuralNetspeak instance to process it. All
results are then sent in a response back to the envoy proxy which translates
the gRPC response to gRPC-Web and sends it to the frontend.

NeuralNetspeak

To allow NeuralNetspeak to be used as a drop-in replacement for the current
Netspeak backend, the NeuralNetspeak instance is managed by a gRPC server
using the same protobuf API specification as Netspeak. NeuralNetspeak uses
a version of the large BERT model trained on whole word masking7, offered
by the huggingface transformers package8. We use this specific model because
we use BERT to only predict whole words for the whole-word operators, as the
possible words for the in-word operators are already inserted into the input in
the query pre-processing step. If we were to predict in-word operators with
BERT as well, we could split the word containing the operator into individual
WordPieces and use a different model to predict single or multiple word pieces.

The whole software can be deployed completely self-contained via a docker
container. To achieve maximum performance, the docker image for the con-
tainer is based on the nvidia/cuda image provided by Nvidia, which already
comes with the CUDA Toolkit and drivers needed to access any Nvidia GPUs
connected to the host system from within the docker container. This way,

6https://grpc.io/
7Model name: bert-large-uncased-whole-word-masking
8https://github.com/huggingface/transformers

36

https://grpc.io/
https://github.com/huggingface/transformers

CHAPTER 4. METHODOLOGY

Figure 4.2: The slightly changed web interface for NeuralNetspeak. Instead of
the two corpus selection buttons, there is only a button for "English (BERT)",
referencing the language model used by NeuralNetspeak.

NeuralNetspeak can leverage a connected GPU to accelerate all BERT-related
matrix calculations.

Web Interface

Figure 4.2 shows the updated web interface for NeuralNetspeak. Compared to
the standard netspeak interface, instead of "English" and "German" there is
only one language to select, which we named "English (BERT)" to differentiate
our BERT-backed result retrieval process from Netspeak’s existing corpus-
based retrieval strategies. Future updates to NeuralNetspeak may add other
languages or variants of English language models which can be differentiated
using the same naming scheme.

4.1.6 Limitations

The goal of NeuralNetspeak is to reproduce most of the core functionality the
current Netspeak backend provides while using a Transformer for predicting
missing words and scoring the results. However, due to fundamentally dif-
ferent retrieval strategies of Netspeak and NeuralNetspeak, the feature set of
NeuralNetspeak may be a bit limited compared to the current implementation
of Netspeak.

One of the most important metrics for Netspeak, the frequency of the re-
trieved phrases, is based on the n-gram dataset. Since NeuralNetspeak doesn’t

37

CHAPTER 4. METHODOLOGY

use a dataset of phrases but sorts the results based on the scoring from the
Transformer by relevancy, no statement can be made about the frequency of a
given result. To still be able to give the user a feeling for the relative quality
of the results, instead of the frequency, NeuralNetspeak returns the score of
each result together with the result itself to be shown to the user.

4.1.7 Expected Improvements

Despite the limitations mentioned above, using language model based query re-
sult retrieval has many advantages over an indexed list of fixed-length phrases.

Due to the limitations given by the length of n-grams, only the context of a
few words surrounding the query operator can be used to find relevant results,
because all context providing words must be an exact match for a result to be
found. Since the transformer-based language model can work with substan-
tially longer input sequences of up to 512 tokens while maintaining context
over the entire input sequence, we expect the results to be more relevant when
longer queries are supplied. Also, we expect the language model to process
queries that contain words in an order it has never seen before based on its
understanding of natural language. This should lead to an increased number
of answered queries.

Another consideration is the amount of storage required for the current
Netspeak implementation and Neural Netspeak. While Netspeak needs about
200 GB to 250 GB of low-latency disk space to store its n-grams and index lists,
the large BERT model used by NeuralNetspeak only needs about 1.35 GB of
disk space and is loaded into memory once after starting the service. However,
these advantages are somewhat diminished by the significantly higher cost of
computing resources compared to storage costs.

38

CHAPTER 4. METHODOLOGY

4.2 Datasets
We use multiple text corpora of high linguistic quality to compare on both
NeuralNetspeak and the current version of Netspeak. For this, we decided to
use the British National Corpus (BNC Consortium [2007]), Europarl Corpus
(Koehn [2005]), The New York Times Corpus (Sandhaus [2008]), and a Corpus
assembled from featured Wikipedia articles9, which ensure a higher language
quality compared to other Wikipedia articles. Using these four corpora we
cover multiple domains such as informative and imaginative texts, spoken lan-
guage, news articles, and factual texts.

4.2.1 Sentence Selection

Due to the sheer size of the corpora, not all sentences from every corpus can
be used. Since we want to have 5,000 queries for each one of the seven valid
Netspeak query operators per dataset to eliminate statistical effects, we select
35,000 sentences for query generation. This amounts to a total of 140,000
queries across all four corpora. The 35,000 sentences used for generating the
queries from a corpus are randomly selected from all sentences of the entire
corpus, except for the New York Times Corpus, where we only consider articles
from the three most recent years available, 2005, 2006, and 2007. We only
use the most recent years, to minimize the effects changes in language over
time have on the results. Since the objective of this thesis is to evaluate the
performance of NeuralNetspeak on idiomatic language from current years and
onward, data from articles from many years ago wouldn’t be meaningful for
evaluating NeuralNetspeak’s performance in this context.

9https://www.kaggle.com/jacksoncrow/wikipedia-multimodal-dataset-of-good-articles

39

CHAPTER 4. METHODOLOGY

4.2.2 Query Generation

We generate two types of queries from each sentence. First, we generate a
short query Qs, which strictly follows Netspeak’s query format as described
in section 3.2.1 and contain only up to five words. Second, we generate a long
query Qf by replacing the words used for generating the short query in the
original sentence with the short query itself. This results in longer queries,
which still use the Netspeak query operators but provide more context for
query processing. These long queries let us measure the performance difference
given a longer context. However, due to the five-word limit of queries Netspeak
can process, these long queries can only be tested with NeuralNetspeak. Table
4.1 shows examples of our auto-generated queries. Further examples can be
found in the appendix in Table A.3

Since Netspeak and NeuralNetspeak work with the same queries that follow
a certain format, the 35,000 queries can be generated unsupervised from the
1.5 million to more than 6 million relevant sentences of each dataset. Only a
random part of each selected sentence is used to generate one short query con-
taining only a single operator. This part of the sentence is limited to five words
to respect the query length limitation of Netspeak. Further, we only generate
queries from parts of the sentences, which don’t contain any proper nouns or
names. We also don’t expect Netspeak or NeuralNetspeak to fill placeholders
with numbers, as they are mostly topic-specific and won’t make any statements
about the general suitability of either system as a general writing assistant,
so words containing non-word characters are not considered for masking and
synonym operators. Before a query is generated from a given sentence, it is
first cleaned by removing all special characters such as quotation marks and
asterisks and characters that overlap with Netspeak query operators.

Given a sequence of words X = (w1, w2, . . . , wn), we randomly (uniformly)
select an index iq, 1 ≤ iq ≤ n, for the start of the query. Since queries written
by Netspeak’s users typically contain only certain parts of a sentence, as seen in
Netspeak’s query logs, it makes sense to generate queries from different parts of
a sentence rather than to use only the beginning or end of the sentence. Next,
we sample a query length l from a discrete uniform distribution l ∼ U(al, bl)
with values between al = 3 and bl = 5, and an index io within the query
range io ∼ U(iq, iq + l) at which the word, or, depending on the operator,
multiple words, of the sentence should be replaced with a query operator.
To determine which operator should be used in the query, we then sample a
number o ∼ U(1, 7), representing one of the seven valid Netspeak operators.

Whole-word Wildcard Operators If the single-mask operator was se-
lected, the word wio from X is replaced by the corresponding query operator

40

CHAPTER 4. METHODOLOGY

token ?, producing the new sequence X ′ = (w1, . . . , wio−1, ?, wio+1, . . . , wn).
For the multi-mask operator, wio and either one or two surrounding words

are replaced by the multi-mask operator token We limit the number
of words replaced by the multi-mask operator to three, to provide enough
context with the short query to prevent Netspeak and NeuralNetspeak from
showing random results (or "guessing"), and replace at least two words to
distinguish between the single-mask and multi-mask operator, as the former is
a placeholder for a single word.

