Leipzig University
Institute of Computer Science
Degree Programme Computer Science, B.Sc.

Text2SQL. Exploring Relational
Databases with Natural Language
User Interfaces

Bachelor’s Thesis

Julian Thilo Matriculation Number 3797628
Born Oct. 27, 1995 in Miinster

1. Referee: Prof. Dr. Martin Potthast

Mentor: Dr. Tim Gollub

Submission date: October 28, 2024

Declaration

Unless otherwise indicated in the text or references, this thesis is
entirely the product of my own scholarly work.

Leipzig, October 28, 2024

Julian Thilo

Abstract

Text2SQL is a common label for systems converting natural language input
into executable SQL database queries. While SQL can be used to retrieve a
broad variety of direct and indirect information from relational databases, its
syntax and inner workings can be hard to learn. Hence the need for a tool to
build a bridge between queries in natural language and those understood by
database systems.

Coming from simple rule-based conversions, the introduction of large lan-
guage models has greatly enhanced the capabilities of Text2SQL implementa-
tions. Input queries previously needed to be structured very similarly to actual
SQL. The current models go beyond this approach, reducing the need to think
about how a response to a query should be retrieved in advance.

This thesis evaluates the performance of two Text2SQL implementations
faced with analytical questions, specifically GPT-4 and the open-source model
SQLCoder-8B. The goal for the models is to provide access to meta data
surrounding the information contained in the TR Anthology, a collection of
papers on the subject of Information Retrieval. Real queries against this corpus
and their appropriate SQL equivalents form the basis for the performance
evaluation. This is in contrast to existing evaluation datasets containing less
challenging questions from a wide variety of everyday topics.

The results show that the GPT-4 model can hold up to its performance
on a general knowledge benchmark, while SQLCoder-8B delivers fewer correct
results in comparison. During the evaluation, common errors in the generated
statements are analyzed and presented as part of this thesis.

Contents

1 Introduction

2 Related work
2.1 Problem history o
2.2 Benchmark datasets 0oL
2.3 Ewvaluation metrics oL
2.4 Model performance
2.5 Prompt engineeringo

3 Approach
3.1 Dataset compilation
3.2 Database preparation and dataset annotation
3.3 Model and prompt selection
3.4 Generation and evaluation
3.5 Schema improvement and re-evaluation
3.6 Model temperature adjustment

4 Evaluation
4.1 Result overview
4.2 Effect of temperature setting
4.3 Effect of schema engineering
4.4 Common generation errors and further observations

5 Discussion and outlook
5.1 Dataset characteristics
5.2 Temperature experiments
5.3 Schema and prompt engineering L.
54 Conclusion

A Schema versions
A.1 Initial schema for SQLCoder-8B
A.2 Initial schema for GPT-4

11
13
14
15

16
17
19
20
21

24
24
25
25
26

CONTENTS

A.3 Extended schema for SQLCoder-8B 30
A4 Extended schema for GPT-4 34
A.5 Modified schema for SQLCoder-8B 35
A.6 Modified schema for GPT-4 37
B Dataset questions 39
B.1 Answerable questions L. 39
B.2 Unanswerable questions 41

Bibliography 44

i

Chapter 1

Introduction

Information stored in databases usually goes beyond the raw data: many and
potentially more significant insights can be gained by analyzing meta data, re-
lations between different entries, and aggregate functions on top of the stored
data. However, performing this kind of meta analysis requires knowledge of
proper and advanced syntax of the query language SQL. Bypassing this re-
quirement can be achieved using a means of transforming questions from nat-
ural language to proper SQL syntax automatically.

The task of transforming user input into the SQL statement required to
retrieve the desired information from a database is typically labeled Text2SQL.
Due to the prevalence of databases throughout time and different contexts,
there is a long history of research on the Text2SQL task. More recently, the
development of large language models (LLMs) has found its way into this
research area as well.

LLMs are mostly known for the generation of natural language responses.
However, these types of models may also be used to produce database queries
in a structured, non-natural language, like SQL. This enables users to retrieve
information from databases without knowing the proper query syntax.

Automatic query generation is especially helpful for users with limited
knowledge about database queries or SQL in particular. But the implementa-
tion of Text2SQL on top of a database can also benefit more advanced users by
eliminating the need to think about proper query formulation. The available
information can be accessed and analyzed through straightforward, natural
language user input. This increases the efficiency of information retrieval from
the database.

Many general-purpose LLMs are capable of generating SQL statements
from natural language input [Gao et al., 2023]. Models that have been trained
specifically for this task also exist [Shi et al., 2024], trying to reduce the model
size required for the task or achieve better results by cutting out general
question-answering capabilities. The performance of various LLMs on the

1

CHAPTER 1. INTRODUCTION

Text2SQL task has been evaluated using the standardized benchmark dataset
BIRD [Gao et al., 2023|. The benchmark shows results that go far beyond
those of the approaches and models that came before LLMs [Shi et al., 2024].
The results show the potential of LLM-based Text2SQL models as natural
language database interfaces. It remains unclear however whether the results
carry over to a real and complex use case.

To bridge this gap, an example is needed of a database with additional
information and meta data that is not readily available to users. One such
database is the Webis Group’s IR Anthology,t a record of publications in the
field of information retrieval. The site lists conferences and journals with
publications by year, allowing visitors to browse and quickly access papers they
are specifically looking for. A deeper analysis of the available information and
meta data requires database queries that are often very specific to an individual
user’s request. Anticipating all of the requests of a wide user base and manually
constructing the appropriate database queries beforehand is not feasible. This
is where LLM-based Text2SQL systems may be of use.

In this thesis, we evaluate one general-purpose model and one specialized
model to find out whether the models can reliably produce correct SQL state-
ments when prompted with analytical questions submitted by actual users of
a real environment, the IR Anthology.

We compare the performance of the general-purpose model GPT-4, which
scores highly on the BIRD benchmark [Li et al., 2023], and the specialized
model SQLCoder-8B. The SQLCoder-8B model is an open-source model chosen
to allow observations regarding the feasibility of low-cost implementations as
compared to commercial solutions.

During the evaluation, we look for evidence of a beneficial impact of schema
engineering on Text2SQL model performance, schema referring to the struc-
turing of a database into tables and columns. To fix potential sources of com-
mon errors in the generated statements, the database structure is modified
and the evaluation repeated against the new schema. Additionally, we investi-
gate whether different settings of the temperature parameter lead to improved
capabilities in the models to answer complex questions. The temperature pa-
rameter controls a model’s inclination to choose tokens that are less likely as
part of its generated response |Peeperkorn et al., 2024]. Hypothetically, this
improves the performance on questions that require unorthodox SQL queries
to be answered correctly.

Our evaluation results show that the SQL generation capabilities of GPT-4
in an analytical context are on par with the performance on the general knowl-
edge benchmark BIRD. Unfortunately, the open-source model SQLCoder-8B

! https://ir.webis.de/anthology/

https://ir.webis.de/anthology/

CHAPTER 1. INTRODUCTION

largely fails to deliver under the same conditions.

Although no statistically significant improvements are found, the evalua-
tion provides insights into the impact of schema engineering and temperature
adjustment. Additionally, this thesis highlights problems with automatic eval-
uation of the Text2SQL task. Further details on the model performance under
different conditions are provided in the following chapters.

Chapter 2

Related work

Research into the performance of Text2SQL models has largely been focused
on high-level benchmarks, evaluating models based on data from a variety of
topic areas, many of which are represented by generated sample data instead
of real information. This presents an opportunity for our work to evaluate
model performance in a specific use case and using real data, representing a
more application-oriented approach.

This chapter outlines the history of research on the Text2SQL task and de-
scribes findings and problems of existing evaluation datasets and metrics, engi-
neering methods for the task, and the approaches used to tackle the Text2SQL
problem, highlighting areas where this thesis can still contribute.

2.1 Problem history

The Text2SQL task is a longstanding topic of research in the field of natural
language processing (NLP). The latest advancements from the NLP field are
typically also applied to the Text2SQL problem.

By the start of the century, experiments focus on traditional NLP tech-
niques like syntactic and semantic parsing as well as rule-based translations
from parsed natural language to equivalent SQL statements (Popescu et al.
[2003], Li and Jagadish [2014]). Approaches of this time split the natural lan-
guage question into individual components and transform these components
into SQL parts one by one.

New advances in deep learning based on neural networks were made in the
field and consequently applied to Text2SQL, as summarized by Katsogiannis-
Meimarakis and Koutrika [2023]: Zhong et al. [2017] adapted the seq2seq ap-
proach [Sutskever et al., 2014] for the problem as Seq2SQL and other deep
learning implementations followed (Xu et al. [2017], Wang et al. [2020], Lin
et al. [2020]).

CHAPTER 2. RELATED WORK

The introduction of large language models (LLMs) based on transformers
[Vaswani et al., 2017], the release of the BERT model [Devlin et al., 2019] and
finally, the development of OpenAl’s GPT models up until the release of GPT-4
[OpenAl et al., 2023] introduced a new level of interactive communicative
capabilities. As Gao et al. [2024] have shown, these capabilities can also be
used for improved performance on the Text2SQL problem.

2.2 Benchmark datasets

Datasets like SPIDER [Yu et al., 2018] or WikiSQL |Zhong et al., 2017] were
developed before the era of LLMs to evaluate the described earlier Text2SQL
approaches. These datasets remain valuable to easily evaluate the general per-
formance of LLM-based Text2SQL models. However, they are insufficient to
judge a model’s capability when faced with more complex database structures
and user queries.

Using a general-purpose dataset, Li et al. [2023] have shown impressive
Text2SQL capabilities in the GPT-4 model and other LLMs using the newly
created BIRD benchmark. The BIRD benchmark dataset is composed of over
12,000 questions asking about information from a total of 95 databases. Most
of the databases contain data surrounding everyday topics like sports tourna-
ments or company sales, mostly lacking data from less accessible fields such as
academia. One exception is a single database that contains information about
scientific authors, papers, conferences, and journals. Overall, the questions in
the dataset can be considered more complex than those of the earlier SPIDER
or WikiSQL datasets.

Due to the data stemming mostly from everyday topics, however, it remains
unclear how LLM-based Text2SQL models that score highly on BIRD perform
in even more complex, scientific use cases. Using a dataset built completely
around scientific publication data from an actual use case, this thesis attempts
to challenge the models more thoroughly.

There has been some research using domain-specific datasets, which con-
tain information from a single field such as academic research papers (Li and
Jagadish [2014], Iyer et al. [2017]). These datasets were however only used to
evaluate pre-LLM models.

