
Bauhaus-Universität Weimar
Faculty of Media
Degree Programme Digital Engineering

Retrieval Augmented Generation
for the IR-Anthology

Master’s Thesis

Islam Torky

1. Referee: Prof. Dr. Benno Stein
2. Referee: Prof. Dr. Volker Rodehorst

Submission date: March 22, 2024

Declaration

Unless otherwise indicated in the text or references, this thesis is
entirely the product of my own scholarly work.

Weimar, Germany, March 22, 2024

. .
Islam Torky

Abstract

In recent years, Natural Language Processing (NLP) has seen a big leap
forward with the emergence of pre-trained Large Language Models (LLMs).
These models, like BERT, GPT-3, and Llama2, have excelled in various NLP
tasks. While they’ve set new standards, they also face challenges, notably
hallucinations, where they generate information that sounds plausible but is
incorrect. Furthermore, they struggle with staying accurate and updated with
new data called information cutoff. In addition to these two, they are general-
purpose and not limited to a specific field; therefore, lack domain specificity.

Retrieval Augmented Generation (RAG) is a solution to these challenges
aiming to combine the strengths of LLMs with external knowledge retrieval.
RAG retrieves information during inference, reducing the risk of generating
incorrect content and keeping information up-to-date. This thesis explores
implementing RAG on the IR-Anthology, a vast collection of research papers
on information retrieval. The goal is to make retrieval of information from the
IR-Anthology more efficient, enabling easier access for researchers or students.

To set the stage, the thesis begins with an overview of recent NLP and RAG
advancements, providing a foundation for understanding and introducing in-
novative methodologies using RAG. The thesis adopts a systematic approach,
tailoring pipelines for the IR-Anthology dataset and evaluating their effective-
ness in retrieval and generation stages. More specifically, this approach aims
to not only assess overall efficacy but also understand variations in outputs
across scenarios and data subsets.

The thesis explores how dividing documents into smaller segments (chunks)
affects RAG pipelines, as well as different retrieval methods. The conducted
experiments reveal that for retrieval of information from PDFs, larger chunks
improve accuracy. However, for generating text, smaller chunks benefit the
LLM by providing more focused information. Surprisingly, simpler retrieval
methods outperform more complex ones.

Contents

1 Introduction 4

2 Related Work 8
2.1 IR-Anthology . 8
2.2 Retrieval Augmented Generation 10

2.2.1 Retrieval and Generation 11
2.2.2 RAG Evaluation . 11

2.3 RAG Pipeline . 12
2.4 Transformer Architecture . 14
2.5 Large Language Models . 20

2.5.1 Llama2 Architecture . 21
2.6 Embedding Model . 25
2.7 Chapter Conclusion . 26

3 Approach 27
3.1 Mistral 7B . 27
3.2 Prometheus 13B . 30
3.3 Quantization & vLLM: . 32
3.4 BGE Large: . 35
3.5 Llamaindex . 36

3.5.1 Parsing/Chunking Methods 37
3.5.2 Indexing/Embedding of Chunks 38
3.5.3 Retrieval . 40
3.5.4 Generation . 41

3.6 Retrieval Methods . 42
3.6.1 Vector Retrieval (HNSW) 42
3.6.2 Best Matching 25 (BM25) 42
3.6.3 Hybrid Retrieval . 44
3.6.4 Hypothetical Document Embedding (HyDE) 45
3.6.5 Reranker . 45

3.7 Chapter Conclusion . 46

i

CONTENTS

4 Evaluation 48
4.1 Generating Synthetic Data . 49

4.1.1 LLM Parameters . 50
4.1.2 Question Generation . 51
4.1.3 Answer Generation . 52
4.1.4 Document Selection . 53

4.2 Retrieval Evaluation . 55
4.2.1 Flow . 56
4.2.2 Evaluation . 56
4.2.3 Metrics . 58
4.2.4 Results . 58

4.3 Generation Evaluation . 60
4.3.1 Flow . 61
4.3.2 Evaluation . 61
4.3.3 Metrics . 62
4.3.4 Results . 64

4.4 Chapter Conclusion . 65

5 Discussion & Analysis 66
5.1 Analysis of Retrieval Results . 66
5.2 Analysis of Generation Results 68

6 Conclusion 69

Bibliography 72

ii

List of Figures

1.1 High Level RAG interaction between a knowledge base, LLM,
and a user. 5

2.1 Querying GPT 3.5 to inquire about the research done by Sarkar
et al. [2023] . 9

2.2 Basic flow of a RAG pipeline. Individual steps are illustrated
with circled numbers. 13

2.3 Vanilla transformer adapted from Vaswani et al. [2017] 15
2.4 Multi-Head Attention Mechanism. Every head is represented

by a Query, Key, and Value . 20
2.5 Llama2 decoder-only transformer architecture as introduced by

Touvron et al. [2023]. 21
2.6 Grouped Query Attention as introduced by Ainslie et al. [2023] . 23

3.1 Sliding window attention adapted from Jiang et al. [2023]. . . . 29
3.2 Rolling Buffer Cache adapted from Jiang et al. [2023]. The

cache operates with a predefined capacity of W entries. Data
is stored using a key-value structure, where each key-value pair
is placed at a specific position determined by the modulo op-
eration (imodW) on the key’s index i. If the index i exceeds
the cache’s capacity W , the oldest entries are overwritten to ac-
commodate new data. The most recently generated tokens and
their corresponding internal representation are highlighted for
easy identification. 30

3.3 Standard Quantization vs. AWQ (Lin et al. [2023]). 33
3.4 Token based chunking on three sentences. 38
3.5 Sentence Window based chunking on three sentences. 38
3.6 Prompting with topk of 3. 42
3.7 Bi - Encoder vs. Cross - Encoder 46

4.1 Question generation prompt. 51
4.2 Question and chunk pair in a JSON file. 52

1

LIST OF FIGURES

4.3 Answer generation prompt. 53
4.4 Question, context, and answer in a JSON file. 53
4.5 Question generation to evaluation 55
4.6 HyDE before flowing into the query engine. 57
4.7 HyDE prompt. 57
4.8 Generation and evaluation of Q&A pairs. 60
4.9 Relevancy prompt. 62
4.10 Faithfulness prompt. 63
4.11 Evaluation response JSON. 65

5.1 Evaluation results grouped by different chunk sizes, for each
retrieval method. 67

5.2 Evaluation results for the generation. Comparison bar plot for
the different chunk sizes. (Sentence Window - SW) 68

2

List of Tables

2.1 Llama2 Parameters and MMLU Scores as reported by Touvron
et al. [2023]. 25

3.1 Mistral 7B model architecture from Jiang et al. [2023]. 28
3.2 MT - Bench Human Preference for different models as reported

by Kim et al. [2023]. 32
3.3 Different embedding models used from Xiao et al. [2023] 36

4.1 Chunks for each method in dataset preparation. 49
4.2 Mistral 7B Instruct parameters. 51
4.3 Prometheus 13B parameters. 51
4.4 Duration of parsing, encoding, and indexing for each method

for dataset preparation. 54
4.5 Time required to generate questions. 54
4.6 Time required to generate answers. 55
4.7 Results of different retrieval methods. 59
4.8 Results of different retrieval methods with HyDE. 60
4.9 Results of different evaluations. 64

3

Chapter 1

Introduction

In recent years, the field of natural language processing (NLP) has experienced
a transformative shift with the advent of pre-trained large language models
(LLM). These models, pre-trained on large corpora of text, have demonstrated
remarkable performance across a wide spectrum of NLP tasks. LLMs, such
as BERT (Devlin et al. [2019a]), GPT-3 (Patel et al. [2023]), and Llama2
(Touvron et al. [2023]), have achieved state-of-the-art results in tasks ranging
from text classification to chat models.

While pre-trained LLMs have undeniably made significant strides in NLP, it
is crucial to acknowledge their limitations. One notable challenge that LLMs
face is the issue of hallucinations. Hallucinations refer to the generation of
plausible-sounding but incorrect or misleading information in generated text.
These models often rely on patterns in the training data and may produce re-
sponses that appear coherent but are factually incorrect or nonsensical. This
is particularly problematic in applications where accuracy and reliability are
paramount, such as medical diagnosis or legal document generation (Zhang
et al. [2023]). Furthermore, LLMs tend to under perform when confronted
with up-to-date information due to the information cutoff; once an LLM has
been initially trained it can no longer process any new data without being
finetuned. They are heavily reliant on the data distribution they were trained
on, and their performance can degrade when applied to tasks involving recent
developments. Another limitation of LLMs is being experts in a certain field,
since they are heavily dependant on their data distribution and this data is
not specific to a certain field they lack domain specificity. Understanding these
limitations of LLMs is crucial when considering their application in practical
scenarios. These shortcomings highlight the need for more specialized and
robust approaches, such as Retrieval Augmented Generation (RAG), which
aims to leverage the strengths of LLMs while addressing their weaknesses in
handling factual accuracy, up-to-date information, and domain-specific knowl-

4

CHAPTER 1. INTRODUCTION

edge.
RAG, first introduced by Lewis et al. [2020] utilized a configuration where

the parametric memory was implemented as a pre-trained sequence-to-sequence
(seq2seq) encoder-decoder transformer, while the non-parametric memory con-
sisted of a dense vector index of Wikipedia. This non-parametric memory was
accessed using a pre-trained neural retriever, illustrating the incorporation of
external knowledge retrieval in the RAG model. During inference, the models
retrieve pertinent passages from Wikipedia, which are then employed in re-
sponse generation. The high-level architecture of a standard RAG pipeline is
depicted in Figure 1.1. This illustration outlines the operational flow wherein
a user submits a query to the RAG pipeline. Subsequently, analogous infor-
mation (referred to as a chunk) is retrieved from the designated knowledge
base. This retrieved information is then fed into the generator (LLM), which
generates a response characterized by its adherence to truth, up to date, and
alignment with the user’s domain. This capability enables RAG to access con-
text specific to the query which has the potential to address the problem of
hallucinations, information cutoff, and domain specificity (Siriwardhana et al.
[2023]).

Figure 1.1: High Level RAG interaction between a knowledge base, LLM, and a
user.

Lewis et al. [2020] emphasized that RAG exhibits strong performance
in general question-answering datasets based on Wikipedia, such as Natural
Questions (Kwiatkowski et al. [2019]). Recent research has also underscored
that the generated outputs tend to be notably more factual. This is attributed
to the pipeline being conditioned on the information retrieved from documents.
Shuster et al. [2021] further draw attention to how effectively it reduces the
occurrence of hallucinations in tasks involving knowledge-grounded conver-
sational responses. In these tasks, the goal is to generate responses within a
dialogue context using a vast knowledge base. Lewis et al. [2020] reported that
RAG models are more factual and specific than BART for Jeopardy question
generation.

While acknowledging the successes of NLP and RAG in their application
across various domains, including general question-answering and knowledge-

5

CHAPTER 1. INTRODUCTION

grounded conversational responses, this thesis explores the practical imple-
mentation of RAG on the IR-Anthology, a collection of 62,846 papers on infor-
mation retrieval meticulously compiled by Webis. This dataset offers a unique
and challenging context for harnessing RAG’s potential to improve content
generation quality and accuracy. By leveraging these capabilities, such as
real-time retrieval of external knowledge and adaptability to domain-specific
information, this master’s thesis main motivation is to implement it on the
IR-Anthology dataset with a specific goal in mind: facilitating easy access to
the wealth of knowledge contained within these papers for future researchers.
The main objective of this thesis; however, is to investigate the optimal con-
figuration of the RAG pipeline for the IR-Anthology. This investigation aims
to identify a configuration that delivers both superior overall performance and
exceptional value proposition. It also encompasses the mitigation of inherent
limitations associated with standalone LLMs.

To lay the groundwork for this exploration, this thesis commences by pre-
senting a comprehensive overview of recent advancements within the realm of
NLP and RAG. This review serves a dual purpose: firstly, to shed light on
the current landscape of methodologies and technologies in the field, offering
a foundational understanding for subsequent discussions; and secondly, to es-
tablish a baseline for the innovative contributions within this work. The foun-
dational explanation will provide crucial insights into the existing paradigms,
their strengths, and limitations, thereby setting the stage for the introduction
of novel methodologies utilizing RAG.

