
Universität Paderborn
Fakultät für Elektrotechnik, Informatik und Mathematik

AG Wissensbasierte Systeme

Diplomarbeit

Application of Machine Learning Techniques

to Spam Filtering

Vorgelegt von:

Thorsten Timm

zur Erlangung des akademischen Grades

Diplom Wirtschaftsinformatiker

Vorgelegt bei:

Hochschuldozent Dr. habil. Benno Stein

Paderborn, 01.03.2004

Hiermit erkläre ich an Eides Statt, dass ich die vorliegende Arbeit selbständig
und ohne unerlaubte fremde Hilfe angefertigt, andere als die angegebenen Quellen
und Hilfsmittel nicht benutzt und die den benutzten Quellen und Hilfsmit-
tel wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht
habe.

Ort, Datum Unterschrift

i

ii

Contents

1 Introduction 1

2 Spam Fundamentals 3
2.1 Definitions . 3
2.2 Testing . 5
2.3 Filtering Spam with Conventional Methods 6

2.3.1 Rule-Based Filters . 6
2.3.2 Blacklists . 7
2.3.3 Whitelists . 8
2.3.4 Checksum Database . 8

3 Survey of Existing Approaches 9
3.1 Naive Bayes Classifiers . 9

3.1.1 Bayes Theorem and Spam Detection 9
3.1.2 The “Classical” Approach 10
3.1.3 Microsoft Research 1998 13
3.1.4 Androutsopoulos . 15
3.1.5 Paul Graham’s Plan for Spam 18

3.2 Genetic Algorithms . 21
3.2.1 Theory of Genetic Algorithms 21
3.2.2 Study by Hooman Katirai 23

3.3 Artificial Neural Networks . 26
3.3.1 Theory of Artificial Neural Networks 26
3.3.2 Survey by Rich Drewes 28

3.4 Memory Based Learning . 30
3.4.1 Theory of Memory Based Learning 30
3.4.2 Survey by Sakkis et al. 30

3.5 Comparison of all Discussed Approaches 34

4 Improving Existing Approaches 35
4.1 Filter Method . 35
4.2 Attribute Selection . 35

5 Implementation 39
5.1 Integration into the Email System 39

5.1.1 Integration into the Mail Server 39
5.1.2 Proxy Server . 40
5.1.3 Client-Side Program . 41
5.1.4 Decision . 41

iii

Contents

5.2 Software Behavior . 41
5.2.1 Client-Server Communication 42
5.2.2 Server-Client Communication 44
5.2.3 Filter Process . 45

5.3 Class Concept . 48
5.3.1 Overview . 49
5.3.2 External Classes . 53
5.3.3 Class Descriptions . 56

6 Testing 67
6.1 Testing Method . 67

6.1.1 Testing Corpus . 67
6.1.2 Test Procedure . 68

6.2 Results . 68
6.2.1 Tests Using the Author’s Email Corpus 68

6.3 Tests using the Ling-Spam Corpus 73
6.4 Summarizing Analysis . 74

7 Conclusion and Outlook 77

A Variables 79

iv

List of Figures

1.1 Spam statistics collected by Brightmail 1

3.1 The weighted roulette wheel illustrating the selection process . . 23
3.2 Example of a tree representing an element of the search space . 24
3.3 A perceptron . 27
3.4 A multilayer artificial neural network 27

4.1 Images from spam emails . 36
4.2 Images from legitimate emails 36
4.3 Histograms of images from spam emails 37
4.4 Histograms of images from legitimate emails 37

5.1 Spam filter integrated into the mail server 39
5.2 Spam filter as a separate proxy server 40
5.3 Spam filter integrated into the email client 41
5.4 Activity diagram for user communication 43
5.5 Activity diagram for server communication 44
5.6 Activity diagram showing the spamfilter process 46
5.7 Activity diagram of feature extraction 47
5.8 Overview of the major classes 49
5.9 The initialization of the proxy and the login process 50
5.10 The logout process . 52
5.11 The filter process . 54
5.12 The modification of the filter Process for the use of image at-

tributes . 55
5.13 Class StartProxy . 56
5.14 Class ImapProxy . 57
5.15 Class ImapProxyThread . 58
5.16 Class ClientListener and class ServerListener 59
5.17 Class SecImapConnection and class SecImapConnectionWrapper 60
5.18 Class SpamFilter and class BayesFilter 61
5.19 Class FeatureCollector, class TextualFeatureCollector and class

AllFeatureCollector . 63
5.20 Class ImageAnalyzer and class ColorDiscretenessIA 64

v

List of Figures

vi

List of Tables

3.1 Results of the approach by Pantel and Lin 12
3.2 Results of the approach by Microsoft Research 1998, first corpus 14
3.3 Results of the approach by Microsoft Research 1998, second corpus 15
3.4 Results of the approach by Androutsopoulos et al. 2000 18
3.5 Results of the approach by Androutsopoulos et al. 18
3.6 Results of Paul Graham’s spam filter 21
3.7 Numerical operators . 24
3.8 Results of Hooman Katirai . 25
3.9 Results of the approach by Rich Drewes 29
3.10 Results of the approach by Sakkis et al. 33
3.11 Weighted error rates of discussed approaches 34

4.1 Color discreteness . 38

6.1 False-positives and false-negatives for ten-fold cross-validation
tests with 889 spam and 439 legitimate emails without using
image attributes . 69

6.2 Weighted error rates (in percent) for ten-fold cross-validation
tests with 889 spam and 439 legitimate emails without using
image attributes (A) . 70

6.3 Weighted error rates (in percent) for ten-fold cross-validation
tests with 889 spam and 439 legitimate emails without using
image attributes (B) . 71

6.4 False-positives and false-negatives for ten-fold cross-validation
tests with 445 spam and 220 legitimate emails without using
image attributes . 71

6.5 Weighted error rates (in percent) for ten-fold cross-validation
tests with 445 spam and 220 legitimate emails without using
image attributes (A) . 72

6.6 Weighted error rates (in percent) for ten-fold cross-validation
tests with 445 spam and 220 legitimate emails without using
image attributes (B) . 72

6.7 Probabilities for image features 73
6.8 False-positives and false-negatives for testing with Ling-Spam . 73
6.9 Weighted error rates (in percent) for testing with Ling-Spam . . 74
6.10 Weighted error rates for testing with the Ling-Spam corpus com-

pared to existing Bayesian approaches 75
6.11 Weighted error rates for testing with the Ling-Spam corpus com-

pared to existing other approaches 75

vii

List of Tables

viii

1 Introduction

Email has become a big and continually growing factor in communication. The
possibility of information exchange within seconds over all distances combined
with low transaction costs makes this medium successful.

But the advantages of email communication are also attractive to direct mar-
keters who use spam to reach a large number of potential customers. According
to a study from 1997 [CL98] 10% of the emails sent to a corporate network
were spam emails and it is not likely that the quota has decreased since then.
The statistics of Brighmail, a developer of antispam software for large organi-
zations, confirm this. Figure 1.1 shows that the “percentages of total internet
email identified as spam” [bri04] has increased from 42% in January 2003 to
58% in December.

01/2003 11/200309/200307/200305/200303/2003

35%

40%

60%

55%

50%

45%

30%

Figure 1.1: Spam statistics collected by Brightmail

The problem with spam is that it is costly to companies as well as individuals.
For companies the costs are obvious. On one hand employees have to waste
valuable working time by sorting out unwanted emails. On the other hand,
spam is data that has to be stored and transferred within the corporate net-
work. Storage space and bandwidth are an expense factor as well. The costs
for individuals are similar to that of companies. However, low bandwidths
and costs depending on connection time or amount of data transferred (e.g.
receiving email by WAP) are more common in this group, which leads to even
higher costs.

Another problem is that the contents of spam emails might be offensive to

1

1 Introduction

the recipients (i.e. children) since they also advertise pornographic contents
besides get-rich schemes and other dubious offers.

Several attempts have been made to protect the user from spam by filters.
The positive effect of such filters is not only that the number of incoming
unsolicited emails can be reduced, but it also takes the means of existence
from the sender of such email. The spammer depends on the response rate
to his emails to earn money and to cover his expenditures for collecting email
addresses and the effort of sending the emails to the recipient. When the
response rate decreases enough, the revenues do not cover the costs anymore
and this marketing channel becomes futile.

This paper concentrates on finding spam within the daily email flow by using
machine learning techniques. The next chapter explains the basic vocabulary
and definitions needed within the following text. It also gives an overview of
other filtering approaches that do not use machine learning. Chapter 3 de-
scribes the different filter types and presently existing spam filter approaches
using these techniques. The following chapter takes a look at how these ap-
proaches might be improved followed by the description of an implementation
of a spam filter in chapter 5. This filter’s performance is evaluated in chapter
6 and finally, chapter 7 summarizes the results and gives an outlook on future
developments in this field of research.

2

2 Spam Fundamentals

2.1 Definitions

Email is the short form of electronic mail. Email is “the transmission of mes-
sages over communication networks” [ema04]. There are some email systems
that are confined to a company’s computer network but usually the term is
used for messages sent through the Internet. Emails are composed to one or
several recipients using an email editor. They usually contain text but emails
are also used to send other contents like images, movie files or computer pro-
grams. The sender’s email composer transmits this data to a server-computer
on the Internet using the standard protocol SMTP (Simple Mail Transfer Pro-
tocol). This server forwards the email to the recipient’s email server which
stores it. The recipient can access his emails using either the protocol POP
(Post Office Protocol) or IMAP (Internet Message Access Protocol). IMAP is
similar to POP but it supports additional features such as searching through
email messages while they are on the server.

Emails can be divided into two types: Legitimate emails that are desired by
the recipient and spam emails. This expression is a synonym for unsolicited
bulk email (UBE) or unsolicited commercial email (UCE). The source for this
term is a sketch by Monty Python in which a group of Vikings wants to eat in a
restaurant which offers so much spam (a brand of canned ham) that other food
is hard to find in the menu. There are several definitions for spam. However,
the most common is:

“An electronic message is ‘spam’ IF: (1) the recipient’s personal identity and
context are irrelevant because the message is equally applicable to many other
potential recipients; AND (2) the recipient has not verifiably granted delib-
erate, explicit, and still-revocable permission for it to be sent; AND (3) the
transmission and reception of the message appears to the recipient to give a
disproportionate benefit to the sender.” [spa04].

As described in the previous chapter, these emails can have a negative impact
on the recipient in several ways. Spam filters are used to avoid this impact.
They try to identify spam emails and prevent them from getting into the user’s
inbox. The filter uses only certain criteria from an email to detect spam. These
criteria are called either “features” or “attributes”, the second term will be
used in this text.

The attributes that are derived from an email to categorize it with a spam
filter form the set A = {a1, . . . , an}. Which attributes are derived from the

3

2 Spam Fundamentals

email depends on the implementation of the filter. However, they usually con-
tain attributes of the email header (i.e. sender address, used servers, sending
time) and attributes of the email body (i.e. words, HTML-tags, number of
punctuation marks). The way in which words are recognized differs again. For
example all character strings including or excluding special characters can be
words. Additional the recognition can be case sensitive or not. The spam filter
decides by these attributes whether an email should be treated as spam or not.

There are several ways in which the filter can deal with detected spam emails.
In some approaches emails recognized as spam are just deleted, others send
a reply to the author of this email telling him to rewrite the message to an
unfiltered private address. Another option is that these messages are just
labeled with a keyword in the subject line.

Which of these methods is used always depends on the error rates of the filter.
There are two possible errors that spam filters can make: On the one hand
they can misclassify spam emails as legitimate. The ratio of not filtered spam
emails and the total number of spam emails is called the false-negative rate.
On the other hand there are legitimate emails that are misclassified as spam.
The corresponding error rate is called false-positive rate. Let NL be the total
number of legitimate emails and NS be the total number of spam emails. The
number of spam emails categorized as spam is NS→S. Likewise, NS→L is the
number of false-negatives, NL→L the number of correctly classified legitimate
emails and NL→S the number of false-positives. Then the variables rfn and rfp

shown in the calculations below are the false-negative and the false-positive
rate. The labels have been adopted from [AKC+00].

rfn =
NS→L

NS

rfp =
NL→S

NL

It is obvious that the second kind of error should be avoided more than the first:
A legitimate email that is filtered and never reaches the recipient is much worse
than the case of a spam email that has to be deleted manually. For example
a bill that is sent by email and that does not reach the recipient can lead to
serious trouble. However, there is a correlation between the two error types.
A filter can usually be configured to be more sensitive for detecting spam and
therefore find more spam emails. This behavior leads to a lower false-negative
rate. But this configuration usually leads to a higher false-positive rate, too.

Most filters are biased towards producing less false-positives. According to
this bias, the method of how to deal with recognized spam is chosen. If false-
positives are not very likely to occur, emails categorized as spam might just
be deleted or moved to a certain folder. If they are more likely to occur, a
method like replying to the sender or marking the email in the subject line is
more appropriate.

4

2.2 Testing

2.2 Testing

A spam filter is usually tested in two steps. First, the filter is trained and
then it is tested with other emails. Therefore two different email corpora
are necessary, the training corpus and the testing corpus. These two corpora
should have the same source and an equal share of spam in both of them is
reasonable, too.

In most approaches, one corpus is split into two parts that form the training
and the testing corpus. Some researchers also use k-fold cross-validation to
make their results more reliable. This method splits the corpus into k parts.
In the first run, the training is done with the first k − 1 parts of the corpus
and the last part is used for testing. The second run uses part k− 1 as testing
corpus and so on. In this way, k-fold cross-validation generates k runs and
more reliable results than one run. In practice the most commonly used value
for k is 10.

The simplest values calculated for comparing the performances of the different
filters are the false-positive and false-negative rates described above. However,
these numbers do not enable us to compare filters directly if the weighting
between both error types is not clear. The only situation in which it is possible
to decide between two filters based on the false-positive and the false-negative
rate is when both of them are higher for one filter than for the other.

If we want to compare two filters and one of them outperforms the other one
in detection of spam while the other one misclassifies less legitimate email, we
need to introduce a new value. This value defined in [AKC+00] is the weighted
error rate WErr. To calculate it, we have to define the coefficient λ. An email
categorized false-positive is λ times as costly as a false-negative. The weighted
error rate is the ratio of the sum of errors made and the number of emails
in the corpus where false-positives and the number of legitimate emails are
weighted with λ:

WErr =
λ ·NL→S + NS→L

λ ·NL + NS

The appropriate value of λ depends on how emails classified as spam are han-
dled. If they are directly deleted a high value like 999 is appropriate, if they
are just marked, it might be as low as one.

The research group of Anroutsopoulos continues to manipulate this parameter.
They compare it to a baseline value, the weighted error rate when no spam
filter is present. This means that no spam emails are recognized. The baseline
weighted error rate is calculated as follows:

W b
Err =

NS

λ ·NL + NS

5

2 Spam Fundamentals

This baseline divided by the weighted error rate results in the total cost ratio
TCR:

TCR =
W b

Err

WErr

=
NS

λ ·NL→S + NS→L

This seems to be a good tool to evaluate the filter results intuitively because
a value of less than one means that for this value of λ the performance of the
spamfilter is worse than using no filter at all. A greater number means a better
performance of the filter. But the problem of the total cost ratio is that it is
not a function of the number of legitimate emails. Meaning that for ten falsely
filtered legitimate emails out of 100 the total cost ratio is the same as for ten
out of 1000. This circumstance makes it impossible to use the total cost ratio
to compare filters tested on email corpora with different ratios of legitimate
and spam emails.

For this reason, the weighted error rate is used in this paper to quantify the
results achieved by the spam filters. The values of λ taken into account are 9,
99 and 999.

If a scientific paper uses different filter configurations, for each λ the config-
uration resulting in the best weighted error rate is used for the comparison.
However, when different implementations are compared by these figures, it
must be taken into account that a filter optimized for each λ will be able to
achieve better results.

Although the weighted error rate is a good tool to compare filters, it is not a
very intuitive value. For this reason, the false-positive and the false-negative
rate are calculated for each filter, too. They are much easier to understand
and help to compare the filters.

2.3 Filtering Spam with Conventional Methods

Spam filters can follow machine learning concepts to recognize spam. Several
filters using these approaches to adjust to incoming legitimate and spam emails
will be explained in chapter 3. These filters can adjust to the individual taste
of a user which email is spam and which is not. Other “conventional” filters
that do not adapt to the email received by the user and his reading habits are
explained in the following.

2.3.1 Rule-Based Filters

Rule-based filters use information from the header or the body of the email
and verify whether it meets certain rules. These rules can be either simple,
e.g. “the subject line starts with ‘Free’ ”, or more complex, e.g. “text to image

6

2.3 Filtering Spam with Conventional Methods

area ratio is less than 0.1”.

The user can also decide whether all emails that meet a certain rule should be
regarded as spam or if this decision should be made by another rule. This could
be whether the number of matched rules exceeds a certain threshold. This
calculation can be enhanced by assigning coefficients to rules and summing
up the coefficients of rules met. This also enables the generation of positive
rules like “The sender is listed in the address book” that produce negative
coefficients.

These rules must be manually generated or acquired from a third party. On the
one hand manual generation of such rules is a complex work that requires an
adequate knowledge of constructing such rules and extensive testing. On the
other hand rules acquired from a third party are not likely to meet everyone’s
opinion as to which emails are regarded as spam, and spammers might also
adapt their emails to these filters. This enables them to prevent their emails
from identification as spam, which is especially likely to happen if one rule-set
is widely used. Therefore rule-based filters without any user-defined rules are
not an appropriate way of filtering spam emails.

One example of a popular rule-based spam filter is SpamAssassin [spab], a
server-side solution. A presentation of SpamAssassin was held at the Spam
Conference 2003 [spaa] by Matt Sergeant who describes how the software works
[Ser03].

SpamAssassin uses 938 rules which are rated with different scores. These are
not only rules that analyze the contents of the message; SpamAssassin also
uses other forms of spam detection which are integrated by a rule system. For
example, it checks several freely available spam catalogues like Razor, Pyzor
or DCC. A closer look at this type of spam prevention will be taken in 2.3.4.
Another approach to spam detection integrated into SpamAssassin is a Naive
Bayesian Classifier described in detail in 3.1.