2.3 Evaluation metrics

For the actual evaluation task, several metrics have been established, as sum-
marized by Katsogiannis-Meimarakis and Koutrika [2023]. The BIRD bench-
mark uses ezecution accuracy (EX) to decide whether the generated SQL state-

CHAPTER 2. RELATED WORK

ments are correct. The EX metric compares the database result sets of both
the generated and the handwritten ground truth statement. If the two sets
are identical, the generated statement is labeled as correct.

The questions in our dataset are written without knowledge of the database
structure, which differs from the way the BIRD dataset was compiled. The
language of the questions is therefore more ambiguous than required for the
reliable use of the EX metric. Between a correct LLM-generated query and
the handwritten ground truth query for a question, the two result sets are not
always identical due to the ambiguity of natural language. Because of this, we
rely on manual examination of the generated statements to decide correctness
instead of automatic evaluation using the EX metric. The problems with the
EX metric and our reasons for the use of manual checks are described in more
detail in Section 3.4.

2.4 Model performance

To compare the performance of different LLM-based Text2SQL approaches,
the BIRD dataset is an accepted and preferred solution. Because the dataset
has been purpose-built for this task, the EX measure provides workable results
setting the models apart.

Researchers achieve higher EX scores on the BIRD benchmark by pairing
existing LLMs with specially trained systems that provide the actual model
with the information required to answer a particular question (see Section 2.5
for more details).

At the time of writing, the BIRD leaderboard is topped exclusively by
approaches combining such specially trained systems with existing LLMs. The
leading position is held by a proprietary solution titled ExSL + granite-200-
code developed by researchers at IBM, scoring at 67.86% EX.! The next best
performing solution is CHESS, ranking at 66.69% EX |Talaei et al., 2024]. In
third place, the MCS-SQL solution, built on top of GPT-4 by Lee et al. [2024],
achieves a score of 65.45% EX.

The GPT-4 model is featured in a number of other solutions that have
been evaluated on BIRD as well. It is also one of the few solutions that can
be accessed via a programming interface, making it a preferred choice for our
evaluation. When not paired with any additional system, GPT-4 achieves a
score of 54.89% EX on the BIRD benchmark as evaluated by the benchmark
authors themselves [Li et al., 2023].

While the GPT-4 model is available to use via a paid interface, usage of

! https://research.ibm.com/blog/granite-LLM-text-to-SQL, last accessed on
25/10,/2024

https://research.ibm.com/blog/granite-LLM-text-to-SQL

CHAPTER 2. RELATED WORK

an LLM for the Text2SQL task in a concrete use case may require running
a model on in-house infrastructure or without payment. While a variety of
open-source models that have been specifically trained for the Text2SQL task
exists, these have not seen a lot of research and none are featured on the BIRD
leaderboard.

However, there is one study looking at open-source LLMs for the Text2SQL
problem, which saw the best performance in the SQLCoder-34B model [Zhang
et al., 2024]. Because this model remains in an unfinished state as designated
by the model authors,? we select the more recent model SQLCoder-8B from
the same family for our evaluation.

2.5 Prompt engineering

To arrive at generated SQL statements that are satisfactory, the format of the
prompt has to be considered and improved for the Text2SQL task.

In their Text2SQL prompt engineering study, Gao et al. [2024| show the im-
pact of different prompt formats on a model’s performance. Varying the model
instructions, the embedding of the question and the format of the database
structure information leads to different results from a variety of models.

Conveying the structure of the database is especially important for the gen-
eration of correct SQL statements. For large database structures, adding the
whole schema to each prompt potentially exceeds the LLM’s context window.
LLMs can be paired with retrieval-augmented generation (RAG) layers to add
only the most relevant parts of a database schema to the prompt for a spe-
cific question. As summarized by Gao et al. [2023], RAG layers can improve
and compact the information available to a LLM. In the context of Text2SQL,
RAG layers are trained on the database schema and documentation strings.
For each question that is entered into a Text2SQL system, the RAG layer then
produces the most relevant schema and documentation items and adds these
to the prompt.

On the BIRD benchmark, RAG layers like MCS-SQL |Lee et al., 2024] and
DAIL-SQL [Gao et al., 2024] significantly improve the scores of GPT-4 and
other models. For this thesis, a freely available RAG layer is briefly considered
but discarded due to incompatibility with the models used for evaluation. Our
evaluation can proceed without a working RAG layer, as the schema that is
used is small enough to fit into each prompt without exceeding the context
window of the models used.

2 https://huggingface.co/defog/sqlcoder-34b-alpha, last accessed on 25/10,/2024

https://huggingface.co/defog/sqlcoder-34b-alpha

Chapter 3

Approach

Can Text2SQL systems be counted on to retrieve complex analytical informa-
tion from a database? This is the main question we want this thesis to answer.
To achieve this goal, realistic and challenging questions are sourced directly
from the Information Retrieval (IR) research community. Handwritten ground
truth SQL statements answering each question correctly are added to the set.
Finally, the generated SQL statements for each question from two Text2SQL
models are compared to the handwritten ones based on the statements and
the actual database results.

3.1 Dataset compilation

Existing datasets for Text2SQL model evaluation provide a good foundation
for benchmarks comparing the performance of different Text2SQL models. In
the case of the most prominent candidate, BIRD [Li et al., 2023|, crowd-sourced
questions on a variety of different databases form a challenging dataset. This
allows drawing conclusions about the general capabilities of Text2SQL models
in comparison to each other.

The databases included in BIRD contain data from everyday contexts like
sports tournaments or company sales. Additionally, the database structure
was known to the creators of the questions. It remains unknown how the
evaluated Text2SQL models perform when prompted with questions that are
sourced from people without knowledge of the database structure and in a
highly analytical context.

As part of this thesis therefore, a new dataset is compiled, relying on in-
put from the IR research community. A call for questions was sent to two IR
mailing lists: SIG-IRList by the Special Interest Group on Information Re-
trieval and the IR list curated by the British Computer Society Information
Retrieval Specialist Group. Respondents were asked to submit questions about

CHAPTER 3. APPROACH

IR papers and the IR research community. A total of 54 responses were sent
in.

The majority of the responses contained a single question ready to be used
in our dataset. The remaining responses required additional processing for one
of three reasons: (1) multiple questions inside a single response, (2) questions
containing placeholders instead of actual research topics or approaches, and
(3) comments on the intent behind the question being sent in with the actual
question.

Multiple questions were split into single dataset entries and placeholders
were filled in with randomly selected IR research topics. The comments that
were submitted with three of the questions did not have significant bearing on
this work and were saved separately for potential future reference. The result
is a list of 88 questions, including the original questions with placeholders not
yet filled in.

3.2 Database preparation and dataset annota-
tion

At the time of writing, the IR Anthology data is stored in the form of Bib-
TeX files containing structured bibliographic data and not available from a
relational database. For this reason, we first construct a database schema to
store the information available in journal and conference bibliography files.
This initial schema is filled with the actual data from the IR Anthology. The
constructed database uses PostgreSQL as a database management system, be-
cause one of the two models we intend to evaluate has only been trained on
PostgreSQL syntax. Preliminary testing of this model’s capabilities shows that
the generated SQL statements are indeed not compatible with systems other
than PostgreSQL.

Many of the submitted questions are about paper citations, topics, and
other information that is not contained in the bibliographic data for a paper
(i.e., its BibTeX entry). To allow evaluation on these questions as well, we
create a second schema, the extended schema. This schema includes all of the
information that was asked about and could feasibly be retrieved from public
sources.

Specifically, the initial schema is extended with tables for information about
citations, topics, and awards as well as additional columns for information
about the gender, country of origin, year of birth, and professional or academic
context of paper authors and publication editors. Information about concrete
research findings, the impact of certain studies or the reasoning behind the
beginning and end of research into a topic is left out, because it is deemed to

CHAPTER 3. APPROACH

Table 3.1: Dataset statistics showing the number of questions, the ratio of questions
that are answerable using different schemas, and the number of questions for each
complexity label

Dataset
Total questions 88
Not answerable 41
Answerable 47
Answerable using initial schema 25

Answerable using extended schema 22

Simple questions 28
Complex questions 19

be much harder to be retrieved from public sources. This means that 41 of
the 88 questions in the dataset are not answerable using the extended schema
either. A statistical overview of the dataset is provided in Table 3.1.

As the actual retrieval of additional meta information is not within the
scope of this work, the tables and columns that were added in the extended
schema are filled with sample data. The sample data is carefully selected and
crafted to allow differentiating between correct and incorrect SQL statements
based on the database results.

Based on the initial and the extended database structure, each question is
annotated with handwritten SQL statements that return the correct response
from the respective schema. For each schema version, questions that cannot
be answered using the information in that particular schema are marked ac-
cordingly.

Each question was then judged regarding its complexity using the labels
simple and complez. This allows for an evaluation of the models’ performance
on different complexities later. A question was marked as simple if the required
information is directly available in one of the database table columns and
without additional calculations. In contrast, a question was marked as complex
if a correct answer requires multiple sub-queries or detailed general knowledge
to arrive at a calculation.

All of the database schema versions are available for reference in Ap-
pendix A.

10

CHAPTER 3. APPROACH

3.3 Model and prompt selection

Our model selection is based on two goals. The first goal is to test the adver-
tised performance of a state-of-the-art model in a real and analytical use case.
The second goal is to find out whether a model that was specifically trained
for the Text2SQL task and could be run on available infrastructure can hold
up to the capabilities of a powerful, general-purpose model.

As mentioned in Chapter 2, the GPT-4 model [OpenAl et al., 2023] is
selected to achieve the first goal. GPT-4 is at the top of the BIRD benchmark
for Text2SQL systems [Li et al., 2023] at the time of model selection. Execution
accuracy (EX) scores for the GPT-4 model on the BIRD benchmark range
from 54.89% (zero-shot baseline) to 65.45% (paired with a specific retrieval-
augmented generation layer) at the time of writing. Using the newly created
dataset, the model’s performance can be tested in a specific complex use case
and compared to the performance on the more general BIRD benchmark.

To achieve the second goal, a version of the open-source model SQLCoder!
is selected. The selected SQLCoder-8B model is fine-tuned for the Text2SQL
task by the company Defog using Meta’s Llama 3 model [Dubey et al., 2024] as
a basis. It has only been evaluated on the original company’s own evaluation
framework, with the model authors claiming superiority over GPT-4 as well as
many other open-source models in the model’s description on Hugging Face?.
A precursor to the selected model, SQLCoder-34B, has been evaluated on the
BIRD benchmark by Zhang et al. [2024], achieving the best score of the tested
open-source models at 32.07% EX. An instance of the selected SQLCoder-8B
model is set up on university infrastructure, allowing observations regarding
the feasibility of open-source Text2SQL models in an analytical context with-
out the need for paid third-party vendors.