The systematic approach in this thesis involves crafting distinct pipelines
for retrieval and generation stages. A comprehensive evaluation process em-
ploys diverse metrics, providing a unified assessment of efficacy and perfor-
mance. Beyond overall effectiveness, the evaluation aims to reveal nuanced
variations in outputs across scenarios, offering insights into adaptability and
robustness. Within the experimentation’s done for the RAG pipeline it was
revealed that the bigger the chunk is the easier it is retrieved from the knowl-
edge base; however, it comes at a tradeoff because the bigger the chunk is
the more the LLM struggles in formulating an accurate response to the query
based on the chunk. Leading the LLM to prefer smaller chunks retrieved from
the knowledge base.

This introductory chapter has provided a foundational understanding of the
research problem and its significance. Subsequent chapters will delve deeper
into various aspects of the study:

• Chapter 2: An overview of the IR Anthology dataset and the original
paper introducing RAG will be presented. This chapter will explore the
potential applications of RAG and the importance of the IR Anthology

6

CHAPTER 1. INTRODUCTION

dataset in this context. As well as establishing the mains components
that are within the pipeline such as transformers, LLMs, and embedding
models.

• Chapter 3: We will explore the specific technological tools and method-
ologies employed in this research. This chapter will detail the process
of building different RAG pipelines for further analysis. As well as the
reasoning and selection of certain models, and retrieval methods.

• Chapter 4: Various evaluation methods will be explored, focusing on a
two-step approach to assess the effectiveness of the individual compo-
nents within the RAG pipeline.

• Chapter 5: The analysis chapter will present the findings of the research,
including the generated results and any insights gleaned from the anal-
ysis.

• Chapter 6: The concluding chapter will give a brief review of all previous
chapters as well as addressing the major challenges faced and finally
detailing the final insights.

7

Chapter 2

Related Work

The previous chapter discussed the transformative influence of pre-trained
LLM models in NLP. It explored their successes while acknowledging limi-
tations like hallucination, information cutoff, and domain specificity. This
chapter delves into potential solutions, exemplified by the RAG approach ap-
plied to the IR-Anthology dataset.

This chapter will first review the IR-Anthology dataset, a collection of text
documents relevant to information retrieval research. Then, it will explore
the original RAG approach (Lewis et al. [2020]), followed by a breakdown of
the basic RAG pipeline. Next, it will delve into transformers, the key role in
both retrieval and generation tasks within RAG. The chapter will also explain
LLMs. Finally, it will discuss the embedding models.

2.1 IR-Anthology
The Information Retrieval Anthology (IR-Anthology) by Potthast et al. [2021]
draws inspiration from and addresses challenges identified in existing research
and projects within the domain of scholarly search and information retrieval.
As an ongoing initiative, the IR-Anthology serves as a valuable repository for
researchers and practitioners, providing access to a diverse range of literature
related to information retrieval.

The ACL Anthology reference corpus proposed by Bird et al. [2008], a
digital archive of conference and journal papers in natural language processing
and computational linguistics, provides a curated collection of publications and
serves as a reference repository of research results. It serves as a benchmark
and inspiration for the IR Anthology, with its success attributed to a unified
collection of bibliographic metadata and a comprehensive set of openly accessi-
ble full texts. The centralized web service architecture and search capabilities
of the ACL Anthology form a foundational reference for the development of

8

CHAPTER 2. RELATED WORK

the IR Anthology’s analogous components.
The IR Anthology leverages the Digital Bilbiography & Library Project

(DBLP) as a primary source for bibliographic metadata. Recognizing the
labor-intensive nature of compiling such data, the integration with DBLP pro-
vides a starting point for the IR Anthology’s metadata collection. The use
of tailored scripts and automatic imports demonstrates an understanding of
the challenges associated with maintaining a comprehensive and up-to-date
bibliographic database.

In the context of RAG, the IR-Anthology holds particular relevance due to
its extensive coverage of information retrieval techniques, corpora, and associ-
ated metadata. The inclusion of research papers spanning various subdomains
within information retrieval offers a rich source of knowledge that can be lever-
aged to build a one stop point for researchers through RAG pipelines.

Figure 2.1: Querying GPT 3.5 to inquire about the research done by Sarkar et al.
[2023]

Incorporating the IR-Anthology into a RAG pipeline not only enriches the
breadth of information available but also addresses the issue of misinformation
or incomplete data often encountered in LLMs. By integrating this domain-
specific repository, RAG can establish a robust framework for fact-checking

9

CHAPTER 2. RELATED WORK

and validation, ensuring that generated responses are grounded in accurate
and up-to-date information. Furthermore, the dynamic nature of research in
information retrieval necessitates a continuous update mechanism within RAG
pipelines to accommodate new findings. With proper implementation, RAG
can serve as a reliable resource for researchers, providing them with trustwor-
thy insights and reducing the risk of relying on standalone LLMs that are not
connected to any knowledge base. In the depicted illustration referenced as
Figure 2.1, an inquiry directed towards GPT 3.5 regarding the findings de-
lineated in the scholarly work authored by Sarkar et al. [2023] unveiled two
notable observations: firstly, a deficiency in domain specificity, and secondly,
information cutoff due to GPT 3.5 latest training date being January 2022.

2.2 Retrieval Augmented Generation
A recent study by Lewis et al. [2020] investigates advancements in RAG mod-
els. They detail the architecture and key strategies employed in RAG, which
aim to leverage the strengths of LLMs while simultaneously mitigating their
limitations. The proposed RAG framework integrates parametric and non-
parametric memory structures. The parametric memory involves a pre-trained
seq2seq encoder-decoder transformer, while the non-parametric memory uti-
lizes a dense vector index sourced from Wikipedia. This integration empowers
RAG to retrieve and integrate external knowledge during inference.

Prior studies have underscored the effectiveness of retrieval in enhancing
performance across various NLP tasks when approached independently. No-
table applications include open-domain question answering (Chen et al. 2017),
and fact checking (Thorne et al. [2018]). This thesis builds upon these achieve-
ments, demonstrating that a unified retrieval-based architecture can yield ro-
bust performance using the IR-Anthology.

In the realm of general-purpose architectures for NLP, earlier investigations
have demonstrated substantial success without resorting to retrieval mecha-
nisms. Single, pre-trained language models have exhibited strong performance
on diverse classification tasks in benchmark evaluations such as GLUE (Wang
et al. [2021], Wang et al. [2019]). GPT-2 created by Rao et al. [2021] further
illustrated the robustness of a single, left-to-right, pre-trained language model
across discriminative and generative tasks. Recent advancements, exemplified
by models like BART (Lewis et al. [2019]) and T5 (Raffel et al. [2020], Roberts
et al. [2020]), advocate for a unified pre-trained encoder-decoder model utiliz-
ing bi-directional attention, thereby enhancing discriminative and generative
task outcomes. RAG seeks to expand the scope of tasks addressable by a sin-
gle, cohesive architecture by integrating a retrieval module with pre-trained

10

CHAPTER 2. RELATED WORK

generative language models.

2.2.1 Retrieval and Generation

The RAG framework comprises of two primary components: a retriever in
Equation 2.1 and a generator in Equation 2.2, parameterized by η and θ re-
spectively. The retriever retrieves (topk truncated) distributions over text pas-
sages given an input query x, while the generator generates the next token
based on the context of preceding tokens, the input sequence, and a retrieved
passage.

pη(z|x) (2.1)

• η: Non-parametric retriever.

• x: Sequence given by user.

• z: Text passages to retrieve.

pθ(yi|x, z, y1:i−1) (2.2)

• θ: Parametric generator.

• yi: Target sequence to generate.

• y1:i−1: Sequences previously generated.

The retrieval component adopted from Dense Passage Retrieval (DPR),
employs a bi-encoder architecture that utilizes dense representations of docu-
ments and query representations produced by BERT (Devlin et al. [2019b]).
On the other hand, the generator component utilizes Bidirectional and Auto-
Regressive Transformers (BART) (Lewis et al. [2019]) - a pre-trained seq2seq
encoder-decoder transformer. BART’s architecture effectively combines input
sequences and retrieved content, leveraging its state-of-the-art performance
across various generation tasks.

2.2.2 RAG Evaluation

Evaluating RAG models presents a unique challenge. Traditional metrics like
BLEU and ROUGE scores, which focus on n-gram overlap, may not fully
capture the effectiveness of RAG in incorporating retrieved knowledge. To
address this, Lewis et al. [2020] employed a multifaceted evaluation strategy.

11

CHAPTER 2. RELATED WORK

This approach combined quantitative metrics with human evaluation to assess
RAG’s performance across various tasks.

Specifically, the evaluation encompassed three distinct domains: open-
domain question answering (Guu et al. [2020]), abstractive question answering
(Nguyen et al. [2016]), and Jeopardy question generation based on a portion
of the SearchQA dataset (Dunn et al. [2017]).

Open-domain Question Answering: This evaluation assesses the model’s
ability to answer a wide range of questions without relying on specific pre-
defined domains. It examines how well the model comprehends and responds
to diverse queries sourced from various subjects. RAG set new benchmarks,
achieving state-of-the-art results without specialized pre-training, demonstrat-
ing its robustness. RAG was able to achieve an accuracy of 44.1% accuracy
in natural questions compared to a T5 model which achieved an accruacy of
34.5%.

Abstractive Question Answering: In this context, the evaluation fo-
cuses on the model’s capacity to generate responses that aren’t directly present
in the chunks but entail a comprehensive understanding of the retrieved chunks.
It measures the model’s ability to generate original and informative responses.
RAG outperformed baseline models like BART, exhibiting an improvement of
2.6 Rouge-L points on Open MS-MARCO Natural Langage Generation tasks.
Qualitatively, RAG displayed reduced hallucination tendencies and generated
factually correct text more consistently than comparative models.

Jeopardy Question Generation: This evaluation specifically involves
generating questions in the style of the popular game show "Jeopardy." The
model must construct inquiries that encapsulate diverse pieces of information,
often requiring synthesis from multiple sources. RAG excelled, outperform-
ing BART and showcasing superior factual accuracy and specificity in human
evaluations. Reviewers found BART to exhibit higher factual accuracy than
RAG in merely 7.1% of cases. Conversely, RAG showcased superior factual
correctness in 42.7% of cases. In an additional 17% of instances, both RAG
and BART displayed factual accuracy. These findings distinctly underscore
the efficacy of RAG, surpassing a cutting-edge generation model in factual
precision across the evaluated cases.

2.3 RAG Pipeline
Building on the previous section, this section delves into the basic RAG pipeline
setup. A concise overview of the relevant terminology and the fundamental
RAG workflow will be explored to establish a foundation. An exploration will
be done for each component separately and what the possible configurations

12

CHAPTER 2. RELATED WORK

for it are.

Figure 2.2: Basic flow of a RAG pipeline. Individual steps are illustrated with
circled numbers.

A detailed step by step of Figure 2.2 is presented as follows:

1. Parsing & Chunking: PDFs are first parsed and split into smaller chunks.

2. Encode Chunks: The chunks are then processed into an embedding model
which represents the chunks’ textual content into numerical representa-
tions called embeddings.

3. Index: After the chunks have been encoded, they are then stored into
the vector database and are ready to be retrieved.

4. Encode Query: Once the user gives in a query to the pipeline it is trans-
formed into an embedding similarly as Step 2.

5. Retrieval Method: A similarity search is done between both the encoded
query, and the encoded chunks through the query engine. This is done
to determine which chunk is semantically similar to the query.

6. Similar Chunks & Query: After the similar chunks are retrieved they
are fed into a prompt along with the query. This prompt contains an

13

CHAPTER 2. RELATED WORK

instruction for the LLM on how to utilize the information it has been
given.