All rules that are part of SpamAssassin are weighted by a multiplier and added
up. Weights can be either positive, if a corresponding rule is biased towards
spam emails, or negative, if the rule is biased towards legitimate emails. If the
sum exceeds a certain threshold, the email is classified as spam. The weights
are determined by a genetic algorithm which is not explained. Chapter 3.2
gives an overview of Genetic Algorithms and their application to spam filtering.

2.3.2 Blacklists

Blacklists are a drastic method of filtering spam emails. The basic concept is
that a central server stores all computers that have been or might be sources
of spam emails. They either collect the sources of spam emails or scan email
servers for open relays. Open relays are misconfigured servers that allow spam-
mers to send emails to any email address via this server. The spam detection
software checks incoming email for its origin and determines if the server is

7

2 Spam Fundamentals

listed in the blacklist. Emails from listed servers are filtered.

Popular implementations of Blacklists are Spamcop [spac], the Realtime Black-
hole List (RBL) offered by the Mail Abuse Prevention System (MAPS) [rbl]
or the Open Relay Database [ord]. Blacklists are a controversial issue since a
blocked mail server always means many false-positives. An example of this is
GMX [gmx], a German email provider that was in the blacklist of Spamcop for
a 10 day period in September 2003 [hei03b] and in the Open Relay Database in
May 2003 [hei03a]. During these periods, customers of the blacklist providers
would not receive emails sent to them from any GMX user. As a result of this
incident, there have been lawsuits against operators of blacklists. An example
of this is the blacklist Open Relay Blackhole Zones (ORBZ) being shut down
in March 2002 following a judgment in Michigan [hei02].

2.3.3 Whitelists

This approach only lets emails reach the recipient if the sender is registered
in a list of approved contacts. Unknown senders must contact the recipient
first in a certain way to get access to his inbox. This technique is even more
restrictive than blacklists since it does not allow the use of email as a medium
to establish contact.

2.3.4 Checksum Database

The Distributed Checksum Clearinghouse (DCC) [dcc] is a distributed system
that identifies spam by comparing emails to a database of registered spam
emails. Whenever a new email arrives, a checksum is calculated from it. This
checksum is sent to a distributed network of servers. These servers count the
number of occurrences of each checksum. When the number of occurrences
of one checksum exceeds a certain threshold, it is regarded as bulk email and
emails with this checksum are therefore filtered.

This basic technique is backed by so-called fuzzy checksums which ignore some
aspects of messages in order to find emails that are substantially identical.
These fuzzy checksums allow recognizing bulk emails although the spammer
inserts certain words, i.e. the recipients name into them.

The DCC is an initiative that enables users to opt-in to mailing lists. Opt-in
means that the user can decide whether he wants to receive emails from a
certain source or not. Therefore each user can set up a white-list of bulk email
sources he wants to receive. By using whitelists, each individual can fit the
filter to his own opinion of which emails should be regarded as spam.

8

3 Survey of Existing Approaches

3.1 Naive Bayes Classifiers

The first application of naive Bayes filtering for Spam detection was described
by two groups at the AAAI-98 conference [Gra03]. The first group, of Patrick
Pantel and Dekang Lin, from the University of Manitoba in Canada described
their technique in [PL98], the second team from Microsoft Research published
their findings in [SDHH98]. Since then several projects used this approach and
modified it in different ways. The most popular seems to be Paul Graham’s
project with his article “A Plan for Spam” [Gra02a] and follow-up papers
[Gra03, Gra02d, Gra02c, Gra02b]. His ideas have been implemented in several
spam filters.

This section starts with a discussion of Bayes theorem and its application
for spam identification. It then summarizes the different Bayesian filtering
concepts that have been implemented. Finally, a comparison of the approaches
will be given.

3.1.1 Bayes Theorem and Spam Detection

The basic approach of detecting spam with the theorem of Bayes is to cal-
culate the spam probability of an incoming email. The email is categorized
according to this probability. The conditional probabilities that are regarded
are P (spam|a1, . . . , an) and P (legitimate|a1, . . . , an). These are the probabil-
ities that a given email that contains the attributes a1, . . . , an is a spam or
a legitimate email respectively. The way in which a categorization is derived
from these values differs. The usual approach is to regard the ratio of both
probabilities and categorize the email as spam if a certain value is exceeded.

P (spam|a1, . . . , an) and P (legitimate|a1, . . . , an) have to be calculated first. To
do so, it is necessary to use the formula P (A, B) = P (A|B)·P (B) where A and
B are two events. P (A, B) is the joint probability, i.e. the probability of both
events in conjunction. This formula is used in the following transformations:

P (spam|a1, . . . , an) =
P (spam, a1, . . . , an)

P (a1, . . . , an)

=
P (a1, . . . , an|spam) · P (spam)

P (a1, . . . , an)
(3.1)

9

3 Survey of Existing Approaches

P (legitimate|a1, . . . , an) =
P (legitimate, a1, . . . , an)

P (a1, . . . , an)

=
P (a1, . . . , an|legitimate) · P (legitimate)

P (a1, . . . , an)
(3.2)

If the email is categorized according to the ratio of these two probabilities, the
division by P (a1, . . . , an) can be skipped since it is a constant in both terms.

The Naive Bayesian approach assumes the different attributes to be indepen-
dent. This leads to the following transformation:

P (a1, . . . , an|spam) · P (spam) = P (a1|spam) · · ·P (an|spam) · P (spam)

P (a1, . . . , an|legitimate)·P (legitimate) = P (a1|legitimate) · · ·P (an|legitimate)·P (legitimate)

Most spam detection approaches presented in this chapter use this formula.
However, there are differences in how the input values are calculated and how a
decision is derived from the probabilities. These technical aspects are explained
in the following. It is also discussed how the authors justify the assumption
that the attributes are statistically independent. If the terms used in the email
are used as attributes, this is not very likely to be true. For example there
might be word combinations like “special offer” that occur often. If a word
combination tends to appear in spam emails, each of these words would increase
the spam probability of a categorized email. The total effect would be a too big
bias towards spam for emails containing this word combination. More realistic
values would be achieved if the whole word combination was treated as one
attribute. It is the approach of Naive Bayes just to assume this independence,
but it is still interesting if the authors have additional explanations for this.

3.1.2 The “Classical” Approach

This subsection covers the early Bayesian filtering approach by Patrick Pantel
and Dekang Lin [PL98], which is a foundation for subsequent implementations.

Attribute Selection

Pantel and Lin derive attributes by tokenizing the message. They define a
token as “a consecutive sequence of letters or digits, or a consecutive sequence
of non-space, non-letter and non-digit characters”. The second type is limited
to a maximum length of three characters. After extracting these tokens, the
words are reduced to their canonical form by the Porter Stemming Algorithm
[Por80]. Additional information from the email, like header text and HTML
tags, are not regarded.

10

3.1 Naive Bayes Classifiers

Deriving Spam Probabilities

This approach uses the Naive Bayesian formula shown in 3.1.1. The probabil-
ities P (a1|spam), . . . , P (an|spam) and P (a1|legitimate), . . . , P (an|legitimate)
still have to be calculated. Therefore Pantel and Lin count the number of
occurrences of each attribute ai in spam emails nS(ai) and in legitimate emails
nL(ai). This information is stored together with the total number of attributes
in spam emails nS and in legitimate emails nL in a so-called “frequency table”.

These numbers are used as input for the m-estimate method, which is ex-
plained in [Mit97]. It would be problematic if the conditional probabilities

were calculated with the formula P (ai|spam) = nS(ai)
nS

and a word would never
occur in a spam email. This case would reduce the conditional probability to
zero. If the spam probability is then calculated with the formula discussed
above, the result would be a spam probability of zero independent of the other
attributes of the email.

The m-estimate method eliminates this effect. It adds a prior estimate p for
the probability multiplied with an “equivalent sample size” m to the numer-
ator and the equivalent sample size to the denominator. This means that m
virtual emails are added to the database. Each of these m emails include every
word that has been observed with the estimated probability as the “number
of occurrences”. This number of occurrences must be greater than zero.

When using this method for the Naive Bayesian filter, Pantel and Lin define
m = 1 and p = 1

k
, where k is the number of unique words in all messages.

The reason for this is that the authors assume uniform priors by selecting this
value. This technique is also recommended in [Mit97]. The resulting formulas
for calculating the probabilities for each word are:

P (ai|spam) =
nS(ai) + 1

k

nS + 1

P (ai|legitimate) =
nL(ai) + 1

k

nL + 1

When calculating spam probabilities, Pantel and Lin did not regard those
attributes with less than four overall occurrences and attributes that do not
show a tendency towards occurring in legitimate or spam emails in the training
data. These attributes are determined by the following formula:

0.45 <
P (ai|spam)

P (ai|spam) + P (ai|legitimate)
< 0.55

If the calculated spam probability is greater than the legitimate probability,
the email is assumed to be spam. Otherwise it is categorized as legitimate and
not filtered.

11

3 Survey of Existing Approaches

Results

Pantel and Lin used a relatively small training corpus, which consists of only
160 spam and 460 legitimate messages. The testing corpus consists of 277
spam and 346 legitimate emails. However, the testing spam emails were taken
from a database on the Internet, while the training spam emails were taken
from one of the authors mailbox.

The false-positive rate they achieved is 0.58% while the false-negative rate is
13.36% when they did not leave out the messages with less than 4 occurences
and those that do not show a tendency in the training data. When applying
these filters, they achieved a false-positive rate of 1.16% and a false-negative
rate of 8.30%. These numbers are remarkable because there is a significant
difference between the false-positive rate and the false-negative rate although
the authors did not document a difference in the handling of both types. Ac-
cording to their description, they did not tend to categorize more emails as
legitimate in order to avoid false-positives. The explanation for this behavior
of the filter might be that the spam emails used for training and testing are
from different sources.

When calculating the weighted error for the values with and without applying
the filters, the version without the filter outperforms the other one for all values
of λ. This is why table 3.1 shows only these figures.

λ NL→S NS→L rfp rfn WErr

9 2 37 0.578% 13.357% 1.622%
99 2 37 0.578% 13.357% 0.681%
999 2 37 0.578% 13.357% 0.588%

Table 3.1: Results of the approach by Pantel and Lin

Discussion

As in all Naive Bayesian approaches, Pantel and Lin assume their attributes
to be statistically independent but they do not give a further explanation for
this assumption.

Another disadvantage of this approach is that there is no built-in security
against false-positives. Advanced implementations use different tricks to bias
the filter in order to tend to classify emails as legitimate if the output of the
calculation is not significant. Nonetheless, the false-positive rate of the filter
was much lower than the false-negative rate for the testing corpus. It is not
clear if the filter would behave in this way when used in real communication.

12

3.1 Naive Bayes Classifiers

3.1.3 Microsoft Research 1998

As mentioned before, the technique explained in [SDHH98] was presented at
the same conference in 1998 as the paper described above. There are several
technical analogies in these two approaches. However, this section concentrates
on the differences, especially the introduction of so-called “hand-crafted” at-
tributes.

Attribute Selection

The attributes used for this filter are also words used in the message body. The
text does not clearly specify which characters are regarded as word separators
or if some characters are ignored. All attributes that occur less than three
times in the training corpus are not regarded.

The authors additionally defined so-called “hand-crafted, domain-specific fea-
tures”. They argue that there are many particular attributes of spam emails
besides the words used in the message body. These problem-specific attributes
can be divided into two groups: Phrasal and non-textual attributes.

The first group examines the message text for the appearance of particular
phrases, for example “be over 21”. The authors defined 35 such attributes. The
second type of hand-crafted attributes are non-textual. An example mentioned
in the article is the domain type of the sender. The reason for this is that for
example .edu domains are rarely used to send spam emails. 20 non-textual
attributes were included in the filter.

The resulting number of attributes that are derived from the message body is,
according to the authors, very large. Therefore they want to use only those
attributes that represent the best basis to make a decision. According to the
authors, such dimensionality reduction helps to control the model variance due
to estimating parameters. Another positive aspect is that the degree to which
the independence assumption is violated can be reduced.

The value that is calculated to find the most significant attributes is the mutual
information (MI). The mutual information measures how much information
one variable X tells us about another one, Y . As mentioned above, the joint
probability can be calculated as P (X, Y) = P (X) · P (Y) if X and Y are
independent. This means that the fraction of both sides of this equation equals
one for independent variables. The mutual information uses this fact. The
logarithm of the fraction is calculated, weighed with the joint probability and
summed up over all possible values for the variables. In this case, one variable
O(ai) is one, if the attribute ai occurs in an email and zero otherwise. The
other variable states if the email is spam or not:

MI(ai) =
∑

o∈{0;1},c∈{spam;legitimate}
P (O(ai) = o, c) log

P (O(ai) = o, c)

P (O(ai) = o) · P (c)

13

3 Survey of Existing Approaches

A greater value of MI(ai) means a higher entropy. Hence, the attributes
with the greatest mutual information values are selected, in this case the 500
highest.

Deriving Spam Probabilities

The authors of this document also use the Bayes formula given in 3.1.1. It is not
explained how they derive the probabilities for P (a1|spam), . . . , P (an|spam)
and for P (a1|legitimate), . . . , P (an|legitimate) that are used in the formula.

When referring to the procedure for selecting whether an email is classified as
spam or not, it is only mentioned “[. . .] a message is only classified as junk if
the probability that it would be placed in the junk class is greater than 99.9%”.
This does not make clear whether both probabilities, P (spam|a1, . . . , ai) and
P (legitimate|a1, . . . , ai), or only the spam probability is used.

Results

The used corpus contains 1789 email messages of which 1578 were classified as
spam and 211 as legitimate. This corpus is split into a training corpus of 1538
messages and a testing corpus of 251 messages. The article does not point
out how big the share of spam and legitimate messages in these two groups
is. This is why it is not possible to calculate the weighted error rates and we
confine ourselves to take a look at the false-positive and false-negative rates.

The results are measured in three steps: Firstly only attributes derived from
the message text are used, then phrasal attributes are added and finally non-
textual attributes are added. The results are summarized in table 3.2. It is
particularly remarkable that the introduction of phrases only had a small effect
on the rates while the non-textual information led to a notable improvement.

attributes rfp rfn

words 6.6% 5.7%
words and phrases 5.3% 5.7%
words, phrases and non-textual 0.0% 1.7%

Table 3.2: Results of the approach by Microsoft Research 1998, first corpus

The email corpus used for this first testing series consisted of existing email
folders. The authors admit that the users from which these collections were
gathered had already deleted several emails. To test the filter with a user’s
entire email stream, a second testing series was carried out. The testing data
used in this series are all 45 spam and 177 legitimate emails sent to one user
during one week. The training was done with 2593 emails from the previous
year. The results achieved using words, phrases and non-textual attributes are
shown in table 3.3.

14

3.1 Naive Bayes Classifiers

λ NL→S NS→L rfp rfn WErr

9 3 9 1.695% 20% 2.198%
99 3 9 1.695% 20% 1.742%
999 3 9 1.695% 20% 1.700%

Table 3.3: Results of the approach by Microsoft Research 1998, second corpus

Discussion

This text does not explain how a decision is derived as to whether an email is
spam or legitimate. The results of the study are good, although the reliability
is doubtful since the number of emails used for training and testing was very
small. The share of spam emails and legitimate emails is also not very close
to reality, as the corpus consists of over five times more spam emails than
legitimate emails.

A question that arises from this study is whether the improvement of the
results with use of non-textual attributes can also be achieved by including
the header in the generation of textual attributes. This may be the case since
the bigger part of these non-textual attributes is data from the email header
like the sender-domain.

3.1.4 Androutsopoulos

The approach of Ion Androutsopoulos’ research group is given in [AKC+00].
It is basically a reproduction of the technique by Microsoft Research explained
in 3.1.3, with a concentration on finding those values for parameters in this
approach that lead to optimal filtering results. Furthermore an evaluation
system for measuring the performance of spam filters is introduced. The results
of this study were used in other experiments to compare Naive Bayesian spam
filtering with other machine learning techniques [AKCS00, APK+00].

Attribute Selection

The selected attributes were derived from the words of the message. Attributes
including other information like header-contents were not used.

These attributes were modified in several ways in order to find out which of
these modifications improve the filtering results and which values of variables
are the most practical. One of these modifications was ignoring the 100 most
frequent English words that were added to a stop-word list. Another modifica-
tion was a lemmatizer that converts words to a base form that is comparable to
the stemming algorithm mentioned in 3.1.2. The implementation of this lem-
matizer is not further explained. The last modification of the attribute data
was the reduction to those attributes with the highest mutual information as

15

3 Survey of Existing Approaches

described in 3.1.3. The number of attributes used for filtering was 50 to 700,
increasing in steps of 50.

Deriving Spam Probabilities

The decision of whether to classify an email as spam or not is based on the
equations 3.1 and 3.2. In this approach the denominator is not removed, it is
transformed as follows:

P (a1, . . . , an) =
∑

c∈{spam,legitimate}
P (c) · P (a1, . . . , an|c)

=
∑

c∈{spam,legitimate}
P (c) · P (a1|c) · · ·P (an|c)

Using this transformation, one can calculate the fraction of the probabilities
P (spam|a1, . . . , an) and P (legitimate|a1, . . . , an). This value indicates the ratio
of the probability that the categorized email is spam and that it is legitimate.
In this approach, the authors estimate the proportion of the costs for cate-
gorizing a legitimate email as spam and vice versa. If the ratio of the two
probabilities mentioned above is larger than this cost-ratio λ, the email is
handled as spam:

P (spam|a1, . . . , an)

P (legitimate|a1, . . . , an)
> λ (3.3)

Androutsopoulos et al. continue to transform this inequation. They show
that the numerator equals one minus the denominator. This can be shown
if one uses the formulas known from 3.1.1. In the transformations below,
P (a1|legitimate) · · ·P (an|legitimate) ·P (legitimate) is substituted with X and
P (a1|spam) · · ·P (an|spam) · P (spam) with Y for the sake of clarity:

P (legitimate|a1, . . . , an) =
P (a1|legitimate) · · ·P (an|legitimate) · P (legitimate)∑

c∈{spam,legitimate}
P (c) · P (a1|c) · · ·P (an|c)

=
X

X + Y

=
X

X + Y
+

Y − Y

X + Y

=
X + Y

X + Y
− Y

X + Y

= 1− Y

X + Y

16

3.1 Naive Bayes Classifiers

= 1− P (a1|spam) · · ·P (an|spam) · P (spam)∑
c∈{spam,legitimate}

P (c) · P (a1|c) · · ·P (an|c)

= 1− P (spam|a1, . . . , an)

We can use this to rewrite the categorization formula 3.3 as follows:

P (spam|a1, . . . , an) > t, with t =
λ

1 + λ
, λ =

t

1− t

The values that were assigned to t for testing purposes were 0.999, 0.9 and 0.5.
The first value, which corresponds to a value of 999 for λ (i.e. misclassifying a
legitimate email as spam is 999 times as costly as misclassifying a spam email
as legitimate) was an experiment for an email filter that would immediately
delete emails that are categorized as spam. The second and third value which
correspond to λ = 9, and, respectively, λ = 1 were used for testing the case
of a filter which would reject emails that are categorized as spam but which
would respond to the author of the email and ask him to resend the email to
a different email address.