Both models require engineered prompts to produce desired results. For
the SQLCoder-8B model, the authors have provided a prompt format (Fig-
ure 3.1) that should be used for best results, because the model is trained on
it. For GPT-4, we use a prompt format from the retrieval-augmented gener-
ation (RAG) framework Vanna® (Figure 3.2). The Vanna framework allows
Text2SQL applications to train an RAG layer on the database structure. Un-
fortunately, the format of the returned database objects is not well understood
by GPT-4. For example, in preliminary tests, the generated SQL statements
based on Vanna’s schema information included the database name instead of
the schema name throughout all of the responses. This renders the state-
ments invalid, as they cannot be run against a database successfully. Instead,

! https://github.com/defog-ai/sqlcoder, last accessed on 25/10/2024
2 https://huggingface.co/defog/1llama-3-sqlcoder-8b, last accessed on 25/10/2024
3 https://github.com/vanna-ai/vanna, last accessed on 25/10/2024

11

https://github.com/defog-ai/sqlcoder
https://huggingface.co/defog/llama-3-sqlcoder-8b
https://github.com/vanna-ai/vanna

CHAPTER 3. APPROACH

<|begin_of_text|>
<|start_header_id|>user<|end_header_id|>

Generate a SQL query to answer this question:
‘[QUESTION] ¢

DDL statements:

[SCHEMA]

<|leot_id|>
<|start_header_id|>assistant<|end_header_id|>

The following SQL query best answers the question
“[QUESTION] ¢:
(((Sql

Figure 3.1: Prompt format for SQLCoder-8B, as recommended by the model’s
authors?

<system>

The user provides a question and you provide SQL.
You will only respond with SQL code and not with
any explanations.

Respond with only SQL code. Do not answer with
any explanations -- just the code.

You may use the following DDL statements as a
reference for what tables might be available:
[SCHEMA]

You may use the following documentation as a

reference as well:

The database is a Postgres database.

<user>
[QUESTION]

Figure 3.2: Prompt format for GPT-4, adapted from Vanna source code?

12

CHAPTER 3. APPROACH

we use simple data definition language statements to provide the model with
information about the database structure.

RAG layers as presented in Chapter 2 are valuable tools that are commonly
used to select the most relevant parts of the database structure for each prompt.
Using only a subset of the whole database structure avoids problems with
context window size. The prompt is kept to a minimum length and does not
contain information that is irrelevant but potentially misleading. Because the
database for our evaluation is comparatively small and can be fully described
using less than 1000 tokens, we opted to keep the selection or training of RAG
layers outside the scope of this thesis.

The GPT-4 prompt features one more instruction defining the database
system as PostgreSQL, because GPT-4 is potentially capable of generating
statements in a multitude of different SQL dialects. On the other hand, the
SQLCoder-8B model is only trained on the PostgreSQL dialect and does not
need the additional instruction.

3.4 Generation and evaluation

Using a script, the dataset containing the questions and the handwritten
ground truth SQL statement is parsed for further processing. For both the
initial and the extended schema, the questions and the schema definition are
then inserted into the prompts and run against both of the models. Questions
that are marked as unanswerable using one of the schemas are skipped for that
schema’s run.

The generated SQL statements and the handwritten SQL statement for
each question are run against the database. If there are any errors, these are
saved for later evaluation. Otherwise, the returned database result for each
generated statement is compared to the handwritten statement’s result. Two
indicators of similarity are calculated and added to the result summary: a flag
marking responses that contain the expected result set, and the Dice coefficient
[Dice, 1945| comparing the intersection size of the two result sets with the sizes
of both full sets.

Using the returned results and the calculated indicators of similarity as a
guiding basis, each generated statement is checked manually to decide whether
it is a correct response. During this process, we also make note of common
errors in the generated statements.

Manually checking the generated statements is necessary, as many of the
questions in the dataset allow different interpretations of the intended results.
This is inherent in the dataset as it is intentionally built on real questions
from potential users of the tested system. In a theoretical user interface, the

13

CHAPTER 3. APPROACH

questions would be equally ambiguous due to the characteristics of natural
language [Katsogiannis-Meimarakis and Koutrika, 2023].

An exact set comparison to decide correctness (as used in the BIRD bench-
mark’s execution accuracy measure [Li et al., 2023|) is therefore not feasible for
all of the questions. A more lenient algorithm checking whether the expected
results are included in a response and the Dice coefficient is sufficiently high
comes to mind. Such an algorithm still lacks behind the accuracy of manual
checks, as shown by the following examples from our dataset.

For the question "What was the distribution of country of origin at last
year’s ECIR conference?” the handwritten SQL returns a list of countries,
the number of participants from each country, and the percentage of that
number compared to the total number of participants. In one generated SQL
statement, the resulting list contains only the countries and the number of
participants for each country. The percentage from the handwritten SQL result
is not included in the response for the generated statement. Because the
distribution of countries is implicit in this limited response, and the percentage
was not explicitly asked for, we still mark this generation as correct.

Other times, the difference is rooted in the amount of returned results.
The question "What are the most cited IR papers from the period 2015-20207"
refers to multiple papers without specifying the amount of papers the user is
interested in. The handwritten SQL retrieves all of the papers between 2015
and 2020 sorted by their respective number of citations from the database.
An LLM-generated SQL statement limiting the response to an arbitrary 10
results can still be considered to answer the question accurately and we mark
it accordingly. However, not all of the expected results are included in this
response and the Dice coefficient between the two is a very low 0.001477. The
imagined algorithm would therefore reach the conclusion that the generated
SQL is not correct.

The BIRD benchmark overcomes this problem by using over 12,000 ques-
tions for evaluation, reducing the impact of ambiguity in a subset of the ques-
tions on the overall scores. Compiling a corpus of such dimensions based on
real questions regarding a specific research field is beyond the scope of this
thesis. Manual result validation therefore remains the preferred if not only
solution.

3.5 Schema improvement and re-evaluation

Checking the responses individually by hand allows us to identify parts of the
schema appearing to lead to faulty responses. For example, the awards table in
the extended schema contains both personal and paper awards, differentiated

14

CHAPTER 3. APPROACH

by a reference to either a person or a paper in the respective column. This
appears to lead to the models generating SQL that looks only for paper awards.
We attempt to fix this and other errors by creating a new schema with modified
structure.

The modified schema no longer contains bibliographic references that are
included in the BibTeX entries but irrelevant to any of the questions in our
dataset. The same is true for the table containing information about publi-
cation editors, which is removed entirely in the modified schema. To further
reduce the prompt length and hopefully lead to better detection of the relevant
parts of the schema, the tables for conferences and their proceedings are united
into a single table. Some columns are renamed to avoid misconceptions. And
the awards table is split into a table for paper awards and another table for
personal awards.

Additionally, we add an instruction to both prompts informing the models
that all of the database content is from the research field of IR. During the
first two runs, the generated SQL statements often contain unnecessary and
obstructing filters if a question mentions "IR" or "information retrieval". The
added instruction ("recall that all of the papers, journals and conferences in
the database are about IR, or information retrieval”) is an attempt to fix these
faulty generations.

The generation and evaluation steps are then repeated for every question
using the modified schema and prompts.

3.6 Model temperature adjustment

We expect that the models need to go beyond their typical training to find
answers to the analytical questions in our dataset. Using the temperature
parameter of a model, the model can be configured to choose less likely tokens
for its responses more frequently [Peeperkorn et al., 2024]. We hypothesize that
this may lead to better performance on complex questions. For this reason,
the temperature parameter for both of the evaluated models is initially left at
0.7, which is the default for the GPT-4 model.

To test this hypothesis and as a frame of reference, the generation is re-
peated twice with a temperature setting of 0. This new setting means the
model generations should be mostly deterministic. If the models’ performance
with a temperature setting of 0 remains constant and on par with the results
from the previous settings, multiple runs with the previous configurations are
not required to validate the evaluation results.

15

Chapter 4

Evaluation

Measuring the performance of large language models on the Text2SQL task
in a real environment requires a different evaluation approach than in a gen-
eral comparative benchmark. Benchmarks that compare Text2SQL models on
a large scale typically use datasets that are less complex than in a specific
analytical use case (cf. Section 2.2).

With a dataset comprised of analytical questions from actual users and
a database containing scientific information on research papers, we put two
Text2SQL models to a more realistic test. We evaluate how many of the
generations produced by the models contain valid SQL statements and how
many of those statements retrieve the correct answer to the question from the
database. The results are then compared to the benchmark performance of
each model.

While the overall results of the GPT-4 model are on par with the results
on the BIRD benchmark, the open-source model SQLCoder-8B fails to deliver
results that live up to the numbers set out by the model’s authors, especially
for the questions categorized as complex in our dataset.

Building on observations made during preliminary work on the dataset, we
also look at the effect of structural database modifications on the quality of the
generated SQL statements, running the evaluation on an initial, extended, and
modified schema as defined in Chapter 3. Additionally, we test the hypothesis
that a higher setting for the temperature parameter of the models may help
with the correct generation of SQL statements to answer complex questions.

Modifying the database structure in response to observed problem areas in
the models’ generations leads to slight but insignificant improvements for the
GPT-4 model. SQLCoder-8B shows no significant improvements in response
to the modifications. Setting the temperature parameter to a higher value
does not lead to improved results throughout the evaluation. A significant
finding shows that the default temperature setting of 0 leads to a higher ratio

16

CHAPTER 4. EVALUATION

of generations containing valid SQL statements.

Finally, we identify and describe common error patterns in the SQL state-
ments produced by the two models to provide a qualitative performance anal-
ysis.

4.1 Result overview

For each question from the dataset and each version of the database schema,
we evaluate the capabilities of the two models based on two key metrics: first,
whether the generated SQL statement is valid, i.e. it can be run without errors
on the respective database schema. Second, if the statement is correct, i.e. it
returns a correct answer to the user’s question. Unlike the validity, which can
be decided automatically based on the database response, the correctness is
checked manually for reasons outlined in Chapter 3.

The initial schema does not contain any information beyond the data avail-
able in the IR, Anthology’s BibTeX files. This limits the amount of questions
from the dataset that can be answered using the schema to 25. The extended
and the modified schema can provide answers to 22 more of the questions, re-
sulting in a total of 47 answerable questions. The results on the initial schema
are therefore not directly comparable to the results on the extended and the
modified schema.