7. Prompting: After the prompt has been built it is then fed to the LLM.

8. Generate: A response is generated and sent back to the user.

In Figure 2.2, numerous evaluation avenues are discernible. In the context
of this thesis, the assessment will focus on Step 1, pertaining to the pars-
ing method, Steps 2 and 4, encompassing the encoding method (embedding
model), Step 5, evaluating the Retrieval Method, and Steps 7 and 8, scru-
tinizing the LLM model’s generative capabilities. Prior to engaging in this
evaluation, a succinct elucidation of these components will be provided.

2.4 Transformer Architecture
To establish a comprehensive understanding of the RAG pipeline and it’s com-
ponents as shown in Figure 2.2, this chapter commences with a review of the
fundamental transformer architecture. This foundational review aims to equip
the reader with a clear grasp of the core principles upon which various LLMs
and embedding model, employed within this work. By providing this context,
the discussion can then delve into the specific variations and modifications
implemented in the utilized LLMs and embedding model, highlighting their
unique characteristics in relation to the base transformer architecture.

Prior to 2017, recurrent neural networks (RNNs) dominated the field of
machine translation. However, RNNs suffered from limitations in capturing
long-range dependencies within sentences. The paper "Attention is All You
Need" by Vaswani et al. [2017]) introduced the Transformer, a novel architec-
ture that revolutionized machine translation.

The key innovation of Transformers lies in their reliance on an attention
mechanism. Unlike RNNs that process information sequentially, Transformers
can attend to all parts of the source sentence simultaneously. This allows them
to capture complex relationships between words, even if they are far apart in
the sequence.

The Transformer architecture consists of two sub-modules: an encoder
block and a decoder block as shown in Figure 2.3. The encoder processes
the source sentence, generating a contextual representation for each word.
The decoder then leverages this representation and the attention mechanism
to generate the target sentence word-by-word, focusing on the most relevant
parts of the source sentence for each target word. Furthermore a break down
of the transformer architecture into smaller parts will be useful later on to

14

CHAPTER 2. RELATED WORK

address the differences between the vanilla architecture and the architectures
utilized within this thesis.

Figure 2.3: Vanilla transformer adapted from Vaswani et al. [2017]

15

CHAPTER 2. RELATED WORK

Preprocessing:

• Input Embedding: The foundation for processing textual data in neural
networks lies in the concept of input embedding. It involves transforming
discrete symbolic elements (words, characters) into dense vector repre-
sentations. This embedding process captures the semantic meaning and
relationships between these elements. Each element in the input se-
quence is mapped to a vector in a high-dimensional space, where similar
elements tend to reside closer together geometrically. The dimensional-
ity (d) of this embedding vector is a hyperparameter independent of the
context length.

• Tokenization: Breaks down the input text into individual units, like
words or sub-words, called tokens. This is done through Byte Pair En-
coding (BPE); which is a subword tokenization technique used in trans-
formers. It iteratively merges frequent character pairs to create new
subwords. This creates a smaller vocabulary while handling rare words
(broken down into known subwords) and capturing some word context.

• Positional Encoding: Injects information about the relative position of
each token within the sequence. This done through adding sine and
cosine functions to the word embeddings, where the frequency of these
functions depends on the token’s position. This allows the model to learn
the importance of word order in the sequence.

• Context Window: defined by the context length (L), acts like a sliding
frame that focuses on a portion of the input sequence at a time. Its size
determines how much information the model considers together, enabling
it to capture contextual dependencies between elements. However, a
larger window increases computational cost and may introduce irrelevant
information, while a smaller window might miss important dependencies.
The optimal choice depends on the task, data, and resources.

While a longer context length can theoretically capture more information,
it also presents challenges. As L increases, the number of calculations required
for the attention mechanism grows quadratically (L2). This can significantly
slow down training and inference. A long context might contain irrelevant
information that can distract the model from the most important aspects of
the sequence.

16

CHAPTER 2. RELATED WORK

Encoder Block:

• Multi-head Attention: Allows the model to attend to different parts
of the input sequence simultaneously, capturing relationships between
tokens. This happens in multiple heads (Nx) in parallel, increasing the
model’s ability to learn diverse aspects of the input.

• Feed-forward Network: Introduces non-linearity into the model, allowing
it to learn more complex relationships between the tokens. This non-
linearity is done through the activation function known as rectified linear
unit (ReLU).

• Residual Connections and Layer Normalization: Improve training stabil-
ity and gradient flow through the network.

Decoder Block:

• Masked Multi-head Attention: Similar to the encoder’s attention, but
masks out future tokens in the output sequence to prevent information
leakage during generation.

• Encoder-decoder Attention: Allows the decoder to attend to the encoded
representation from the encoder, incorporating context from the input
sequence into the generated output.

• Feed-forward Network: Similar to that of the encoder block.

• Output Layer: Converts the final decoder output into the desired format,
like words in a translation task.

The vanilla transformer architecture revolves around two core functional-
ities: the encoder processing the input sequence and the decoder generating
the output based on the encoded information. This versatility allows it to be
employed in various configurations beyond its core encoder-decoder structure.

• Encoder-Decoder (Full Transformer): This is the original form and finds
application in seq2seq tasks like neural machine translation. Both the
encoder and decoder work together, with the encoder processing the
input sequence and the decoder generating the corresponding output
sequence.

17

CHAPTER 2. RELATED WORK

• Encoder-Only (Embedding Model): This configuration utilizes only the
encoder portion of the transformer. The encoded representation of the
input sequence serves as a feature vector for various tasks like classifica-
tion, sequence labeling, or creating embeddings.

• Decoder-Only (Large Language Model): In this setup, only the decoder
is employed, with the encoder-decoder cross-attention module removed.
This configuration is commonly used in sequence generation tasks like
language modeling, where the model learns to generate text sequences
(i.e., question answer format) based on the provided input.

This foundation is further strengthened by the powerful attention mech-
anisms, particularly self-attention, multi-head attention, and masked multi-
head attention. These mechanisms enable the model to focus on specific,
relevant parts of the input sequence.

Self-Attention:

This mechanism allows the model to attend to all elements within a single
sequence, capturing relationships between tokens. It involves three key steps:

Linear Projections: Each token is projected into three different vector
spaces given in Equations 2.3, 2.4, 2.5: Query (Q), Key (K), and Value (V).
These projections are learned during training (Wq,Wk,Wv), then it is multi-
plied to the input sequence embedding (X).

Q = WqX (2.3)

K = WkX (2.4)

V = WvX (2.5)

Scaled Attention Scores: The model calculates a score for each pair of
tokens, indicating how relevant one token (V) is to another token (Q). These
scores are obtained by multiplying the Q vector of a token with the K vector
of all other tokens in the sequence. They are then scaled by a factor of 1/

√
dk

where dk is used to counteract the effect of the vanishing gradient problem
(during training) if the softmax of the dot product of Q and K returns a very
small gradient. The final scaled attention scored can be observed in Equation
2.6

18

CHAPTER 2. RELATED WORK

Scaled Attention Score =
QKT

√
dk

(2.6)

Softmax and Weighted Sum: A softmax function is applied to the scaled
attention scores, converting them into a probability distribution. This distri-
bution indicates how much attention each token should receive. Finally, the
model takes a weighted sum of the Value vectors based on the attention scores,
resulting in a context vector in Equation 2.7 for each token that incorporates
information from relevant parts of the sequence.

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (2.7)

Multi-Head Attention:

This extends self-attention by creating multiple heads (Nx) that learn dif-
ferent aspects of the relationships between tokens. The input sequence, Q,
K, and V vectors are all linearly projected Nx times, resulting in Nx sets of
Q, K, and V vectors for each head. Self-attention is performed independently
on each head using their respective Q, K, and V vectors. The outputs from
each head are then concatenated to form a final, richer representation of the
sequence. The multi-head attention concatenation can be seen in Equation
2.8. While a visual representation can be seen in Figure 2.4

Multi-Head Attention(Q,K, V) = Concat(head1, . . . , headNx)W
O (2.8)

Masked Multi-Head Attention:

Used primarily in the decoder of a transformer, this mechanism is similar to
multi-head attention with an added masking step. Since the decoder generates
the output sequence one token at a time, it shouldn’t attend to future tokens in
the output to prevent information leakage. During attention score calculation,
future tokens in the sequence are masked out by setting their attention scores
to negative infinity before applying the softmax function. This ensures the
model only attends to past tokens when generating the current output.

19

CHAPTER 2. RELATED WORK

Figure 2.4: Multi-Head Attention Mechanism. Every head is represented by a
Query, Key, and Value

2.5 Large Language Models
While the foundational principles of transformers, such as self-attention and
multi-head attention, remain integral, modifications have been introduced to
address specific limitations associated with Language Model limitations. No-
tably, the LLMs incorporate advanced memory optimization techniques, al-
lowing them to efficiently process and retain information.

Building upon these foundational principles, most large language models
have transitioned to decoder-only transformer architectures, streamlining the
model for text generation tasks. This shift enables a more efficient focus on
the core strength of LLMs: producing creative and informative text formats.
Within this realm of decoder-only transformers, GPT-4 by OpenAI [2023]
stands out for several key reasons. Firstly, its advanced memory optimization
techniques allow it to process and retain information over longer contexts, lead-
ing to more coherent and factually accurate outputs. Secondly, GPT-4 exhibits
superior performance on various benchmarks, such as Massive Multitask Lan-
guage Understanding in 57 subjects (MMLU) introduced by Hendrycks et al.
[2021] where it achieved a score of 86.4%. It also demonstrated its ability to
excel in diverse tasks like code generation, question answering, and creative
writing.

While acknowledging the advancements offered by closed-source models

20

CHAPTER 2. RELATED WORK

like GPT-4, open-source LLMs offer distinct advantages for academic research.
These advantages include fostering transparency and cost-effectiveness, along
with enabling the reproducibility of results through readily available models.
Additionally, open-source LLMs facilitate easier deployment on local systems,
streamlining the research process.

2.5.1 Llama2 Architecture

Figure 2.5: Llama2 decoder-only transformer architecture as introduced by Tou-
vron et al. [2023].

This section delves into the architectural underpinnings of the evaluation LLM
which will be later introduced in Chapter 3 by first examining the foundational

21

CHAPTER 2. RELATED WORK

Llama2 13b architecture upon which it is built.
A significant recent advancement in large language models (LLMs) was

the introduction of the Llama2 model presented by Touvron et al. [2023].
This work deviates from the standard transformer architecture by employing
a decoder-only configuration. In Figure 2.5 a decoder-only transformer archi-
tecture of Llama 2 can better visualize the difference between it and a vanilla
transformer.

Root Mean Square Layer Normalization (RMSNorm):

RMSNorm first introduced by Zhang and Sennrich [2019] is a simplified
version of layer normalization used in vanilla transformers. It calculates the
Root Mean Square (RMS) of activation’s along specified dimensions, effectively
normalizing the data. The key Differences between it and layer norm used in
vanilla transformer architecture is that RMSNorm is computationally cheaper
than layer normalization due to its potentially simpler calculations. As well
as it incorporates learnable scaling factors (weights) for each dimension. This
allows the model to dynamically adjust the normalization based on the specific
task and data it encounters during training.

Swish Gated Linear Units (SwiGLU):

Shazeer [2020] introduced SwiGLU which is an activation function that
combines the strengths of two existing techniques. Firstly the swish activa-
tion function which is a smooth, non-monotonic function addresses vanishing
gradients and "dying ReLU" issues, commonly encountered with the ReLU
activation. It offers a smooth transition between positive and negative values,
improving gradient flow during backpropagation. Secondly the Gated Linear
Unit (GLU) which incorporates a gating mechanism that controls the infor-
mation flow within the network. A sigmoid function acts as a "gate" that
modulates the output of a linear transformation, allowing the network to learn
selectively which information to pass through. Switching out ReLU to SwiGLU
allows the model to improve the gradient flow which avoids vanishing gradi-
ents, adaptive information flow offered by the gating mechanism which allows
it to selectively learn and transmit relevant information, and finally potential
efficiency.