Results

The testing was made with a corpus called the “Ling-Spam corpus”. It consists
of 2412 legitimate messages from the Linguist list, a “moderated (hence, spam-
free) list about the profession and science of linguistics” [AKC+00] and 481
spam messages received by one of the authors of the study. Ten-fold cross-
validation was used for testing.

The testing results are shown in table 3.4. The amount of data collected by this
group is quite big because the available parameters were tested with several
values as mentioned above. Depending on the value of λ, the percentage of
identified spam was between 82.78% for λ = 1 and using the lemmatizer and
stop-list, and 63.05% for the same setting with λ = 999. Spam precision is the
ratio of the number of spam emails classified as spam and the total number
of messages classified as spam. Spam recall is the share of spam emails that
were correctly classified. This means that it can be calculated as one minus
the false-negative rate.

It is possible to calculate the weighted errors for λ ∈ {9; 99; 999} from this
data. The best values for each group are shown in table 3.5. The spam and
legitimate numbers are not integers because they are average numbers from
the ten-fold cross validation. The best values for λ = 9 were those achieved by
the combination of the lemmatizer and the stop-list with an internal λ of 1.
For λ = 99 and λ = 999 the filter using only the lemmatizer with an internal
λ of 999 was superior to the other configurations.

17

3 Survey of Existing Approaches

Filter configuration λ n spam-prec. spam-rec.
bare 1 50 96.85% 81.10%
stop-list 1 50 97.13% 82.35%
lemmatizer 1 100 99.02% 82.35%
lemmatizer & stop-list 1 100 99.49% 82.78%
bare 9 200 99.46% 76.94%
stop-list 9 200 99.47% 76.11%
lemmatizer 9 100 99.45% 77.57%
lemmatizer & stop-list 9 100 99.47% 78.41%
bare 999 200 99.43% 73.82%
stop-list 999 200 99.43% 73.40%
lemmatizer 999 300 100.00% 63.67%
lemmatizer & stop-list 999 300 100.00% 63.05%

Table 3.4: Results of the approach by Androutsopoulos et al. 2000

λ NL→S NS→L rfp rfn WErr

9 0.2 8.3 0.085% 17,220% 0.456%
99 0 17.5 0% 36,331% 0.073%
999 0 17.5 0% 36,331% 0.007%

Table 3.5: Results of the approach by Androutsopoulos et al.

Discussion

One of the most obvious deficiencies in this approach is that no additional
information like character strings or the domain type of the sender is used,
although it is based on the technique explained in 3.1.3 [SDHH98]. This paper
used additional information and verified that it has a good impact on filter-
ing results. Androutsopoulos et al. do not explain why they left out these
additional attributes.

The testing results from this study are at first sight not very promising. On
the one hand, the false-positive rates remain quite low. But the false-negative
rates are never less than 17.22%. However, it must be taken into account that
these ratios might be improved by using the additional information mentioned
in the previous paragraph.

3.1.5 Paul Graham’s Plan for Spam

Paul Graham describes an often implemented approach in [Gra02a].

18

3.1 Naive Bayes Classifiers

Attribute Selection

The entire email is tokenized; the algorithm does not treat HTML, Javascript
or headers differently from the message body. All alphanumeric characters,
dashes, apostrophes and dollar signs are token characters while all other char-
acters are token separators. Tokens that only consist of digits or HTML com-
ments are not used. Each token is considered to be an attribute.

Deriving Spam Probabilities

In this approach the probability calculation is implemented differently from
the approach described in 3.1.1. However, statistical independence of the
attributes is still assumed; the approach is a Naive Bayes algorithm. The
difference to the regular calculations is that Paul Graham first calculates the
probability P (spam|ai) for each attribute ai. These values are then combined
to form one probability P (spam).

Paul Graham’s approach uses three tables to store different numbers. The
first one contains the number of occurrences in spam emails for each attribute
and the second the occurrences in legitimate emails. The third table contains
the probability for each attribute that an email containing it is spam. Two
counters NS and NL count the overall number of spam and legitimate emails.

Graham’s approach is based on the theorem of Bayes which states:

P (Bk|A) =
P (A|Bk)∑n

i=1 P (A|Bi) · P (Bi)

In this case, we want to calculate P (spam|ai). Graham makes the assump-

tion that P (ai|spam) = min(1; nS(ai)
NS

) where NS is the number of spam emails
and nS(ai) is the number of occurrences of attribute ai in spam emails. This
means that Paul Graham calculates the probabilities with the simple formula
for conditional probabilities. But he uses the number of occurrences of the
attribute in spam or legitimate emails as numerator and the number of spam
or legitimate emails as denominator. The problem of this approach is that the
numerator can become bigger than the denominator and thereby the probabil-
ity can become greater than one. Therefore Paul Graham takes the minimum
of this term and one as the conditional probability. His explanation as to why
he uses this unorthodox calculation is that this “adds another slight bias to
protect against false-positives” [Gra02a]. The calculation of P (ai|legitimate)
includes another modification to bias the filter even more. The number of
occurrences of each attribute in legitimate emails is doubled.

The probability that an email containing the attribute ai is spam can be cal-
culated using the theorem of Bayes. Paul Graham assumes that P (spam) =
P (legitimate) which allows the following transformations:

19

3 Survey of Existing Approaches

P (spam|ai) =
P (ai|spam) · P (spam)

P (ai|spam) · P (spam) + P (ai|legitimate) · P (legitimate)

=
P (ai|spam)

P (ai|spam) + P (ai|legitimate)

=
min(1; nS(ai)

NS
)

min(1; 2·nL(ai)
NL

) + min(1; nS(ai)
NS

)

The last term is the one Graham uses to calculate the probability that an
email containing attribute ai is spam. This probability is calculated for each
attribute whenever a new email is added to the data basis. In order to avoid the
values zero and one, which would make the following calculations impossible,
Graham replaces all values below 0.01 with 0.01 and all values greater than
0.99 with 0.99. These values are stored in the third table.

When a new email arrives, the first step is to find from the set of all attributes
occurring in it those that are most significant. The measurement for this is
the spam probability of these attributes that has to be as far away from 0.5 as
possible (where words that are new to the classifier get a probability of 0.4).
In this way the 15 most interesting attributes are selected, they form the set
J . The spam probabilities of these 15 attributes are then combined to one
probability that is used to classify the whole email. The formula used is:

P (spam) =

∏
j∈J

P (spam|aj)∏
j∈J

P (spam|aj) +
∏

j∈J
(1− P (spam|aj))

If the calculated spam probability is greater than 0.9, the email is classified as
spam. Otherwise it is considered not to be spam.

Results

Paul Graham uses spam and legitimate email corpora of about 4000 messages
each for training his classifier. The results in applying the filter are described
by “we now miss less than 5 per 1000 spam emails, with 0 false positives”
[Gra02a]. This would mean that the false-positive rate is 0.5% and the false-
negative rate is zero for this testing corpus. In a later publication [Gra03]
Graham mentions that his testing corpus for legitimate email consisted of
about 4000 emails and that thereby, if the next arriving email would be falsely
considered to be spam, the false-negative rate would be 0.03%. In this paper
he also states that four of 1750 spam emails were not recognized by his filter.
This leads to the weighted error rates shown in table 3.6.

20

3.2 Genetic Algorithms

λ NL→S NS→L rfp rfn WErr

9 0 4 0% 0.229% 0.011%
99 0 4 0% 0.229% 0.001%
999 0 4 0% 0.229% 0.0001%

Table 3.6: Results of Paul Graham’s spam filter

Discussion

This approach has several parts that are not explained or only have the ex-
planation “add a bias to protect against false positives” or “by trial and error
I chose [. . .]”. For example the use of the word counter as numerator and the
email counter as the denominator for calculating the probabilities P (ai|spam)
is justified by the statement that this helps to avoid false-positives. There is
no further explanation for this.

Another detail that would need further explanation is that Paul Graham as-
sumes P (spam) = P (legitimate). This means that the initial probability that
an incoming email is spam is 0.5. However, this probability should be deter-
mined by the ratio of incoming spam emails and can be different from 0.5.

The results achieved by this filter are remarkably good. But the training
corpus Paul Graham used was huge, too. It would be interesting to see how
this filter would behave with smaller amounts of training emails. Maybe this
would bring the filter’s performance closer to the other ones.

3.2 Genetic Algorithms

David Goldberg describes Genetic Algorithms as search algorithms based on
the mechanics of natural selection and natural genetics [Gol89]. They have
been developed by researchers at the University of Michigan. Genetic Algo-
rithms combine the concept of survival of the fittest among string structures
with a structured, randomized information exchange. “In every generation, a
new set of artificial creatures (strings) is created using bits and pieces of the
fittest of the old; an occasional new part is tried for good measure” [Gol89].

The first part of this chapter explains the concept of Genetic Algorithms ac-
cording to [Mit97]. Then a study comparing Genetic Algorithms with Naive
Bayesian Filters [Kat99] is described.

3.2.1 Theory of Genetic Algorithms

The search space used in Genetic Algorithms is coded as a finite length string
of variables in form of an alphabet. The most common approach is to use the
binary alphabet given by the set 0;1. Each string represents a possible solution

21

3 Survey of Existing Approaches

for the problem that should be solved. In our case, these solutions represent a
function that assigns either the value spam or legitimate to an email depending
on the attributes of this email.

The starting point of an evolutionary process by Genetic Algorithms is a ran-
dom starting population, with a population being a set of solutions. Each
of these solutions si ∈ P are evaluated by a fitness function f . This fitness
function measures how well the solution can solve its task, in our case the cat-
egorization of emails. The implementation of the fitness function can differ.

When the fitness function is calculated for each member of a population, a new
generation is formed. This means that a new population is generated from the
old one. Three different techniques are used to specify the solutions in the new
population: Selection of members of the old population that continue to exist
in the new one; a crossover that combines two solutions from the old population
to two new ones; and mutation which changes some random aspect of a certain
fraction of the new population. This process is executed multiple times until
at least one of the solution’s fitness function values exceeds a threshold that
has been pre-determined. The solution which has the best value is used to
handle the task.

Selection

Some solutions from the old population are selected to “survive”, meaning
that they keep existing in the next generation. The ratio of these solutions to
the size of the population P is given by the variable r. The solutions that are
carried over into the new population are selected by random. The probability
for selecting solution si ∈ P is given by the following formula:

P (si) =
f(si)∑

sj∈P
f(sj)

This formula implies that solutions with a higher fitness value are more likely
to be selected. David Goldberg compares this selection operator to a weighted
roulette wheel [Gol89]. Figure 3.1 shows such a wheel for an example popula-
tion containing four solutions A, B, C and D. The greater a solution’s fitness
value is, the bigger is the corresponding area on the wheel. In the example,
the fitness value of solution A equals 9.4% of the sum of all fitness values,
solution B’s 15.6% and so on. This means that the probability that the wheel
will select solution A to survive is 9.4%.

The thought of the concept of selection is an analogy of Darwin’s evolutionary
concept “multiply, vary, let the strongest live and the weakest die” [Dar59].
The aspect of variation will be added by crossover and mutations which will
be explained in the following.

22

3.2 Genetic Algorithms

C
D

A

B

9.4%

15.6%

31.2%

43.8%

Figure 3.1: The weighted roulette wheel illustrating the selection process

Crossover

A crossover creates two new solutions by mixing attributes of two old ones.
These can be selected by several methods, the basic approach is to use the
probabilities P (si) mentioned above. From each of the selected solutions, two
parts are selected which are exchanged to form the two members of the next
generation. In Mitchell’s model, which uses bit-strings of equal length to rep-
resent solutions, each string is cut equally. The halves are then recombined in
both probable ways and these new solutions are added to the new population.

Goldberg’s simple crossover selected an integer position k uniformly at random
between one and the string length l less one. Two new strings are created by
swapping all characters between positions k + 1 and l inclusively [Gol89].

Mutation

Mutation is an important technique used in Genetic Algorithms because it is a
way in which new patterns of behavior can be obtained. After the solutions of
the new population have been generated by selection and crossover, a randomly
selected fraction m of them is manipulated by mutation. In the bit-string
coding of solutions described by Mitchell, one bit is selected randomly and
inverted.

3.2.2 Study by Hooman Katirai

In his paper [Kat99], Hooman Katirai briefly describes the implementation
of a Genetic Algorithm for spam filtering. He compares his results to those
achieved by a Bayesian filter.

23

3 Survey of Existing Approaches

+

Freq("Money") Freq("$$$")

Exists(".edu")

*

Figure 3.2: Example of a tree representing an element of the search space

Attribute Selection

The attributes used in this study are the words used in the emails. The
author does not specify how a word is defined and which characters are used
as separators. However, he describes that the algorithm removes all HTML
tags first. This shows that the HTML tags are not used as attributes. The
software also filters the 60 most common words in the English language which
are considered to occur too often to be of help. Then a stemming algorithm
is applied to the extracted words. The author used a variant of the Porter
Stemming Algorithm [Por80] described by Frakes [Fra92] which he considers
to be quite simple and fast.

Deriving a Decision

Katirai explains that a combination of word operators and numerical operators
are used to build the search space. Word operators represent the frequency or
the existence of a certain word in an email. Numerical operators are shown
in table 3.7. The search space consists of trees that represent word operators
and numbers connected by numerical operators. An example of such a tree is
shown in figure 3.2. This tree sums up the frequencies of the strings “Money”
and “$$$” in an email and multiplies it with one if the string “.edu” occurs or
zero if it does not occur.

Type Symbols
Arithmetic +, −, /, ∗
Relational =, <>, >=, <
Logical AND, OR, NOT
Non-linear Min, Max, ABS
Square-root

√

Table 3.7: Numerical operators

The fitness function used in this test is based on the squared errors. The
error is the difference of the variable Cj indicating if email j is spam (Cj = 1)
or not (Cj = 0) and the value vj,i calculated for this email by solution i.
These squared errors are summed up for spam emails and legitimate emails

24

3.2 Genetic Algorithms

separately. Each of the sums is weighted with the reciprocal of the number of
emails in the corresponding category, to calculate the average error for each
category. These average errors are added up:

f(si) =
1

NS

·
N∑

j=1

Cj · (vj,i − Cj)
2 +

1

NL

·
N∑

j=1

(1− Cj) · (vj,i − Cj)
2

The reason as to why this procedure is used is that the author had experienced
that a simple sum of all squared errors leads to a bias in the classifier towards
the email type that is more frequent in the training corpus. If for example
most of the corpus consists of spam, solutions that tend to filter a high degree
of emails will get a high fitness value although they are not very good at
recognizing to which group an email belongs.

The ratio r of solutions that are selected to be taken over into the new popu-
lation is 0 in this approach. All members of the new population are generated
by crossover. For the crossover operation, one solution is selected by random
and ten other solutions have to compete to be the other parent. Then one
subtree is selected from each of the two solutions which are exchanged in order
to form the two members of the new population.

The author explains that single-node mutation (which replaces only one node
of the tree) and subtree mutation (which replaces a whole subtree) are variants
of mutation that can be applied to the tree-representation. However, it is not
mentioned whether only one or both concepts are used.

Results

The corpus used for testing in this approach consisted of 701 spam and 102
legitimate emails which were obtained from a single person’s mailbox. This
corpus was split into one used for training (671 spam and 72 legitimate emails)
and one used for testing (30 spam and 30 legitimate emails).

The author made several runs of his algorithm and since the populations are
randomly generated, the filter achieved different results. The best instance
had a false-positive rate of 3.33% and a false-negative rate of 30%. This leads
to the weighted error rates shown in 3.8

λ NL→S NS→L rfp rfn WErr

9 1 9 3.33% 30% 6.0%
99 1 9 3.33% 30% 3.6%
999 1 9 3.33% 30% 3.36%

Table 3.8: Results of Hooman Katirai

25

3 Survey of Existing Approaches

Discussion

The results achieved by this approach are not very promising. Katirai con-
cludes that it was only slightly outperformed by a Bayesian filter he imple-
mented. But if the results are compared to the Bayesian approach by Paul
Graham [Gra02a] explained in 3.1.5, they are vastly outperformed.

It is questionable how reliable the results are. The number of emails used in
the testing corpus is low compared to other studies. Therefore it is doubtful
that differences found in the testing results are statistically significant.

There are several points that can be improved. Many attributes are not re-
garded. Not all header information is used and HTML tags are removed.
Another improvement might be achieved by using selection. If only crossover
is used, promising solutions might be lost because they are changed too much
by this operation. If they had the chance to keep existing and change only
slightly by a mutation, better filters might result.

3.3 Artificial Neural Networks

Artificial neural networks (ANNs) can be used for classification. They are
a method that is according to [Mit97] appropriate for problems in which in-
stances are represented by many attribute-value pairs. The attributes derived
from email are usually numerous, if the occurrence of words in the message
body is defined as attributes. Therefore ANNs appear to be a suitable tech-
nique for email classification. Mitchell also mentions that ANNs usually need
a long training time. This can be acceptable once, but if the network should be
updated after each incoming email, such a lengthy time would not be desirable.
Therefore the network should be updated only once in a while.

The first part of this section describes the general system of ANNs based on
[Mit97]. If a more precise description is needed, it is provided for example by
[Bis95]. The second part summarizes a study which tested the use of ANNs
for filtering spam emails.