Because of the small size of our dataset, changes in the percentages of valid
and correct generations have to be interpreted with caution. The p-values for
these changes, based on Fisher’s exact test [Fisher, 1922|, are given where ap-
plicable to indicate whether a change is statistically significant. In general, we
find that the changes in the ratio of generations answering a question correctly
are not statistically significant. The p-values for these changes between differ-
ent schema versions and temperature settings are all higher than 0.4, meaning
the null hypothesis cannot be rejected.

The results on the initial schema (as displayed in Table 4.1) are slightly
better for both models with the temperature setting of 0. With this setting,
the GPT-4 model generates valid SQL statements for 100% of the simple and
77.78% of the complex questions. The statements are correct for half of the
simple and one of the nine complex questions. This results in a total of 92%
valid and 36% correct responses.

Under the same temperature setting, SQLCoder-8B generates valid SQL
statements for 84% of the questions that can be answered using the initial
schema. However, only 8% of the questions are answered correctly by SQL-
Coder-8B. The complexity of the questions is of little consequence in this case.
Only one of the simple questions and one of the complex questions are answered

17

CHAPTER 4. EVALUATION

Table 4.1: Model evaluation results showing the ratio of generations with valid and
correct SQL for the two models on the initial schema, with highest values per model
and column highlighted in bold

Simple (n=16) Complex (n=9) Total (n=25)

valid correct valid correct valid correct

Initial schema, temperature 0.7
GPT-4 0.9375 0.4375 0.7778 0 0.88 0.28
SQLCoder-8B 0.75 0.125 0.6667 0 0.72 0.08

Initial schema, temperature 0
GPT-4 1 0.5 0.7778 0.1111 0.92 0.36
SQLCoder-8B 0.75 0.0625 1 0.1111 0.84 0.08

correctly.

For the extended and the modified schema, the percentage of generations
containing valid, and correct SQL statements varies depending on the schema
and temperature used and the complexity of the question (see Table 4.2):
GPT-4 generates valid SQL statements for 85.11% to 93.62% of the questions,
with 38.30% answered correctly on the extended schema and 46.81% of all
questions answered correctly on the modified schema. SQLCoder-8B produces
valid generations for 44.68% to 72.34% of the questions. The percentage of
correctly answered questions from this model ranges from 8.51% to 14.89%,
both on the extended schema. On the modified schema, the model achieves
correct results for 10.64% to 12.77% of the questions.

Running the evaluation on the modified schema with a temperature set-
ting of 0, the GPT-4 model achieves its best correctness scores regardless of
the question complexity. Under these conditions, the model generates cor-
rect SQL statements for 60.71% of the simple questions and for 26.32% of the
complex questions. The SQLCoder-8B model achieves its best results on the
extended schema with a temperature setting of 0.7 instead, with 21.43% of
the simple questions being answered correctly. For the complex questions, the
SQLCoder-8B results are the same for all schema variants and temperature
settings. Out of the 19 complex questions, only a single question (5.26%) is
answered correctly by SQLCoder-8B regardless of the schema or temperature
used.

18

CHAPTER 4. EVALUATION

Table 4.2: Model evaluation results showing the ratio of generations with valid
and correct SQL for the two models on the extended and the modified schema, with
highest values per model and column highlighted in bold

Simple (n=28) Complex (n=19) Total (n=47)

valid correct valid correct valid correct

Extended schema, temperature 0.7
GPT-4 0.9286 0.5 0.7368 0.2105 0.8511 0.3830
SQLCoder-8B 0.6071 0.2143 0.3684 0.0526 0.5106 0.1489

Extended schema, temperature 0
GPT-4 0.9286 0.4643 0.9474 0.2632 0.9362 0.3830
SQLCoder-8B 0.6429 0.1071 0.8421 0.0526 0.7234 0.0851

Modified schema, temperature 0.7
GPT-4 0.8929 0.5 0.9474 0.1579 0.9149 0.3617
SQLCoder-8B 0.5 0.1429 0.3684 0.0526 0.4468 0.1064

Modified schema, temperature 0
GPT-4 0.9643 0.6071 0.8947 0.2632 0.9362 0.4681
SQLCoder-8B 0.5714 0.1786 0.7368 0.0526 0.6383 0.1277

4.2 Effect of temperature setting

The models are evaluated using temperature settings of 0 and 0.7 to find out
if a higher temperature allows the models to come up with creative solutions
required to answer some of the real questions from the dataset.

In a separate evaluation to establish the general effect of the temperature
setting on the models’ behavior, we find that the SQLCoder-8B model behaves
deterministically with a temperature of 0, returning an identical response per
question over multiple runs. On the other hand, the GPT-4 model returns iden-
tical responses for the majority but not all of the questions, with 13 of the 47
answerable questions being answered with a different response. The differences
lie mostly in the naming of aliases, the ordering of table joins and columns,
and the types of joins used in the statement. Of the 13 differing responses, two
contain significantly different approaches to answering the question and one
response has a different evaluation result compared to its counterpart from the
first run.

As described already, the results on the initial schema are near-identical
for both temperature settings, with slightly better performance under the 0
temperature. The improved performance is not statistically significant (p =
0.4139 for the improved validity and p = 0.8031 for the improved correctness).

19

CHAPTER 4. EVALUATION

On the extended and the modified schema, the difference in results is more
pronounced. Running with a temperature setting of 0.7, the GPT-4 model
generates valid SQL statements for 85.11% (extended) to 91.49% (modified)
of all questions depending on the schema. Using a temperature setting of
0, the generated SQL statements are valid for 93.62% of the questions on
both schemas. For the ratio of questions that are answered correctly, the
percentage remains the same for the extended schema at 38.3% regardless of
the temperature setting. For the modified schema, the percentage increases
from 36.17% (temperature 0.7) to 46.81% (temperature 0). None of these
improvements are statistically significant.

For the SQLCoder-8B model and regardless of the used schema, the valid-
ity scores are highest when run with a temperature of 0 (p = 0.0049). On the
extended schema, the model generates valid SQL for 72.34% of the questions
as compared to 51.06% with a temperature of 0.7 (p = 0.0555). On the mod-
ified schema, 63.83% of the generated SQL statements are valid, compared
to 44.68% with the 0.7 setting (p = 0.0971). However, SQLCoder-8B’s best
correctness scores are instead achieved on the extended schema with a tem-
perature setting of 0.7. 14.89% of all questions are answered correctly under
these settings, compared to 8.51% on the same schema with a temperature of
0 (p = 0.5229), 10.64% on the modified schema with a temperature of 0.7, and
12.77% also on the modified schema with a temperature of 0 (p = 1).

4.3 Effect of schema engineering

For the GPT-4 model, the modifications made to the schema based on com-
mon errors in the responses lead to slightly fewer correct generations with a
temperature setting of 0.7. However, with a temperature of 0, the results on
the modified schema are improved compared to the extended schema, with the
ratio of correct generations for simple questions rising from 46.43% to 60.71%
and the ratio for complex questions remaining at the previous 26.32%.

The SQLCoder-8B model performs equally well on both schema versions.
There is a slight drop in the ratio of generations containing valid SQL, with
three to four fewer valid responses depending on the temperature.

None of the observed changes in correctness or validity are statistically
significant with p-values ranging between 0.3754 and 1.

Positive influence of the schema modifications can be observed in the re-
sponses to questions asking about citations. For example, the column name
cited_ by paper_title, meant to reference the title of a citing paper, is erro-
neously used by the GPT-4 model to look for the topic of a cited paper. After
the column is renamed to citing publication, it is correctly ignored and the

20

CHAPTER 4. EVALUATION

topic of a cited paper is sourced from the appropriate table instead.

Another change that appears to help in some cases is the reduction of com-
plexity attempted by removing the separate table for conferences and including
conference names and years in the proceedings table. For a question asking
about the background of authors who contributed papers to SIGIR 2022, the
GPT-4 model generates SQL looking for a conference with the name SIGIR
2022. On the modified schema, the title of the conference and the year are
split correctly and searched for in their respective columns.

However, this particular change can also have a negative effect. For a
question asking about the most influential conference about conversational
search, GPT-4 generates correct SQL statements on the extended schema. On
the modified schema, the statements are no longer correct, because they do
not use the paper topics table anymore.

Another attempted improvement is the splitting of the awards table into
two separate tables containing awards for papers and personal awards for in-
dividual authors respectively. This improves the performance of the GPT-4
model on questions asking about paper awards. For example, a question asking
for a list of persons that have won the Gerard Salton Award is answered in-
correctly before the change, because the singular awards table is falsely joined
directly to the table containing authors and editors. After the change, the
paper awards table is correctly joined via a person’s authored papers.

For the same question about the Gerard Salton Award, the SQLCoder-8B
already generates correct SQL statements on the extended schema. On the
modified schema, the generations are incorrect, looking for a full match for the
specified Salton Award and therefore not finding the Gerard Salton Award in
the table.

4.4 Common generation errors and further ob-
servations

The various SQL generations by the two models show repeating error patterns.
Additional observations regarding the content of the generated SQL statements
can also be made.

Throughout the evaluation and regardless of the used schema or tempera-
ture, the GPT-4 model more frequently produces SQL using equality instead
of partial match searches in the WHERE clauses. Specifically, the = operator
is used more frequently than the LIKE operator combined with % wildcards,
which is itself used more frequently than the case-insensitive ILIKE operator.

Searching for exact matches causes problems where the user’s question
contains only part of the official name of a topic or an award (as with the Gerard

21

CHAPTER 4. EVALUATION

Salton Award example from the previous section). It can also be problematic
when the correct answer can only be retrieved using case-insensitive lookup.
Because of the capitalization of paper titles, a case-sensitive filter for argument
search does not return all relevant papers, which are much more likely to
contain the phrase written with capital first letters, i.e. Argument Search.

This is an area where SQLCoder-8B is less likely to produce faulty results.
Its generated SQL statements often make use of the ILIKE operator or convert
both the search term and the column contents to lower case for the search.

Another common pattern is the failure to take certain keywords from the
question into account for the generated SQL statements. For example, one
question asks for the original paper on a topic. GPT-4 correctly generates
the SQL required to retrieve papers on this topic from the database. In all
evaluations except for the extended schema with a temperature setting of 0.7
however, it fails to produce the syntax to order the results by year and return
only the first result (i.e., the original). Consequently, all papers on the topic
are retrieved from the database instead of just the original one.

Oppositely, ignoring certain parts of the question is difficult for the models
as well. Many of the generated SQL statements for the extended and the
modified schema contain filters for information retrieval or IR if the question
mentions IR. This behavior continues on the modified schema even though the
prompt used to evaluate this schema includes a documentation string defining
all items in the database as related to information retrieval or IR (as shown in
Section 3.5).