Rotary Positional Embedding (RoPE):

This approach incorporates positional information more efficiently com-
pared to traditional positional encoding. The model can process longer se-

22

CHAPTER 2. RELATED WORK

quences of text, leading to improved understanding and generation capabili-
ties. First introduced by Su et al. [2024] RoPE applies a rotation matrix to
the token’s embedding vector. The rotation angle is proportional to the to-
ken’s absolute position in the sequence. For example, the first token might be
rotated by a small angle, and subsequent tokens by progressively larger angles.

Grouped-query attention (GQA) & KV Cache:

GQA was proposed by Ainslie et al. [2023], which aimed to decrease the
tension between performance and computational efficiency. Transformers rely
heavily on the attention mechanism, which allows them to attend to specific
parts of the input sequence. However, the standard attention mechanism in-
volves extensive computations, especially for LLMs with a large number of
parameters and attention heads. This high computational cost translates to
slower training times and increased resource requirements for inference, hin-
dering the practical application of LLMs. Multi - head attention traditionally
has each query head within the attention layer attending to the entire input
sequence independently. GQA as seen in Figure 2.6 groups these query heads
into multiple smaller groups, each sharing a single key and value head.

Figure 2.6: Grouped Query Attention as introduced by Ainslie et al. [2023]

KV Cache, also known as key-value cache, connects to GQA in the con-
text of optimizing the efficiency of LLMs, specifically by reducing redundant
computations during the attention mechanism. It acts as a temporary storage
mechanism that stores frequently accessed key-value pairs. In the context of

23

CHAPTER 2. RELATED WORK

GQA, the key could represent the input sequence embedding and the value
could represent the intermediate attention scores calculated for specific groups
of query heads. When a specific group of query heads needs to attend to the
same input sequence, GQA can first check the KV Cache to see if the corre-
sponding attention scores (value) have already been computed for the same
key (input sequence embedding). If the scores are found in the cache, GQA
can reuse them directly, avoiding redundant calculations. This significantly
improves efficiency compared to recalculating the scores every time.

Training:

Touvron et al. [2023] trained their Llama2 model on a carefully curated
dataset of 2 trillion tokens, sourced from publicly available resources. This
emphasis on factual sources, achieved through up-sampling, aims to enhance
the model’s knowledge base and minimize the generation of factually inaccurate
information.

Model Sizes:

Llama2 7B: This base model boasts 7 billion parameters, offering a bal-
ance between performance and resource efficiency.

Llama2 13B: With 13 billion parameters, this model exhibits improved
capabilities compared to the 7B variant, particularly in tasks requiring deeper
understanding.

Llama2 70B: The largest model in the series, featuring 70 billion param-
eters, pushing the boundaries of LLM performance.

Performance:

The primary distinction between the models lies in their parameter size and
associated capabilities. As the parameter size increases, the model’s capacity
to learn complex relationships and generate nuanced text grows. The 70B
model demonstrates the most impressive performance across various bench-
marks, including MMLU scores and reasoning tasks. In Table 2.1 the different
MMLU values for the different Llama2 sizes can be seen. The 13B model
delivers competitive performance, while the 7B variant offers a more econom-
ical choice with respectable capabilities. The video random access memory
(vRAM) requirement scales with the parameter size. The 7B model has the
lowest requirement, followed by the 13B and 70B models, respectively.

This analysis of the Llama2 architecture provides a crucial foundation for

24

CHAPTER 2. RELATED WORK

Llama2 Parameters MMLU Score
7B 45.3%
13B 54.8%
70B 68.9%

Table 2.1: Llama2 Parameters and MMLU Scores as reported by Touvron et al.
[2023].

understanding the discussion of the evaluation LLM in Chapter 3 and its spe-
cific adaptations built upon this innovative base.

2.6 Embedding Model
To facilitate a deeper understanding of the specific embedding model employed
within this thesis, a preliminary discussion on the state-of-the-art Bidirectional
Encoder Representations from Transformers (BERT) model is necessary. This
is because a significant portion of contemporary embedding models leverage
architectures similar to BERT.

Bidirectional Encoder Representations from Transformers:

BERT stands as a landmark achievement in NLP. Introduced by Devlin
et al. [2019b], it leverages the Transformer architecture in a novel way to
achieve state-of-the-art performance on a wide range of NLP tasks. BERT’s
architecture is an encoder - based transformer, a powerful neural network for
sequence modeling. The Transformer encoder utilizes a self-attention mecha-
nism, allowing each word in a sentence to attend to all other words, capturing
their relationships. This is a significant improvement over previous models
that processed text sequentially, left-to-right or right-to-left. BERT employs
a deep encoder stack, typically with multiple layers of Transformer encoders,
allowing it to learn complex contextual representations of words. BERT’s
training process is a two - step process (pre-training, and fine-tuning). The
first being pre-trained on a massive dataset of text (e.g., books, articles) in an
unsupervised manner.

Masked Language Modeling (MLM): Randomly masks words in the
input sentence and trains the model to predict the masked words based on
the surrounding context. This enforces the model to learn deep contextual
representations for each word.

Next Sentence Prediction (NSP): Provides the model with two sen-
tences and trains it to predict if the second sentence follows the first one in the

25

CHAPTER 2. RELATED WORK

original text. This objective helps the model understand relationships between
sentences.

Fine-tuning: The pre-trained BERT model is then fine-tuned for specific
NLP tasks like question answering, sentiment analysis, or text summarization.
This fine-tuning involves adding a task-specific output layer on top of the pre-
trained BERT encoder and training the entire model on labeled data for the
desired task.

This pre-training and fine-tuning approach allows BERT to acquire general-
purpose knowledge from vast amounts of text data and then specialize in spe-
cific tasks through fine-tuning.

This analysis of the BERT architecture provides a crucial foundation for
understanding the discussion of the embedding in Chapter 3.

A foundational understanding of the BERT architecture, as presented in
this chapter, is essential for the understanding the embedding model used in
RAG pipeline which will be explored in Chapter 3.

2.7 Chapter Conclusion
This chapter introduces the IR-Anthology and the rationale behind employ-
ing a RAG framework for its functionality. We discuss the potential benefits
of RAG in addressing limitations encountered with standalone LLMs. Sub-
sequently, the chapter delves into the core concepts of RAG, outlining the
fundamental pipeline alongside its constituent components and their interac-
tion flow. A key focus is placed on the Transformer architecture, which plays
a pivotal role in both the retrieval (embedding model) and generation (LLM)
aspects of RAG.

Chapter 3 will explore the specific LLMs, embedding model, and other
components utilized within the RAG pipeline, as depicted in Figure 2.2. Ad-
ditionally, detailed setups for these components will be provided.

26

Chapter 3

Approach

Chapters 1 and 2 established the limitations of LLMs in three key areas: hal-
lucinations, information cutoff, and domain specificity. Chapter 2 explored
RAG as a potential solution, demonstrating its efficacy and robustness in
open-domain question answering, abstractive question answering, and Jeop-
ardy question generation tasks. Followed by the exploration of the RAG
pipeline, along with its individual components, and the scientific underpinnings
of transformer architectures and its variations. Building upon this foundation,
Chapter 3 will delve deeper into the selected components and variations that
have been implemented within this thesis.

This chapter dives into the core components of the system. It starts by
introducing the two LLMs used in this thesis, Mistral 7B and Prometheus
13B, highlighting their differences from the Llama2 architecture. The focus
then turns to optimization techniques, including quantization and vLLMs.
Next, the chapter explores the crucial role of the embedding model, which
translates text into numerical vectors.

The narrative then introduces Llamaindex, a unifying platform that or-
chestrates the entire RAG logic. This framework seamlessly integrates all the
previously discussed components: parsing methods, indexing, retrieval, and
generation. Finally, the chapter delves into retrieval methods, explaining how
the RAG pipeline finds relevant information from the vast knowledge base.

3.1 Mistral 7B
Mistral 7B, introduced by Jiang et al. [2023], is a decoder-only transformer
language model serving as the backbone and primary RAG component for
response generation in this thesis. This open-source model excels due to its
robust architecture, surpassing many alternatives and revolutionizing the ca-
pabilities of open-source models upon its release. Building upon the existing

27

CHAPTER 3. APPROACH

Llama2 architecture, Jiang et al. [2023] leveraged two established components:
Sliding Window Attention (SWA), and Rolling Buffer Cache. These additions
enhance the model’s ability to handle longer sequences effectively while reduc-
ing computational cost. Additionally the model parameters for Mistral 7B can
be observed in Table 3.1.

Parameter Value
dim 4096

n-layers 32
head-dim 128
hidden-dim 14336
n-heads 32

n-kv-heads 8
window-size 4096
context-len 8192
vocab-size 32000

Table 3.1: Mistral 7B model architecture from Jiang et al. [2023].

Sliding Window Attention:

SWA (Sliding Window Attention) introduced by Beltagy et al. [2020] har-
nesses the hierarchical architecture of a transformer to broaden its information
attention beyond the designated window size W . In the context of transform-
ers, each layer consists of hidden states. Hidden states represent intermediate
activations within the encoder/decoder stacks. They capture the evolving fea-
ture representation of the input sequence as it progresses through the network.
The hidden state at position i within layer k, denoted as hi, serves as a repre-
sentative encoding of the input token at that specific position. The attention
mechanism allows this hidden state to attend to all hidden states from the
previous layer within a specified window, defined by the range between i−W
and i.

This recursive process empowers the hidden state hi to access information
from the input layer, encompassing tokens up to W ∗ k positions away. As
illustrated in Figure 3.1, this mechanism facilitates a comprehensive under-
standing of the input sequence, even when it extends beyond the immediate
window of attention.

28

CHAPTER 3. APPROACH

Figure 3.1: Sliding window attention adapted from Jiang et al. [2023].

Rolling Buffer Cache:

Jiang et al. [2023] proposed a technique called "rolling buffer cache" to
limit the cache size and improve memory efficiency. This cache has a fixed
size, denoted byW , and stores the information for each timestep i in a specific
location within the cache based on a modular operation (imodW). This es-
sentially creates a circular buffer where older entries are overwritten as newer
ones come in, preventing the cache from growing indefinitely. They use an
example with W = 3 in Figure 3.2 to illustrate this concept. Notably, this
approach reduces the cache memory usage by 8x for a sequence length of 32k
tokens, without sacrificing the model’s performance.

Performance:

Jiang et al. [2023] offers two versions of its 7B parameter language model:
a pre-trained base model and an instruction-tuned model specifically designed
for chat applications. The instruction-tuned model1 demonstrates superior
performance in chat-like settings.

While the base model can be run with 14.4 GB of vRAM, Jiang et al.
[2023] recommends using a system with at least 24 GB of vRAM for optimal
performance. Additionally, the model achieves a reported MMLU score of
60.1%. Which outperforms the Llama2 13B model as found in Table 2.1. For
this thesis the instruction-tuned model will be utilized.

1https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-AWQ

29

https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-AWQ

CHAPTER 3. APPROACH

Figure 3.2: Rolling Buffer Cache adapted from Jiang et al. [2023]. The cache
operates with a predefined capacity of W entries. Data is stored using a key-value
structure, where each key-value pair is placed at a specific position determined by
the modulo operation (imodW) on the key’s index i. If the index i exceeds the
cache’s capacity W , the oldest entries are overwritten to accommodate new data.
The most recently generated tokens and their corresponding internal representation
are highlighted for easy identification.

3.2 Prometheus 13B
According to Kim et al. [2023], the recent trend in evaluating long-form re-
sponses involves using powerful, proprietary LLMs like GPT-4. However, this
approach raises concerns for practical use due to the limitations inherent to
closed-source models, such as lack of control over updates, potential bias,
and high costs. Kim et al. [2023] reported that evaluation using GPT-4 for
1000 samples costs over $2000. To address these issues, the authors propose
Prometheus, a fully open-source LLM based off the pre - training of Llama2
which is then specifically finetuned for evaluation tasks. When provided with
relevant reference materials, Prometheus achieves evaluation performance com-
parable to GPT-4. Kim et al. [2023] developed a new dataset called FEED-
BACK COLLECTION to train Prometheus, which includes various evaluation
instructions, responses, and feedback generated by GPT-4. Compared to other
open-source and commercial options, Prometheus demonstrates strong perfor-
mance in evaluating text based on customized criteria. Additionally, it shows
promise as a general-purpose reward model due to its high accuracy in bench-
marks that measure human preference.