3.3.1 Theory of Artificial Neural Networks

Structure

ANNs are inspired by the structure and functionality observed in biological
studies of the brain. They imitate the system of simple units that are densely
connected. These units are called perceptrons. An ANN is a graph consisting
of interconnected perceptrons that can be either acyclic or cyclic.

A perceptron is an object that generates an output depending on a vector of
inputs x1, . . . , xn. In mail categorization this could be one input per attribute,

26

3.3 Artificial Neural Networks

.

.

.

1x
2x

nx

0x =1
1w

0w
2w

nw
∑ ∑

i=1

n

w xi i {o =
1 if > 0
-1 otherwise

∑
i=0

n

w xi i

Figure 3.3: A perceptron

x1 x2 x3 x4

y1 y2 y3

Input layer

Hidden layer

Output layer

Figure 3.4: A multilayer artificial neural network

representing the number of occurrences within the email that is categorized.
The perceptron weighs the inputs with a set of weights w0, . . . , wn and adds
them. This sum is used as input for a function called the activation function.
The result of this function is the output of the perceptron.

A common kind activation function is the threshold function. The output is
either one if the sum of the weighed inputs exceeds a certain threshold or minus
one otherwise. Figure 3.3 illustrates such a perceptron according to [Mit97].
The output o(x1, . . . , xn) is derived according to the following function:

o(x1, . . . , xn) =

{
1 if w0 + w1 · x1 + . . . + wn · xn > 0
−1 otherwise

The real valued weights w0, . . . , wn are determined during the training phase.
The value returned by the function can be either used to derive a decision or
as input for other perceptrons. When several perceptrons are combined, they
can form a multilayer network as shown in figure 3.4.

Training

The ANN has to be trained using a training corpus. Mitchell explains two
different training rules for ANNs, the perceptron training rule and the delta
rule.

The perceptron training rule begins with random weights w0, . . . , wn. These

27

3 Survey of Existing Approaches

weights are used to classify the elements from the training corpus one after
another. After each iteration, the weights are adjusted if the output was
wrong. The new value of weight wi is calculated according to the following
formula:

wi = wold
i + ∆wi

with ∆wi = η · (t− o) · xi

The variables o and t are the output and the desired output of the perceptron.
η is the learning rate, a parameter that determines how big the modification
of the weight is. According to [Mit97] a typical value for it is 0.1.

The second formula calculates the difference of the old and the new weight.
The difference (t − o) can be either minus two or two if the output of the
perceptron was wrong or zero if the output was right. If it is zero, the weights
can remain. If it is two, the output was minus one while the desired value is
one. This means that the products wi ·xi have to be increased. If xi is greater
than zero, the weight has to be increased, if it is less than zero, the weight has
to be decreased. The result is that the product (t−o) ·xi results in a shift into
the right direction. η makes the change smaller in order to avoid a situation
in which the algorithm overshoots the mark.

If the training examples are linearly separable, the perceptron rule always leads
to a set of weights {w0, . . . , wn} that classifies each example correctly. If this is
not the case, the delta rule, that uses the gradient descent to converge towards
a best-fit approximation. It will not be explained in detail, see [Mit97] for a
comprehensive coverage.

3.3.2 Survey by Rich Drewes

The study explained in [Dre02] describes an implementation of a neural net-
work spam filter.

Attribute Selection

The author uses the words of the message body as attributes. A word is defined
as a sequence of consecutive alpha characters less than 15 characters in length.
The words are not treated as case-sensitive, all characters are transformed to
lower case. These attributes were reduced to the m most frequent ones.

Implementation

The values x1, . . . , xm are calculated as the number of occurrences of an at-
tribute in the email divided by the total number of occurring attributes. The

28

3.3 Artificial Neural Networks

input vector is thus simply a representation of the presence or absence of the
attributes weighed by the length of the message itself.

The text states that the network used is a three-layer network that is fully
connected. This means that each node is connected to all nodes in the following
and previous layer. The training was done with a backpropagation algorithm,
which was used a certain number of training epochs. The author does not
mention any further details about the training algorithm used.

Results

The author used a testing corpus of 1592 legitimate and 1730 spam emails. It
was split into three parts, a training set of 2043 instances, a validation set of
631 instances and a test set of 649 instances. The first tests lead to the insight
that the best size for the wordlist is m = 2000. The number of nodes in the
middle layer of the ANN was also varied. The best value for this is four.

The author does not separate the two error types in the figures he gives for
each part of the corpus. It is only mentioned that for all data sets the number
of legitimate emails misclassified as spam was 17 while the number of spam
emails not filtered was only 9. Table 3.9 was calculated on the basis of these
numbers. However, it has to be taken into account that these numbers are
clearly better than they would be if only the validation set and the test set
were used, because the filter adopted to the instances from the training set
during the training phase.

λ NL→S NS→L rfp rfn WErr

9 17 9 1.068% 0.520% 1.009%
99 17 9 1.068% 0.520% 1.062%
999 17 9 1.068% 0.520% 1.067%

Table 3.9: Results of the approach by Rich Drewes

Discussion

The achieved weighted error rates are rather disappointing. This effect is even
strengthened if one realizes that the results have been improved by using among
others the training set to calculate them. But the problem of this approach is
that the results were not biased towards avoiding falsely filtered emails. The
number of false-positives is nearly twice the amount of false-negatives. If such
a feature could be added to the classifier, the results are likely to improve
significantly.

A general disadvantage of using ANNs for spam filtering is that they need a
long training time [Mit97]. This makes them less suitable for spam filters. The
problem is the adjustment process if new emails arrive. If they should be taken

29

3 Survey of Existing Approaches

into account, new training runs have to be performed. Other approaches like
those based on the Bayes theorem or memory based approaches discussed in
3.4 can use new emails for filtering by just adding them to a database.

3.4 Memory Based Learning

Memory based learning is also known as instance based learning. Its idea
is to keep all instances that occurred in memory. A new one is categorized
by measuring the similarity or the distance between it and all memorized
instances. The classification is usually implemented as a variant of the k-
nearest-neighbor algorithm.

3.4.1 Theory of Memory Based Learning

To determine the similarity of two instances, their distance is measured. The
smaller their distance, the more similar they are. It is usually defined as
the Euclidean distance in a multi-dimensional space. The dimensionality is
determined by the number of attributes that are extracted. If the attributes
are symbolic, such as if a certain word occurs in an email, the distance can be
measured by the overlap.

It is assumed that the attributes A = {a1, . . . , an} are extracted from all
emails. The vector ~xi = 〈xi,a1 , xi,a2 , . . . , xi,an〉 represents the extraction results
for email i. If the (symbolic) attribute a1 occurs in that email, xi,a1 is one,
otherwise it is zero. The overlap distance of two instances i and j is calculated
as follows:

d(~xi, ~xj) =
n∑

k=1

δ(xi,ak
, xj,ak

)

with δ(xi,ak
, xj,ak

) =

{
0 if xi,ak

= xj,ak

1 otherwise

The k-nearest-neighbor algorithm searches the k instances that are most simi-
lar to the one that is to be categorized, i.e. those for which the overlap distance
is minimal. The class of the majority of these k neighbors is assigned to the
new instance.

3.4.2 Survey by Sakkis et al.

This team published in [APK+00] the first results of their work on a memory
based spam filter. In 2001 they released an article [SAP+01] that was much

30

3.4 Memory Based Learning

more detailed and examined extensions of the k-nearest-neighbor algorithm
and the impacts of changing certain parameters.

Attribute Selection

The attributes in this study are derived by splitting the email into words
and lemmatizing them, this means all words are converted to their base form.
The text neither mentions which characters are used as word separators nor
if any header information is used. From these attributes the most valuable
are selected. All words occurring in less than four messages are discarded and
from those left over, the m attributes with the highest information gain are
selected. The information gain was already defined in 3.1.3 but there it was
called the mutual information. m is varied between 50 and 700.

Deriving a Decision

In this approach the k-nearest-neighbor algorithm is modified. First of all the
algorithm does not take the k closest instances into account but those with
the k smallest distances. This means that if several instances have the same
distance, more than k of them will be used for the decision.

The email is not simply classified according to the majority of these neighbors.
The authors calculate the probability P (spam|a1, . . . , an) that an email is spam
as the percentage of training instances in the k-neighborhood that belong to
that category. The probability that it is a legitimate email can be calculated
analogous. If the ratio of the spam probability and the legitimate probability
exceed the confidence level λ, the email is categorized as spam.

Another modification of the standard distance measure algorithm the authors
implemented in this study is attribute weighting. Therefore the regular equa-
tion was changed to the following:

d(~xi, ~xj) =
n∑

l=1

wl · δ(xi,al
, xj,al

)

The coefficient wl is called the weight assigned to attribute l. This weight can
be determined in different ways. One possibility is using the information gain
of an attribute. The information gain is defined differently from the variable
used for attribute selection. To calculate it, the authors first introduce the
entropy. The entropy H(C) is the entropy of the category-denoting variable.
It measures the uncertainty on the category of a randomly selected instance
and is calculated as:

H(C) = −
∑

c∈{spam;legitimate}
P (c) · log2(P (c))

31

3 Survey of Existing Approaches

The uncertainty on the category for an instance with the value o(al) for variable
al is H(C|O(al)). O(al) is a variable that equals one if the instance contains
attribute al and zero otherwise. H(C|O(al)) is defined similar to H(C):

H(C|O(al)) = −
∑

c∈{spam;legitimate}
P (c) · log2(P (c|O(al)))

Using these entropies, it is possible to determine the information gain IG(al, c)
from attribute al. It is calculated as the difference of the entropy of the cate-
gory and the expected value of the entropy, when it is known, if attribute al

occurs or not. The information gain thereby measures the reduction of the en-
tropy when it is known if the attribute al occurs. If this reduction is bigger, it
is more useful to know if attribute al occurs. IG(al, c) is calculated as follows:

IG(al, C) = H(C)−
∑

o∈{0;1}
P (O(al) = o) ·H(C|O(al) = o)

A different way to determine the weight wl is the gain ratio which is calculated
by dividing the information gain by the entropy of the attribute (also called
the split information of the attribute). This step normalizes the information
gain for attributes with different numbers of values:

GR(al, C) =
IG(al, C)

H(al)
=

IG(al, C)

− ∑
o∈{0;1}

P (O(al) = o) · log2(P (O(al) = o)

The distance measure was also modified to use distance weighting. This means
that instances with a smaller distance were emphasized in the determination
of the class. Several distance functions fm(d) are used for this. The ratio
of the spam probability and the legitimate probability that determines the
categorization of the email is computed differently. The contribution of each
neighbor to the probabilities is determined by its distance. If ci is one if email
i is spam and zero otherwise, the email with the extraction result set ~x is
considered to be spam if:

k∑
i=1

fm(d(~x, ~xi)) · ci

k∑
i=1

fm(d(~x, ~xi)) · (1− ci)
> λ

The four following distance measures were compared. The first one is a lin-
ear weight, while the other three represent hyperbolic weights. dmax is the
maximum obtainable distance.

f0(d) = dmax − d

32

3.4 Memory Based Learning

and fm(d) =
1

dn
, m ∈ 1, 2, 3

Results

The corpus used for testing is again the “Ling-spam corpus” described in 3.1.4
with 2412 legitimate and 481 spam emails. For testing purposes, the number
of attributes was varied from 50 to 700 and the neighborhood size from one to
ten. It was also examined how the training corpus size and the use of attribute
weighting and distance weighting affected the results.

The results for the use of attribute weighting depended on the parameter λ
that defines how much more costly a falsely filtered legitimate email is than
an unfiltered spam email. With λ = 9 and λ = 99 the use of information gain
outperformed the other approaches. For λ = 999 the results were different
depending on the number of attributes. When less than 200 attributes were
used, the algorithm without attribute weighting was better than the others.
When using at least 200 attributes, the best version was alternating between
gain ratio and information gain. The authors conclude that information gain
is the best approach.

When testing the different distance weighting formulas, f3(d) resulted in the
best filter accuracy. This means that the best results are achieved when closer
instances are strongly emphasized. The best value for k identified in another
test series was eight for λ = 1, two for λ = 9 and four for λ = 999.

Table 3.10 shows the number of errors that occured using the best value for k
for each λ and the weighted error rates. The values for NS→L and NL→S are
not integers because the authors used ten-fold cross-validation and calculated
the average.

λ NL→S NS→L rfp rfn WErr

9 0.5 8.7 0.207% 18.07% 0.587%
99 0 15.4 0% 31,98% 0.064%
999 0 15.4 0% 31,98% 0.006%

Table 3.10: Results of the approach by Sakkis et al.

Discussion

The authors of this study tested several modifications of the k-nearest-neighbor
algorithm and the distance measures. The results they achieved show that this
testing can lead to much better results than using the regular algorithm and
the Euclidean distance only.

A point that can be criticized is that the authors do not mention whether they
used header information. It seems quite unlikely that it was used. This leaves

33

3 Survey of Existing Approaches

some room for improvement.

3.5 Comparison of all Discussed Approaches

Table 3.11 summarizes the weighted error rates achieved by all filters. The
differences between them are quite big. If we take a look at the different filter
methods first, it seems like only the artificial neural network and the memory
based approach can compete with Bayesian filters. However, Paul Graham’s
results outperform all others by far. The more intuitive false-positive and false-
negative rates confirm this. The values 0% and 0.229% achieved by Graham’s
filter are better than all other error rates. Although there might be reasons
like the big training corpus that led to this, an implementation of this concept
seems to be the most reasonable decision.

Bayes Bayes Bayes Bayes GA ANN MBL
λ

(Pant) (Micr) (Andr) (Grah) (Kati) (Drew) (Sakk)
9 1.622% 2.198% 0.456% 0.011% 6.0% 1.009% 0.587%
99 0.681% 1.742% 0.073% 0.001% 3.6% 1.062% 0.064%
999 0.588% 1.700% 0.007% 0.0001% 3.36% 1.067% 0.006%

Table 3.11: Weighted error rates of discussed approaches

Another reason why Naive Bayesian filters are more suitable to the use as spam
filters than artificial neural networks is that they can be easily adjusted if new
emails are added to the database. If an artificial network should be adjusted,
it must be retrained as mentioned in 3.3.2. This process can take much time.

34

4 Improving Existing Approaches

This chapter describes how the existing approaches explained in the previ-
ous chapter can be improved. There are two different starting points to find
concepts for a better recognition rate: The filter method and the attribute
selection.

4.1 Filter Method

It is rather complex to find a whole new filter method because the methods
used in the existing approaches have been improved and redesigned over many
years. Another approach is to use an established concept that has been proved
to have a good performance for the problem and try to obtain better results
by changing parameters. Paul Graham did this quite successfully in the design
of his spam filter [Gra02a]. His results are superior to those of the other filters
described because he tried to find promising values for the parameters of his
implementation. The spam filter implemented for this research work should
use this concept, too. A selection of Paul Graham’s Bayesian filter is a good
starting point from which to build a sound spam filter.

4.2 Attribute Selection

The room for improvement by utilizing attributes that have not yet been used
might be bigger. There have already been several attempts to use this scope
as described in the previous chapter. An example for this is using the Porter
Stemming Algorithm to accelerate the learning process of the filter. The soft-
ware implemented in the course of this paper should make use of similar at-
tempts to improve the spam filter.

An opportunity is to use images embedded or linked in emails. These images
have not yet been regarded. However, it is an increasing problem that more
and more spam emails do not contain anything but a picture linking to a
web site. In “The Spammers’ Compendium” [GC04], a website maintained
by John Graham-Cumming that deals with tricks that spammers use to avoid
spam filters, this technique is listed at the first position. These emails do not
contain sufficient attributes in order for them to be classified as spam. The
only possibility for conventional spam filters is to use the HTML tags in the
email and the link to the image. But images can also appear in legitimate

35

4 Improving Existing Approaches

Figure 4.1: Images from spam emails

Figure 4.2: Images from legitimate emails

emails, for example holiday pictures sent to a friend. The conclusion of this is
that images included or linked to within emails must be used for classification.

Using image data to classify emails requires the extraction of attributes from
these pictures. The attributes extracted must be adequate to separate spam
emails from legitimate emails. For this reason we have to take a closer look at
images occurring in both kinds of emails. The images shown in figure 4.1 and
figure 4.2 are typical examples.

The difference between both image types appears obvious to a human observer.
The images from spam emails are at least partly graphics. The first one only
consists of characters and small single-colored diagrams. The second image
can be split vertically into two halves. The left part showing the couple is a
photograph; the right half is similar to the first image, it shows letters on a
monochrome background. The two pictures representing those occurring in
legitimate emails are different, as both of them are photographs.

It is debatable whether or not the assumption that legitimate emails are more
likely to contain photographs than spam emails is correct. There are, for
example solicited emails containing images that are graphics, e.g. newsletters.
Another example are emails containing comic strips or emails from colleagues
containing data in the form of a graphic. However, if somebody receives such
legitimate emails, this will be learned by a machine learning algorithm and the
filter behavior will be adjusted. In contrast to this neutral behavior, a person
not receiving such images in legitimate emails will benefit from an attribute
showing whether an image is a photo or has graphical contents.

Now it is known which aspect of an image the attribute that is extract from it
has to represent. It has to show whether the image tends to have a graphical
or a photographical content. The question that arises is how this can be mea-

36

4.2 Attribute Selection

Figure 4.3: Histograms of images from spam emails

Figure 4.4: Histograms of images from legitimate emails

sured. The solution to this problem is that graphics have large, homogeneous
areas of exactly the same color whereas in photographs the colors are most
likely different in two neighboring points. This can be used in several ways to
extract attributes from images.

The paper “Picture-Graphics Color Image Classification” [PCH+02] describes
an approach for classifying images into the two groups of graphics and pho-
tographs. It uses a combination of three attributes. The first attribute is “spa-
tial gray level dependence texture features”. This tries to separate graphics
from photographs by measuring the texture-density of the image. Photographs
tend to be more textured than graphics which are rather smooth with large
monchrome areas. However, the calculation process for this attribute is costly.