Example: Let X = (This, is, an, example, sentence) be a sequence of words
with wio = ”an” as the word to be replaced with by operator. For the sin-
gle whole-word wildcard query operator, the output sequence X ′ is X ′ =
(This, is, ?, example, sentence). For the multi whole-word wildcard query oper-
ator, one possible output sequence X ′ is X ′ = (This, ..., example, sentence).

In-word Wildcard Operators Similar to the single-mask operator, queries
containing a single-in-word-mask operator are produced by replacing a single
random character of wio with the respective token ?. The result is a sequence
of the form

X ′ = (w1, . . . , wio−1, (x?z), wio+1, . . . , wn),

with xyz := wio , where x and z are the surrounding characters of the single
character y which should be replaced.

Similarly, in-word multi-mask operator queries are built by a random num-
ber of characters between the first and last character of wio with the operator
token ..., resulting in sequences with the following structure:

X ′ = (w1, . . . , wio−1, (a...b), wio+1, . . . , wn)

where a and b are the first and last character(s) of wio , 0 < |a|+ |b| < |wio|−1.
Example: Let X = (This, is, an, example, sentence) be a sequence of words

with wio = ”example” as the word to be replaced with by operator. For the
in-word single-mask query operator, one possible output sequence X ′ is X ′ =
(This, is, an, ex?mple, sentence). For the in-word mulit-mask query operator,
one possible output sequence X ′ is X ′ = (This, is, an, e...le, sentence).

Synonym Operator To create a query to retrieve and compare synonyms
for the word wio , we first acquire a list of synonyms S for wio using the same
basic synonym retrieval strategy with spaCy and wordnet as described section
4.1.4. From this list of synonyms, we pick one synonym sio ∈ S at random
which we use to replace wio with. Then, we prefix the synonym with the hash
symbol synonym operator. The resulting sequence is as follows:

X ′ = (w1, . . . , wio−1, #sio , wio+1, . . . , wn).

41

CHAPTER 4. METHODOLOGY

Since we use the same approach for retrieving synonyms when creating the
queries as to when we process these queries, NeuralNetspeak will retrieve the
synonyms for this synonym rather than for the original word. But because
the relationship between synonyms is not bijective in wordnet, those retrieved
synonyms might not include the original word.

Example: Let X = (This, is, an, example, sentence) be a sequence of words
with wio = ”example” as the word to be replaced with by operator. For the
synonym query operator, X ′ is X ′ = (This, is, an, #sample, sentence).

Alternatives Operator Queries containing the alternatives operator are
constructed by retrieving a synonym w′io of word wio using the same approach
as above. Both words are then surrounded by square brackets [], producing
the sequence

X ′ = (w1, . . . , wio−1, [wio w
′
io], wio+1, . . . , wn).

Since these queries are only used for validation purposes and not for training
or fine-tuning the language model, there are no negative consequences from
the first alternative word always being the expected word.

Example: Let X = (This, is, an, example, sentence) be a sequence of words
with wio = ”example” as the word to be replaced with by operator. Here, X ′
is X ′ = (This, is, an, [sample example], sentence).

Order Operator To create queries for which all permutations of specific
words should be compared, either one or two words directly surrounding wio

are cut from the sequence together with wio itself. These two or three words
are then shuffled and inserted back into the word sequence, surrounded by
braces. One example of the structure of these queries is

X ′ = (w1, . . . , wio−2, { wio+1 wio−1 wio }, wio+2, . . . , wn)

with wio±1 being the two words which originally surrounded wio in X.
Example: Let X = (This, is, an, example, sentence) be a sequence of words

with wio = ”example” as the word to be replaced with by operator. Here, one
possible output sequence X ′ is X ′ = (This, { an example is }, sentence).

Finally, using the new sequence of words and Netspeak query operator tokens
X ′, the subset of words Qs := (wiq , . . . , wiq+l−r) is selected from X ′ as the final
Netspeak query, with r being the number of removed tokens.

In this work, we refer to this type of generated query consisting of up to
five words as short query. As described in the beginning of this section,

42

CHAPTER 4. METHODOLOGY

to evaluate the potential improvements discussed in 4.1.7, an additional long
query Qf is generated as well. Since X ′ still contains all original words left
and right to Qs, we can just take it as out long query:

Qf := X ′ = (w1, . . . , wiq , . . . , wiq+l−r, . . . , wn)

Based on our assumption that the sentences are almost optimally formu-
lated, we use that part of the initial sentence X, from which the short query
was generated, as the expected output E = (wiq , . . . , wiq+l) in the testing
phase.

43

CHAPTER 4. METHODOLOGY

Table 4.1: Examples for auto-generated queries from our dataset. We randomly
selected two and three queries for each in-word and whole-word operator respectively.
The queries for different operators are separated by a horizontal line.

Single in-word mask ?
Well I don’t really ?ut there you are

Netspeak but
BERT-short out put cut but nut
BERT-long but nut gut hut cut

Multiple in-word masks ...
During the day, he will take samples from the ship’s hold to check for
damage and also c...k the quantity of dust and husk in the load.

Netspeak check click
BERT-short check cook crack click chuck
BERT-long check click chalk clock creek

Single whole-word mask ?
By being clearly against an unpopular figure Mrs Thatcher has usually rallied public ? to her side.
Netspeak oppinion support
BERT-short mood sympathy at oppinion interest
BERT-long oppinion sympathy sentiment voters votes

Multiple whole-word masks ...
Instead of a repeat of last year when he was surrounded ... of reporters he was old news.

Netspeak by a group by photos by a number by a crowd by some
BERT-short by out inside all by all
BERT-long by dozens with dozens by hundreds with hundreds by thousands

Synonym #
He was quite #sensible to believe that he would have to invade early to avoid the worst.

Netspeak sensible reasonable sensible
BERT-short sensible reasonable
BERT-long reasonable sensible sane

Word Alternatives []
It took a couple of minutes for my [breathing respiration] to steady.

Netspeak breathing
BERT-short respiration breathing
BERT-long breathing respiration

Word Order { }
All the injured were taken { in hospital to } Middlesbrough but none were seriously hurt.

Netspeak to hospital in in to hospital
BERT-short in to hospital to hospital in to in hospital in hospital to hospital to in
BERT-long to hospital in in to hospital to in hospital hospital in to in hospital to

44

CHAPTER 4. METHODOLOGY

4.3 Experiment Design
To evaluate the performance of NeuralNetspeak compared to Netspeak, both
systems are tested on the same sets of queries generated as described in section
4.2.2.

For testing purposes, an instance of NeuralNetspeak was deployed on a
server with multiple GPUs of which one was assigned to NeuralNetspeak. Dur-
ing all of our tests, NeuralNetspeak was assigned a single Nvidia GTX 1080,
which let us use the language model to its maximum potential compared to
running all operations on a CPU.

Since Netspeak already provides an API10, it could be used to retrieve
results for the queries very efficiently. The only change that needed to be
made to the queries to be processed by Netspeak’s API was to replace the
multi-mask and multi-in-word mask operator tokens with a plus sign.

As described in section 4.2.2, there are two different types of queries, namely
(1) short queries and (2) full queries. Short queries are limited to 5 words,
which is the maximum query length Netspeak can process and are sent to both
NeuralNetspeak and Netspeak. Full queries are the complete sentences formed
by inserting the short query back into the original sentence. Because they are
too long to be processed by Netspeak, they are only sent to NeuralNetspeak
and their results are only used to make statements about the improvements
achieved by the additional context.

4.3.1 Performance Metrics

We use mainly two metrics to determine and compare the performance of each
Netspeak variant.

Recall We measure the number of queries from a dataset whose results con-
tain the expected response as the recall of that dataset. This number is not to
be confused with the number of results for a given query. Since the language
model used by NeuralNetspeak maps the probability distribution of predicted
words to the model’s whole vocabulary, the results would eventually include
all combinations of vocabulary words at the masked positions.

Average Rank Netspeak and NeuralNetspeak respond to a query with a
sorted list of results. This list is sorted by occurrence frequency in the case
of Netspeak and by the score assigned by its language model in the case of
NeuralNetspeak. Each of the results can be assigned a rank in ascending order,

10https://netspeak.org/help.html#for-developers

45

https://netspeak.org/help.html#for-developers

CHAPTER 4. METHODOLOGY

starting with rank 0 for the first result. The average rank measures the simple
mean of the ranks of the expected results of a given set of queries. Based on
our assumption that the data sets used for testing contain only sentences of
high linguistic quality, the goal is to minimize the average rank. The closer
the average rank is to zero, the better the results.