FEEDBACK COLLECTION is a method for gathering information about

30

CHAPTER 3. APPROACH

how well a LLM performs a task. It involves creating a dataset of questions,
instructions, and responses that are used to train an evaluation LLM. This
evaluation LLM then scores the responses of other LLMs based on a set of
criteria. The method is designed to be fair and unbiased. It uses a large
number of examples with different scores so that the evaluation LLM doesn’t
learn to favor any particular type of response.

Here’s a breakdown of the components involved:

Input:

• Instruction: This is a question or task that the LLM needs to complete.

• Response to Evaluate: This is the answer that the LLM gives to the
instruction.

• Customized Score Rubric: This is a set of guidelines that tells the eval-
uation LLM how to score the response. It includes things like what the
LLM should look for in a good answer and how to rate different aspects
of the response.

• Reference Answer: This is an example of a perfect answer to the instruc-
tion. The evaluation LLM can use this to compare the response it is
evaluating.

Output:

• Feedback: This is an explanation of why the response received a partic-
ular score. This helps to understand how the evaluation LLM arrived at
its decision.

• Score: This is a number between 1 and 5 that indicates how well the
response performed on the task.

Since Prometheus was built upon Llama2 it offers the same 7B and 13B
finetuned models. To choose the evaluation model required for this thesis the
Multi-Turn Benchmark (MT Bench) - Human Preference metric was the most
suitable. The MT-Bench first introduced by Zheng et al. [2023] is a metric
that measures the ability of LLMs to engage in coherent, informative, and
engaging conversations. The authors hand-crafted multiple customized score
rubrics and generated a reference answer using GPT-4 for each test prompt
as well. Which in turn created a new evaluation benchmark called MT-Bench
Human Preference. In Table 3.2 it can be observed how fine-tuning improved

31

CHAPTER 3. APPROACH

and aligned more with human preferences. For this thesis the Prometheus
13B2 will be utilized as the evaluator LLM.

Evaluation LM MT - Bench (Human Preference)
Llama2 7B 51.78%
Llama2 13B 52.34%

Prometheus 7B 55.14%
Prometheus 13B 57.72%
GPT-4-0613 63.87%

Table 3.2: MT - Bench Human Preference for different models as reported by Kim
et al. [2023].

3.3 Quantization & vLLM:
The remarkable capabilities of LLMs in tasks like text generation, transla-
tion, and question answering come at a significant computational cost. Their
immense computational demands pose a significant challenge for widespread
deployment. Training and running LLMs typically require expensive hardware
with substantial memory resources, limiting their accessibility and practicality.

This thesis utilizes LLMs that have been quantized to address the compu-
tational complexity of LLMs. Quantization is a model compression strategy
that reduces the memory footprint and computational cost of a model by con-
verting its weights and activations from high-precision floating-point numbers
(e.g., 32-bit) to lower-precision data types (e.g., 8-bit integers) with minimal
impact on accuracy. This approach enables significant gains in model effi-
ciency, facilitating the deployment of LLMs on resource-constrained devices
and fostering broader adoption.

In this work, all LLMs employed have been quantized using the Activation
Aware Weight Quantization (AWQ) technique introduced by Lin et al. [2023].
AWQ tailors the quantization process to consider both the weights and acti-
vations within each layer, leading to improved accuracy compared to standard
quantization methods.

vLLM3(Kwon et al. [2023]) is a high-throughput and memory-efficient infer-
ence and serving engine specifically designed for LLMs for both floating-point
numbers, and their quantized counter parts (AWQ). It facilitates the imple-
mentation of efficient attention mechanisms like Flash Attention and Paged
Attention.

2https://huggingface.co/TheBloke/prometheus-13B-v1.0-AWQ
3https://github.com/vllm-project/vllm

32

https://huggingface.co/TheBloke/prometheus-13B-v1.0-AWQ
https://github.com/vllm-project/vllm

CHAPTER 3. APPROACH

Activation Aware Weight Quantizaion:

AWQ (Lin et al. [2023]) recognizes that not all weights in a model are
equally important. Some weights have a significant impact on the final out-
put, while others have a minimal effect. AWQ uses a calibration step to identify
these "salient weights." A small subset of the training data is passed through
the model, and the activations are analyzed. Based on this analysis, AWQ
determines which weights have a larger influence on the activations. Once
identified, these crucial weights are protected during the quantization process.
They are quantized with higher precision to minimize the introduction of er-
rors. The remaining, less critical weights are quantized with lower precision.
This approach significantly reduces the overall memory footprint of the model
without compromising accuracy. In Figure 3.3 it can be observed how only the
salient weights are left with their original weights, while the remaining weights
are quantized. The red shading of the X matrix represents how salient the
weights are.

Figure 3.3: Standard Quantization vs. AWQ (Lin et al. [2023]).

Flash Attention:

Flash Attention (Dao et al. [2022]) leverages hardware accelerators, such as
graphical processing units (GPU) or tensor processing unit (TPU), to signif-
icantly accelerate attention calculations within the LLM. Standard attention
mechanisms, a core component in many LLMs, are computationally expensive
and struggle with long sequences due to their quadratic memory complexity.
This is where Flash Attention offers a significant performance improvements
and efficient memory utilization.

In standard attention, the model calculates a compatibility score between

33

CHAPTER 3. APPROACH

every element in the input sequence. This process requires storing a large at-
tention matrix in memory, whose size scales quadratically with the sequence
length. For long sequences, this matrix becomes enormous, exceeding the mem-
ory capacity of available hardware. Additionally, standard attention involves
frequent data transfers between slower memory (high bandwith memory) and
faster on-chip memory (static random-access memory) on GPUs, leading to
performance bottlenecks.

Flash Attention tackles these challenges through two key innovations. First
is tiling in which the attention matrix is cleverly divided into smaller, manage-
able tiles. This approach significantly reduces the memory footprint required
to store the entire matrix at once. Secondly instead of repeatedly transferring
data between memory and performing calculations step-by-step, Flash Atten-
tion performs all necessary operations (key, query, and value transformations)
within the on-chip memory in one go. This eliminates the need for frequent
data transfers and boosts performance resulting in a reduced memory footprint
by utilizing tiling.

Flash Attention requires significantly less memory to process long sequences
compared to standard attention. This enables processing of larger models and
longer sequences on hardware with limited memory resources. Also resulting in
Faster Inference by minimizing data transfers and performing fused operations
in on-chip memory, Flash Attention significantly accelerates the attention cal-
culations. This translates to faster model inference times and improved overall
performance.

Flash Attention addresses the memory bottleneck and performance lim-
itations of standard attention mechanisms. By leveraging tiling and fused
operations, it offers a memory-efficient and high-performance solution for pro-
cessing LLMs, particularly those dealing with long sequences. This technique
paves the way for deploying powerful LLMs on resource-constrained devices.

Paged Attention:

The attention mechanism involves storing information about past words,
like their embeddings, in the GPU’s memory, which is referred to as the KV
cache. The challenge is that for large models and long sequences, this KV cache
can become very large, consuming a significant amount of GPU memory. This
memory limitation restricts the length of sequences the LLM can handle and
reduces the number of requests a system can process simultaneously.

PagedAttention (Kwon et al. [2023]) tackles this problem by introducing a
smarter way to manage the KV cache. Instead of storing the entire KV cache as
one contiguous block, PagedAttention divides it into smaller, fixed-size blocks.
A separate lookup table keeps track of which block holds the information for

34

CHAPTER 3. APPROACH

a particular word in the sequence. When the LLM needs information about a
word, it uses the lookup table to find the corresponding block in memory and
retrieves only the relevant data. This eliminates the need to keep the entire
cache readily available.

The experiments in this thesis were conducted on an A100 GPU with 40
GB of vRAM. This hardware configuration provides a robust platform for
evaluating the performance and efficiency of the quantized LLMs.

3.4 BGE Large:
In their work, Xiao et al. [2023] introduce Chinese Text Embedding Models (C-
TEM) , a comprehensive set of well-trained multi - lingual embedding models.
These models are based on a BERT-like architecture, where the last layer’s
hidden state of a special classify Token ([CLS]) is used as the embedding.
They come in three sizes: large (326M parameters), base (102M parameters),
and small (24M parameters). The large model achieves the best overall per-
formance, significantly outperforming other publicly available models. The
small model, while competitive with others in C-TEM, is also much faster and
lighter, making it ideal for large knowledge bases and high-throughput appli-
cations. This range of model sizes allows users to choose between efficiency
and representation quality based on their specific needs.

In the scope of this thesis, the utilization of the expansive C-TEM was em-
ployed, wherein textual information is encapsulated within a vector of dimen-
sions 1024 (bge-large-en-v1.54). The selection of this model was predicated
upon its suitability for a task retrieval scenario, specifically geared towards
identifying the most pertinent documents in response to a given query within
an extensive text corpus. The primary objective involves retrieving the top-k
documents that exhibit the highest similarity to the specified query.

To assess the efficacy of the C-TEM retrieval system, Xiao et al. [2023]
assessed two fundamental criteria were taken into account: its proficiency in
accurately ranking documents (ranking metric) and its capability to identify a
comprehensive set of relevant documents (recall metric). The evaluative metric
employed for this analysis was the Normalized Discounted Cumulative Gain
for the topk value of 10 (NDCG@10). The ensuing results, as presented in
Table 3.3, delineate the performance outcomes of the three available models
under consideration.

4https://huggingface.co/BAAI/bge-large-en-v1.5

35

https://huggingface.co/BAAI/bge-large-en-v1.5

CHAPTER 3. APPROACH

Model Dimension Parameters NDCG@10
BGE (small) 512 24M 63.07
BGE (base) 768 102M 69.53
BGE (large) 1024 326M 71.53

Table 3.3: Different embedding models used from Xiao et al. [2023]

3.5 Llamaindex
Llamaindex5 is a software framework specifically designed to augment the ca-
pabilities of LLMs in the domain of RAG. Some of the core functionalities of
Llamaindex are data integration, data preprocessing, and retrieval augmenta-
tion. Llamaindex establishes seamless connections between LLMs and diverse
data repositories, including document databases, vector stores, and even other
LLMs. This grants LLMs the ability to retrieve task-relevant information from
these external sources. It can manipulate the retrieved data to render it suit-
able for consumption. This may encompass operations such as summarization,
information extraction, and tokenization. During the text generation process,
Llamaindex dynamically retrieves pertinent data based on the evolving context
and injects it into the LLM.

The user furnishes a prompt or starting point for the text generation
task, along with any pertinent contextual information. This is then provided
through the flow with a provided prompt and context to execute a retrieval
strategy, identifying and retrieving relevant information from the integrated
data sources. The retrieved data undergoes processing to render it compatible
with LLM consumption, and then it is fed back to the LLM as supplementary
information. The LLM leverages both its internal knowledge repository and
the retrieved data to generate text that is not only factually accurate but also
informative and relevant to the prompt and context.

By furnishing LLMs with access to pertinent data, LlamaIndex facilitates
the generation of text that is more accurate, informative, and factually sound.
The retrieved data bolsters the LLM’s ability to maintain coherence and con-
sistency throughout the generated text. LlamaIndex’s capacity to integrate
diverse data sources and tools renders it adaptable to a broad spectrum of use
cases. In essence, LlamaIndex empowers LLMs to move beyond their internal
knowledge base (from pre-training) and leverage external information for a
more robust and informative text generation process.

There are multiple software frameworks that offer this RAG logic, such
5https://github.com/run-llama/llama_index

36

https://github.com/run-llama/llama_index

CHAPTER 3. APPROACH

as Langchain6, and Haystack7. However, Llamaindex offers a more robust
framework for evaluation and easy of change of techniques, and methods.