The second attribute used in [PCH+02] is the color discreteness. For this
purpose, the images are first smoothed by a 4 × 4 averaging filter that re-
moves noise due to half-tone. The color model used to derive this attribute
is CIELUV, a rather specialized color model that provides perceptual unifor-
mity. This means that the Euclidian distance of two colors in the color space
corresponds to the difference between the colors for a human viewer. How-
ever, it is questionable whether this attribute could also be derived using a
“regular” RGB color space and without using the 4 × 4 averaging filter. The
color discreteness is calculated using the normalized histogram for each color
component. For each color component (in the RGB color model red, green
and blue), there are 256 possible intensities (0 . . . 255) a pixel in the image can
have. Ic(n) is the number of occurrences of the color value n for color c in
the image. The normalized histogram for color component c is calculated by
dividing the number of occurrences for one shade by the sum of pixels in the
image:

37

4 Improving Existing Approaches

Hc(n) =
Ic(n)

255∑
i=0

Ic(i)

To calculate the color discreteness for one color component c, the difference of
all neighboring color values in the normalized histogram is calculated. These
differences are summed up:

Rc =
254∑
i=0

|Hc(i + 1)−Hc(i)|

As mentioned above graphic images contain areas of the same color and there-
fore will have sharp peaks in the histogram. The value of the color discreteness,
increases if such peaks occur. It can be calculated easily for each component
c of the color-model.

Figure 4.3 shows the color histograms for the red color component of two spam
pictures from figure 4.1, and figure 4.4 for the legitimate pictures from figure
4.2. The resulting color discreteness values for the components red, green and
blue are shown in table 4.1. It seems like this value can be used to separate
graphics from photographs, as it is seen that all values for the images from
legitimate emails are less than 0.1 while those values for the spam images are
greater than 0.3.

Image RR RG RB

Legitimate image 1 0.071 0.046 0.06
Legitimate image 2 0.097 0.096 0.097
Spam image 1 0.606 0.607 0.9
Spam image 2 0.403 0.382 0.463

Table 4.1: Color discreteness

The third attribute introduced in [PCH+02] is the edge feature. The authors
use a “Canny edge detector” to extract edges from the picture. The underlying
observation that justifies this attribute is that pictures are noisy and contain
many short and broken edges while graphics have sharp and long edges. To
extract an attribute from the edges, the number of connections between these
edges is counted. The attribute is the number of edge pixels divided by the
number of connected edges.

For a spam filter that depends on fast algorithms to filter emails quickly, the
first and the last attribute do not seem to be very appropriate, as both of them
are rather costly. However, this is not a big problem since, according to the
authors, the used neural network (that derived a decision based on the values
of all attributes) “gave significant importance to the first color discreteness
feature” [PCH+02]. This shows that the most appropriate method for spam
filters is to only use the discreteness attribute.

38

5 Implementation

This chapter describes the implementation process for a multi-user spam filter
that is based on the techniques described in the previous chapters. The filter
should be a Bayesian filter as this, according to chapter 3, is the best compro-
mise between fast learning and high accuracy. This filter should be improved
by using attributes derived from images which are included in the emails as
described in chapter 4.

The description of the implementation begins with an overview of the technique
used to integrate the filter into the email system of an organization. After this,
the software behavior is shown in activity diagrams. The chapter is completed
by the description of all classes and their methods in 5.3.

5.1 Integration into the Email System

There are several options of how to integrate a spam filter into an email system.
It can be installed on the client computer, on the mail server itself or on a
secondary server (proxy). When it is installed on the mail server or on a proxy
it is appropriate to use IMAP folders to sort emails. However, when the filter
is a program running on the client computer, it sorts emails that have been
downloaded by the email program.

5.1.1 Integration into the Mail Server

This option works as shown in figure 5.1. The spam filter program is integrated
into the mail server. The filter process can be started whenever an email arrives
and the email can be moved into a certain folder whether it is considered to be
spam or not. This is an advantage of this approach because the filter program

Client PC
Deploys:

Mail Client

Server
Deploys:

Spam Filter
Mail Server

Figure 5.1: Spam filter integrated into the mail server

39

5 Implementation

Client PC
Deploys:

Mail Client

Proxy
Deploys:

Spam Filter

Server
Deploys:

Mail Server

Figure 5.2: Spam filter as a separate proxy server

can access the mail server databases directly without using any email protocol.
The emails can therefore be accessed fast and conveniently.

But this technique has disadvantages, too. First of all it requires either a mail
server with an appropriate interface to program plugins or the implementation
of a mail server from scratch. Organizations that wish to introduce a spam
filter might not be willing to change their whole email system to a new mail
server for this step since it implicates high costs. The new software has to
be purchased, installed and customized. This involves downtimes and it re-
quires training for the employees. Moreover, it is questionable whether the
new software will be able to fulfill the needs of the organization.

5.1.2 Proxy Server

As figure 5.2 shows, a proxy server is a piece of software positioned between
the mail server and the client program. However, this program can be run
physically on the same computer as the mail server or the client. The proxy
accepts IMAP connections from client programs on a certain port and estab-
lishes connections to the mail server. All communication between server and
client is passed through and read along. Whenever the proxy recognizes a new
email on the server, it is downloaded and classified. Depending on the filter
result the proxy instructs the server to move the email to a certain IMAP
folder.

An advantage of this approach is the high flexibility. An organization that
introduces this filter program can keep the existing mail server if it is capable
of the IMAP protocol. It is also possible to only introduce the filter program
to parts of an organization, or to have separate proxies for organizational units
that can have different configurations. The end user does not notice the change
in the email system at all since the proxy is transparent. It is also possible
to give the end users the possibility to switch off the spamfilter by contacting
the mail server directly, for example on a different address or a different port
number.

40

5.2 Software Behavior

Client PC
Deploys:

Mail Client
Spam Filter

Server
Deploys:

Mail Server

Figure 5.3: Spam filter integrated into the email client

5.1.3 Client-Side Program

The concept of a spamfilter on the client computer is shown in figure 5.3. The
program waits until the client software has downloaded a new email. This
email is analyzed and moved into a certain local folder if it is categorized as
spam.

This approach has several disadvantages. The spam filter is limited to be
used with only one mail client software. The filter’s database can be lost
due to system errors. If the data is saved on a server, it would be much safer
because of more reliable hardware and usually more frequent backups. Another
disadvantage is that the users have to download emails first before they are
filtered. This step is especially costly and time consuming for them if they
use slow connections like 56k modems, in particular if image attributes are
used. Server-side IMAP solutions are superior to this approach because they
move spam emails into certain folders. The client can view only the header
information of these emails from time to time to verify that they are really
spam and delete them on the server.

5.1.4 Decision

The conclusion that can be drawn from the advantages and disadvantages
described above is that a proxy solution has the best characteristics. The
main advantage is its flexibility as it can be used with any mail server and any
client software.

5.2 Software Behavior

This section describes the processes the spam filter runs through. 5.2.1 deals
with the communication sent from the client program to the mail server. The
second part examines what happens when the server sends a message to the
client. Finally, 5.2.3 illustrates how incoming emails are filtered. The filter
process can be initiated by both types of communication previously described.

41

5 Implementation

5.2.1 Client-Server Communication

Figure 5.4 shows an activity diagram that describes the method how client
connections are handled. The proxy software has a server socket at a certain
port that waits for clients to connect. Whenever a client connects to this port,
it reads all messages transferred over this connection. After the client has
established a connection, the proxy also connects to the mail server in order
to forward messages from the client. The way in which messages sent by the
mail server are handled is described in 5.2.2.

Each of these messages is handled by the routine shown in the diagram. In-
dependent of the contents of the message, it is forwarded to the mail server
through the primary connection. At the same time, the messages are also
examined to see whether they include certain commands. To find these com-
mands, we have to take a closer look at the IMAP protocol [Cri03]:

0001 login johndoe pwd4711

This is an example for a string sent from the user to the mail server. All
command lines are prefixed with an identifier, also called tag, which is different
for every command. In the example “0001” is the tag. The tag is followed
by the command, in the example “login”. The command is succeeded by
arguments. In our case the arguments for the login command are the username
“johndoe” and the password “pwd4711”.

In order to understand the following steps, it is necessary to know that the
spam filter needs a secondary connection to the mail server for each user that
is logged in. This secondary connection is used to receive and filter new emails
when they arrive. This process is described in depth in 5.2.3. To manage these
connections, the proxy has to look for certain commands in the client-server
communication.

The “login” command shown above is one of the instructions the proxy has to
look for. In other words, the software has to check the second word of each
command sent by the client for the word “login”. When the user logs in, an
existing secondary connection for this user is searched and if it does not exist,
username and password are extracted and a new connection is created. In the
activity diagram these steps are shown as “s includes login” for the check if
the user logs in and nU = 0 for the test if the user is already logged in. nU

is a variable counting the number of active connections for user U . The login
procedure is completed by increasing nU by 1.

The second command incoming strings are tested for is “logout”. The associ-
ated string consists of the tag and the word “logout”. If the user sends such
a command line, the proxy checks if nU equals one. In this case the connec-
tion that is closed is the last one using the secondary connection for this user.
Therefore it can be closed, too. In any case nU is decreased by one to indicate
that the number of open connections has decreased. If the user logged out, the

42

5.2 Software Behavior

User sends String s

forward s to
Mailserver

[s includes "login"] establish secondary
IMAP connection

[n =0]

[else]

[else]

check for new
emails

start Spamfilter

[s includes "logout"]

close secondary
IMAP connection

[else]

increase
n by 1

U

U

[n =1]U

decrease
n by 1U

wait for user
message

user connects

[else]

[else]

[new emails]

open connection
to server

notify server
connection

Figure 5.4: Activity diagram for user communication

43

5 Implementation

forward s to user

Mailserver sends
String s

[s reports new mail]

[else]

wait

start Spamfilter

[incoming
message]

[user disconected]

[user connected]

connect to server

disconnect from
server

Figure 5.5: Activity diagram for server communication

server connection is notified in order to log out too, and the activity diagram
is determined. If the command was not a “logout”, the proxy starts over again
waiting for incoming communication from the client.

The use of the connection counter nU is necessary because some mail clients
use several connections for one email account. It is not reasonable to establish
a secondary connection for each of these. It makes more sense to use a common
secondary connection. To manage this, we need a counter to notice when a
new connection has to be established and when it can be closed.

5.2.2 Server-Client Communication

The activity diagram in figure 5.5 shows how incoming messages from the mail
server are handled. The process is quite similar to that described in 5.2.1 for
the opposite direction. It begins with a connection initiated by a client. When
a client is connected, the proxy opens an according connection to the mail

44

5.2 Software Behavior

server that is used to forward messages received from the client, and vice versa
receive and forward messages from the mail server.

After establishing the connection, the spam filter goes into a state of waiting.
One reason that causes it to get active again is a disconnection of the client,
which also causes the proxy to close the connection to the server. The other
reason for it to be reactivated is the reception of a message from the server.

Incoming messages are always forwarded to the client. Parallel to this, it is
checked whether the message reports that a new email for the user has arrived.
To be able to recognize this, we have to take a closer look at the IMAP protocol
again, this time for data transmitted by the server [Cri03]:

* 22 EXPUNGE

* 23 EXISTS

* 3 RECENT

* 14 FETCH (FLAGS (\Seen \Deleted))

0001 OK NOOP completed

The server begins each line with a “*” if another line follows, and with the
tag of the previous user command in the last string. The second line of the
message shown in the example above notifies the user that 23 emails exist in the
current mail folder. There are two possibilities when to check for new emails
with the secondary IMAP connection. The first one is to check whenever a
string combination like above occurs, with a number greater than zero for the
existing messages. This would result in an unnecessary request whenever such
a message is generated for a folder that is not the inbox. The other possibility
is to check only when the new email information refers to the inbox. This
would reduce the number of request through the secondary connection but it
would require that the software keeps track when the client software changes
the current folder. This would be more costly than the first option because
the user communication would have to be scanned for commands switching
the current folder and there are several commands that result in such changes.
Therefore we use the first option and contact the mail server whenever an
“exists” message with a number greater than zero occurs. In the activity
diagram this is shown as “s reports new mail”. After starting the spamfilter
that is described in depth in 5.2.3, the proxy returns to the state of waiting
for messages or a client disconnection.

5.2.3 Filter Process

Separating Spam from Legitimate Emails

The activity diagram shown in figure 5.6 illustrates how the mail filter of
the proxy software works. The occasions when the filter is started have been
mentioned in the preceding sections.

45

5 Implementation

get textual attributes for
newMails[0] words

Get all new emails in Inbox
 Vector newMails

[Vector newMails not empty]

[else]

Calculate spam probability p
for words

[p > threshold]Move newMails[0]
to spam folder

add words to word
database as spam

Move newMails[0]
to legitimate folder

add words to word
database as legitimate

[else]

remove newMails[0]
from Vector

[image use activated]

Calculate average color
discreteness R for imagesC

Add attributes to words
according to RC

[else]

get images from newMails[0]
 images

Figure 5.6: Activity diagram showing the spamfilter process

46

5.2 Software Behavior

Stem all words from header
of msg[0] Vector words

[content of msg[0]
is String]Stem all words from msg[0]

 Vector words

[content of msg[0]
is Image]Image from msg[0]

 Vector images

[content of msg[0]
is Mime Multipart]All parts of msg[0]

 Vector msg

[else]

[else]

[else]

remove msg[0] from Vector
[Vector msg not empty]

[else]

getFeatures ist started for
email Vector msgreturn images and words

image links from msg[0]
 Vector images

Figure 5.7: Activity diagram of feature extraction

The filter begins with retrieving all messages that are currently in the inbox.
These emails are added to a vector, then they are processed one by one. The
first element from the vector is taken and all textual attributes are derived from
this message and collected in the vector “words”. When starting the spam
filter, the administrator can decide whether to use images for classification or
not. If images are regarded, the next step is to get all the images embedded in
the email. For these images the color discreteness is calculated as explained in
4.2. These values are averaged for all images from the email and all three color
components. According to the result Rc, attributes are added to the vector
words. This process will be explained later.

The attributes in the vector “words” are used to calculate the spam probability
p. If this probability is greater than a certain threshold, the email is considered
to be spam, otherwise to be legitimate. According to this categorization the
email is moved to the legitimate folder or the spam folder and the calculated
probabilities for each attribute are updated. Then the email is removed from
the vector containing the new emails. If it was the last email in the vector,
the algorithm is finished. Otherwise it continues with the following email.

47

5 Implementation

Deriving Attributes from Emails

The activity diagram in figure 5.7 shows how attributes are derived from emails
for the case that image-attributes are taken into account, too. The procedure
starts with adding the email for which the attributes should be extracted to
a vector. This vector is used because an email can contain several parts if it
has the MIME type multipart [FB96]. That means the email contains several
“virtual” emails that can be shown alternatively or combined. For example
an email can consist of one part that is written in HTML and one part that
is plain text. The email client is instructed to show the plain text version
only if the user has disabled the display of HTML. The parts of a multipart
message can also contain images or other multimedia data. Attributes have to
be extracted from all parts of such messages and therefore all parts are added
to the vector and processed in succession.

First all words contained in the header of the first element of the vector are
stemmed using the Porter Stemming algorithm. These stemmed words are
added to another vector called “words”. Afterwards, the body of the message
is checked for its type. If it is plain text or HTML, its contents can be extracted
into one string. This string is divided into words and the words are stemmed
and added to the word vector like those extracted from the header. If the
message is HTML, it can also include links to pictures on the Internet which
will be displayed in the email. These image links are searched within the
string and added to a third vector called “images”. If the content of the body
is an image, it is added to “images”, too. If the message has the MIME type
multipart, all parts of it are added to the message vector. If the body has none
of these types, meaning it contains other information, for example a movie file,
it is not further considered. Finally the first element from the message vector,
the element we just processed, is removed. If the vector contains additional
messages, the loop is repeated with the next element, otherwise the feature
extraction is finished. The word vector and the image vector are returned.

5.3 Class Concept

This section describes how the functionality explained in 5.2 is realized on the
class layer. The first part gives an overview of which classes are used and how
they interact. Then each class is analyzed separately.

As a foundation, two external packages have been used. The JavaMail API
from Sun Microsystems [jav] provides basic functions for communicating with
IMAP servers and handling emails. The aitools package, by Dr. Benno Stein
and Sven Meyer zu Eißen, is used to tokenize and stem strings to obtain
attributes and to manage them using efficient symbol processing algorithms.
The classes used from these packages are also described in short.

48

5.3 Class Concept

StartProxy

ImapProxy

<<initializes>>

1

1

ClientListenerServerListener <<opens>>
1 ** 1

<<opens>>

<<starts>>

1

*
ImapProxyThread

<<transfers to>>

<<transfers to>>
1

11

1

SecImapConnection

SecImapConnectionWrapper*

<<uses>>

1

1
<<has>>

SpamFilter
<<uses>>

FeatureCollector1 1

BayesFilter TextualFeatureCollector

*

1

<<uses>>

AllFeatureCollector1
<<uses>>

1ImageAnalyzerColorDiscretenessIA

1

Figure 5.8: Overview of the major classes

5.3.1 Overview

Figure 5.8 gives an overview of which classes have been implemented for the
spam filter and their relationships. Relations to classes from external packages
are not included. Three additional classes are left out. These are extending
the class SearchTerm from the JavaMail API in order to search emails that
are flagged, not flagged or not deleted. These terms will be explained later.

The classes can be divided into two parts. The first part consists of all
classes organizing the communication between mail server and client program.
These classes are ImapProxyThread, ClientListener and ServerListener, they
are positioned in the lower part of the diagram. The classes SecImapConnec-
tionWrapper, SecImapConnection, SpamFilter, BayesFilter, FeatureCollector,
TextualFeatureCollector, AllFeatureCollector, ImageAnalyzer and ColorDis-
cretenessIA in the upper part of the diagram use the secondary connection to
the mail server for filtering spam. The class StartProxy initializes the whole
program and ImapProxy organizes the collaboration. The functionality of the
classes is illustrated by the three following examples.

Illustrative Example: Initialization and Login

The sequence diagram shown in figure 5.9 illustrates how the program is ini-
tialized and how a user login process is organized. With this example it is

49

5 Implementation

:StartProxy

new()
:ImapProxy

Connect

new()
:ImapProxyThread

new() :OutputStreamWriter

new() :OutputStreamWriter

new() :ClientListener

new() :ServerListener

newConnection
("user", "pwd")

:SecImapConnection

Mailserver

sendStringToServer
("login user pwd")

loginOrLogout
("login user pwd")

new("user", "pwd")

"login user pwd"

write("login user pwd")

"login user pwd"

Figure 5.9: The initialization of the proxy and the login process

50

5.3 Class Concept

possible to understand what the purpose of each class is and which the most
important methods are. In the following two paragraphs, the diagram will be
briefly explained.