These metrics can only be used to compare the results of the short queries
from NeuralNetspeak with results for the same queries from Netspeak. Since
the full queries cannot be processed by Netspeak, they are only for comparison
purposes between short query results and full query results from NeuralNet-
speak.

In our tests, we have limited the number of predictions considered at every
mask position to 30. We are also only taking the first 100 results for each
query into consideration, allowing us to compare the recall with different rank
thresholds. In this work, we focussed on thresholds of 5, 10, 20, and 100 results.
We call the recall with the threshold n "recall@n" in the following sections.

4.3.2 Result Evaluation

The results from our test runs are evaluated in two ways.
First, we evaluate the results quantitatively using the metrics described in

section 4.3.1. We compare the results from NeuralNetspeak and Netspeak for
short queries directly, using the recall first to show how many of the queries
have delivered the expected result and then the average rank to determine
the quality of those results. Next, we use the long queries to see if adding
more context to the queries improves the results of NeuralNetspeak. The
long queries can’t be used to compare the performance of NeuralNetspeak to
Netspeak though, as Netspeak can’t handle those queries with more than five
words.

Lastly, since the recall and average rank metrics only make statements
about the presence of the expected result, extracted from the original sentence,
and its ranking, we also evaluate selected results qualitatively by determining
up to which rank the results are useful. We will concentrate this part of the
evaluation on queries that either didn’t return the expected result at all or
where the expected result was ranked exceptionally low.

46

Chapter 5

Experiment Results and
Discussion

In this chapter we will show and discuss the results of the experiments we
conducted. First, we present an overview of the results at different recall
thresholds and evaluate the differences in recall and ranking between Netspeak
and NeuralNetspeak quantitatively. Next, we compare the performance of
both systems on the five whole-word and the two in-word query operators.
Finally, we analyze the actual results for a few selected short and long queries
in a qualitative evaluation to compare the performance of NeuralNetspeak to
Netspeak when not only the expected result from our dataset is considered.

5.1 Quantitative Evaluation
To compare the overall performance of NeuralNetspeak to Netspeak’s perfor-
mance on a macroscopic level, we use the two metrics described in section 4.3.1:
(1) recall at different thresholds and (2) average ranking of the expected re-
sult. Additionally, we include each system’s average execution times for query
processing despite NeuralNetspeak not being optimized to its full potential.
Since Netspeak is a query-based search engine, this last metric can’t be omit-
ted as the execution time is a critical factor for the suitability of a given result
retrieval strategy for use in a search engine.

Table 5.1 shows an overview of the results of our experiments for Netspeak
and NeuralNetspeak on short queries (denoted as Netspeak and BERT-short
respectively) as well as NeuralNetspeak on long queries (denoted as BERT-
long). The results from each model for each measure are presented in two
groups: (1) grouped by the whole-word operator used in the query, and (2)
the micro and macro averages of the results. Results for in-word operator
queries are shown separately in Table 5.2 in the same format.

47

CHAPTER 5. EXPERIMENT RESULTS AND DISCUSSION

Table 5.1: Experiment results of the 100,000 of the 140,000 queries from the four
corpora which only contain whole-word operators, showing average rank, recall and
response times for Netspeak, NeuralNetspeak with short queries (BERT-short) and
NeuralNetspeak with long queries (BERT-long). The execution time is the time in
seconds needed for processing 1,000 queries. The best result of each row in each
column is printed bold.

Measure Model Operator Average
? ... # [] { } Micro Macro

Average Rank
Netspeak
BERT-short
BERT-long

7.87
15.14
10.98

11.65
16.43
6.63

1.32
1.25
1.12

1.09
1.25
1.09

1.02
1.19
1.04

2.80
4.34
3.21

4.59
7.05
4.17

Recall@5
Netspeak
BERT-short
BERT-long

0.23
0.10
0.26

0.13
0.08
0.25

0.23
0.11
0.11

0.44
1.00
1.00

0.49
0.88
0.88

0.34
0.54
0.62

0.30
0.43
0.50

Recall@10
Netspeak
BERT-short
BERT-long

0.26
0.17
0.42

0.15
0.11
0.33

0.23
0.11
0.11

0.44
1.00
1.00

0.49
0.88
0.88

0.35
0.57
0.65

0.31
0.45
0.55

Recall@20
Netspeak
BERT-short
BERT-long

0.28
0.34
0.64

0.17
0.15
0.39

0.23
0.11
0.11

0.44
1.00
1.00

0.49
0.88
0.88

0.35
0.61
0.70

0.32
0.50
0.60

Recall@100
Netspeak
BERT-short
BERT-long

0.31
0.5

0.76

0.20
0.20
0.41

0.23
0.11
0.11

0.44
1.00
1.00

0.49
0.88
0.88

0.36
0.65
0.72

0.33
0.54
0.63

Time [s]
Netspeak
BERT-short
BERT-long

456
115
173

610
729
886

148
97
101

260
134
138

149
98
133

282
648
671

324
234
286

Average Rank

Netspeak outperforms NeuralNetspeak on both short and long queries when
considering the average ranking of the expected result. It is most evident
when considering the macro average, which is the mean of the average ranks
per operator. This metric does not consider the number of answered queries
for a certain operator but weights the performance of each operator as a whole
equally. Here, Netspeak is around 35 % better than NeuralNetspeak when
both have to process short queries. NeuralNetspeak’s performance, however,
increases drastically when asked to answer the longer version of the queries,
allowing the underlying language model to use more context when processing
the query. With this additional context, NeuralNetspeak can outrank Net-
speak, ranking the expected result around 10 % higher in total than Netspeak
(4.17 vs. 4.59) when weighing the average ranks of each operator equally.

A similar picture is emerging when looking at the micro average. This

48

CHAPTER 5. EXPERIMENT RESULTS AND DISCUSSION

Table 5.2: Experiment results of the remaining 40,000 of the 140,000 queries from
the four corpora which only contain in-word operators, showing average rank, recall
and response times for Netspeak, NeuralNetspeak with short queries (BERT-short)
and NeuralNetspeak with long queries (BERT-long). The execution time is the time
in seconds needed for processing 1,000 queries. The best result of each row in each
column is printed bold.

Measure Model Operator Average
? in-word ... in-word Micro Macro

Average Rank
Netspeak
BERT-short
BERT-long

1.03
1.27
1.06

1.08
5.46
1.83

1.06
3.20
1.43

1.10
3.37
1.45

Recall@5
Netspeak
BERT-short
BERT-long

0.49
0.93
0.94

0.38
0.74
0.89

0.34
0.54
0.62

0.43
0.54
0.92

Recall@10
Netspeak
BERT-short
BERT-long

0.49
0.94
0.94

0.38
0.81
0.91

0.35
0.57
0.65

0.43
0.88
0.93

Recall@20
Netspeak
BERT-short
BERT-long

0.49
0.94
0.94

0.38
0.86
0.92

0.35
0.61
0.70

0.43
0.90
0.93

Recall@100
Netspeak
BERT-short
BERT-long

0.49
0.94
0.94

0.38
0.92
0.93

0.35
0.65
0.72

0.43
0.93
0.94

Time [s]
Netspeak
BERT-short
BERT-long

220
260
270

250
2530
2630

290
630
680

230
1400
1450

metric is the unweighted mean of the expected result’s average rank across all
query results. For all three models, the micro average is considerably lower
than the macro average, suggesting that all three models have a higher recall
for queries whose expected result they also rank the highest. The relative
difference between the two averages is by far the highest for NeuralNetspeak
on short queries, with a 4.34 micro average and a 7.05 macro average, indicating
that the effect is be most pronounced here. NeuralNetspeak on long queries
has the least relative difference (only 0.96), suggesting that this model has the
most consistent recall across all whole-word operators.