The generation of invalid SQL statements frequently includes incorrect ta-
ble prefixes for column names, or columns from tables that are not included
in the query. Especially with a temperature setting of 0.7, the models some-
times generate syntactical features, functions, and column names that do not
exist. For example, the GPT-4 model generates a query containing the non-
existent AGE function and another containing double quotes around a string
value. Double quotes in PostgreSQL signify an escaped column or table name
and cannot be used to surround strings.

Other observations include the fact that different topics that were filled
into an otherwise identical question can lead to entirely different responses, as
can be seen in the example in Fig. 4.1. Additionally, even though the schemas
used for the evaluation all use simple integer columns to store year values,
both models tend to produce SQL statements using date objects to work with
years. This sometimes leads to interesting though unnecessary conversions
from integers to text to dates.

22

CHAPTER 4. EVALUATION

In which year was BERT cited the most?

SELECT citation_year, COUNT(*) as citation_count FROM
paper_citations JOIN papers ON papers.id =
paper_citations.paper_id WHERE papers.title LIKE
»%BERTY%’> GROUP BY citation_year ORDER BY
citation_count DESC LIMIT 1;

In which year was SVM cited the most?

SELECT citation_year, COUNT(*) as citation_count FROM
paper_citations JOIN papers ON papers.id =
paper_citations.paper_id JOIN paper_topics ON
papers.id = paper_topics.paper_id WHERE
paper_topics.topic = ’SVM’ GROUP BY citation_year
ORDER BY citation_count DESC LIMIT 1;

In which year was BM25 cited the most?

SELECT citation_year, COUNT(*) as citation_count FROM
paper_citations WHERE citing_tion LIKE ’%BM25%°’> GROUP
BY citation_year ORDER BY citation_count DESC LIMIT 1;

Figure 4.1: Example showing different results for three questions that are nearly
identical, as generated by the GPT-4 model for the modified schema using a tem-
perature setting of 0

23

Chapter 5

Discussion and outlook

The main goal of this thesis is to find out whether Text2SQL systems can be
counted on to generate SQL equivalents of complex analytical questions in a
real and scientific use case. Our findings are based on the evaluation of two
Text2SQL models using questions submitted by actual IR researchers. Because
the questions were written without any imposed limits on their complexity, the
dataset they form is more complex than generalized benchmark datasets.

We find that the open-source model SQLCoder-8B exhibits sub-par per-
formance in our concrete setting. With a maximum ratio of 14.89% of the
questions in our dataset answered correctly, using the model as part of a user
interface to the IR Anthology data seems ill-advised.

The commercial model GPT-4 achieves better results, generating correct
SQL statements for up to 46.81% of the questions. This is proximal to the
54.89% performance of the model on the BIRD benchmark [Li et al., 2023] used
to effectively evaluate Text2SQL models in comparison to each other. Still,
with less than half of the questions answered correctly, usage of the model on
its own would not provide a reliable analytical user interface either.

5.1 Dataset characteristics

The evaluation dataset contains realistic questions written without detailed
knowledge of the database or the parameters of the evaluation. The questions
(listed in Appendix B for posterity) are therefore suited to assess the actual ca-
pabilities of Text2SQL models in a specific use case. This includes testing how
the models handle the ambiguity that is inherent in natural language. How-
ever, the ambiguity of the questions gives difficulty to the automatic evaluation
of the model generations.

In our case, manual evaluation of the generations was feasible due to the
small size of the dataset. This comes with the trade-off of limited statistical sig-

24

CHAPTER 5. DISCUSSION AND OUTLOOK

nificance of the comparative findings of this thesis. To expand the research into
the analytical capabilities of Text2SQL systems, a larger dataset is required.
A larger dataset would then also require an automatic evaluation method that
overcomes the problems arising with the ambiguity of natural language. The
extension of our dataset and the development of a suitable evaluation method
are two important opportunities for future research.

5.2 Temperature experiments

Complex questions require creative queries to retrieve the desired results. Hy-
pothesizing that a higher setting for the models’ temperature parameter might
help with this, we run every evaluation once on a setting of 0.7 and a second
time on a setting of 0. The results are inconclusive. SQLCoder-8B produces
the highest ratio of valid SQL statements with the 0 setting and the highest
ratio of correct statements with the 0.7 setting. GPT-4 is most successful with
the 0 setting overall, but with little to no difference depending on the schema.

Higher temperature leads to an increased amount of SQL errors in the eval-
uated responses. Therefore, the temperature parameter is best kept at 0, which
is the default for the SQLCoder-8B model. Building on our preliminary re-
sults, further study of the exact effects of different temperature configurations
is still warranted.

5.3 Schema and prompt engineering

In our evaluation, we compare different versions of the database structure and
their effect on the quality of the Text2SQL results. The evaluation results
show that modifications to the schema can have a beneficial impact, as the
GPT-4 model generates the highest ratio of correct SQL statements for the
final improved schema. However, even though the full schema information fits
inside the model’s context window, invalid SQL generations still occur and the
amount of incorrect generations is always higher than the amount of correct
generations.

Based on current results on the BIRD benchmark, achieving a higher ratio
of correct generations requires building more complex systems. The pairing
of pre-trained large language models with a retrieval-augmented generation
(RAG) layer has become standard praxis to score higher on the BIRD leader-
board. RAG layers allow expanding the amount of information on the structure
and content of the database by selecting only the most relevant parts for each
question.

25

CHAPTER 5. DISCUSSION AND OUTLOOK

Unfortunately, the freely accessible RAG layer that we selected for testing
turns out to be incompatible with both of the models in our evaluation. The
effect of such a layer providing only relevant information to a Text2SQL model
is therefore not explored further in this thesis and open for further research.
This is another area that would benefit from a larger dataset and automatic
evaluation capabilities.

The same is true for experiments on the prompt format used to procure
SQL statements from the models. In our evaluation, we use a single prompt
format for each model continuously. Additional research can be made into
the performance impact of different prompt formats in a concrete environment
such as the IR Anthology. Prompt formats could be fine-tuned to the spe-
cific environment to find out how much the quality of generations improves in
response.

5.4 Conclusion

In this thesis, we find analytical Text2SQL capabilities in the GPT-4 model
based on a specific dataset from a real use case. In contrast, the open-source
model SQLCoder-8B that is specifically trained for the Text2SQL task gener-
ates fewer correct responses. Neither of the two models is suited to be used as
a drop-in solution to provide broad access to the IR Anthology’s hidden meta
data.

The evaluation results are nonetheless promising and provide opportunities
for further research. Our work highlights the difficulties with evaluation that
is based on raw human input. The problem of automatic evaluation is very
much still open for future work. The dataset compiled for this thesis can serve
as a starting ground for a more extensive study of the Text2SQL problem in
an analytical use case.

26

Appendix A

Schema versions

A.1 Initial schema for SQLCoder-8B

CREATE TABLE public.conferences

(

id INTEGER PRIMARY KEY, -- Unique ID for each conference

year INTEGER, -- Year the conference took place in, in
— YYYY format

title VARCHAR(1000) -- Short title of the conference

)

CREATE TABLE public. journals

(

id INTEGER PRIMARY KEY, -- Unique ID for each journal

volume VARCHAR (256), -- Volume that the journal was
— published in

"number" VARCHAR (256), -- Number of the journal in the
— volume

year INTEGER, -- Year the journal was published in, in
— YYYY format

title VARCHAR(256), -- Abbreviated title of the journal

publisher VARCHAR(256) -- Publishing house of the jourmnal

)

CREATE TABLE public.paper_authors

(

id INTEGER PRIMARY KEY, -- Unique ID for each mapping
— entry

paper_id INTEGER, -- ID of the paper that was authored

people_id INTEGER, -- ID of the person that authored the

27

APPENDIX A. SCHEMA VERSIONS

<~ paper

"position" INTEGER -- Position of the author in the list
<~ of all authors of the paper

)

CREATE TABLE public.papers

(

id INTEGER PRIMARY KEY, -- Unique ID for each paper

title VARCHAR(1000), -- Full title of the paper

year INTEGER, -- Year the paper was published in, in YYYY
— format

bibkey VARCHAR(256), -- BibTex key of the paper

dblpkey VARCHAR(256), -- Key of the paper in DBLP library

dblpurl VARCHAR(256), -- Link to the paper in DBLP library

doikey VARCHAR (256), -- Key of the paper in DOI library

url VARCHAR(256), -- Link to the paper

venue VARCHAR(256), -- Venue the paper was published at or
— in

proceedings_id INTEGER, -- ID of proceedings the paper was
<~ published in

jourmal_id INTEGER, -- ID of journal the paper was
— published in

pages VARCHAR(256) -- Range of pages the paper was
— published in

)

CREATE TABLE public.people

(

id INTEGER PRIMARY KEY, -- Unique ID for each person

name VARCHAR(256), -- Name of the person

authorid VARCHAR(256), -- BibTex author ID of the person

editorid VARCHAR (256) -- BibTex editor ID of the person

)

CREATE TABLE public.proceedings
(

id INTEGER PRIMARY KEY, -- Unique ID for each proceedings
conference_id INTEGER, -- ID of the conference the
— proceedings belong to
title VARCHAR(1000), -- Title of the proceedings or event
year INTEGER, -- Year the proceedings were published in,
— in YYYY format
bibkey VARCHAR (256), -- BibTex key of the proceedings
dblpkey VARCHAR(256), -- Key of the proceedings in DBLP

28

APPENDIX A. SCHEMA VERSIONS

— library

dblpurl VARCHAR(256), -- Link to the proceedings in DBLP
<~ library

doikey VARCHAR (256), -- Key of the proceedings in DOI
— library

url VARCHAR(256), -- Link to the proceedings

publication_series VARCHAR(1000), -- Publication series
— the proceedings belong to

volume VARCHAR (256), -- Volume of the publication series
— the proceedings were published in

publisher VARCHAR(256) -- Publishing house the proceedings
— were published by

)

CREATE TABLE public.publication_editors

(

id INTEGER PRIMARY KEY, -- Unique ID for each editor
<~ mapping

proceedings_id INTEGER, -- ID of the proceedings that were
— edited

people_id INTEGER, -- ID of the person that edited the
— proceedings or journal

"position" INTEGER, -- Position of the editor in the 1list
— of all editors of the proceedings or journal

journal_id INTEGER -- ID of the jourmnal that was edited

)