In the beginning, the class StartProxy initializes the class ImapProxy. This
class makes a ServerSocket available to which a client program can connect.
This causes the ImapProxy class to instantiate several classes: an ImapProxy
thread; a ClientListener, using the connection initiated by the client; and
a ServerListener, a connection to the mail server. The ImapProxyThread
generates two objects of the type OutputStreamWriter itself. One of them is
used to forward messages from the client to the server and one for the opposite
direction. They are using the same sockets for the connection as the listeners.

The next step shown in the sequence diagram is the login command “login user
pwd” sent by the client. The ClientListener accepts this message and calls the
method sendStringToServer() in the class ImapProxy with this string as argu-
ment. This class recognizes that the string contains a login command, extracts
the username and the password, and asks the ImapProxy for a SecImapCon-
nection for this user. In the example, no previous connection for the user is
existent. Therefore the ImapProxy initializes a new SecImapConnection for
this user and returns it. Thereby the organizing ImapProxy class links the
ImapProxyThread with the corresponding SecImapConnection. Finally, the
ImapProxyThread uses the OutputStreamWriter of the mail server to forward
the message.

Illustrative Example: Logout

The next process analyzed is the logout procedure shown in figure 5.10. It be-
gins with the logout command sent by the client to the proxy. The ClientLis-
tener hands this message on to the ImapProxyThread which recognizes that
it is a logout command and calls the method connectionClosed() in the Imap-
Proxy class for this user. We make the assumption that the connection the
client logs out from is the last one using this user’s SecImapConnection. There-
fore the ImapProxy calls the disconnect method for the SecImapConnection.
After this, the ImapProxyThread sends the message to the mail server using
the OutputStreamWriter.

The mail server acknowledges the logout command with the string “(...) LO-
GOUT completed”. The ServerListener forwards this to the ImapProxyThread
which first checks whether it informs that a new email has arrived and then
calls the write method of the client’s OutputStreamWriter to forward the mes-
sage to the client.

After finishing their communication, the mail server and the client close their
connection to the proxy. In our example, the client is the first one to discon-
nect, however the mail server could likewise be first. Since the client discon-
nects first, the ClientListener calls the method setConnectionNotAlive from
the ImapProxyThread which closes both OutputStreamWriters and the Imap-

51

5 Implementation

"logout"

disconnect()

Disconnect

close()

close()

:ImapProxy

:ImapProxyThread :OutputStreamWriter:OutputStreamWriter

Mailserver :ClientListener :ServerListener :SecImapConnection

"logout"

Disconnect

Disconnect

sendStringToServer
("logout")

loginOrLogout
("logout")

connectionClosed("user")

(...) LOGOUT completed

sendStringToClient
("(...) LOGOUT completed")

checkNewMail
("(...) LOGOUT completed")

write("(...) LOGOUT completed")

"(...) LOGOUT completed"

setConnectionNotAlive()

write("logout")

Figure 5.10: The logout process

52

5.3 Class Concept

ProxyThread.

Illustrative Example: Filtering new Emails

The last example discussed here explains the classes is shown in figure 5.11. It
illustrates how incoming emails are filtered if image attributes are not consid-
ered. The process begins with the incoming message “(...) n EXISTS” from
the server. This message states that there are n emails in the current folder.
The ServerListener forwards this string to the ImapProxyThread by calling
the method sendStringToClient(). The ImapProxyThread recognizes in the
method checkNewMail() the type of the message and therefore starts with the
method updateSpamFilter() from the class SecImapConnection.

The SecImapConnection now performs the filter process for all new emails.
First of all, these emails are requested from the IMAPFolder inbox using an
object of the type SearchNotDeleted. The messages are returned as the array
“newMsg”. For each of the emails in this array the proxy performs the follow-
ing process: The SecImapConnection starts the method isSpam() implemented
in BayesFilter. At this point any other class that extends the abstract class
SpamFilter can be used. The BayesFilter uses the TextualFeatureCollector
to retrieve features from the current email and uses these to run the method
getSpamProbability(). If the calculated probability is greater than the thresh-
old, the method addMail() adds the features as spam to the database and
recalculates the corresponding probabilities. If the probability is less than the
threshold, it will add the features as legitimate. However, we assume for our
example that the email is treated as spam. The filter returns the boolean
value true to the SecImapConnection which therefore moves the message to
the spam folder.

The process described in the previous paragraph is performed for each email
in the array “newMsg”. In the example shown in figure 5.11 there is only
one email in the array. The SecImapConnection finishes its activity and the
ImapProxyThread calls the write function of the client’s OutputStreamWriter
which forwards the message from the mail server.

Figure 5.12 shows how the filter process is modified if attributes derived from
images are regarded. In this case, the inheriting class of FeatureCollector used
is not TextualFeatureCollector as above, but AllFeatureCollector. This class
also uses ColorDiscretenessIA to derive attributes from images.

5.3.2 External Classes

Before section 5.3.3 discusses the implementation of the classes included in the
package imapspamfilter, the classes used from external packages are explained.
These are the aitools packages providing a data structure that is used to save
and find objects efficiently and the JavaMail API. Classes from this package
are used for the secondary connection to the mail server.

53

5 Implementation

Mailserver
:ServerListener

:ImapProxyThread :SecImapConnection

inbox:IMAPFolder

Message[]
newMsg

:BayesFilter

:TextualFeatureCollector

features

:OutputStreamWriter

(...) n EXISTS

sendStringToClient
("(...) n EXISTS")

checkNewMail
("(...) n EXISTS")

updateSpamFilter()

search(new SearchNotDeleted())

isSpam(newMsg[i])

getFeatures(newMsg[i])

getSpamProbability
(features)

spamProb

addMail
(p > threshold,
features)

p > threshold

moveMessage
(newMsg[i], inbox,
spamFolder)

write("(...) n EXISTS")
(...) n
EXISTS

Figure 5.11: The filter process

54

5.3 Class Concept

:BayesFilter :AllFeatureCollector

features

isSpam(newMsg[i])

getFeatures(newMsg[i])

(...)

:ColorDiscretenessIA

analyze(images)

image features

(...)

Figure 5.12: The modification of the filter Process for the use of image at-
tributes

aitools

The major class used from this package is Symbol. It offers a data structure to
save and find objects associated with a word. Another feature of the Symbol
class is that it supports packages. This means that each Symbol object belongs
to a certain package. In our case the names of the packages are the usernames.
This allows us to build different sets of attribute names and associated integer
values for each user, a basic requirement for the spam filter implementation
on a per user basis.

The SymbolWrapper class implements a combination of Symbol objects and
a vector called WordVector for each package. The Symbol objects contain an
Integer object representing the position of the Symbol name in the WordVector.
The WordVector gives the user the possibility to link back from an integer
value to the corresponding Symbol. This data structure can be used to store
information about the Symbol in other vectors.

The classes implemented during this research work make use of the class Sym-
bolWrapper. They use the user name as the package name and attribute names
derived from emails for Symbol objects. The Integer object included in a Sym-
bol gives the position not only of the Symbol in the WordVector, but it also is
the position of according values for the number of spam and legitimate emails
containing the attribute within IntVectors and for the spam probability of this
attribute within a DoubleVector. These vectors are combined in an object of
the type UserDatabase for each user. This object can be found by searching for
the username in the package “user-master-package”. The returned Symbol’s
value is the UserDatabase object for the user.

IntVector and DoubleVector are also classes from the aitools package. They are
similar to regular vectors but they offer some additional methods and they can
handle primitive data types. IntVector is determined to include only integer
values, DoubleVector includes double values.

OneGramIndexer is another class from the aitools package used by the proxy.

55

5 Implementation

StartProxy

+	main(): void
-	getMaxClients(): int
-	getPort(): int
-	getServerHostName(): String
-	getUseImages(): boolean

Figure 5.13: Class StartProxy

It splits strings into tokens. The standard version of this tool ignores all HTML
tags, changes HTML special character codes like “ä” that represent
umlauts into the corresponding character and stems all words using the Porter
Stemming Algorithm [Por80]. The filter described by Paul Graham does not
use these features. However they might be beneficial for the filter. This will be
analyzed in chapter 6. The words are returned as a CompressedDoubleVector.
This class is similar to a DoubleVector, it only leaves out all values that are
zero. It consists of two vectors, one of them contains the values and the other
one the corresponding offset to get the Symbol value and thereby the position
in the word vector.

JavaMail API

The JavaMail API [jav] is used to establish the secondary IMAP connection to
the mail server. The connection is established by a IMAPStore object, folders
can be accessed through IMAPFolder objects. The package has the capability
to extract parts of MIME Multipart messages. This feature is used to extract
attributes from emails.

5.3.3 Class Descriptions

This section takes a closer look at the classes in the package imapspamfilter.
The class variables and methods are shown in class diagrams and explained.

StartProxy

This class is used to initialize the filter. The main() method expects to be
started with the arguments “-S” followed by the server host name, “-P” fol-
lowed by the port to listen to, and “-M” followed by the maximum number
of clients to connect with. These arguments are extracted by the three pri-
vate methods in this class. The last private method getUseImages() detects
whether the main() method was started with the argument “-I” which causes
the filter to use image attributes. After checking all these arguments, a new
ImapProxy is started.

56

5.3 Class Concept

ImapProxy

+	connectionClosed(): void
+	ImapProxy(): void
+	newConnection(): SecImapConnection
-	loop(): void

+	serverHostName: String
+	serverPort: int
-	useImages: boolean

Figure 5.14: Class ImapProxy

ImapProxy

As previously mentioned, the class ImapProxy coordinates all connections of
the proxy, primary connections as well as secondary. The string “serverHost-
Name” and the integer value “serverPort” are declared public because the class
SecImapConnection uses them for connecting to the mail server, too.

The constructor opens a ServerSocket which is listening to the port defined
in the arguments when starting the server. The loop() method begins with
the opened ServerSocket as an argument. As the name implies, this method
is a loop waiting for clients to connect. Whenever this happens, it is checked
whether the maximum number of connections has been reached. Otherwise a
socket to the mail server is opened and a new ImapProxyThread, ClientLis-
tener and ServerListener are initialized for these connections.

The methods newConnection() and connectionClosed() organize the SecImap-
Connection objects for the users. The Symbol class from the aitools package
is used to file a connection and the number of threads using it combined in
an object of the type SecImapConnectionWrapper. The Symbol environment
provides a fast data structure to get these objects subject to the username.
newConnection() opens a new connection if necessary, returns it and increases
the number of connections by one. connectionClosed() closes a SecImapCon-
nection if it is no longer used and decreases the number of connections by
one.

ImapProxyThread

Figure 5.15 shows the class imapProxyThread with all class variables and
methods. This class implements the interface Runnable and can therefore
be started as a thread. The number of class variables is quite high because
some of them are set within the initialization and must be accessed when the
thread is started, and because some of them are used by methods called by
other classes.

The constructor assigns values to several of the class variables. Then it calls
the method initializeWriters() which creates the OutputStreamWriters for mes-

57

5 Implementation

ImapProxyThread

+	getConnectionAlive(): boolean
+	ImapProxyThread(): ImapProxyThread
+	run(): void
+	sendStringToClient(): void
+	sendStringToServer(): void
+	setConnectionNotAlive(): void
-	checkNewMail(): void
-	closeConnections(): void
-	initializeWriters(): void
-	loginOrLogout(): void
-	tryFallAsleep(): void

-	clientOut: OutputStreamWriter
-	clientSocket: Socket
-	connectionAlive: boolean
-	fatherProcess: ImapProxy
-	secImapConnection: SecImapConnection
-	sendToClient: Vector
-	sendToServer: Vector
-	serverOut: OutputStreamWriter
-	serverSocket: Socket
-	signedOff: boolean
-	user: String
-	waitingForMessageCompletion: boolean

Figure 5.15: Class ImapProxyThread

sages to the mail server and to the client. After the class is initialized, the
thread is started. This executes the run() method. This method checks in a
loop the two vectors sendToClient and sendToServer to see if they contain any
messages. If a message has to be sent to the client, the method checkNew-
Mail() is called for this message, before it is written to the client’s Output-
StreamWriter. If a string for the server is available, loginOrLogout() is called
for it before forwarding it using the according OutputStreamWriter. After fin-
ishing these steps, the method tryFallAsleep(), which tells the thread to wait
if both vectors are empty, is called. When the thread awakes, the loop starts
over. The process quits the loop when the boolean variable connectionAlive
is false. When the process has left the loop, the method closeConnections(),
which closes both sockets, is called. If signedOff is false, connectionClosed(),
a method in ImapProxy, is run.

loginOrLogout() checks whether a string being sent to the mail server is a
login or a logout command. The string is tokenized and the second token is
compared with the words login and logout. If it is login, the username and the
password are extracted, newConnection() from the class ImapProxy is started
and signedOff is assigned the value false. If the string is a logout command,
connectionClosed() is called and signedOff is assigned true. The boolean vari-
able connectionAlive is deliberately not set false at this point because the proxy
always waits for the mail server or the client to close the connection. When
one of them disconnects, the other connection is closed, too.

The method checkNewMail() is similar to loginOrLogout(). It also tokenizes

58

5.3 Class Concept

ServerListener

+	run(): void
+	ServerListener(): ServerListener
-	initializeReader():void

-	proxyThread: ImapProxyThread
-	serverIn: BufferedReader
-	serverSocket: Socket

ClientListener

+	run(): void
+	ClientListener(): ClientListener
-	initializeReader():void

-	clientIn: BufferedReader
-	clientSocket: Socket
-	proxyThread: ImapProxyThread

Figure 5.16: Class ClientListener and class ServerListener

strings sent by the server and waits for a “n EXISTS” notification with n
greater than zero. When such a message occurs, the method waits for the end
of the server message stream indicated by a leading “*” in the last string and
starts updateSpamFilter() from SecImapConnection.

The method getConnectionAlive() returns the value of the boolean variable
connectionAlive. setConnectionNotAlive() is called by the listeners when the
user or the mail server disconnects. It assigns false to connectionAlive and
starts the thread if it is waiting. The methods sendStringToClient() and send-
StringToServer() add a string to the corresponding vector and notify waiting
threads.

ClientListener and ServerListener

These classes will be discussed together because they have the same function-
ality. ClientListener receives messages from the client and forwards them to
the corresponding ImapProxyThread. ServerListener does the same for mes-
sages from the server. For incoming strings they initialize a BufferedReader
in the method initializeReader() called by the constructor. The classes imple-
ment the interface runnable. When the threads are started, the run() method
reads from the BufferedReader. Whenever the communication partner of one
of the classes disconnects, setConnectionNotAlive() from ImapProxyThread is
called.

SecImapConnection and SecImapConnectionWrapper

Figure 5.17 shows a class diagram containing these two classes. SecImapCon-
nectionWrapper is just a small class combining a SecImapConnection with a
counter called numConnected. The methods implemented are get-methods for
these two class variables, two classes increasing and decreasing numConnected
by one, a set method for the SecImapConnection and the constructor.

SecImapConnection is more complex than the wrapper. The constructor be-
gins with the initialization of a BayesFilter. Depending on whether images
should be used to derive attributes from emails, the BayesFilter is either
started with an AllFeatureCollector or a TextualFeatureCollector. The con-

59

5 Implementation

SecImapConnectionWrapper

+	decreaseNumConnected(): void
+	getConnection(): SecImapConnection
+	getNumConnected(): int
+	increaseNumConnected(): void
+	SecImapConnectionWrapper():
	SecImapConnectionWrapper
+	setConnection(): void

-	connection: SecImapConnection
-	numConnected: int

SecImapConnection

+	disconnect(): void
+	isConnected(): boolean
+	SecImapConnection():
	SecImapConnection
+	updateSpamFilter(): void
-	getFolders(): void
-	moveMessage(): void
-	reconnect(): void

-	connected: boolean
-	filter: SpamFilter
-	imapStore: IMAPStore
-	inbox: IMAPFolder
-	legitimateFolder: IMAPFolder
-	pwd: String
-	spamFolder: IMAPFolder
-	user: String

<<has>>
1 1

Figure 5.17: Class SecImapConnection and class SecImapConnectionWrapper

structor then opens a connection to the mail server using an IMAPStore object
from the JavaMail API. Then the method getFolders() is started. When it is
finished, the spamfilter is updated calling updateSpamFilter().

getFolders() opens the three folders inbox, spamfolder and legitimatefolder.
If they do not exist, they are created. Then the method opens two more
folders called “init-spam” and “init-legitimate”. These folders can be used to
initialize a spamfilter with existing emails. The user just creates these folders
as subfolders of his inbox and copies all the spam emails he has into the init-
spam folder and legitimate emails into the other one. getFolders() calls the
addMail() method of the BayesFilter for each of these messages and moves
them into the spam and legitimate folder using moveMessage().

The method updateSpamFilter() filters newly arrived messages and modifies
the attribute database if the user has moved an email from the spam folder to
the legitimate folder and vice versa. It begins by checking whether the con-
nection to the mail server is still open. If it is closed, the method reconnect(),
that opens the connection again, is called. For each new email in the inbox
the method isSpam() from BayesFilter decides if it is regarded as spam or not.
According to this, the messages are moved to the spam folder or the legitimate
folder.

updateSpamFilter() also changes the value of the “Flagged” flag, it is set for
spam emails and disabled for legitimate ones. Flags are boolean variables
affiliated with an email. They are used as indicators, for example to show if
an email has been read. The “Flagged” flag is used to recognize when the user
moves a message considered to be spam to the legitimate folder. However,
this is not the perfect solution since the “Flagged” flag that usually indicates
urgent emails can no longer be used. in most mail servers it is possible to

60

5.3 Class Concept

SpamFilter

+	addMail(): void
+	correctToNotSpam(): void
+	correctToSpam(): void
+	isSpam(): boolean
+	SpamFilter(): void

BayesFilter

+	addMail(): void
+	addMail(): boolean
+	BayesFilter(): void
+	correctToNotSpam(): void
+	correctToSpam(): void
+	getSpamProbability(): double
+	isSpam(): boolean
-	getMostInteresting(): double[]
-	recalculateProbability(): void
-	switchMail: void

-	collector: FeatureCollector
-	defaultProbability: double
-	minNumOccurences: int
-	multLegitimate: int
-	numRegardedWords: int
-	threshold: double
-	user: String
-	userData: SymbolPackageInfo

Figure 5.18: Class SpamFilter and class BayesFilter

define new flags. If the administrator of the proxy program has the rights to
define flags on the mail server, a new flag called “Junk” would be the best
solution. But for compatibility reasons, the standard flag used is “Flagged”.