Looking at the performance of each system on the five whole-word query
operators individually, it is apparent that all three systems perform excep-
tionally low on both the single and multi whole-word operators in comparison
to all other operators. While Netspeak achieves much better results on sin-
gle mask operator queries (7.87) than on multi-word mask operator queries
(11.65), NeuralNetspeak performs almost exactly the other way round on long
queries containing those operators (10.98 for single mask operators and 6.63 for

49

CHAPTER 5. EXPERIMENT RESULTS AND DISCUSSION

multi-mask operators). For short queries, NeuralNetspeak ranks the expected
results for queries with either one of the two whole-word mask operators nearly
equally low (15.14 and 16.43 for single and multi-mask operator queries respec-
tively).

On the other whole-word operators, all three models are head-to-head,
with NeuralNetspeak on long queries almost exactly matching Netspeak’s per-
formance and outperforming Netspeak on synonym queries (1.12 vs. 1.32).
Meanwhile, NeuralNetspeak performs considerably worse when it can only
work with short queries with the same operators.

The results for in-word operator queries from Table 5.2 show again, that
NeuralNetspeak can almost match Netspeak’s performance when supplied with
long queries. Both systems perform almost identically on single in-word mask
operator queries (1.03 for Netspeak and 1.06 for NeuralNetspeak). However,
Netspeak ranks the expected result for the multi in-word mask operator queries
higher, resulting in an average rank of 1.08, while NeuralNetspeak ranks the
expected result more often lower, resulting in an average rank of 1.83. When
only given short queries, NeuralNetspeak falls behind Netspeak, ranking results
for single in-word mask operator queries at rank 1.27 and results for multi in-
word mask operator queries at rank 5.46 on average.

The results for the individual operators show that NeuralNetspeak can
rank the expected results significantly higher if it can use the whole sentence
as context, while Netspeak still outperforms NeuralNetspeak in most cases,
even if the latter has more context from longer queries.

Recall

Comparing the recall of Netspeak and NeuralNetspeak shows the strength of
NeuralNetspeak. It is evident, that NeuralNetspeak answers significantly more
queries than Netspeak. NeuralNetspeak achieves an increase in recall of 59 %
to 81 % for short queries, at a rank threshold of 5 and 100 respectively, and
can improve this even further with long queries to 82 % to 100 % compared
to Netspeak at the same rank thresholds. Here, the increase in performance
of NeuralNetspeak due to the additional context provided with longer queries
is very apparent as well. NeuralNetspeak can answer up to 14 % long queries
more than short queries.

Figure 5.1 shows the recall of Netspeak and NeuralNetspeak at different
rank thresholds. Note, that the recall of Netspeak is nearly constant with
only a slight increase across the different rank thresholds, while the recall of
NeuralNetspeak considerably increases with an increasing rank threshold for
short and long queries alike. The near-constant recall of Netspeak could on one
hand mean that when Netspeak delivers the expected result, it is ranked very

50

CHAPTER 5. EXPERIMENT RESULTS AND DISCUSSION

Re
ca

ll

0,0

0,2

0,4

0,6

0,8

1,0

Rank Threshold

1 20 40 60 80 100

Netspeak BERT-short BERT-long

Figure 5.1: A graph showing the recall at different thresholds from 1 to 40 in steps
of 5 of Netspeak compared to NeuralNetspeak on short and long queries.

high, but on the other hand, it could also mean that Netspeak doesn’t return
many results which in turn ranks the expected result high. NeuralNetspeak’s
increasing recall shows that for some queries, the expected result can be ranked
considerably low. We look at the higher-ranked results in the qualitative eval-
uation to find out if the results that NeuralNetspeak ranks higher than the
expected result are sensible as well and the expected result was ranked low be-
cause it is specific to the context of the sentence the query was automatically
generated from.

The highly increased recall of NeuralNetspeak compared to Netspeak, even
when tested only with short queries, shows that we overall succeeded in elim-
inating the out-of-vocabulary problem that Netspeak has due to its n-gram
based retrieval strategy.

However, if one looks at Figure 5.2, which shows the recall per operator at
different recall thresholds, this conclusion is only partly correct. For both the
word alternative and word order operators, NeuralNetspeak performs signifi-
cantly better than Netspeak, answering almost double the number of queries
compared to Netspeak. Here it should be noted that while Netspeak is nearly
constant across all rank thresholds, NeuralNetspeak on long queries has a steep
increase on recall when rising the rank threshold from 1 to 5. This effect is even
more pronounced when tested on short queries. When looking at the results of
the single and multi whole-word mask operator query results, a different pic-
ture is drawn. For single mask operator queries, Netspeak achieves the highest
recall compared to NeuralNetspeak when only considering results where the
expected result was ranked first. Allowing the expected result to be ranked
lower, leads to a steep increase in recall for NeuralNetspeak, with the recall

51

CHAPTER 5. EXPERIMENT RESULTS AND DISCUSSION

Re
ca

ll

0,0

0,2

0,4

0,6

0,8

1,0

Rank Threshold
1 10 20 30 40

Netspeak
BERT-short
BERT-long

(a) Single IW Mask

1 10 20 30 40

(b) Multi IW Mask

1 10 20 30 40

(c) Single Word Mask

1 10 20 30 40

(d) Multi Word Mask

Re
ca

ll

0,0

0,2

0,4

0,6

0,8

1,0

Rank Threshold
1 10 20 30 40

Netspeak
BERT-short
BERT-long

(e) Synonyms

1 10 20 30 40

(f) Alternatives

1 10 20 30 40

(g) Order

Figure 5.2: Graphs showing the recall at different thresholds from 1 to 40 in steps
of 5 of Netspeak compared to NeuralNetspeak on short and long queries for each
one of the seven query operators. From left to right, top to bottom: (a) Single in-
word mask operator, (b) multi in-word mask operator, (c) single whole-word mask
operator, (d) multi whole-word mask operator, (e) synonym operator, (f) alternative
words operator, (g) word order operator.

for long queries always being higher than for short queries. NeuralNetspeak’s
recall peaks at a rank threshold of 30, answering more than double the num-
ber of short queries compared to Netspeak and even more when more context
is given through longer queries. For multi-mask operator queries, NeuralNet-
speak dominates Netspeak when tested on long queries. Interestingly, when
asked to answer only short queries, NeuralNetspeak answers fewer queries than
Netspeak, only catching up when allowing the expected result to be ranked in
35th place. This shows BERT’s reliance on context, which for short queries
simply don’t suffice to predict multiple subsequent words. The only operator,
where Netspeak consistently outperforms NeuralNetspeak in terms of recall
is the synonym operator, answering around two times the number of queries
compared to NeuralNetspeak.

Execution Times

Although NeuralNetspeak is a proof-of-concept software product, we compare
its execution times per query with the production version of Netspeak. Since
NeuralNetspeak processes the pre-processing subqueries it generates mostly
individually (for details, refer to section 4.1.1), there may be a lot of room for
improvements. On the one hand, the processing could be parallelized further

52

CHAPTER 5. EXPERIMENT RESULTS AND DISCUSSION

and could be distributed across multiple machines. On the other hand, more
powerful GPUs could be used to accelerate processing steps where the language
model is used even more. As stated in section 4.3, we used a single Nvidia
GTX 1080 for our testing. However, at the time of writing this graphics card is
already two generations old and there are much more powerful offerings from
Nvidia and competitors on the market.

Yet despite these circumstances, NeuralNetspeak achieves almost for ev-
ery whole-word operator considerably lower result retrieval times. On aver-
age across all whole-word operators, NeuralNetspeak is 27 % and 12% faster
than Netspeak when answering short and long queries respectively. However,
weighing the execution times by the recall of the individual operators shows,
that NeuralNetspeak in practice takes 2.3 times as long to answer whole-word
queries. Similarly, NeuralNetspeak is almost able to compete with Netspeak
on single in-word mask operator queries, answering those queries only 15 %
slower compared to Netspeak. On multi-character in-word operator queries,
NeuralNetspeak is almost an order of magnitude slower than Netspeak, which
makes NeuralNetspeak uncompetitive on this specific operator. The reason
for these slow retrieval times is that a large number of matching words in
the vocabulary of the language model are found in the pre-processing step of
the query. Each of these words is then processed in individual pre-process
subqueries. This could be accelerated by scoring these resulting pre-process
subqueries using our batch scoring approach. However, this still has to be
tested.