-- paper_authors.paper_id can be joined with papers.id

-- paper_authors.people_id can be joined with people.id

-- proceedings.conference_id can be joined with
— conferences.id

-- publication_editors. journal_id can be joined with
<~ Jjourmnals.id

-- publication_editors.people_id can be joined with people
— .id

-- publication_editors.proceedings_id can be joined with
— proceedings.id

A.2 Initial schema for GPT-4

CREATE TABLE public.conferences (id INTEGER PRIMARY KEY,
— year INTEGER, title VARCHAR(1000));

29

APPENDIX A. SCHEMA VERSIONS

CREATE TABLE public.journals (id INTEGER PRIMARY KEY,
< volume VARCHAR(256), "number" VARCHAR (256), year
— INTEGER, title VARCHAR(256), publisher VARCHAR (256))
—

CREATE TABLE public.paper_authors (id INTEGER PRIMARY KEY,
— paper_id INTEGER, people_id INTEGER, "position"
«— INTEGER);

CREATE TABLE public.papers (id INTEGER PRIMARY KEY, title
— VARCHAR (1000), year INTEGER, bibkey VARCHAR (256),
— dblpkey VARCHAR(256), dblpurl VARCHAR (256), doikey
<~ VARCHAR (256), url VARCHAR (256), venue VARCHAR (256),
— proceedings_id INTEGER, jourmal_id INTEGER, pages
< VARCHAR (256));

CREATE TABLE public.people (id INTEGER PRIMARY KEY, name
— VARCHAR (256), authorid VARCHAR (256), editorid
< VARCHAR (256));

CREATE TABLE public.proceedings (id INTEGER PRIMARY KEY,
— conference_id INTEGER, title VARCHAR(1000), year
— INTEGER, bibkey VARCHAR(256), dblpkey VARCHAR (256),
— dblpurl VARCHAR(256), doikey VARCHAR (256), url
< VARCHAR (256), publication_series VARCHAR (1000),
— volume VARCHAR(256), publisher VARCHAR (256));

CREATE TABLE public.publication_editors (id INTEGER
— PRIMARY KEY, proceedings_id INTEGER, people_id
— INTEGER, "position" INTEGER, journal_id INTEGER);

A.3 Extended schema for SQLCoder-8B

CREATE TABLE public.conferences
(

id INTEGER PRIMARY KEY, -- Unique ID for each conference

year INTEGER, -- Year the conference took place in, in
— YYYY format

title VARCHAR(1000) -- Short title of the conference

)

CREATE TABLE public. journals
(

id INTEGER PRIMARY KEY, -- Unique ID for each jourmnal
volume VARCHAR(256), -- Volume that the journal was

<~ published in
"number" VARCHAR (256), -- Number of the journal in the

30

APPENDIX A. SCHEMA VERSIONS

— volume

year INTEGER, -- Year the journal was published in, in
— YYYY format

title VARCHAR(256), -- Abbreviated title of the journal

publisher VARCHAR(256) -- Publishing house of the jourmnal

)

CREATE TABLE public.proceedings

(

id INTEGER PRIMARY KEY, -- Unique ID for each proceedings

conference_id INTEGER, -- ID of the conference the
— proceedings belong to

title VARCHAR(1000), -- Title of the proceedings or event

year INTEGER, -- Year the proceedings were published in,
— 1in YYYY format

bibkey VARCHAR(256), -- BibTex key of the proceedings

dblpkey VARCHAR(256), -- Key of the proceedings in DBLP
— library

dblpurl VARCHAR(256), -- Link to the proceedings in DBLP
— library

doikey VARCHAR (256), -- Key of the proceedings in DOI
— library

url VARCHAR(256), -- Link to the proceedings

publication_series VARCHAR(1000), -- Publication series
<~ the proceedings belong to

volume VARCHAR (256), -- Volume of the publication series
<> the proceedings were published in

publisher VARCHAR(256) -- Publishing house the proceedings
<~ were published by

)

CREATE TABLE public.papers

(

id INTEGER PRIMARY KEY, -- Unique ID for each paper

title VARCHAR(1000), -- Full title of the paper

year INTEGER, -- Year the paper was published in, in YYYY
— format

bibkey VARCHAR(256), -- BibTex key of the paper

dblpkey VARCHAR(256), -- Key of the paper in DBLP library

dblpurl VARCHAR(256), -- Link to the paper in DBLP library

doikey VARCHAR (256), -- Key of the paper in DOI library

url VARCHAR (256), -- Link to the paper

venue VARCHAR(256), -- Venue the paper was published at or
— in

31

APPENDIX A. SCHEMA VERSIONS

proceedings_id INTEGER, -- ID of proceedings the paper was
<~ published in

jourmnal_id INTEGER, -- ID of journal the paper was
~— published in

pages VARCHAR(256) -- Range of pages the paper was
— published in

)

CREATE TABLE public.paper_authors

(

id INTEGER PRIMARY KEY, -- Unique ID for each mapping
— entry

paper_id INTEGER, -- ID of the paper that was authored

people_id INTEGER, -- ID of the person that authored the
— paper

"position" INTEGER -- Position of the author in the 1list
— of all authors of the paper

)

CREATE TABLE public.paper_citations

(

id INTEGER PRIMARY KEY, -- Unique ID for each mapping
— entry

paper_id INTEGER, -- ID of the paper that was cited

citation_year INTEGER, -- Year the paper was cited in, in
— the format YYYY

cited_by_paper_title VARCHAR(1000) -- Paper title the
— paper was cited by

)

CREATE TABLE public.paper_topics

(

id INTEGER PRIMARY KEY, -- Unique ID for each mapping
— entry

paper_id INTEGER, -- ID of the paper that contains or is
<~ about a certain topic

field VARCHAR(1000), -- Field that the topic is contained
— in

topic VARCHAR (1000) -- Topic that is contained in the
<~ paper or that the paper is about

)

CREATE TABLE public.people
(

32

APPENDIX A. SCHEMA VERSIONS

id INTEGER PRIMARY KEY, -- Unique ID for each person

name VARCHAR(256), -- Name of the person

authorid VARCHAR(256), -- BibTex author ID of the person

editorid VARCHAR(256), -- BibTex editor ID of the person

gender VARCHAR (256), -- Gender of the person

year_of_birth INTEGER, -- Year the person was born in, in
<~ the format YYVYY

country VARCHAR(256), -- Country the person is working in

context VARCHAR(256) -- Context the person is from, e.g.
— academia or industry

)

CREATE TABLE public.awards

(

id INTEGER PRIMARY KEY, -- Unique ID for each person

people_id INTEGER, -- ID of the person that won the award,
<~ or NULL if the award went to a specific paper

paper_id INTEGER, -- ID of the paper that won the award,
— or NULL if the award went to a person

award_title VARCHAR (1000), -- Name of the award

award_year INTEGER -- Year the award was won in, in the
— format YYYY

)

CREATE TABLE public.publication_editors

(

id INTEGER PRIMARY KEY, -- Unique ID for each editor
— mapping

proceedings_id INTEGER, -- ID of the proceedings that were
— edited

people_id INTEGER, -- ID of the person that edited the
<~ proceedings or journal

"position" INTEGER, -- Position of the editor in the 1list
— of all editors of the proceedings or journal

journal_id INTEGER -- ID of the jourmnal that was edited

)

-- paper_authors.paper_id can be joined with papers.id
-- paper_authors.people_id can be joined with people.id
-- paper_citations.paper_id can be joined with papers.id
-- paper_topics.paper_id can be joined with papers.id

-- awards.paper_id can be joined with papers.id

-- awards.people_id can be joined with people.id

-- proceedings.conference_id can be joined with

33

APPENDIX A. SCHEMA VERSIONS

— conferences.id

-- publication_editors. journal_id can be joined with
<~ jourmnals.id

-- publication_editors.people_id can be joined with people
— .1id

-- publication_editors.proceedings_id can be joined with
— proceedings.id

A.4 Extended schema for GPT-4

CREATE TABLE public.conferences (id INTEGER PRIMARY KEYV,
< year INTEGER, title VARCHAR(1000));

CREATE TABLE public. journals (id INTEGER PRIMARY KEY,
— volume VARCHAR(256), "number" VARCHAR (256), year
< INTEGER, title VARCHAR (256), publisher VARCHAR (256))
= 3

CREATE TABLE public.proceedings (id INTEGER PRIMARY KEY,
— conference_id INTEGER, title VARCHAR(1000), year
< INTEGER, bibkey VARCHAR (256), dblpkey VARCHAR (256),
< dblpurl VARCHAR(256), doikey VARCHAR (256), url
<~ VARCHAR (256), publication_series VARCHAR(1000),
— volume VARCHAR(256), publisher VARCHAR (256));

CREATE TABLE public.papers (id INTEGER PRIMARY KEY, title
— VARCHAR (1000), year INTEGER, bibkey VARCHAR (256),
— dblpkey VARCHAR (256), dblpurl VARCHAR(256), doikey
— VARCHAR (256), url VARCHAR (256), venue VARCHAR (256),
<~ proceedings_id INTEGER, journal_id INTEGER, pages
— VARCHAR (256)) ;

CREATE TABLE public.paper_authors (id INTEGER PRIMARY KEY,
— paper_id INTEGER, people_id INTEGER, "position"
— INTEGER) ;

CREATE TABLE public.paper_citations (id INTEGER PRIMARY
— KEY, paper_id INTEGER, citation_year INTEGER,
<> cited_by_paper_title VARCHAR (1000));

CREATE TABLE public.paper_topics (id INTEGER PRIMARY KEY,
< paper_id INTEGER, field VARCHAR (1000), topic VARCHAR
— (1000));

CREATE TABLE public.people (id INTEGER PRIMARY KEY, name
— VARCHAR (256), authorid VARCHAR(256), editorid
— VARCHAR (256), gender VARCHAR(256), year_of_birth

— INTEGER, country VARCHAR(256), context VARCHAR (256))

o -

b

34

APPENDIX A. SCHEMA VERSIONS

CREATE TABLE public.awards (id INTEGER PRIMARY KEY,
<~ people_id INTEGER, paper_id INTEGER, award_title
— VARCHAR (1000), award_year INTEGER);
CREATE TABLE public.publication_editors (id INTEGER
— PRIMARY KEY, proceedings_id INTEGER, people_id
— INTEGER, "position" INTEGER, journal_id INTEGER);

A.5 Modified schema for SQLCoder-8B

CREATE TABLE public. journals

(

id INTEGER PRIMARY KEY, -- Unique ID for each journal

year INTEGER, -- Year the journal was published in, in
— YYYY format

title VARCHAR(256) -- Abbreviated title of the jourmnal

)