After categorizing all new emails, updateSpamFilter() checks if the user has
moved emails from one folder to the other. If this is the case, either the
method correctToSpam() or the method correctToNotSpam() is called and
the flag value is changed.

The method isConnected() checks whether the connection to the mail server
is open and returns this as a boolean value. When disconnect() is called, all
folders and the ImapStore are closed.

SpamFilter and BayesFilter

The class SpamFilter is an abstract class that can be extended by several
kinds of filters. These must implement four different methods: addMail()
which uses a spam or legitimate email to train the filter; correctToSpam()
and correctToNotSpam() which change an email’s categorization from spam
to legitimate and vice versa; and isSpam(), a method returning a boolean value
indicating if an email is assumed to be spam.

BayesFilter extends SpamFilter. It is an implementation of the algorithm by
Paul Graham described in 3.1.5. The class variables “threshold”, “minNu-
mOccurences”, “defaultProbability” and “numRegardedWords” are parame-
ters that can be used to adjust the filter.

The constructor of BayesFilter retrieves a Symbol object from the package

61

5 Implementation

“user-master-package”. This package includes one object for each user who
has ever logged on to the proxy. This Symbol contains a UserDatabase object
which contains most of the data for the user’s spam database. It provides
a DoubleVector with each attribute’s spam probability and two IntVectors
counting the number of occurrences in spam and legitimate emails for each at-
tribute. It also contains two counters, one for the total number of spam emails
and one for the total number of legitimate emails. The algorithm searches for
the Symbol with the same name as the attribute. The included Integer object
is used to obtain the corresponding value from the vectors.

The method isSpam() returns a boolean value indicating whether an email is
spam. It begins with calling the method getFeatures() from FeatureCollector to
retrieve all attributes from the email. Then the method getSpamProbability()
calculates the probability that the email is spam using these attributes. If it is
greater than the threshold, the attributes are added to the database by calling
addMail with “true” as the second argument, otherwise with “false”. Finally
this boolean value is returned.

getSpamProbability() uses the method getMostInteresting() to retrieve those
spam probabilities that are most different from 0.5 as defined by Paul Graham.
The total spam probability that is returned is calculated from these figures also
following this approach. getMostInteresting() works with an array containing
double values. The size of it is defined by the class variable numRegarded-
Words. In the beginning it is initialized with −1 at each position. Then each
attribute’s probability is added to it if there is another value included that
has a smaller absolute difference to 0.5 or if there is still a −1 in the array. It
replaces either a −1 or, if there is none left, the value that is closest to 0.5.
Finally, the array is returned.

The method addMail() increases either the number of spam emails or the
number of legitimate emails in the user’s UserDatabase object by one. Then
it increases the number of occurrences in spam or legitimate emails for each
extracted attribute by one and starts recalculateProbability() for it. This
method begins with adding new values to the probability vector if the posi-
tion that should be recalculated is greater than the number of values in the
probability vector. The new double variables are initialized with the value of
the class variable “defaultProbability”. Then the value for the attribute at
the requested position is calculated according to the formula defined by Paul
Graham and it is added to the vector.

The methods correctToSpam() and correctToNotSpam() begin by extracting
the attributes of the email. Then they call switchMail() for the offsets and the
values of the attributes. The last argument of this method call is a boolean
value which indicates if the email should be switched to spam or to legitimate.
switchMail() works in almost the same manner as addMail(). The only differ-
ence it that it does not only add the values to one side, it also subtracts them
from the other side.

62

5.3 Class Concept

FeatureCollector

+	FeatureCollector: void
+	getFeatures:
CompressedDoubleVector

TextualFeatureCollector

+	TextualFeatureCollector: void
+	getFeatures: CollectorResult
-	getMultipartFeatures:
	CollectorResult

AllFeatureCollector

+	AllFeatureCollector: void
+	getFeatures:
	CompressedDoubleVector
-	getCdv:
	CompressedDoubleVector
-	getImages: void
-	getMultipartFeatures:
	CompressedDoubleVector

-	ia: ImageAnalyzer
-	images: Vector

Figure 5.19: Class FeatureCollector, class TextualFeatureCollector and class
AllFeatureCollector

FeatureCollector, TextualFeatureCollector and AllFeatureCollector

FeatureCollector is an abstract class defining only one method that has to
be implemented in inheriting classes: getFeatures(). This method returns a
CompressedDoubleVector which includes values for all attributes derived from
the email.

TextualFeatureCollector is a class extending FeatureCollector. It extracts all
attributes from the header and body of emails but it does not derive attributes
from emails. The recursive algorithm used has already been explained in 5.2.3
and will therefore not be explained again. It is encoded in the methods get-
Features() and getMultiPartFeatures(). The class OneGramIndexer described
in 5.3.2 is used to tokenize and stem the strings extracted from emails.

AllFeatureCollector extends FeatureCollector, too. It uses the same algorithm
as the TextualFeatureCollector, but derives additional attributes from images
and all occurring exceptions. The use of exceptions is reasonable because some
spammers break certain rules for composing emails in order to interrupt spam
filters. The analysis of such emails might lead to exceptions.

Images are derived either from Mime Multipart emails that contain a file or
from links in HTML messages. Included emails are extracted within the
method getFeatures(). Linked images are extracted by getImages(). The
HTML tag below shows an embedded image link:

Since most email clients also accept other notations, e.g. without quotation

63

5 Implementation

ImageAnalyzer

+	analyze(): String[]
+	ImageAnalyzer(): void

ColorDiscretenessIA

+	analyze: String[]
+	ColorDiscretenessIA: void
-	getColorMatrix(): int[][][]
-	getHistogram(): int[][]
-	getRatioHistogram(): double[][]

Figure 5.20: Class ImageAnalyzer and class ColorDiscretenessIA

marks or with apostrophes instead of them, the algorithm to find these ad-
dresses is quite complex. Images found in the text are downloaded from the
Internet and returned.

After extracting all images from the email, the method analyze() from an
ImageAnalyzer is called. It returns an array of strings that are used as im-
age attributes. To add these attributes to the CompressedDoubleVector, the
method getCdv() finds the corresponding Symbol objects and constructs a
CompressedDoubleVector.

ImageAnalyzer and ColorDiscretenessIA

ImageAnalyzer is another abstract class. Inheriting classes can be used to
analyze images derived from emails. The according procedure must be imple-
mented in the method analyze() which returns an array of strings.

ColorDiscretenessIA extends ImageAnalyzer according to the calculation de-
scribed in 4.2. The method getColorMatrix() converts the image into a matrix
including the color values of each pixel in the RGB model. getHistogram()
adds them up for each color. The values from this histogram are converted by
getRatioHistogram(). It calculates which ratio of all pixels has a certain color
value. The resulting histogram is used by analyze() to derive the color dis-
creteness of each image included in an email. From these values, the weighted
average is calculated; each image is weighted with its number of pixels. The
advantage of a weighted average is that a spammer cannot bias the filter by
including small pictures with a low discreteness in order to lower the resulting
average.

The strings that are returned by this method are determined by this average
discreteness. Three different strings can be returned indicating if it is smaller
than the thresholds 0.5, 0.3 and 0.1. E.g. an email containing images that re-
sult in an average color discreteness of 0.2 will result in the strings “dis sm 0.5”,
and “dis sm 0.3”. Because the algorithms deriving attributes from the message
text regard the underscore in these strings as a token separator, spammers do
not have the possibility to include such attributes in the body. If the average
color discreteness is greater than 0.5, there are 3 more thresholds: 0.7, 0.9 and
1.2. Whenever one of them is exceeded, another string is added to the returned
array. The value 0.5 is predefined as the threshold which separates graphical

64

5.3 Class Concept

images from photographs. However, the filter can adjust to other thresholds,
i.e. if 0.8 is a more reasonable value, only the attributes for above 0.9 and 1.2
will achieve a spam probability low enough to influence the filter.

65

5 Implementation

66

6 Testing

6.1 Testing Method

This chapter describes the testing of the spam filter implemented according to
chapter 5. How the attributes are extracted from emails was already described
in 5.3.2. Additionally to the basic version of the OneGramIndexer, modified
ones have been implemented that do not stem the words, also include HTML
tags and combinations of both. These additional versions are completed by an
implementation of Paul Graham’s extraction algorithm.

6.1.1 Testing Corpus

As explained in chapter 3, there are test corpora available on the Internet.
The problem of the Ling-Spam corpus is that it is composed of spam emails
received by the author on the one hand and legitimate emails from an email
list on linguistics on the other hand. It is not very likely that emails from
a specialized email list can embody real email traffic. The topics in such a
mailing list are very likely to be quite similar. Another email corpus is called
the PU1 corpus. As the Ling-Spam corpus it was published by the research
group around Ion Androutsopoulos [AKCS00]. In this corpus every word is
replaced by a number. All header fields, attachments and HTML tags were
removed. This corpus is not useful for the tests that are made in this chapter
because stemming is impossible as well as the use of HTML tags or image
information.

The general problem with publishing testing corpora is that no one wants to
make private emails available to everyone. This privacy problem cannot be
handled since every authentic email corpus needs real, private messages. All
other approaches will only be approximations of real email traffic.

This is the reason why the testing corpus used for this evaluation consists of
889 spam emails and 439 legitimate emails received by the author. This corpus
is also problematic because it consists of messages in German and in English
language. The major part of the legitimate emails is German but most spam
emails are in English. This is a typical situation for email recipients from a non-
English language area. Since spam emails are usually delivered to worldwide
email addresses, everyone tends to receive spam in English. The problem is
that English legitimate emails that arrive at times might be filtered. This
behavior should be analyzed in this chapter, too.

67

6 Testing

For the reason above, the Ling-Spam corpus will despite all concerns be used
for alternative testing.

6.1.2 Test Procedure

As mentioned above, alternate versions of OneGramIndexer have been imple-
mented which use variations of the class Cleaner. The basic Cleaner retrieves
attributes not regarding HTML tags, stems all words and uses every non-
alphanumeric character as a separator (from now on it will be called “stan-
dard”). The first tested alternative is a cleaner that does not stem words
(“no stem”). The second one uses HTML tags, too (“HTML”) and the third
one combines these two (“no stem & HTML”). The last filter used is the
implementation that Paul Graham described in “A Plan for Spam” [Gra02a]
(“Graham”). It does not replace umlaut substitutes (e.g. “ä” with ä),
it uses HTML tags and it does not stem the words. Word separators are all
characters but alphanumeric ones, dashes, apostrophes and dollar signs.

The testing is done with the filter thresholds 0.9, 0.99 and 0.999 using ten-
fold cross-validation as described in 2.2. These tests are performed with and
without using image attributes.

After this first series of tests, the corpus is reduced by half to see how the filter
configurations react on a smaller training corpus. All tests will be done again
with these emails.

As mentioned above, another test-series will be performed using the Ling-Spam
corpus. Since these emails do neither contain images nor HTML, the influence
of using HTML and image attributes cannot be examined.

6.2 Results

6.2.1 Tests Using the Author’s Email Corpus

Tests Using the whole Corpus

Table 6.1 shows the number of false-positives and false-negatives that occurred
in the test runs. It is astonishing that a large proportion of all errors are false-
positives although the filter is biased towards accepting spam emails. This
behavior is independent of the derived attributes and the threshold t. For the
standard attribute selection process, the false-positive rate is either 1.367% or
1.39% while the false-negative rate is only 0.787% or 0.9% depending on the
threshold. This means that even for a threshold of 0.999 the false-positive rate
exceeds the false-negative rate. The figures of the filter using Paul Graham’s
attribute selection algorithm are even worse. Even with a threshold of 0.999
it only achieves a false-positive rate of 2.278% with a false-negative rate of

68

6.2 Results

no stem based on
standard no stem HTML

& HTML Grahamt

NL→S NS→L NL→S NS→L NL→S NS→L NL→S NS→L NL→S NS→L

0.9 6 7 3 7 5 5 5 5 13 4
0.99 5 8 3 8 3 5 4 5 10 4
0.999 5 8 3 8 3 6 4 5 10 5

Table 6.1: False-positives and false-negatives for ten-fold cross-validation tests
with 889 spam and 439 legitimate emails without using image at-
tributes

0.562%. This is clearly not acceptable. The algorithm using no stemming is
the only filter that leads to a bias towards false-negatives (for 0.9: 0.683% and
0.787%).

This needs further explanation. To find out why the filter behaves like this,
the emails that are incorrectly categorized have to be examined. The overall
number of legitimate emails that are filtered in any test run is 13. Eight of
these emails are written in English and four in English and German. Only one
email is in German. This email and one of the mixed-language emails contains
an HTML table. These tables are characteristic for spam emails, most emails
that consist of images are arranged by an HTML table. The German email
was only filtered by the 0.9 version of the filter not using stemming and by
Graham’s filter. The other email containing a table is filtered by all approaches
using HTML. Two of the other emails written in English as well as in German
are forwarded messages warning against computer viruses and the last one is
an email containing tips on composing texts with Latex. These emails are
filtered because they are not very personal. The only filter recognizing all of
these emails as legitimate is the one using HTML attributes with a threshold
of at least 0.99. Two of the English false-positives are also impersonal emails
from a mailing list dealing with spam filters. Why just these two emails from
this list are filtered is not clear because several other emails from this list are
categorized as legitimate.

However, the six remaining false-positives are emails written in English by
friends of the author. One of them, that was composed to a large group of
people, was filtered in each test run. The others are only categorized as spam
by the filter using Paul Graham’s approach for attribute selection and in one
case by the standard filter.

The analysis of the emails that are false-positives shows that the difficult part
of filtering these emails is to recognize those legitimate emails that are English
and impersonal. The problem is that many English words have only occurred
in spam emails. As an example we assume that the word “money” occurred
40 times in spam emails and only one time in a legitimate email. If we assume
that 800 spam emails and 395 legitimate emails have been used to train the
filter (90% of each group), the resulting probability for this attribute is:

69

6 Testing

P (spam|“money”) =
40
800

2·1
395

+ 40
800

= 90.8%

The fact that was not taken into account is that most legitimate emails that
are composed in German are unlikely to include an English term like “money”.
If we assume that only 10% of the legitimate emails and 90% of spam emails
are English, the spam probability for this attribute is:

P (spam|“money”) =
40
720

2·1
40

+ 40
720

= 52.63%

This shows that an attribute that is neither characteristic for spam emails nor
for legitimate emails can be biased by language tendencies. Despite this fact,
the majority of English legitimates is not filtered. The bias because of different
ratios of languages in emails has to be taken into account in the future. Spam
filters need further improvement and new techniques to work reliable in such
an environment. This topic will be further discussed in chapter 7.

Only one spam email that is missed by the filters is in English. This shows
that the language problem had also a bad impact on finding spam. However,
the false negative rate does not exceed 0.9% which is a rather good value.
The reason for this might be that German and English emails have certain
attributes in common. A possible explanation are header attributes like mail
servers or HTML attributes. The use of HTML seems to help recognizing
spam emails. Those test runs using HTML achieve false-negative rates between
0.45% and 0.675% while the others had rates between 0.787% and 0.9%.

standard Graham
λ

0.9 0.99 0.999 0.9 0.99 0.999
9 1.26 1.10 1.10 2.50 1.94 1.96
99 1.36 1.13 1.13 2.91 2.24 2.24
999 1.37 1.14 1.14 2.96 2.27 2.27

Table 6.2: Weighted error rates (in percent) for ten-fold cross-validation tests
with 889 spam and 439 legitimate emails without using image at-
tributes (A)

Table 6.2 shows a comparison of the weighted error rates of the standard
Cleaner and the Cleaner based on Paul Graham’s approach. To make the
values easier to compare, they are multiplied with 100; the table shows per-
centages. It is obvious that the standard Collector outperforms the other one.
All of its weighted error rates are better than those achieved with Paul Gra-
ham’s approach.

In table 6.3 the weighted error rates of the three other approaches are shown.
These values are even better than those achieved by the standard filter. If 0.9
is used as threshold, the test run not using stemming is the best. However,

70

6.2 Results

no stem
no stem HTML

& HTMLλ

0.9 0.99 0.999 0.9 0.99 0.999 0.9 0.99 0.999
9 0.70 0.72 0.72 1.03 0.66 0.68 1.03 0.85 0.85
99 0.69 0.69 0.69 1.13 0.68 0.68 1.13 0.90 0.90
999 0.68 0.68 0.69 1.14 0.68 0.68 1.14 0.91 0.91

Table 6.3: Weighted error rates (in percent) for ten-fold cross-validation tests
with 889 spam and 439 legitimate emails without using image at-
tributes (B)

when 0.99 and 0.999 are used, the filter using stemming and HTML attributes
outperforms all others. The next section will analyze if stemming has a more
positive influence if the training corpus is smaller.

The best threshold seems to be 0.99 for each value of λ and approach used for
attribute selection.

Tests Using Half of the Corpus

As mentioned above, the next step is to reduce the size of both corpora. The
spam corpus is reduced to 445 emails and the legitimate corpus to 220. The
results achieved during this test are not directly comparable to those above
because they might be influenced by a different segmentation of the emails or
by differences of the corpora resulting from the selection process. What we
can analyze with this second set of test runs is how fast the filter can adjust
to find spam emails using the different attribute selection processes.

no stem based on
standard no stem HTML

& HTML Grahamt

NL→S NS→L NL→S NS→L NL→S NS→L NL→S NS→L NL→S NS→L

0.9 3 2 2 2 3 0 5 1 6 1
0.99 2 2 1 2 3 0 2 1 4 1
0.999 2 2 1 2 3 1 2 1 4 1

Table 6.4: False-positives and false-negatives for ten-fold cross-validation tests
with 445 spam and 220 legitimate emails without using image at-
tributes

Table 6.4 shows the testing results. These numbers show that the difference
between false-positives and false-negatives gets even worse. The false-positive
rates are between 0.455% and 2.961% while the false-negative rates are be-
tween zero and 0.449%. Most of the emails that are classified falsely were also
misclassified during the first testing series.