Resource Utilization

During our testing on the Nvidia GTX 1080, we saw 20 % to 40 % GPU
utilization. When tested locally on an Intel Core i7 9700K eight-core CPU,
overclocked to 4.9 GHz on all cores, the CPU utilization approached 80 % to
90 % across all cores while taking approximately twice as long to answer a
query compared to the tests run on the GPU server.

Performance differences on common queries

Here, we compare Netspeak to NeuralNetspeak when tested on long queries.
Since NeuralNetspeak receives more context than Netspeak through the longer
queries, the results can not be used to make statements about NeuralNet-
speak’s performance compared to Netspeak. However, we still want to show
NeuralNetspeak’s capabilities in a best-case scenario. Table 5.3 shows the av-
erage ranks of the expected results for both models for each of our datasets
once by query operator and once on average. In the first four columns, the

53

CHAPTER 5. EXPERIMENT RESULTS AND DISCUSSION

Table 5.3: Experiment results of the 44.437 results Netspeak had in common with
NeuralNetspeak when the latter was tested with long queries. The best result of each
row in each column is printed bold. In-word operators are marked with the postfix
iw.

Dataset Model Operator Average
? iw ... iw ? ... # [] { } Micro

BNC Netspeak
BERT-long

1.03
1.03

1.18
1.55

7.56
10.81

9.90
5.08

1.30
1.08

1.09
1.07

1.02
1.01

2.44
2.55

Europarl Netspeak
BERT-long

1.03
1.01

1.13
1.33

7.20
8.42

8.87
4.88

1.35
1.10

1.09
1.08

1.02
1.02

2.45
2.35

NYT Netspeak
BERT-long

1.02
1.07

1.18
1.45

7.15
10.94

11.19
5.08

1.14
1.05

1.08
1.07

1.02
1.02

2.68
2.80

Wiki Netspeak
BERT-long

1.02
1.03

1.20
1.31

6.74
12.33

8.82
5.63

1.26
1.08

1.10
1.07

1.02
1.01

2.32
2.78

Total Netspeak
BERT-long

1.03
1.03

1.17
1.41

7.17
10.41

9.67
4.14

1.28
1.08

1.09
1.07

1.02
1.02

2.47
2.60

common results from our four datasets (British National Corpus, Europarl,
New York Times, and Wikipedia) are shown, while the last column shows the
combined results across all four datasets. As marked by the bold numbers in
the last column, when supplied with long queries, NeuralNetspeak can outper-
form Netspeak on the synonym, word alternative, order, and even the multi
whole-word mask operator. The results for the latter are most impressive, as
NeuralNetspeak ranks the expected result about two times higher than Net-
speak. By contrast, Netspeak ranks the expected result for common queries
with the single whole-word mask operator significantly higher than NeuralNet-
speak, with an average rank of 7.17 for Netspeak and 10.41 for NeuralNetspeak.
Also, Netspeak outperforms NeuralNetspeak on both in-word mask operators,
with the average rank for single in-word mask operator queries being almost
the same across all datasets.

If looking at the datasets individually, it stands out that Netspeak’s results
are more consistent across the different datasets for each operator but the multi
whole-word mask operator. Here, NeuralNetspeak is much more consistent,
while having a higher variance in the results for most other operators, especially
in the single whole-word mask operator query results.

In total, Netspeak ranks the expected result for most common queries
higher, despite ranking the results for four of the seven results lower than
NeuralNetspeak. This is mainly due to the unequal recall of common queries
for the seven operators.

In conclusion, although NeuralNetspeak does not always match Netspeak’s
performance in grading the expected result, it instead answers nearly twice

54

CHAPTER 5. EXPERIMENT RESULTS AND DISCUSSION

as many queries as Netspeak can answer. Together with the ability to also
answer longer queries past the five-word limit of Netspeak, which also improve
the results from NeuralNetspeak significantly as expected, and the comparable
execution times, this shows that NeuralNetspeak can be a viable supplement
to the n-gram-based result retrieval of Netspeak. In future works, more models
besides BERT could be evaluated for the use in NeuralNetspeak and further
optimizations could be made, potentially allowing NeuralNetspeak to be a
partial replacement for the Netspeak backend.

55

CHAPTER 5. EXPERIMENT RESULTS AND DISCUSSION

5.2 Qualitative Evaluation
For the qualitative evaluation, we examine the results of selected queries from
our dataset. We select the queries based on one of three performance charac-
teristics:

1. Queries whose expected results are ranked significantly higher (better)
by NeuralNetspeak compared to Netspeak.

2. Queries whose expected results are ranked significantly lower (worse) by
NeuralNetspeak compared to Netspeak

3. Queries whose expected results are ranked significantly higher (better)
by NeuralNetspeak when supplied with the additional context of the long
version of the query compared to the short query

The first kind of queries should show the improvements our language model-
based NeuralNetspeak has over the n-gram based Netspeak. We examine re-
sults for queries of the second kind to see if the results NeuralNetspeak ranks
higher than the expected result also make sense as independent phrases. The
last kind of queries shows how the results change when the additional context
from longer queries is supplied to BERT.

Looking at the results for all three kinds of queries with the highest rank
differences, it is immediately clear, that queries with the single whole-word
mask operator are the only ones with a difference of more than two ranks
between NeuralNetspeak and Netspeak. For this reason, we focus only on
these queries in this qualitative evaluation. A selection of queries including
the ones we evaluate in this section can be found in the appendix in Table A.4,
Table A.5, and Table A.6.

Queries where NeuralNetspeak performed better than Netspeak

All in all, the queries where NeuralNetspeak performed better than Netspeak
don’t follow a specific pattern aside from the presence of the single-word op-
erator. Representative examples for these queries with the expected word in
brackets are (1) "based on the ? [story]", (2) "by the ? [fire]" and (3) "?
[plan] to improve".

While NeuralNetspeak almost exclusively suggests nouns for the wildcard
operator in the first query, Netspeak also suggests other words like geographical,
following, same or above. This preference for nouns indicates that BERT has
learned to predict nouns following articles.

The results for the second query show a similar picture, although Netspeak
now also predominantly recommends nouns. However, apart from idiomatic

56

CHAPTER 5. EXPERIMENT RESULTS AND DISCUSSION

expressions like by the time, by the end or by the way, Netspeak suggests many
nouns that refer to institutions like state, government, department or company.
NeuralNetspeak suggests mostly places like sun, sea and ocean, but also people
and, ranked further down, also idiomatic expressions like by the means or by
the dozens.

The result for the third query expects a verb. Both Netspeak and Neu-
ralNetspeak correctly identify that a verb is needed at this position in the
query and show mostly verbs but also some nouns that build phrases that
make sense. All in all, it has to be noted, that for all queries the almost every
one of the results NeuralNetspeak provides makes sense as a phrase on their
own, while Netspeak often includes phrases in the results that can only make
sense in whole sentences. For example, Netspeak includes results like made to
improve and , to improve for the third query.

Queries where Netspeak performed better than NeuralNetspeak

Looking at the second kind of queries, one can recognize a pattern many of the
queries follow. It seems that NeuralNetspeak struggles with predicting articles
like the and a. While Netspeak almost always ranks the result with the article
the highest, NeuralNetspeak prefers to predict words that give the surrounding
words more or additional meaning. This is especially apparent in the query
examples (1) "? [the] person most", (2) "to be in ? [a] position" (3) "the
station and ? [the]" and (4) "go out of ? [the] room". While NeuralNetspeak
tries to describe the subject of the first query (person) with adjectives and add
more meaning to it, Netspeak mostly finds results which either have an article
(e.g. the or a, the two top results) in front of the subject or quantify it (e.g.
with words like one or single).

The same is true for the second query, with the difference that Netspeak
only returns four results. NeuralNetspeak on the other hand is only limited by
the threshold of predictions retrieved from BERT and its results for this query
are plausible way past the 50th result.

The results for the third query example are even more drastic, as Netspeak
only returns a single result. Only the exact expected result happens to be
included in Netspeak’s n-gram dataset. NeuralNetspeak meanwhile suggests
over twenty different places and types of buildings, e.g. cementery, platform,
park, and even viaduct, before the expected article. Given that this query
ends with the single whole-word wildcard operator and an article has to be
predicted, the results from NeuralNetspeak are more likely to fit real-world
queries.