3.5.1 Parsing/Chunking Methods

In the course of this thesis, two distinct methodologies were employed: token-
based parsing and sentence parsing. Prior to delving into the intricacies of
these parsing methods, it is imperative to elucidate that the IR-Anthology
under consideration constitutes a collection of PDF documents. The initial
step in extracting textual content from these documents necessitates the use
of a PDF reader. In the context of this study, the PyPDF 8 library was
employed to facilitate the extraction of text from the aforementioned PDFs.
Subsequently, a comprehensive discussion on the employed parsing methods
will ensue.

Token Based Chunking:

This is the most straightforward approach. You define a desired number of
tokens for each chunk (e.g., 512 tokens). The text is then divided into chunks
of this size as much as possible. This is computationally efficient but may lead
to context loss at chunk boundaries. Adjacent chunks have some overlap (e.g.,
the last few sentences of one chunk are included in the beginning of the next).
This helps maintain context by providing the LLM with information from both
sides of the chunk boundary. The overlap size is a parameter you can adjust
based on your task and the LLM’s requirements. The tokenization process to
know which words, or sub-words to be selected hinges on the LLM’s tokenizer.

Some tasks, like summarization, may benefit from larger chunks to capture
broader context. Question answering may prefer smaller chunks to focus on
relevant sections. Larger chunks with some overlap generally preserve context
better than smaller, non-overlapping chunks.

The token chunking method hinges primarily on two pivotal parameters:
namely, the chunk size and the chunk overlap. Figure 3.4 displays token based
chunking method for three chunks.

6https://github.com/langchain-ai/langchain
7https://github.com/deepset-ai/haystack
8https://github.com/py-pdf/pypdf

37

https://github.com/langchain-ai/langchain
https://github.com/deepset-ai/haystack
https://github.com/py-pdf/pypdf

CHAPTER 3. APPROACH

Figure 3.4: Token based chunking on three sentences.

Sentence Window Chunking:

In the context of SW chunking, the emphasis lies in partitioning the text
into sentences, thereby forming discrete chunks that correspond to individual
sentences. Given the inherent variability in sentence lengths, these chunks
exhibit non-uniform sizes, distinguishing them from the standardized dimen-
sions observed in token-based chunking. Regular expressions (regex) is used
to split up the text into sentences. Following the segmentation of the PDF
into sentence-based chunks, each chunk is augmented with metadata linking
it to the adjacent sentences, thereby substantiating the inclusion of the term
"window" in this methodological approach.

During retrieval and finding the most similar search to the query it is done
on a singular sentence level; however, during synthesis namely step 6 in figure
2.2 the surrounding sentences are provided as the entire context. An example
of what is passed into the prompt can be observed in Figure 3.5, provided a
window of 3.

Figure 3.5: Sentence Window based chunking on three sentences.

3.5.2 Indexing/Embedding of Chunks

Following the application of the chunking method, the encoded chunks (embed-
dings) are then stored within a vector index. While various implementations
exist for vector indexing, this work utilizes Qdrant for this purpose. To provide
context before exploring Qdrant in detail, a general overview of the underlying
algorithms used to construct vector indexes will be presented.

38

CHAPTER 3. APPROACH

Hierarchical Navigable Small World (HNSW):

HNSW, as introduced by Malkov and Yashunin [2018], is an algorithm
designed for approximate nearest neighbor search in high-dimensional vector
embeddings. Several parameters influence the algorithm’s performance, such
as the number of neighbors connected to each data point in the graph (M).
IncreasingM enhances recall but at the cost of search speed. The search effort
parameter (Ef) determines the number of neighbors explored during a search,
where a higher Ef leads to improved search accuracy but longer search times.
Additionally, the level parameter influences the graph’s hierarchy, connecting
distant clusters of points and enabling efficient "jumps" during search.

To set up the index, each data point, represented by its embedding, is
transformed into a node in the graph. The process involves the following steps
for each node:

• Randomly sample M other data points.

• Calculate the distance between the node and each sampled point.

• Connect the node to the M closest points, forming its immediate neigh-
bors at Level 0.

Moving to the upper levels involves the following steps:

• Create a shortlist of candidate nodes for further connections, achieved by
either selecting a random subset of nodes from the previous level (Level
L-1) or choosing nodes that haven’t reached their maximum number of
connections yet.

• For each node in the shortlist: Sample a small number of points (e.g.,√
M) from the previous level (Level L-1). Calculate the distance to all

points in the shortlist, and among these, connect to the furthest point.
This connection acts as a "shortcut" to potentially distant clusters.

Navigability and efficiency in HNSW involve different levels with specific
roles. In the lower levels (Level 0), the focus is on connecting very close
neighbors to optimize precision for local searches. As one ascends to upper
levels, the introduction of "shortcut" connections enables jumps to potentially
distant but similar clusters in the data. This design establishes a navigable
small world, facilitating efficient exploration of nearby points and the ability
to jump to relevant areas when necessary.

39

CHAPTER 3. APPROACH

The parameter M governs the density of connections and search speed. A
higher M enhances recall but extends both the index build and search time.
Ef acts as a balance between search accuracy and efficiency. A higher Ef re-
sults in more comparisons, potentially improving search results at the expense
of increased search time. The introduction of levels establishes a hierarchy
that facilitates exploration of both local neighborhoods and distant clusters.
Through careful parameter selection, HNSW achieves a well-balanced trade-
off between search speed and accuracy, positioning it as a suitable choice for
approximate nearest neighbor searches in high-dimensional vector spaces. For
this thesis when utilizing HNSW the parameters were as follows:

• Ef : 100

• M : 16

Qdrant:

The core of Qdrant 9 is written in Rust, a programming language known
for its speed and memory safety. This makes Qdrant efficient androbust for
handling large datasets and complex searches. Qdrant utilizes HNSW algo-
rithm to build a navigable graph structure from the vector embeddings. To
handle large datasets efficiently, Qdrant can store embeddings on disk while
keeping frequently accessed data in memory. Qdrant provides a clean and con-
venient API for developers to interact with the database. This makes it easy to
store, search, and manage vector embeddings within their applications. Over-
all, Qdrant offers a powerful and versatile open-source solution for building
applications that leverage the power of vector similarity search.

Llamaindex provides a high-level interface (wrapper) for Qdrant databases,
streamlining integration into the query engine.

3.5.3 Retrieval

Following the parsing and indexing of document chunks, the appropriate re-
trieval engine is selected. Subsequently, the retrieval method’s parameters,
including the topk value, require careful consideration.

Topk refers to the maximum number of most relevant chunks retrieved by
the chosen method. Intuitively, a larger topk value suggests a broader context
retrieved from the index, potentially leading to a more comprehensive response
to the query.

9https://github.com/qdrant/qdrant

40

https://github.com/qdrant/qdrant

CHAPTER 3. APPROACH

However, this selection is not without limitations. The context length
supported by the LLM must be factored in. For instance, Mistral 7B has a
maximum context length of 8192 tokens. If topk is set to 10 and each chunk
comprises 1024 tokens, exceeding the LLM’s capability would occur. Therefore,
a smaller topk value becomes necessary.

In this thesis work, a topk value of 3 is deliberately chosen. This decision is
driven by two factors. First, the evaluation process involves analyzing various
chunk sizes. To ensure standardized evaluation across these different chunk
sizes, maintaining a constant topk value is crucial. Second, the chosen LLM’s
context length limitations must be considered. A topk of 3 offers a balance
between retrieving a sufficient context for informative responses and staying
within the LLM’s processing capabilities.

3.5.4 Generation

Once the retrieval stage has identified pertinent chunks, these chunks along
with the user’s query are used to construct a prompt that guides the LLM in
response generation. This prompt essentially serves as a structured input for
the LLM, incorporating the user’s intent and the retrieved contextual infor-
mation. The prompt typically combines the user’s query with key elements
from the retrieved documents. This may involve extractive techniques where
relevant snippets from the retrieved chunks are directly incorporated into the
prompt, or abstractive techniques where the key concepts and factual infor-
mation are paraphrased and woven into a cohesive prompt. The constructed
prompt is then fed into the LLM. The LLM’s ability to process language and
generate coherent text allows it to leverage the information within the prompt
to formulate a response that addresses the user’s query and incorporates in-
sights from the retrieved documents.

As illustrated in Figure 3.6, a sample prompt can provide a concrete exam-
ple of how the user’s query and retrieved context are combined to guide the
LLM’s response generation.

41

CHAPTER 3. APPROACH

Figure 3.6: Prompting with topk of 3.

3.6 Retrieval Methods

3.6.1 Vector Retrieval (HNSW)

Vector retrieval leverages the HNSW algorithm embedded within the vector
index. The search process in HNSW follows a systematic approach. Given a
new query embedding, the search begins from a random node in the graph.
Exploration of the node’s neighbors at Level 0 involves comparing distances
(i.e., cosine similarity, euclidean distance) with the query. If the search effort
(Ef) hasn’t been exhausted, progression to upper levels occurs. In upper lev-
els, "shortcut" connections are utilized to explore potentially relevant clusters
located further away. The search concludes either after reaching the maxi-
mum number of comparisons specified by Ef or upon finding a sufficiently
close neighbor.

3.6.2 Best Matching 25 (BM25)

The Okapi Best Matching 25 (BM25) algorithm (Robertson and Zaragoza
[2009]) is a widely used ranking function in IR systems, particularly search
engines. It estimates the relevance of documents to a given search query by
considering various factors. In the context of this thesis it is chunks rather than
the documents, but for the sake of simplicity the terminology of document will
be used.

BM25 belongs to the family of "bag-of-words" retrieval functions, which
means it ranks documents based on the presence of query terms within them,

42

CHAPTER 3. APPROACH

without considering the order or proximity of those terms.
The BM25 score for a document D with respect to a query Q is calculated

using Equation 3.1.

score(D,Q) =
∑
w∈Q

IDF(w) · tf(w,D) · (k1 + 1)

tf(w,D) + k1 ·
(
1− b+ b · |D|avgdl

)
 (3.1)

• w: A term from the query Q.

• IDF (w): Inverse document frequency of term w. This reflects how rare
or common the term is across the document collection.

• tf(w,D): Term frequency of term w in document D. This indicates how
often the term appears in the document.

• k1: A tuning parameter that controls the influence of term frequency on
the score.

• b: Another tuning parameter that affects the document length normal-
ization.

• |D|: The length of document D (usually measured in terms of words).

• avgdl: The average document length in the collection.

• IDF (w): This component ensures that terms that appear frequently
across many documents (common words like "the" or "a") contribute less
to the score compared to rare and potentially more informative terms.

• tf(w,D): Documents containing a query term more often are intuitively
considered more relevant. However, simply counting occurrences can be
misleading. BM225 addresses this by incorporating a saturation factor
through k1.

• k1: This parameter prevents scores from being dominated by documents
with extremely high term frequencies. It essentially reduces the weight
of additional occurrences of a term beyond a certain point.

• b: This parameter controls the document length normalization factor. A
value of b = 0 assigns equal weight to documents of all lengths, while
b = 1 penalizes longer documents that might contain the query terms
more frequently just due to their size.

43

CHAPTER 3. APPROACH

The BM25 algorithm is a powerful and well-established method for rank-
ing documents based on their relevance to a search query. By considering
both term frequency and inverse document frequency, it effectively balances
the importance of terms within a document and their rarity across the entire
collection. The use of tuning parameters allows for customization to different
retrieval scenarios.

The BM25 algorithm in RAG context leverages textual metadata associated
with the chunks for retrieval purposes. It does not directly incorporate the
potential semantic richness captured within chunk embeddings.

3.6.3 Hybrid Retrieval

In the context of this thesis hybrid retrieval is the usage of both dense re-
trieval (i.e., vector retrieval) and sparse (i.e., BM25) are both used in the
same retrieval method. Both retrieval methods are run simantenously, and
then a union is performed on the retrieved chunks. The topk retrieved chunks
from each retrieval method is then ranked according to reciprocal rank fusion
(RRF)(Cormack et al. [2009]).