CREATE TABLE public.conference_proceedings
(
id INTEGER PRIMARY KEY, -- Unique ID for each proceedings
proceedings_title VARCHAR(1000), -- Title of the

— proceedings or conference track
conference_year INTEGER, -- Year the proceedings’

— conference took place in, in the format YYYY
conference_name VARCHAR(1000) -- Short name of the

— conference the proceedings belong to

)

CREATE TABLE public.papers

(

id INTEGER PRIMARY KEY, -- Unique ID for each paper

title VARCHAR(1000), -- Full title of the paper

year INTEGER, -- Year the paper was published in, in YYYY
— format

venue VARCHAR(256), -- Venue the paper was published at or
— in

conference_proceedings_id INTEGER, -- ID of proceedings
< the paper was published in

journal_id INTEGER -- ID of journal the paper was
<~ published in

)

35

APPENDIX A. SCHEMA VERSIONS

CREATE TABLE public.paper_authors

(

id INTEGER PRIMARY KEY, -- Unique ID for each mapping
— entry

paper_id INTEGER, -- ID of the paper that was authored

people_id INTEGER, -- ID of the person that authored the
<~ paper

position INTEGER -- Position of the author in the 1list of
— all authors of the paper

)

CREATE TABLE public.paper_citations

(

id INTEGER PRIMARY KEY, -- Unique ID for each mapping
— entry

paper_id INTEGER, -- ID of the paper that was cited

citation_year INTEGER, -- Year the paper was cited in, in
<~ the format YYYY

citing_publication VARCHAR(1000) -- Title of the citing
— publication

)

CREATE TABLE public.paper_topics

(

id INTEGER PRIMARY KEY, -- Unique ID for each mapping
— entry

paper_id INTEGER, -- ID of the paper that contains or is
— about a certain topic

topic VARCHAR(1000), -- Topic that is contained in the
— paper or that the paper is about

topic_field VARCHAR(1000) -- Field that the topic is
— contained in

)

CREATE TABLE public.people

(

id INTEGER PRIMARY KEY, -- Unique ID for each person

name VARCHAR (256), -- Name of the person

gender VARCHAR (256), -- Gender of the person

year_of_birth INTEGER, -- Year the person was born in, in
— the format YYYY

country VARCHAR(256), -- Country the person is working in

context VARCHAR(256) -- Context the person is from, e.g.

<~ academia or industry

36

APPENDIX A. SCHEMA VERSIONS

)

CREATE TABLE public.paper_awards

(

id INTEGER PRIMARY KEY, -- Unique ID for each received
— paper award

paper_id INTEGER, -- ID of the paper that won the award

award_title VARCHAR(1000), -- Name of the award

award_year INTEGER -- Year the award was won in, in the
— format YYYY

)

CREATE TABLE public.people_awards

(

id INTEGER PRIMARY KEY, -- Unique ID for each received
<~ people award

people_id INTEGER, -- ID of the person that won the award

award_title VARCHAR (1000), -- Name of the award

award_year INTEGER -- Year the award was won in, in the
— format YYYY

)

-- paper_authors.paper_id can be joined with papers.id
-- paper_authors.people_id can be joined with people.id
-- paper_citations.paper_id can be joined with papers.id
-- paper_citations.paper_id can be joined with
<~ paper_authors.paper_id
-- paper_topics.paper_id can be joined with papers.id
-- paper_topics.paper_id can be joined with paper_authors.
— paper_id
-- paper_awards.paper_id can be joined with papers.id
-- paper_awards.paper_id can be joined with paper_authors.
— paper_id
-- paper_awards.people_id can be joined with people.id

A.6 Modified schema for GPT-4

CREATE TABLE jourmals (id INTEGER PRIMARY KEY, year
< INTEGER, title VARCHAR (256));

CREATE TABLE conference_proceedings (id INTEGER PRIMARY
— KEY, proceedings_title VARCHAR (1000),
— conference_year INTEGER, conference_name VARCHAR

37

APPENDIX A. SCHEMA VERSIONS

— (1000));

CREATE TABLE papers (id INTEGER PRIMARY KEY, title VARCHAR
— (1000), year INTEGER, venue VARCHAR(256),
<~ conference_proceedings_id INTEGER, jourmal_id
— INTEGER);

CREATE TABLE paper_authors (id INTEGER PRIMARY KEY,

— paper_id INTEGER, people_id INTEGER, position
— INTEGER);

CREATE TABLE paper_citations (id INTEGER PRIMARY KEY,

— paper_id INTEGER, citation_year INTEGER, citing_tion
< VARCHAR (1000));

CREATE TABLE paper_topics (id INTEGER PRIMARY KEY,

— paper_id INTEGER, topic VARCHAR (1000), topic_field
<+ VARCHAR (1000)) ;

CREATE TABLE people (id INTEGER PRIMARY KEY, name VARCHAR
< (256), gender VARCHAR (256), year_of_birth INTEGER,
< country VARCHAR(256), context VARCHAR(256));

CREATE TABLE paper_awards (id INTEGER PRIMARY KEY,

— paper_id INTEGER, award_title VARCHAR(1000),
— award_year INTEGER);

CREATE TABLE people_awards (id INTEGER PRIMARY KEY,
— people_id INTEGER, award_title VARCHAR (1000),
— award_year INTEGER);

38

Appendix B

Dataset questions

B.1 Answerable questions

The following list contains questions that could be answered using the infor-
mation contained in at least one of the database schema versions used in this
thesis (as shown in Appendix A).

How many of the authors of SIGIR 2022 papers come from a non-
academic background?

How old was the oldest author of last year’s papers?

What was the distribution of country of origin at last year’s ECIR con-
ference?

How many first authors are male vs. female vs. other?

How many IR papers have a female first author?

How many IR papers have a female last author?

What are papers on Evaluation at ECIR 20237

What is the average h-index of IR people with 1000 citations in total?
Which IR papers have received more than 250 citations?

Who are the active community members on entity recognition in the past
five years?

Who are the active community members on topic link prediction in the
past five years?

39

APPENDIX B. DATASET QUESTIONS

e Who are the active community members on topic web search in the past
five years?

e Who did receive the most best paper awards at IR conferences?
e What is the first paper on argument search?

e What is the number of papers using "conversational search" vs. "inter-
active search" over the last 50 years?

e What are the most cited IR papers from the period 2015-20207

e What is the distribution of the duration of publishing activity in the
community?

e Which is the original BM25 paper?

e In which year was BERT cited the most?

e what key people should I read papers from in information filtering
e Who worked on both legal and financial search?

e Who worked on professional search and vertical search engines?

e Which people work in reproducibility?

e Who published the most papers per person on event extraction?

e What topics in the field of query understanding had more than 3 publi-
cations in H-year periods since 20187

e In which year was BM25 cited the most?

e In which year was SVM cited the most?

e List people that mostly focus on topic detection and tracking.

e Which persons did win the Salton Award?

e Who is the oldest author?

e How many IR papers have a female first / last author?

e Give me a list of scientists that took part in TREC more than once

e Who participated in more than one TREC track?

40

APPENDIX B. DATASET QUESTIONS

e Who had the most papers at SIGIR as a first author (in the past 5 years)?

e list researchers which participated in TREC and TAC as part of more
than one team

e Who had the most single-authored papers at SIGIR?

e What is the distribution of number of authors for papers in the IR an-
thology?

e Which authors had the most SIGIR and WSDM and CIKM and WWW
papers per year since 20007

e Who is contributing the most, but cited the least?
e Who is contributing the least, but cited the most?

e Which publications received very little attention early on but became
highly cited long after publication?

e Which is the most influential conference about conversational search?
e Top 3 conferences for IR?

e How many citations do best papers accumulate over 10 years, and how
many did test of time award papers get?

e Which topics received a lot of early attention but were soon abandoned?

e Who was among the first researchers that worked with BERT style mod-
els?

e Which papers use monoT5 as retrieval model?

B.2 Unanswerable questions

The following questions were deemed to be unanswerable using any of the
database schema versions used in this thesis (as shown in Appendix A). Some
of them are included in the answerable questions in a different form, split into
individual questions or with placeholders filled in.

e Gender? Age? Country? Academia or Industry?

e What are papers on Evaluation at ECIR 20247

41

APPENDIX B. DATASET QUESTIONS

e What is the average h-index of IR people with 1000 / 5000 / 7500 /
10000 citations in total?

e When and where have certain concepts (or methods) emerged, how have
they spread, and how have they and their meanings evolved over time or
across (topical) areas?

e Which IR papers have received more than 250 / 500 / 1000 / etc. cita-
tions?

e Who are the active community members on topic X in the past five years?

e Who did receive the most best (short, reproducibility, etc.) paper awards
at IR conferences?

e What are some of the major gaps in current research on IR?
e What were the most discussed problems in IR per decade?
e Which conferences are the most competitive?

e Which was the most important IR conference in each decade since the
beginnings of the field?

e What was the best paper at ECIR last year?

e Most impactful trend for the next 5 years?

e What shared tasks focus on Cross-Language Information Retrieval?
e In re-ranking papers, which ranker is usually used in the first stage?
e Why are "topics" not called "queries" in ad-hoc IR?

e Who are people that curated the most-often used datasets in the IR
communities?

e What were the most popular benchmarks during the period 2010-20247
e Current IR research in three words?

e Are there papers with entries in their references lists that are not actually
referenced in the paper?

e What are the trending problems in 1984 and 2024, which are still not
fully solved/addressed

42

APPENDIX B. DATASET QUESTIONS

e Which metrics are used to evaluate conversational systems, and how
frequently?

e How often is each retrieval system (Terrier, Elasticsearch, ...) used in
experiments in the last 5 years?

e What are the top-50 word 3-grams used in IR papers? (with and without
stopword-only phrases)

e How many (absolute + relative) references in IR anthology papers are
not contained in the IR anthology?

e What are/were the top-performing open-domain question answering sys-

tems published at TREC, SIGIR or CIKM?

e What is the influence of keynotes, tutorials, presentation at summer
schools, etc. on citation counts?

e Why did researchers stop pursuing approach X7
e What applications of IR help the society?

e What topics are especially interesting for PhD students looking for in-
dustry positions?

e How many GPU resources were used to produce publications at ECIR
20247

e What sub-communities was the IR community originally composed of?
e Who have served as PC chairs at CIKM?

e How many years with IR as primary research area?

e How many years with IR as secondary research area (NLP, TA...)?

e Most relevant 'forum’ for IR researchers (groups, email lists, slack, other)?
e What makes IR research unique?

e "When we talk about other thing not LLM?"

e Which researchers are active in both information science and IR?

e Most impactful innovation in the last 5 years?

e Is it possible to determine from the publication record at what point in
time a problem in IR research has been solved?