For the fourth query, Netspeak also only responds with a single result, while
NeuralNetspeak’s results include pronouns, e.g. our, your, and my, as well as

57

CHAPTER 5. EXPERIMENT RESULTS AND DISCUSSION

articles and nouns that add context to the subject of the query, e.g. control
room, hotel room, bed room, or hospital room.

Queries where NeuralNetspeak performed better on long queries
than on short queries

Similar to the first type of queries, the improvements of NeuralNetspeak due
to the context of long queries compared to its performance on short queries
don’t follow a specific pattern. However, it should be noted that in many of the
results NeuralNetspeak used the additional context to accurately predict stop
words such as articles and other short function words. A few example queries
where this is particularly obvious are (1) "? [in] a situation", (2) "whatever
in ? [the] context" and (3) "to ? [an] end".

The first query was generated from the sentence "Especially in a situation
like this" (the query is written in italic) and requires the word in to be pre-
dicted. When only given the short query, NeuralNetspeak predicts different
verbs like multiple versions of the words define and describe, and a few prepo-
sitions as well, with the expected word in ranked 29th. Having the additional
context from the long query, however, enables NeuralNetspeak to rank the ex-
pected result in second place and leads NeuralNetspeak to almost exclusively
predict other function words fitting the context, e.g. before, during or given.

The second query was derived from the sentence "But while the sobriquet
of Canaanite might have meant something [...] years before in Old Testament
times it makes no sense whatever in the context of the New Testament", with
the article the being replaced with the single word wildcard operator. Here,
NeuralNetspeak ranks only the prediction any above the expected article the,
which arguably makes less sense than the article from the source sentence.
Compared to NeuralNetspeak’s results for only the short query, however, the
results fit the context of the sentence much better, as NeuralNetspeak predicts
many quantification words like one and each again, ranking them higher than
the expected article. For comparison: Netspeak returned only the one expected
result for the query, which leads to this result being ranked first.

Lastly, the third query was auto-generated from the sentence "Dulé found
himself longing this carnage this bloodshed must come to an end we must call
a truce make a new treaty". The word an was replaced with the single word
mask operator and has to be predicted. Since the short query doesn’t provide
any context whatsoever by itself, NeuralNetspeak ranked the expected result
in 17th place. Adding the context from the sentence, however, resulted in the
expected result to be ranked first.

When asked to predict nouns, NeuralNetspeak also performed better with
the context the long queries provide. An example which demonstrates this

58

CHAPTER 5. EXPERIMENT RESULTS AND DISCUSSION

quite clearly, is the query "balance between these ? [factors]", derived from
the sentence "The balance between these factors needs further research". When
only supplied with the short query, NeuralNetspeak predicts all kinds of dif-
ferent plurals to words which could be balanced, including dangers, extremes,
resources and systems. Being able to use the whole sentence as context, Neural-
Netspeak can predict words that closely correlate with research. The expected
word factors is ranked first, followed by variables, concepts and issues. Net-
speak on the other hand, while providing several sensible results, also returns
many results that don’t fit in the context of the original sentence and ranks
the expected result fourth.

This qualitative analysis of query examples shows that instead of relying only
on auto-generated queries to evaluate the actual performance of Netspeak and
NeuralNetspeak, tests involving real users have to be conducted. However, the
results of many different queries give a clear understanding of how a BERT-
backed result retrieval strategy compares to the n-gram-based strategy Net-
speak uses in terms of context awareness and suggesting results that fit the
context of the source sentence. Also, it becomes apparent, that when supplied
with additional context from the sentence, NeuralNetspeak can suggest many
additional fitting results and rank them high. Meanwhile, Netspeak seems
limited by its five-word query-length restriction and thus often predicts many
non-fitting words for the context alongside the expected result.

59

Chapter 6

Conclusion

In this work, we investigated the performance of a retrieval strategy based on
the BERT Transformer model to find out if it could be a viable replacement
or supplement for a query-based writing assistant. Focussing on the Netspeak
writing assistant, our goal was to eliminate the query length limitation and
out-of-vocabulary problem the use of an n-gram index imposed on it. We
developed a strategy that uses the masked word prediction and word scoring
capabilities of a pre-trained BERT language model and created a dataset of
140,000 queries that we auto-generated from corpora with high-quality texts
of different domains. Using this dataset, we tested both Netspeak and our
NeuralNetspeak for recall and the average ranking of our ground-truth result.
Based on our results, we can conclude that the use of language models can
positively contribute to existing word search engines like Netspeak, but such
a strategy cannot entirely replace existing approaches at this time.

A language model backed result retrieval strategy can be used to enrich
results found by the n-gram retrieval strategy or provide results when that
strategy couldn’t find any matching results. It is especially true for queries
comparing different alternatives, like ones including the order or word alterna-
tive operator, due to the language model’s learned understanding of natural
language. When provided enough context, neural language model based query
answering can solve Netspeak’s out-of-vocabulary problem while also improv-
ing results for queries with specific operators, that the n-gram-based retrieval
strategy Netspeak uses can answer as well.

However, the results could be different for other language models. For
example, the SpanBERT language model by Facebook (Joshi et al. [2020]),
trained to predict multiple masked subsequent words, was not yet available
at the time of this work. Also, the evaluation based solely on auto-generated
queries is not entirely conclusive, as we saw in our qualitative evaluation of the
results since it only respects a single result and may differ from queries users

60

CHAPTER 6. CONCLUSION

search for.
To eliminate these uncertainties, future work on this topic could include

user studies and more extensive qualitative evaluations, e.g. focussing on
BERT’s behaves for different kinds of queries containing specific types of words.
These user studies could also investigate different ways of showing the scores of
the results to the user since for most queries the scores NeuralNetspeak calcu-
lates for the top results are very close to each other. The scores could be shown
on a logarithmic scale or the scores could be mapped to a value between zero
and 100, with the former being the score of the lowest-ranked result and the
latter being the score for the best result. Also, our query pre-processing could
be extended by an additional step to generate sentences from short queries,
e.g. with a generative language model such as OpenAI’s GPT (Radford [2018]),
which then could be used to provide BERT with more context for more accu-
rate results. Finally, a hybrid variant of Netspeak incorporating results from
both the n-gram and the language model based retrieval strategies could be
built and tested. For such a hybrid system, heuristics would be needed to
decide which retrieval strategy to use, e.g. processing all queries longer than
five words with the language model-based retrieval strategy while using the
n-gram based strategy for short queries including the synonym operator, or
even how the results of both strategies could be combined or used to improve
each other.

61

Appendix A

Appendix

A.1 Multi Mask Scoring Strategies

Table A.1: Experiment results of three multi mask prediction strategies. The tests
were conducted on the same 4000 queries containing the multi whole-word wildcard
operator that were generated from the BNC dataset.

Approach Relative Recall Average Rank Seconds per
Short / Long Short / Long 1,000 queries

Combination Scoring 17.00 % / 31.73 % 25.93 / 10.06 845.5
Sequential Scoring 20.27 % / 38.73 % 15.59 / 6.53 2722.5
Batch-Rescore 20.30 % / 38.33 % 16.58 / 6.51 904.5

A.2 Synonym Retrieval Strategies

Table A.2: Experiment results of three synonym retrieval strategies. The tests
were conducted on the same 4000 queries containing the synonym operator that
were generated from the BNC dataset.

Approach Relative Recall Average Rank Seconds per
Short / Long Short / Long 1,000 queries

Individual Scoring 17.8 % / 13.0 % 1.72 / 1.29 355
Batch-Rescore 17.8 % / 12.9 % 2.41 / 1.82 212
Mask Prediction 13.8 % / 12.0 % 1.21 / 1.12 262

62

APPENDIX A. APPENDIX

A.3 Query Examples

Table A.3: Examples for auto-generated queries from our dataset. We randomly
selected two and three queries for each in-word and whole-word operator respectively.
The queries for different operators are separated by a horizontal line.