RRF is a technique employed to consolidate ranked results retrieved from
multiple search systems into a single, unified ranked list. It leverages the con-
cept of reciprocal rank, which prioritizes documents positioned higher within
individual rankings. For each chunk across all the ranked lists, RRF calcu-
lates the reciprocal of its rank within each individual list. The reciprocal rank
essentially emphasizes chunks positioned higher in the rankings (closer to the
first position) by assigning them a larger value. Finally, RRF aggregates the
reciprocal rank values for each chunk across all the systems. Chunks consis-
tently ranked highly across multiple systems will accumulate higher summed
values. This cumulative score serves as the basis for the final re-ranked list,
prioritizing chunks that received strong relevance signals from various search
systems. Mathematically, for a chunk d, let Ri(d) denote its rank in the rank-
ing produced by system i. The RRF score, denoted as RRF (d), is shown in
Equation 3.2.

RRF(d) =
∑
i

1

Ri(d)
(3.2)

Equation 3.2 essentially sums the reciprocal ranks of chunk d across all the
participating search systems. Chunks with a higher RRF score are considered
more relevant and positioned accordingly in the final re-ranked list. RRF is
an unsupervised method, requiring no training data or complex algorithms. It
operates efficiently by leveraging readily available ranked lists. RRF capitalizes
on the strengths of various search systems. Even if a chunk ranks highly in

44

CHAPTER 3. APPROACH

only a few systems, it can still achieve a good RRF score, promoting diversity
in the final results.

3.6.4 Hypothetical Document Embedding (HyDE)

Hypothetical Document Embeddings (HyDE) (Gao et al. [2022]) is a recent
advancement in the field of information retrieval that leverages the power of
LLMs to improve search accuracy, particularly when dealing with complex or
nuanced queries. It is not a search method, rather it is a preprocessing step
before it. In simple terms it is a reformation of the query to potentially enhance
the similarity search. It can be used with any of the previously mentioned
retrieval methods.

The process begins with a user query. An LLM (i.e., Mistral 7B - instruct),
is tasked with generating a "hypothetical document" that captures the essence
of the query. This document might not be factually accurate but reflects the
LLM’s understanding of the information need. The generation process can be
repeated several times to create a diverse set of hypothetical documents. Each
hypothetical document is then fed into a document embedding model. The
resulting embedding vectors or text (depending on which retrieval method)
are used to search the actual document corpus. By leveraging similarity tech-
niques, the system retrieves documents in the corpus that reside closest (most
similar) to the hypothetical document embeddings in the embedding space.

Gao et al. [2022] claim that HyDE can outperform traditional keyword-
based retrieval methods, particularly for queries with ambiguous or metaphor-
ical language. The hypothetical document acts as a bridge, capturing the
user’s intent more effectively.

3.6.5 Reranker

Rerankers are encoder - based transformer models that act as a post-processor
to the retrieved chunks. They function as specialized models designed to re-
evaluate and reorder the initial set of documents retrieved by a search engine
in response to a user query. This process aims to elevate the most relevant and
informative documents to the top of the search results, enhancing the user’s
experience by prioritizing the information they seek.

Following the initial retrieval of the topk candidate documents by the re-
triever component, a reranker module takes center stage. This module metic-
ulously evaluates the relevance of each retrieved document to the specific user
query. This evaluation leverages a cross-encoder architecture, as introduced in
Lee et al. [2023], which assesses the semantic similarity between a retrieved doc-
ument chunk and the query. Unlike traditional vector similarity approaches,

45

CHAPTER 3. APPROACH

where contextually chunked text and query text are independently processed
by an embedding model before distance metrics (e.g., cosine similarity, Eu-
clidean distance) are applied, cross-encoders encode both texts jointly within
the embedding model. The resulting embeddings are then fed into a classi-
fier layer, such as a neural network, to generate a final relevance score. After
generating the final relevance score the chunks are then re - ordered with the
highest score being placed at the first position.

This thesis leveraged the BAAI/BGE − reranker − large (Xiao et al.
[2023]) model10 which has BERT-like architecture. In Figure 3.7 the differences
of how the bi - encoder and cross - encoder handle the retrieved chunk, and
query.

Figure 3.7: Bi - Encoder vs. Cross - Encoder

3.7 Chapter Conclusion
This chapter explores the intricacies of various methodologies employed within
the RAG pipeline. It commences with an exploration of the LLMs used
throughout the thesis (Mistral 7B, Prometheus 13B). Efficiency in LLM execu-
tion is then addressed, with a focus on vLLM, which leverages FlashAttention
and PagedAttention techniques. Subsequently, the chapter explores the em-
bedding model used (bge-large-en-v1.5). Followed by the functionality of Lla-
maindex and its integration within the RAG framework. Different variations
that can occur within Llamaindex are then explained.

Finally, the chapter provides a comprehensive overview of the retrieval
10https://huggingface.co/BAAI/bge-reranker-large

46

https://huggingface.co/BAAI/bge-reranker-large

CHAPTER 3. APPROACH

methods utilized throughout this thesis. This includes the BM25 algorithm,
vector retrieval using HNSW, and others.

Chapter 4, which follows, will explore the evaluation methodologies em-
ployed to identify the most suitable configuration for the IR-Anthology dataset.
Additionally, it will delve into the various evaluations used and their connec-
tion to the RAG pipeline.

47

Chapter 4

Evaluation

The preceding chapters have meticulously dissected the inner workings of the
RAG pipeline, a powerful tool designed to leverage the strengths of large LLMs
and retrieval techniques. Chapters 1 and 2 unveiled the inherent limitations
of LLMs, highlighting their short comings with hallucinations, information cut
off, and domain-specificity. Chapter 2 introduced RAG as a potential remedy,
showcasing its effectiveness across various tasks like open-domain question an-
swering, abstractive question answering, and Jeopardy question generation.
The explanation included a flow chart that explained the basic steps in a RAG
pipeline. It also explained the key components, like transformers, which are
the foundation of LLMs, and embedding models.

Chapter 3 built upon this foundation by delving into the intricate details of
RAG’s implementation. Chapter 3 meticulously examined the specific LLMs
employed within the RAG pipeline, such as Mistral 7B, and Prometheus 13B,
to identify their distinct advantages.

Furthermore, Chapter 3 investigated optimization techniques like quanti-
zation and vLLMs. Then an exploration of the unifying platform, the Lla-
maindex framework, that seamlessly orchestrates the execution of RAG logic
by integrating all the previously discussed components. Finally, the chapter
concluded with a comprehensive analysis of the retrieval methods utilized by
RAG to extract relevant information from vast datasets.

Having established a thorough understanding of the RAG pipeline, Chapter
4 now shifts its focus towards the crucial process of evaluation. This chapter
will delve into the methodologies employed to assess the suitability of various
RAG configurations for the specific demands of the IR-Anthology dataset.
An exploration of the diverse range of evaluation metrics and their intricate
connection to the performance of the RAG pipeline.

This chapter outlines a two-stage evaluation framework for assessing re-
trieval performance. To address the cost and time constraints associated with

48

CHAPTER 4. EVALUATION

human-generated ground truth datasets, the framework leverages synthetic
data. First, a discussion of the methodologies employed to generate synthetic
data for various experimental setups, detailing the specific techniques used
to create synthetic data tailored to each scenario. Subsequently, the chapter
delves into the two-step evaluation process itself, which serves to assess the
effectiveness of the retrieval methods using the synthetic data. In the context
of this thesis the synthetic data will be a Q&A pair dataset which mimics the
end user use case.

4.1 Generating Synthetic Data
Prior to generating the Q&A pairs, it is imperative to undertake a compre-
hensive dataset processing workflow involving parsing, encoding, and indexing.
Given that each parsing technique possesses the potential to impact data re-
trieval and generation, a rigorous application of multiple parsing techniques is
deemed necessary. The details of the parsed techniques, including the quantity
of nodes, are presented in Table 4.1. Sentence Window (SW) 3 and 6 have the
same amount of nodes since both of them are parsing sentence-wise but the
only difference is the metadata of each respective window size. Token based
(TB) method was used on three different sizes: 256, 512, 1024.

Parsing Method Chunks

TB 1024 14920
TB 512 28586
TB 256 66446

SW 3 & 6 103940

Table 4.1: Chunks for each method in dataset preparation.

The Q&A generation process commences by initially addressing each in-
dividual node and formulating a corresponding question. Subsequently, this
question is recorded in a JSON file, accompanied by a universally unique iden-
tifier (UUID). This strategic use of UUID facilitates the correlation between
the specific chunk utilized for question generation and the resulting question.
Following the generation of the question, an associated answer is produced
and stored in a separate JSON file, encompassing information on the chunk,
question, and answer.

49

CHAPTER 4. EVALUATION

4.1.1 LLM Parameters

Before using the LLMs to perform these generation tasks certain parameters
must be set such as the temperature, contextlength, and maxnewtokens.

In neural networks, particularly in the context of softmax activation, tem-
perature is a parameter used to control the entropy or the smoothness of the
probability distribution output by the softmax function as seen in Equation
4.1. After the softmax operation, the temperature parameter is applied to the
logits before exponentiation, which affects the resulting probabilities.

softmax(zi) =
ezi/T∑
j e

zj/T
(4.1)

• zi is the ith logit,

• T is the temperature parameter.

By adjusting the temperature parameter, we can control the smoothness of
the probability distribution. Higher values of temperature result in a smoother
distribution, while lower values lead to a sharper, more peaked distribution.
In the context of LLMs increasing the temperature results in more creative
answers, while keeping it at zero completely grounds it in the most probable
output. In the case of this thesis the parameter is set to zero due to the IR-
Anthology being grounded in scientific work and requiring it to be as precise
as possible.

The parameter max new tokens plays a crucial role in controlling the length
of text generated by the LLM. It determines the maximum number of new to-
kens the model will add to the provided context. This interaction between max
new tokens and the length of the context is pivotal, with the latter establishing
the starting point for text generation.

Higher values of max new tokens allow the LLM to produce longer and
more detailed outputs, potentially offering comprehensive responses or narra-
tives. Conversely, lower values result in concise summaries or shorter creative
compositions.

In the Mistral 7B instructional LLM configuration, the parameter max
new tokens was established at 128 for question generation and 512 for answer
generation as seen in Table 4.2. Additionally, the context length was specified
as 2048. For Prometheus 13B, a context length of 2048 was selected, along
with a maximum new context length of 1024 (4.3), to facilitate a more detailed
explanation for the evaluation to be discussed later in this chapter.

50

CHAPTER 4. EVALUATION

Table 4.2: Mistral 7B Instruct parameters.

Mistral 7B Instruct
Temperature: 0
Context Length: 2048
Max New Tokens: 128

Table 4.3: Prometheus 13B parameters.

Prometheus 13B
Temperature: 0
Context Length: 2048
Max New Tokens: 1024

4.1.2 Question Generation

The question generation process necessitates the utilization of both an index
employing the requisite parsing method and an LLM. In this instance, Mistral
7B - instruct served as the selected LLM.

The procedure commences with an iterative traversal of the index. For
each chunk contained within the index, the chunk is input into a prompt,
subsequently fed into the LLM. This prompt functions as explicit guidance to
the LLM, directing its actions based on the provided contextual information.
The specific prompt employed is depicted in Figure 4.1.

Figure 4.1: Question generation prompt.

Upon completion of the question generation process, the resulting inquiries
are archived in a JSON file, characterized by three primary keys: "queries,"
"corpus," and "relevant chunks." Within this structure, the "queries" key en-
capsulates the questions generated by the LLM in response to the provided
chunk within the prompt. Each query is uniquely identified by its UUID. The

51

CHAPTER 4. EVALUATION

"corpus" key represents the chunks stored within the index, with each individ-
ual chunk assigned its own UUID. The "relevant chunks" key establishes con-
nections between the generated queries and the corresponding chunks through
the utilization of UUIDs. A representative example of a singular question and
its associated chunk pair is illustrated in Figure 4.2.

Figure 4.2: Question and chunk pair in a JSON file.

4.1.3 Answer Generation

The initiation of answer generation involves the creation of a new JSON file,
incorporating the preceding questions and chunks, excluding the UUIDs. Sub-
sequently, this composite dataset undergoes processing through a prompt that
incorporates both the question and chunk inputs, facilitating the generation of
an answer. The resulting answer is then saved into a dedicated JSON file for
further reference and utilization. The prompt used for the answer generation
can be observed in Figure 4.3. In Figure 4.4 the JSON structure is presented.