The tables 6.5 and 6.6 show the weighted error rates calculated from the figures
above. If we compare it to the results from the previous test series, we can

71

6 Testing

standard Graham
λ

0.9 0.99 0.999 0.9 0.99 0.999
9 1.20 0.83 0.82 2.27 1.53 1.53
99 1.35 0.90 0.90 2.68 1.79 1.79
999 1.36 0.91 0.91 2.72 1.81 1.81

Table 6.5: Weighted error rates (in percent) for ten-fold cross-validation tests
with 445 spam and 220 legitimate emails without using image at-
tributes (A)

no stem
no stem HTML

& HTMLλ

0.9 0.99 0.999 0.9 0.99 0.999 0.9 0.99 0.999
9 0.82 0.45 0.45 1.11 1.11 1.15 1.90 0.78 0.78
99 0.90 0.45 0.45 1.34 1.34 1.34 2.23 0.90 0.90
999 0.91 0.45 0.45 1.36 1.36 1.36 2.27 0.91 0.91

Table 6.6: Weighted error rates (in percent) for ten-fold cross-validation tests
with 445 spam and 220 legitimate emails without using image at-
tributes (B)

see that the advantage of using a threshold of at least 0.99 has even increased.
The other difference is quite unexpected: The filter not using stemming has
the best performance. This is astonishing because stemming is performed in
order to get better result with a smaller training corpus. The stemming should
lead to less attributes that are occurring more frequently. However, this result
is not really new. Androutsopoulos [AKC+00] came to the same conclusion as
described in 3.1.4.

The problem about using stemming on the attributes derived from emails
in this corpus is that this algorithm is designed for the English language.
Although the algorithm might successfully stem certain German words, most
words will not be stemmed properly.

Image Attributes

Both test series are repeated using image attributes. But neither using them
in the full corpus nor in the smaller one leads to any changes. Table 6.7
shows the probabilities achieved for the image features after scanning the whole
corpora. The problem is that only nine legitimate emails in the whole corpus
contain images and none of these is misclassified. For five of these, the average
discreteness is less than 0.5. The reason for this is that some of the emails
contain scanned articles and images that only consist of gray shades and have
a low color discreteness. The number of spam emails containing images is
307. This leads to a similar effect as in the case of the different languages
in both categories. Of course each attribute is dominated by spam emails.

72

6.3 Tests using the Ling-Spam Corpus

The consequence are high probabilities even for the attributes associated with
discreteness values greater than 0.5.

attribute P (full corpus) P (small corpus)
dis sm 0.1 40.00% 40.00%
dis sm 0.3 49.43% 38.55%
dis sm 0.5 80.88% 68.88%
dis gr 0.5 92.19% 99.00%
dis gr 0.7 84.10% 99.00%
dis gr 0.9 75.04% 99.00%
dis gr 1.2 40.00% 99.00%

Table 6.7: Probabilities for image features

6.3 Tests using the Ling-Spam Corpus

Because the author’s corpus leads to the language problems mentioned above,
another series of test runs is performed using the Ling-Spam corpus published
by the research group of Ion Androutsopoulos. The corpus consists of 2412
legitimate and 481 spam emails [SAP+01]. As mentioned before, this corpus
is problematic, too. As it does not contain any HTML messages or message
parts, the only variants tested are the standard version, the version without
stemming and the one following Paul Graham’s approach.

standard no stem Graham
t

NL→S NS→L NL→S NS→L NL→S NS→L

0.9 0 163 0 158 0 146
0.7 0 149 0 146 0 132
0.5 0 140 0 137 0 130
0.3 0 133 1 130 0 128
0.1 1 118 1 126 1 124
0.05 3 118 3 124 1 123

Table 6.8: False-positives and false-negatives for testing with Ling-Spam

Table 6.8 shows the testing results. First of all it is remarkable that other
thresholds were used. The first tests were made with the threshold 0.9 and since
no false-positives occurred it made no sense to increase this value. The thresh-
old was continuously decreased until at 0.1 and 0.05 the first false-positives
occurred.

The fact that such a low threshold could be chosen for this corpus needs further
explanation. The reason for this is that the legitimate emails in this corpus are,
as mentioned above, very homogeneous. They are taken from a mailing list
which discusses linguistic topics. Since the legitimate emails are homogeneous,
they will achieve very low spam probabilities; the threshold can be decreased.

73

6 Testing

Another question that arises is why the false-negative rate is so much higher
than in the tests before. The lowest false-negative rate that occurred with-
out causing any false-positives is 26.61%. One reason for this is that many
attributes that were derived in the previous test series are not present. The
corpus does not contain any header information except the subject line and
no HTML tags are included. Another reason why the false-negative rate ex-
ceeds the one achieved using the author’s email corpus is that all spam and
legitimate emails are in English language.

standard no stem Graham
t

9 99 999 9 99 999 9 99 999
0.9 0.735 0.068 0.007 0.712 0.066 0.007 0.658 0.061 0.006
0.7 0.672 0.062 0.006 0.658 0.061 0.006 0.595 0.055 0.005
0.5 0.631 0.059 0.006 0.617 0.057 0.006 0.586 0.054 0.005
0.3 0.599 0.056 0.006 0.626 0.096 0.047 0.577 0.053 0.005
0.1 0.572 0.091 0.046 0.608 0.094 0.047 0.599 0.093 0.047
0.05 0.653 0.173 0.129 0.681 0.176 0.129 0.595 0.093 0.047

Table 6.9: Weighted error rates (in percent) for testing with Ling-Spam

Table 6.9 shows the weighted error rates calculated from the data above. They
are also multiplied with 100 in order to make them easier to compare. In
this case, the results achieved with Paul Graham’s attribute selection process
dominate the other ones. At first glance this might be astonishing because
it was outperformed in the other test series. But the reason why it is more
accurate is that this email corpus does not tend to produce false-positives.
If we take another look at tables 6.1 and 6.4, we notice that this approach
is in both cases among the best at recognizing spam emails. The problem is
however, that this filter configuration produces too many false-positives. When
Ling-Spam is used for testing, this behavior does not occur.

6.4 Summarizing Analysis

The testing results do not allow an undisputed decision how to configure the
spam filter. Especially selecting the threshold t is complicated. On the one
hand, according to the tests using the author’s email corpus, a reasonable
value would be 0.99. On the other hand the Ling-Spam tests suggest 0.3 as
threshold. However, this value appears to be quite low. The answer to this
problem might be that there is no ideal threshold, it always depends on the
user’s emails. A good default value might be 0.9, as used by Paul Graham
[Gra02a]. Another approach is letting the user decide. If the number of false-
positives is too high, the user might decide to increase the threshold. This
process could also be automatized. The spam filter could count the number
of false-positives and false-negatives that occurred for a user and adjust the
threshold according to the ratio of these values.

74

6.4 Summarizing Analysis

The selection of the best method for deriving features is complicated, too.
All approaches lead to quite similar figures in the tests with the Ling-Spam
corpus. Based on the first tests, the favored method is using the standard
attribute deriving algorithm without stemming. Using HTML attributes only
led to improvements for a large number of training messages. If the use of the
filter is planned for a long period, the use of HTML is recommended.

λ ImapProxy (Pant) (Micr) (Andr) (Grah)
9 0.572% 2.198% 1.622% 0.456% 0.011%
99 0.053% 1.742% 0.681% 0.073% 0.001%
999 0.005% 1.700% 0.588% 0.007% 0.0001%

Table 6.10: Weighted error rates for testing with the Ling-Spam corpus com-
pared to existing Bayesian approaches

GA ANN MBL
λ ImapProxy

(Kati) (Drew) (Sakk)
9 0.572% 6.0% 1.009% 0.587%
99 0.053% 3.6% 1.062% 0.064%
999 0.005% 3.36% 1.067% 0.006%

Table 6.11: Weighted error rates for testing with the Ling-Spam corpus com-
pared to existing other approaches

Tables 6.10 and 6.11 compare the results of this filter when using Ling-Spam
to the existing approaches described in chapter 3. Depending on the value
of λ, the filter is only outperformed by Paul Graham’s approach which was
evaluated using a much bigger corpus. The two other approaches using Ling-
Spam for testing (explained in 3.1.4 and 3.4.2) achieve slightly worse results,
only for λ = 9 the Bayesian filter by Ion Androutsopoulos’ group is better.

75

6 Testing

76

7 Conclusion and Outlook

The result of this study is a spam filter that can be adjusted to the use in
several environments; on a client computer for one user as well as on a server
for all members of an organization. The design is modular, the major classes
used for filtering are based on abstract classes. This means that the software
can serve as a platform for the implementation of other approaches.

The task of filtering spam is always a struggle against spammers. They adjust
to spam filters just as these filters should adjust to their emails. John Graham-
Cumming, a researcher on the field of spam filters, held two talks about how
spammers avoid filters on the Spam Conference 2003 and the Spam Conference
2004. He also maintains “The Spammers’ Compendium” [GC04], a collection
of such tricks.

These tricks include several ways of including invisible bogus texts like a piece
of current news in emails. For example, such a text can be written in a very
small font size or it can be hidden in a MIME part. These texts usually contain
words that are not very likely to appear in spam emails. This increases the
probability that the spam email is not filtered. As an additional side effect
those attributes will receive a higher spam probability when the user moves
the email to the spam folder. This raises the chances of legitimate messages
which contain them being falsely identified as spam. This process is called
poisoning. Filters must be somehow modified to recognize whether a text is
visible for the user or not.

Another popular trick is to divide words into letters. This can be done by
leaving blanks between each letter of a word or by including fake HTML com-
mands. Invisible HTML tags might be a reason why using HTML attributes
is not definitely an advantage. On the one hand they lead to many significant
attributes like links, but on the other hand they can also be used by spammers
as a trick. The only possible way out of this dilemma is to analyze HTML
commands and identify fakes.

If a spam filter is adapted to these techniques used by spammers, the process
that analyzes the emails will be close to a renderer. All non-visible attributes
are not regarded. This leads to valuable attributes obtained from HTML tags
and can lead to a new attribute indicating if the email contains invisible text
or HTML commands. This attribute would be a very powerful tool against
many strategies used by spammers.

Another problem that has to be handled but is never discussed is the language
problem explained in 6.1.2. A possible way out of this situation is to keep

77

7 Conclusion and Outlook

separate probability databases for each language. An incoming email must
first be examined to find out in which language it is composed. Then it can
be analyzed using the appropriate database. This leads to more dependable
probabilities. But the approach causes a longer learning process because two
filters have to be trained.

All techniques that lead to better results by solving some of these problems
can be implemented as additional classes inheriting from the class SpamFilter
or FeatureCollector.

78

A Variables

Total number of emails N

Number of spam emails NS

Number of legitimate emails NL

Attributes A = {a1, . . . , an}

Number of unique attributes n
Number of unique attributes in spam emails nS

Number of unique attributes in legitimate emails nL

Number of occurrences of attribute ai in emails n(ai)
Number of occurrences of attribute ai in spam emails nS(ai)
Number of occurrences of attribute ai in legitimate emails nL(ai)

Number of spam emails categorized as spam NS→S

Number of spam emails categorized as legitimate NS→L

Number of legitimate emails categorized as legitimate NL→L

Number of legitimate emails categorized as spam NL→S

False-negative rate rfn = NS→L

NS

False-positive rate rfp = NL→S

NL

Weighted error rate WErr

Variable indicating whether email j is spam Cj

Cj =

{
1 if email j is spam
0 otherwise

Variable for occurrence of attribute ai in email j Oj(ai)

Oj(ai) =

{
1 if attribute ai occurs in email j
0 otherwise

79

A Variables

80

Bibliography

[AKC+00] Ion Androutsopoulos, John Koutsias, Konstantinos V. Chandri-
nos, George Paliouras, and Constantine D. Spyropoulos. An Eval-
uation of Naive Bayesian Anti-Spam Filtering. In G. Potamias,
V. Moustakis, and M. van Someren, editors, Proceedings of the
Workshop on Machine Learning in the New Information Age, 11th
European Conference on Machine Learning (ECML’00), pages 9–
17, Barcelona, Spain, 2000.

[AKCS00] Ion Androutsopoulos, John Koutsias, Konstantinos V. Chandrinos,
and Constantine D. Spyropoulos. An Experimental Comparison of
Naive Bayesian and Keyword-Based Anti-Spam Filtering with En-
crypted Personal E-mail Messages. In N.J. Belkin, P. Ingwersen,
and M.-K. Leong, editors, Proceedings of the 23rd Annual Inter-
national ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR’00), pages 160–167, Athens, Greece,
2000.

[APK+00] Ion Androutsopoulos, Georgios Paliouras, Vangelis Karkaletsis,
Georgios Sakkis, Constantine D. Spyropoulos, and Panagiotis
Stamatopoulos. Learning to Filter Spam E-Mail: A Comparison of
a Naive Bayesian and a Memory-Based Approach. In H. Zaragoza,
P. Gallinari, and M. Rajman, editors, Proceedings of the Workshop
on Machine Learning and Textual Information Access, 4th Euro-
pean Conference on Principles and Practice of Knowledge Discov-
ery in Databases (PKDD’00), pages 1–13, Lyon, France, 2000.

[Bis95] Christoph M. Bishop. Neural Networks for Pattern Recognition.
Oxford University Press, 1995.

[bri04] Brightmail - Spam Percentages and Spam Categories. http://www.
brightmail.com/spamstats.html, January 2004.

[CL98] Lorrie Faith Cranor and Brian A. LaMacchia. Spam! Communi-
cations of the ACM, 41(8):74–83, August 1998.

[Cri03] M. Crispin. Internet Message Access Protocol - Version 4rev1.
http://rfc.net/rfc3501.html, March 2003.

[Dar59] Charles Darwin. On The Origin Of Species By Means Of Natural
Selection, or, The Preservation Of Favoured Races In The Struggle
For Life. John Murray, 1859.

81

Bibliography

[dcc] Distributed Checksum Clearinghouse. http://www.rhyolite.

com/anti-spam/dcc/.

[Dre02] Rich Drewes. An Artifical Neural Network Spam Clas-
sifier. http://www.interstice.com/drewes/cs676/spam-nn/

spam-nn.html, May 2002.

[ema04] email. http://www.webopedia.com/TERM/E/e mail.html, Jan-
uary 2004.

[FB96] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies. http:

//www.rfc.net/rfc2045.html, November 1996.

[Fra92] W. Frakes. Stemming Algorithms. Englewood Cliffs, 1992.

[GC04] John Graham-Cumming. John Graham-Cumming: The Spammers’
Compendium. http://www.jgc.org/tsc/, January 2004.

[gmx] GMX. http://www.gmx.net.

[Gol89] David E. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley, 1989.

[Gra02a] Paul Graham. A Plan for Spam. http://www.paulgraham.com/

spam.html, August 2002.

[Gra02b] Paul Graham. Filters vs. Blacklists. http://www.paulgraham.

com/falsepositives.html, September 2002.

[Gra02c] Paul Graham. Spam is Different. http://www.paulgraham.com/

spamdiff.html, August 2002.

[Gra02d] Paul Graham. Will Filters Kill Spam? http://www.paulgraham.

com/wfks.html, December 2002.

[Gra03] Paul Graham. Better Bayesian Filtering. http://www.

paulgraham.com/better.html, January 2003.

[hei02] Anti-Spam-Dienst ORBZ vom Netz. http://www.heise.de/

newsticker/data/uma-20.03.02-000/, March 2002.

[hei03a] GMX landete auf Open-Relay-Blacklist. http://www.heise.de/

newsticker/data/hob-27.05.03-000/, May 2003.

[hei03b] Spamcop nimmt GMX von der schwarzen Liste. http://

www.heise.de/newsticker/data/uma-12.09.03-000/, Septem-
ber 2003.

[jav] JavaMail API. http://java.sun.com/products/javamail/.

[Kat99] Hooman Katirai. Filtering Junk E-Mail: A Perfor-
mance Comparison between Genetic Programming & Näıve
Bayes. http://members.rogers.com/hoomank/papers/

katirai99filtering.pdf, September 1999.

82

Bibliography

[Mit97] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[ord] Open relay database. http://ordb.org/.

[PCH+02] S. Prabhakar, H. Cheng, J.C. Handley, Z. Fan, and Y.W. Lin.
Picture-Graphics Color Image Classification. In Procedings of the
International Conference on Image Processing (ICIP’02), volume 2,
pages 785–788, Rochester, New York, September 2002.

[PL98] Patrick Pantel and Dekang Lin. SpamCop: A Spam Classification &
Organization Program. In Learning for Text Categorization: Pa-
pers from the 1998 Workshop, Madison, Wisconsin, 1998. AAAI
Technical Report WS-98-05.

[Por80] M.F. Porter. An Algorithm for Suffix Stripping. Program,
14(3):130–137, July 1980.

[rbl] Maps realtime blackhole list. http://mail-abuse.org/rbl/.

[SAP+01] Georgios Sakkis, Ion Androutsopoulos, Georgios Paliouras, Van-
gelis Karkaletsis, Constantine Spyropoulos, and Panagiotis Stam-
atopoulos. A Memory-Based Approach to Anti-Spam Filtering.
Technical report, National Center for Scientific Research (NCSR)
“Demokritos”, 2001.

[SDHH98] Mehran Sahami, Susan Dumais, David Heckerman, and Eric
Horvitz. A Bayesian Approach to Filtering Junk E-Mail. In Learn-
ing for Text Categorization: Papers from the 1998 Workshop, Madi-
son, Wisconsin, 1998. AAAI Technical Report WS-98-05.

[Ser03] Matt Sergeant. Internet Level Spam Detection and Spa-
mAssassin 2.50. http://axkit.org/docs/presentations/spam/

SpamConf2003.pdf, January 2003.

[spaa] http://www.spamconference.org/index2003.html.

[spab] Spamassassin. http://www.spamassassin.org.

[spac] Spamcop. http://www.spamcop.net.

[spa04] What is “spam”? http://mail-abuse.org/standard.html, Jan-
uary 2004.

83