Source Sentence Short Query Long Query Expected Result

Hitchin is celebrating its 2Oth
anniversary.

is celebrating i?s 2Oth
anniversary

Hitchin is celebrating i?s 2Oth
anniversary

is celebrating its 2Oth
anniversary

I talked non-stop one day for
twenty-three hours.

non-stop o?e day for I talked non-stop o?e day for
twenty hours

non-stop one day for

Please note that the perfor-
mance (including two intervals)
last for 3½ hours.

the performance incl...g
two intervals

Please note that the perfor-
mance incl...g two intervals last
for 3½ hours

the performance in-
cluding two intervals

You can re-read a book — but a
lecture is a unique event whose
emotional impact can never be
successfully reproduced, even by
video-recording.

re-read a b...k but a You can re-read a b...k but a
lecture is a unique event whose
emotional impact can never be
successfully reproduced even by
video

re-read a book but a

’A bullet fired at close range into
the back of the neck,’ Wycliffe
said.

fired at ? A bullet fired at ? range into the
back of the neck Wycliffe said

fired at close

Not surprising considering gov-
ernment’s fifty billion pound
public borrowing requirement.

pound ? borrowing Not surprising considering gov-
ernment’s fifty billion pound ?
borrowing requirement

pound public borrow-
ing

Sometimes he thought how easy
it would be to let go, to drift.

how ? it would Sometimes he thought how ? it
would be to let go to drift

how easy it would

This placed the employee at a
disadvantage.

employee ... disadvan-
tage

This placed the employee ... dis-
advantage

employee at a disadvan-
tage

Notice how central is his concern
for public reputation.

his concern ... reputa-
tion

Notice how central is his concern
... reputation

his concern for public
reputation

Yes, it looks like it. Yes it ... Yes it ... Yes it looks like it
A symbol is never a mere object. #symbolisation is

never
A #symbolisation is never a
mere object

symbol is never

We didn’t like the food, we pre-
ferred Mum’s.

like the #nutrient we
preferred

We didn’t like the #nutrient we
preferred Mum’s

like the food we pre-
ferred

I’d hate to be responsible for or-
ganising an event billed as ‘our
last chance to save the Earth’.

to be responsible for
#coordinate

I’d hate to be responsible for
#coordinate an event billed as
our last chance to save the Earth

to be responsible for or-
ganising

The Ediacaran fossils, however,
provide only a brief isolated
glimpse of the progress of the in-
vertebrates.

[glimpse glance] of the
progress of

The Ediacaran fossils however
provide only a brief isolated [
glimpse glance] of the progress
of the invertebrates

glimpse of the progress
of

Nor, I realize now, was she ex-
actly what one would call a liar:.

would [call name] a
liar

Nor I realize now was she ex-
actly what one would [call name
] a liar

would call a liar

Havel asked the legislature to
grant him broader powers to
defuse the constitutional crisis.

defuse the [constitu-
tional constituent]

Havel asked the legislature to
grant him broader powers to
defuse the [constitutional con-
stituent] crisis

defuse the constitu-
tional

Maintain the pre-eminent posi-
tion of British nursing in the
world.

position of { nursing
British }

Maintain the pre position of {
nursing British } in the world

position of British nurs-
ing

Woe betide anyone who was un-
tidy or out of step on one of the
marches.

on { one of } the
marches

Woe betide anyone who was un-
tidy or out of step on { one of }
the marches

on one of the marches

The coroner recorded a verdict
of death by misadventure.

{ a recorded } verdict The coroner { a recorded } ver-
dict of death by misadventure

recorded a verdict

63

APPENDIX A. APPENDIX

Table A.4: Examples for queries NeuralNetspeak ranked higher than Netspeak.
The source sentence is shown with a grey background, with the short query in italics.
Both Netspeak and NeuralNetspeak (here BERT-short) were tested with the short
query only. For each model, the first five results and the rank of the expected result
are displayed. The expected result is printed in bold if it is included in the first five
results.

Model The 5 highest ranked results Rank

The painting is based on the ? [story] recounted in Brother Thomas of
Celano’s Second Life of St Francis completed in 1247

Netspeak geographical following assumption number results 93
BERT-short film movie novel book script 12

His flat was gutted by the ? [fire] which burst through windows and roof
Netspeak time end way same state 94
BERT-short sun stars sea band authors 15

In one corner a ? [blue] computer screen blips out the latest scores for anyone with
good enough eyesight to read the small print

Netspeak the your a my his 77
BERT-short white black view blue red 4

You’ve ? [got] to be kidding pal
Netspeak is need have seems going 65
BERT-short want wanted got proud trying 3

The enclosure movement gave us much of what is said to ? [be] the traditional English landscape
Netspeak be make see use get 81
BERT-short hear reach stop have watch 27

Olivine for instance is the most unstable mineral in the weathering series and
crystallizes at the highest ? [temperature] in the reaction series

Netspeak quality level degree levels standards 57
BERT-short grade place temperature rank altitude 3

Unconcerned that it took him more than a year to prepare for he points out the record
? [wait] for a first speech is 40 years and even Margaret Thatcher took 18 months before she made hers
Netspeak looking , search here up 44
BERT-short a wait something looking waiting 2

Culture turned completely into commodity must also ? [turn] into the star commodity of the
spectacular society

Netspeak take taken entered takes come 57
BERT-short entered going went checked folded 17

A 4m ? [plan] to improve the Tyneside Metro system including upgrading
the trains was approved by councillors yesterday

Netspeak like how used order ways 48
BERT-short strive learning motivation work determination 14

Last week I went to ? [dinner] at Philippa’s
Netspeak the a see bed work 45
BERT-short sleep church school market heaven 12

And all the time ? [it] was behind the wall
Netspeak , and ! in i 26
BERT-short now with it i you 3

The conventional view of his time was that all species were immutable and
that each ? [had] been individually and separately created by God

Netspeak of person one individual member 23
BERT-short person has had man would 3

All sorts are on offer handles in conventional or T form with or ? a ratchet
Netspeak buy as in even to 21
BERT-short simply even just without less 4

64

APPENDIX A. APPENDIX

Table A.5: Examples for queries Netspeak ranked higher than NeuralNetspeak.
The source sentence is shown with a grey background, with the short query in italics.
Both Netspeak and NeuralNetspeak (here BERT-short) were tested with the short
query only. For each model, the first five results and the rank of the expected result
are displayed. The expected result is printed in bold if it is included in the first five
results.

Model The 5 highest ranked results Rank

As for the Brooke sketch as its author I recall that ? [the] person most upset by it was Tony Benn
Netspeak the a one of this 1
BERT-short strongest richest oldest second last 30

? [You] can have it back said Lee
Netspeak you 1
BERT-short anybody adam i she everybody 30

Well he’s got to be in ? [a] position to complete by the time the notice runs out
Netspeak a the that this 1
BERT-short emotional uncomfortable dangerous high comfortable 30

The defect need not be the sole cause of ? [the] damage
Netspeak the such or brain dna 1
BERT-short weather storm soil blast psychological 30

A version of ? [the] problem is shown in Figure 5.1
Netspeak the this only my a 1
BERT-short his one general proof a 30
There were big crowds on the station and ? [the] Feldwebel and the mousy man kept very close to me
Netspeak the 1
BERT-short cemetery grounds platform surrounds reservoir 30

I feel very strongly that there are a lot of people who don’t have the money and have no way
of getting ? [in] touch with their husband no way of forcing them to pay up

Netspeak in 1
BERT-short our some thy that proper 30

But they ? [have] strong incentives to try
Netspeak have 1
BERT-short expect want gave provided introduced 30

As for possible Christian Democratic rivals to Mr Kohl there is only one Wolfgang Schäuble
the interior minister and a former head of ? [the] chancellery

Netspeak the a state his department 1
BERT-short administration cabinet protocol parliament finance 29

Pauline was a few years older than Chris who was 31 but they had found mutual support and
love and together created the opportunity ? [to] live on their own

Netspeak to who and they not 1
BERT-short slaves women others wolves animals 29

Verbal abuse on the streets was commonplace a brick through ? [the] window was not unusual
Netspeak the a this every my 1
BERT-short whose which this front another 29

I’m doing ? [a] secretarial course and want to get in that way
Netspeak a the year legal medical 1
BERT-short financial undergraduate professional student executive 28

She peered at ? screen again
Netspeak the big on login this 1
BERT-short white empty same full off 28

He turned to go out of ? [the] room
Netspeak the 1
BERT-short this that one another any 23

65

APPENDIX A. APPENDIX

Table A.6: Examples for queries NeuralNetspeak ranked higher with the additional
context from the long query. The source sentence is shown with a grey background,
with the short query in italics. For each model, the first five results and the rank
of the expected result are displayed. The expected result is printed in bold if it is
included in the first five results.