43

Bibliography

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding.
In Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings
of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers), pages 4171-4186. Association for Computational Linguistics,
2019. doi: 10.18653/V1/N19-1423. URL https://doi.org/10.18653/v1/
n19-1423.

Lee R. Dice. Measures of the amount of ecologic association between
species. Ecology, 26(3):297-302, 1945. doi: https://doi.org/10.2307/
1932409. URL https://esajournals.onlinelibrary.wiley.com/doi/
abs/10.2307/1932409.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ah-
mad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang,
Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, As-
ton Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste
Roziére, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer,
Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-
Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,
Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank
Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra,
Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee,
Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer

44

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1932409
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1932409

BIBLIOGRAPHY

van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jian-
feng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton,
Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe,
Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak,
Ke Li, Kenneth Heafield, Kevin Stone, and et al. The Llama 3 herd of mod-
els. CoRR, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL
https://doi.org/10.48550/arXiv.2407.21783.

R. A. Fisher. On the interpretation of x? from contingency tables, and the
calculation of P. Journal of the Royal Statistical Society, 85(1):87-94, 1922.
URL https://doi.org/10.2307/2340521.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding,
and Jingren Zhou. Text-to-sql empowered by large language models: A
benchmark evaluation. Proc. VLDB Endow., 17(5):1132-1145, 2024. URL
https://www.vldb.org/pvldb/voll7/p1132-gao.pdf.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi
Bi, Yi Dai, Jiawei Sun, Qianyu Guo, Meng Wang, and Haofen Wang.
Retrieval-augmented generation for large language models: A survey. CoRR,
abs/2312.10997, 2023. doi: 10.48550/ARXIV.2312.10997. URL https:
//doi.org/10.48550/arXiv.2312.10997.

Srinivasan Iyer, loannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and
Luke Zettlemoyer. Learning a neural semantic parser from user feedback.
CoRR, abs/1704.08760, 2017. URL http://arxiv.org/abs/1704.08760.

George Katsogiannis-Meimarakis and Georgia Koutrika. A survey on deep
learning approaches for text-to-sql. VLDB J., 32(4):905-936, 2023.
doi: 10.1007/S00778-022-00776-8. URL https://doi.org/10.1007/
s00778-022-00776-8.

Dongjun Lee, Choongwon Park, Jachyuk Kim, and Heesoo Park. MCS-SQL:
leveraging multiple prompts and multiple-choice selection for text-to-sql gen-
eration. CoRR, abs/2405.07467, 2024. doi: 10.48550/ARXIV.2405.07467.
URL https://doi.org/10.48550/arXiv.2405.07467.

Fei Li and H. V. Jagadish. Constructing an interactive natural language in-
terface for relational databases. Proc. VLDB Endow., 8(1):73-84, 2014.
doi: 10.14778/2735461.2735468. URL http://www.v1ldb.org/pvldb/vol8/
p73-1i.pdf.

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang, Bowen Li, Bailin
Wang, Bowen Qin, Rongyu Cao, Ruiying Geng, Nan Huo, Xuanhe Zhou,

45

https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.2307/2340521
https://www.vldb.org/pvldb/vol17/p1132-gao.pdf
https://doi.org/10.48550/arXiv.2312.10997
https://doi.org/10.48550/arXiv.2312.10997
http://arxiv.org/abs/1704.08760
https://doi.org/10.1007/s00778-022-00776-8
https://doi.org/10.1007/s00778-022-00776-8
https://doi.org/10.48550/arXiv.2405.07467
http://www.vldb.org/pvldb/vol8/p73-li.pdf
http://www.vldb.org/pvldb/vol8/p73-li.pdf

BIBLIOGRAPHY

Chenhao Ma, Guoliang Li, Kevin Chen-Chuan Chang, Fei Huang, Reynold
Cheng, and Yongbin Li. Can LLM already serve as a database inter-
face? A big bench for large-scale database grounded text-to-sqls. CoRR,
abs/2305.03111, 2023. doi: 10.48550/ARXIV.2305.03111. URL https:
//doi.org/10.48550/arXiv.2305.03111.

Xi Victoria Lin, Richard Socher, and Caiming Xiong. Bridging textual and tab-
ular data for cross-domain text-to-sql semantic parsing. In Trevor Cohn, Yu-
lan He, and Yang Liu, editors, Findings of the Association for Computational
Linguistics: EMNLP 2020, Online Event, 16-20 November 2020, volume
EMNLP 2020 of Findings of ACL, pages 4870-4888. Association for Compu-
tational Linguistics, 2020. doi: 10.18653/V1/2020.FINDINGS-EMNLP.438.
URL https://doi.org/10.18653/v1/2020.findings-emnlp.438.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam
Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Va-
lerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Bel-
gum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brak-
man, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor
Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory
Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing
Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka
Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simén Posada
Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian
Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes,
Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Har-
ris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey,
Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu,
Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela
Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn,
Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitschei-
der, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt
Knight, Daniel Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, ITkai
Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel

46

https://doi.org/10.48550/arXiv.2305.03111
https://doi.org/10.48550/arXiv.2305.03111
https://doi.org/10.18653/v1/2020.findings-emnlp.438

BIBLIOGRAPHY

Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe,
Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov,
Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob Mec-
Grew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake
McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey
Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Moss-
ing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro
Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo,
Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita,
Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila
Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael,
Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power,
Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya
Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross,
Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh,
Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, lan Sohl, Benjamin Sokolowsky, Yang Song,
Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin
Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek,
Juan Felipe Cerén Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss,
Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi
Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel
Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech
Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tian-
hao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. GPT-4 techni-
cal report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

Max Peeperkorn, Tom Kouwenhoven, Dan Brown, and Anna Jordanous. Is
temperature the creativity parameter of large language models? CoRR,
abs/2405.00492, 2024. doi: 10.48550/ARXIV.2405.00492. URL https://
doi.org/10.48550/arXiv.2405.00492.

Ana-Maria Popescu, Oren Etzioni, and Henry A. Kautz. Towards a theory
of natural language interfaces to databases. In David B. Leake, W. Lewis
Johnson, and Elisabeth André, editors, Proceedings of the Sth International

47

https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2405.00492
https://doi.org/10.48550/arXiv.2405.00492

BIBLIOGRAPHY

Conference on Intelligent User Interfaces, IUI 2003, Miami, FL, USA, Jan-
wary 12-15, 2003, pages 149-157. ACM, 2003. doi: 10.1145/604045.604070.
URL https://doi.org/10.1145/604045.604070.

Liang Shi, Zhengju Tang, and Zhi Yang. A survey on employing large lan-
guage models for text-to-sql tasks. CoRR, abs/2407.15186, 2024. doi:
10.48550/ARXIV.2407.15186. URL https://doi.org/10.48550/arXiv.
2407.15186.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning
with neural networks. In Zoubin Ghahramani, Max Welling, Corinna Cortes,
Neil D. Lawrence, and Kilian Q. Weinberger, editors, Advances in Neural
Information Processing Systems 27: Annual Conference on Neural Infor-
mation Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, pages 3104-3112, 2014. URL https://proceedings.neurips.cc/
paper/2014/hash/al4acb55a4f27472c5d894ec1c3c743d2-Abstract.html.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini,
and Amin Saberi. CHESS: contextual harnessing for efficient SQL synthe-
sis. CoRR, abs/2405.16755, 2024. doi: 10.48550/ARXIV.2405.16755. URL
https://doi.org/10.48550/arXiv.2405.16755.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is
all you need. In Isabelle Guyon, Ulrike von Luxburg, Samy Ben-
gio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Ro-
man Garnett, editors, Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing Sys-
tems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998-
6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract .html.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew
Richardson. RAT-SQL: relation-aware schema encoding and linking for text-
to-sql parsers. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R.
Tetreault, editors, Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, ACL 2020, Online, July 5-10, 2020,
pages 7567-7578. Association for Computational Linguistics, 2020. doi:
10.18653/V1/2020.ACL-MAIN.677. URL https://doi.org/10.18653/v1/
2020.acl-main.677.

Xiaojun Xu, Chang Liu, and Dawn Song. Sqlnet: Generating structured
queries from natural language without reinforcement learning. CoRR,
abs/1711.04436, 2017. URL http://arxiv.org/abs/1711.04436.

48

https://doi.org/10.1145/604045.604070
https://doi.org/10.48550/arXiv.2407.15186
https://doi.org/10.48550/arXiv.2407.15186
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.48550/arXiv.2405.16755
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
http://arxiv.org/abs/1711.04436

BIBLIOGRAPHY

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan
Li, James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir R. Radev. Spider: A large-scale human-labeled dataset for
complex and cross-domain semantic parsing and text-to-sql task. CoRR,
abs/1809.08887, 2018. URL http://arxiv.org/abs/1809.08887.

Bin Zhang, Yuxiao Ye, Guoqing Du, Xiaoru Hu, Zhishuai Li, Sun Yang,
Chi Harold Liu, Rui Zhao, Ziyue Li, and Hangyu Mao. Benchmarking the
text-to-sql capability of large language models: A comprehensive evalua-
tion. CoRR, abs/2403.02951, 2024. doi: 10.48550/ARXIV.2403.02951. URL
https://doi.org/10.48550/arXiv.2403.02951.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating struc-
tured queries from natural language using reinforcement learning. CoRR,
abs/1709.00103, 2017. URL http://arxiv.org/abs/1709.00103.

49

http://arxiv.org/abs/1809.08887
https://doi.org/10.48550/arXiv.2403.02951
http://arxiv.org/abs/1709.00103

	Introduction
	Related work
	Problem history
	Benchmark datasets
	Evaluation metrics
	Model performance
	Prompt engineering

	Approach
	Dataset compilation
	Database preparation and dataset annotation
	Model and prompt selection
	Generation and evaluation
	Schema improvement and re-evaluation
	Model temperature adjustment

	Evaluation
	Result overview
	Effect of temperature setting
	Effect of schema engineering
	Common generation errors and further observations

	Discussion and outlook
	Dataset characteristics
	Temperature experiments
	Schema and prompt engineering
	Conclusion

	Schema versions
	Initial schema for SQLCoder-8B
	Initial schema for GPT-4
	Extended schema for SQLCoder-8B
	Extended schema for GPT-4
	Modified schema for SQLCoder-8B
	Modified schema for GPT-4

	Dataset questions
	Answerable questions
	Unanswerable questions

	Bibliography