Model The 5 highest ranked results Rank

The water polymers thus have a pattern imposed upon them a pattern ? [which] is
determined by the substance which is dissolved the solute

Netspeak that which 2
BERT-short matrix puzzle diagram map function 29
BERT-long which it that what this 1
But while the sobriquet of Canaanite might have meant something some two thousand years before

in Old Testament times it makes no sense whatever in ? [the] context of the New Testament
Netspeak the 1
BERT-short one every your his this 30
BERT-long any the current its his 2

During the first year if you encounter a ? [problem] with your CompuAdd 200 300
or 400 Series desktop or deskside system which can’t be resolved by our Telephone Technical
Support Staff we provide On Service in most parts of the country within the next business day

Netspeak problem bug 1
BERT-short wolf spider snake dinosaur storm 29
BERT-long problem problems difficulty conflict issue 1

Especially ? [in] a situation like this
Netspeak in such of to is 1
BERT-short defining as define describe describing 29
BERT-long like in given assuming at 2

The supply of such information comes from ? [a] variety of sources within the organization
Netspeak a 1
BERT-short varying varied one another various 29
BERT-long any a an all every 2
Leaving home should be a normal part of ? [young] adult development but running away or leaving

prematurely is an indication that life at home is no longer acceptable or bearable
Netspeak the an his my young 5
BERT-short mature her an woman all 29
BERT-long early young mature all the 2

Such a right should ? [be] made exercisable by notice given before the earliest date
upon which an appointment may be made

Netspeak be 1
BERT-short do seem say she stay 27
BERT-long be only been not usually 1

The accounts are third told years ? [after] the events
Netspeak of to in and about 9
BERT-short before between describing describes through 30
BERT-long before preceding during after between 4

The first stage would be to visit the school and then return to discuss ? [the] matter again
Netspeak the this 1
BERT-short this our a their each 28
BERT-long this said that the a 4

Dulé found himself longing this carnage this bloodshed must come
to ? [an] end we must call a truce make a new treaty

Netspeak the an this that its 2
BERT-short whatever that this any its 17
BERT-long an its our no the 1

66

Bibliography

Jay Alammar. The illustrated transformer. Blog post, 2018. URL https:
//jalammar.github.io/illustrated-transformer/. 2.2, 2.1.2, 2.3, 2.4,
2.5, 2.6, 2.8

Dimitris Alikaniotis and Vipul Raheja. The unreasonable effectiveness of
transformer language models in grammatical error correction. CoRR,
abs/1906.01733, 2019. URL http://arxiv.org/abs/1906.01733. 3.1, 3.3

Eric Atwell and S. Elliott. Dealing with ill-formed english text. Comput. Anal.
Engl.: Corpus-Based App., 01 1987. 3.1

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normaliza-
tion, 2016. 2.1.3

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate, 2016. 2.1

BNC Consortium. British national corpus, XML edition, 2007. URL http:
//hdl.handle.net/20.500.12024/2554. Oxford Text Archive. 4.2

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding,
2018. 1, 2.2

Karen Jensen, George E Heidorn, and Stephen D Richardson. Natural language
processing: the PLNLP approach. Boston: Kluwer Academic Publishers,
1993. 3.1

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer,
and Omer Levy. Spanbert: Improving pre-training by representing and
predicting spans, 2020. 6

Philipp Koehn. Europarl: A parallel corpus for statistical machine translation.
In MT summit, volume 5, pages 79–86. Citeseer, 2005. 4.2

67

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
http://arxiv.org/abs/1906.01733
http://hdl.handle.net/20.500.12024/2554
http://hdl.handle.net/20.500.12024/2554

BIBLIOGRAPHY

Bruno Martins and Mário J. Silva. Spelling correction for search engine queries.
In José Luis Vicedo, Patricio Martínez-Barco, Rafael Muńoz, and Maximil-
iano Saiz Noeda, editors, Advances in Natural Language Processing, pages
372–383, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-
540-30228-5. 3.1

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernocký, and Sanjeev
Khudanpur. Recurrent neural network based language model. volume 2,
pages 1045–1048, 01 2010. 1, 2.1

Marcin Miłkowski. Automating rule generation for grammar checkers, 2012.
3.1

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word rep-
resentations. CoRR, abs/1802.05365, 2018. URL http://arxiv.org/abs/
1802.05365. 1, 2.1, 2.2

James L. Peterson. Computer programs for detecting and correcting spelling
errors. Commun. ACM, 23(12):676–687, December 1980. ISSN 0001-0782.
doi: 10.1145/359038.359041. URL https://doi.org/10.1145/359038.
359041. 3.1

Martin Potthast, Martin Trenkmann, and Benno Stein. Using Web N-
Grams to Help Second-Language Speakers. In Web N-Gram Workshop
at SIGIR 2010, page 49, July 2010. URL https://web.archive.org/
web/20110220062356/http://research.microsoft.com/en-us/events/
webngram/sigir2010web_ngram_workshop_proceedings.pdf. 1, 3.1, 3.1

R. Quirk, R. Quirk, S. Greenbaum, D. Crystal, D.S.E.U.S. Green-
baum, G. Leech, L. Geoffrey, Pearson Education, Pearson Longman,
J. Svartvik, et al. A Comprehensive Grammar of the English Lan-
guage. A Comprehensive Grammar of the English Language. Longman,
1985. ISBN 9780582517349. URL https://books.google.de/books?id=
wj9BAQAAIAAJ. 3.1

A. Radford. Improving language understanding by generative pre-training.
2018. 2.1, 2.2, 6

Evan Sandhaus. The New York Times Annotated Corpus. LDC2008T19. DVD.
Philadelphia: Linguistic Data Consortium, 2008. 4.2

Wilson L. Taylor. “cloze procedure”: A new tool for measur-
ing readability. Journalism Quarterly, 30(4):415–433, 1953. doi:

68

http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365
https://doi.org/10.1145/359038.359041
https://doi.org/10.1145/359038.359041
https://web.archive.org/web/20110220062356/http://research.microsoft.com/en-us/events/webngram/sigir2010web_ngram_workshop_proceedings.pdf
https://web.archive.org/web/20110220062356/http://research.microsoft.com/en-us/events/webngram/sigir2010web_ngram_workshop_proceedings.pdf
https://web.archive.org/web/20110220062356/http://research.microsoft.com/en-us/events/webngram/sigir2010web_ngram_workshop_proceedings.pdf
https://books.google.de/books?id=wj9BAQAAIAAJ
https://books.google.de/books?id=wj9BAQAAIAAJ

BIBLIOGRAPHY

10.1177/107769905303000401. URL https://doi.org/10.1177/
107769905303000401. 2.2

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need, 2017. 1, 2.1, 2.1, 2.7, 2.9

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith,
Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. Google’s neural machine translation system: Bridging the
gap between human and machine translation, 2016. 2.2.1

Li Zhuang, Ta Bao, Xioyan Zhu, Chunheng Wang, and S. Naoi. A chinese
ocr spelling check approach based on statistical language models. volume 5,
pages 4727 – 4732 vol.5, 11 2004. ISBN 0-7803-8566-7. doi: 10.1109/ICSMC.
2004.1401278. 3.1

69

https://doi.org/10.1177/107769905303000401
https://doi.org/10.1177/107769905303000401

	Introduction
	Theoretical Foundation
	Transformer Model
	Model Architecture Overview
	Attention
	Encoder and Decoder
	Embedding and Positional Encoding

	BERT
	Pre-Training
	Fine-tuning

	Related Work
	Writing Assistants
	Netspeak
	Valid Netspeak Queries
	Result Retrieval

	Writing Assistants using Transformers

	Methodology
	NeuralNetspeak
	Query Processing with BERT
	Query Scoring Strategies
	Subquery Processing
	Mask Prediction and Scoring
	Implementation and Integration in Netspeak
	Limitations
	Expected Improvements

	Datasets
	Sentence Selection
	Query Generation

	Experiment Design
	Performance Metrics
	Result Evaluation

	Experiment Results and Discussion
	Quantitative Evaluation
	Qualitative Evaluation

	Conclusion
	Appendix
	Multi Mask Scoring Strategies
	Synonym Retrieval Strategies
	Query Examples

	Bibliography