52

CHAPTER 4. EVALUATION

Figure 4.3: Answer generation prompt.

Figure 4.4: Question, context, and answer in a JSON file.

4.1.4 Document Selection

The challenge encountered in assessing various RAG pipelines across the IR-
Anthology dataset primarily revolves around its considerable size. The dataset
encompasses approximately 62,000 research papers, presenting a significant
logistical hurdle in constructing a comprehensive index for evaluation purposes.

53

CHAPTER 4. EVALUATION

Consequently, a pragmatic approach was adopted, wherein a smaller subset of
1,000 documents was selected for analysis. This subset represents a diverse
array of research papers sourced from multiple conferences and journals.

Analysis of the data, as depicted in Tables 4.4, 4.5, and 4.6, underscores
the impact of chunk size on various pipeline operations. Notably, the time
required for tasks such as vector index generation, question generation, and
answer generation exhibits substantial escalation as the chunk size decreases.
It is noteworthy that the indexing duration for SW 3 and SW 6 remains iden-
tical, as both processes entail parsing and encoding an equivalent number
of chunks (sentences), albeit with differing metadata. However, divergence
emerges during question and answer generation, owing to variations in the
chunk sizes utilized for these operations, with SW 6 accommodating larger
chunks compared to SW 3.

Parsing Method Duration (Hours)

TB 1024 10:02
TB 512 17:49
TB 256 39:16
SW 3 & 6 48:32

Table 4.4: Duration of parsing, encoding, and indexing for each method for dataset
preparation.

Method Question Generation Time (Hours)
TB 1024 6:27
TB 512 12:42
TB 256 29:31
SW 3 42:21
SW 6 46:59

Table 4.5: Time required to generate questions.

54

CHAPTER 4. EVALUATION

Method Answer Generation Time (Hours)
TB 1024 9:18
TB 512 16:35
TB 256 32:12
SW 3 44:25
SW 6 48:11

Table 4.6: Time required to generate answers.

4.2 Retrieval Evaluation

Figure 4.5: Question generation to evaluation

This section will delineate the retrieval evaluation process, elucidate the met-
rics employed for assessment, and detail the various configurations imple-
mented.

55

CHAPTER 4. EVALUATION

4.2.1 Flow

Building upon the preceding section outlining the generation and storage of
question evaluations in JSON format, this subsection delves into subsequent
steps. Following the completion of the question generation setup, the queries
undergo processing by the query engine to obtain the topk results. As em-
phasized in the earlier chapter, our evaluations exclusively focus on the top3
chunks. Once retrieved, these chunks undergo evaluation based on two met-
rics: Mean Reciprocal Rank (MRR) and Hit Rate. Figure 4.5 visualizes the
end to end flow of retrieval evaluation.

4.2.2 Evaluation

Within the RAG pipeline, the objective is to assess two key elements: the
parsing method, encoder (embedding model), and the retrieval method. This
examination aims to scrutinize the impact that tuning each component will
have on the retrieval setup.

Initiating the evaluation process commences with the scrutiny of three piv-
otal parsing components. Specifically, the token-based parsing is to be exam-
ined at three distinct sizes: 256, 512, and 1024.

Subsequently, an appraisal of retrieval methods is scheduled. This encom-
passes the evaluation of BM25 (sparse), HNSW (dense), a hybrid approach
(combining sparse and dense methods), a reranker, and HyDE.

In the context of vector retrieval, the designated distance metric is the
cosine similarity function. Equation 4.2, and 4.3 explicitly denotes the formu-
lation of the cosine similarity function.

Cosine Similarity(A,B) =
A ·B
‖A‖ · ‖B‖

(4.2)

Cosine Similarity(A,B) =

∑n
i=1Ai ·Bi√∑n

i=1A
2
i ·
√∑n

i=1B
2
i

(4.3)

• A and B are vectors,

• ‖A‖ and ‖B‖ represent the Euclidean norms of vectors A and B, respec-
tively.

The exploration of various configurations unfolded as follows: Initially, the
fundamental retrieval methods—BM25, HNSW, and Hybrid—were individu-
ally assessed in their standard formats across distinct parsing methodologies.

56

CHAPTER 4. EVALUATION

Subsequently, a reranker was incorporated into each method. The entire pro-
cess was reiterated, this time incorporating HyDE into the evaluation for a
comprehensive analysis.

The schematic representation in Figure 4.6 illustrates the integration of
HyDE within the evaluation flow as well as the prompt used in Figure 4.7.
Prior to entering the query engine, the query undergoes a re-writing process
facilitated by the LLM. Subsequently, the flow continues in a conventional
manner.

Figure 4.6: HyDE before flowing into the query engine.

Figure 4.7: HyDE prompt.

57

CHAPTER 4. EVALUATION

4.2.3 Metrics

Mean Reciprocal Rank:

Mean Reciprocal Rank (MRR) is a metric used to evaluate the effectiveness
of a ranking algorithm in information retrieval and recommendation systems.
In Equation 4.4 it measures the quality of the ranking by considering the
position of the first relevant item in the list. MRR is particularly useful when
dealing with ranked lists, where the goal is to present the most relevant items
at the top.

MRR =
1

|Q|

|Q|∑
i=1

1

Ri

(4.4)

• |Q| is the total number of queries,

• Ri is the rank of the first relevant item for the i-th query.

Hit Rate:

Hit Rate is a performance metric commonly used in information retrieval
and recommendation systems to assess the effectiveness of a model or algorithm
in finding relevant items. It measures the proportion of queries or instances
for which at least one relevant item was found in the result set. The Hit Rate
is expressed as the ratio of the number of relevant items found to the total
number of queries.

4.2.4 Results

Table 4.7 illustrates noteworthy trends in Hit Rate and MRR across various
Chunk Sizes (256, 512, and 1024) and Retrieval Methods, including Sparse
with BM25 (S), Dense with HNSW (D), with Reranker (RR), and Hybrid (H).
Remarkably, the combination of Chunk Size 1024 and Retrieval Method Hy-
brid consistently delivers superior performance, boasting the highest Hit Rate
of 0.92 and commendable MRR values. Sparse with BM25, especially with
chunk size 256, also demonstrates competitive outcomes. The incorporation
of Reranker in certain scenarios proves beneficial, as evidenced by improved
performance. Larger chunk sizes generally exhibit higher Hit Rates and MRR.

58

CHAPTER 4. EVALUATION

Table 4.7: Results of different retrieval methods.

Chunk Size Retrieval Method Hit Rate Mean Reciprocal Rank

256 S 0.83 0.778
256 S, RR 0.83 0.731
256 D 0.79 0.741
256 D, RR 0.79 0.721
256 H 0.86 0.806
512 S 0.88 0.805
512 S, RR 0.88 0.811
512 D 0.79 0.708
512 D, RR 0.79 0.721
512 H 0.801 0.701
1024 S 0.89 0.806
1024 S, RR 0.89 0.725
1024 D 0.74 0.668
1024 D, RR 0.74 0.661
1024 H 0.92 0.798

In a parallel fashion, Table 4.8 depicts the outcomes derived from employ-
ing HyDE prior to submitting the query to the query engine. Nevertheless,
discernibly, there is a conspicuous decline in performance associated with this
methodology. In contrast, subsequent to the application of HyDE, HNSW
retrieval exhibits a slight improvement over BM25, suggesting that BM25
performs slightly less favorably in this context. This improvement may be
ascribed to the supplementary details and information incorporated into the
query, thereby facilitating a closer alignment between the query and the target
retrieval point within the vector space. During the evaluation of HyDE, the
inclusion of a reranker was deemed unnecessary. This determination stemmed
from the realization that integrating an additional reranker would necessitate
four forward propagations of transformers leading a very long processing time
(more than 20 seconds). In a finalized pipeline, the sequence of operations
would manifest as follows:

1. Transformation of HyDE queries utilizing an LLM.

2. Encoding of queries employing an Embedding Model.

3. Retrieval and subsequent reranking of chunks facilitated by a Cross-
Encoder.

59

CHAPTER 4. EVALUATION

4. Synthesis of queries and chunks accomplished through the utilization of
an LLM.

Table 4.8: Results of different retrieval methods with HyDE.

Chunk Size Retrieval Method Hit Rate Mean Reciprocal Rank

256 S 0.68 0.6
256 D 0.84 0.71
256 H 0.78 0.66
512 S 0.64 0.59
512 D 0.7 0.57
512 H 0.66 0.57
1024 S 0.6 0.53
1024 D 0.66 0.53
1024 H 0.65 0.54

4.3 Generation Evaluation
There are various evaluation frameworks1 2 available for the generation eval-
uation; however, most of them depend on the RAG pipeline LLM being used
through GPT 4’s API key. Since this work depends heavily on functioning on
open - source models a custom evaluation generation pipeline was built.

Figure 4.8: Generation and evaluation of Q&A pairs.

1https://github.com/explodinggradients/ragas
2https://github.com/truera/trulens

60

https://github.com/explodinggradients/ragas
https://github.com/truera/trulens

CHAPTER 4. EVALUATION

This section will systematically outline the process of evaluating the gener-
ation, explicate the metrics utilized for assessment, and provide comprehensive
details on the diverse configurations implemented.

4.3.1 Flow

In Figure 4.8, the procedural outline of the generation evaluation process com-
mences subsequent to the generation and compilation of question and chunk
pairs into a JSON file during the retrieval evaluation phase. Following the ac-
quisition of these question-chunk pairs, they undergo processing wherein they
are inputted into the LLM (Mistral 7B - instruct) for answer generation. The
resultant answers are subsequently stored within a JSON file along with the
preceding contextual information.

Upon the completion of JSON file formulation, the evaluation phase en-
sues. Sequentially, each question-answer pair, along with its associated chunk,
is subjected to assessment using the evaluating LLM (Prometheus 13B). This
evaluation is conducted with regard to two primary metrics: Relevancy and
Faithfulness. Furthermore, the semantic similarity between the generated an-
swer and the corresponding chunk is determined by encoding both elements
via an embedding model, followed by cosine similarity analysis on the resultant
vectors.

The resulting JSON file contains feedback on the metrics of faithfulness
and relevancy, alongside their respective scores. This feedback elucidates the
rationale behind the assigned scores, providing insight into the evaluation pro-
cess.

4.3.2 Evaluation

The primary objectives of the generation evaluation encompass assessing the
LLMs, particularly Mistral 7B - instruct, in their capacity to synthesize con-
textual information, maintain fidelity to the provided chunk, and furnish per-
tinent responses to inquiries. Additionally, the evaluation aims to scrutinize
how different parsing methods impact these aforementioned aspects.

In contrast to the preceding retrieval evaluation, the current evaluation ex-
tends beyond the evaluation of the conventional token-based parsing method
to include an examination of the SW parsing method. Notably, the considera-
tion of the SW parsing method is exclusive to the generation evaluation owing
to its characteristic of accommodating an average token size for a SW of 3 and
6, closely approximating token sizes of 256 and 512 respectively. This decision
is further justified by the observations outlined in Table 4.1, wherein the sig-
nificant volume of nodes necessitates substantial computational resources for

61

CHAPTER 4. EVALUATION

evaluation, rendering insights gleaned from approaches closely aligned with
token sizes of 256 or 512 less impactful.

4.3.3 Metrics

Three main metrics were utilized for the evaluation. Relevancy, faithfulness,
and semantic similarity.

Relevancy:

The assessment of relevancy pertains to the degree to which the provided
response aligns with both the query and the given context. This evaluation
process involves inputting the prompt instruction into the evaluation LLM,
as depicted in Figure 4.9, along with necessary inputs. Upon generating a
response, the evaluation LLM yields two outcomes: firstly, a rationale explain-
ing the determination of whether the text is relevant to the query or not, and
secondly, a scoring mechanism ranging from 0 (indicating irrelevance) to 1 (in-
dicating relevance), which is derived from the initial rationale and converted
into an integer. This score is subsequently averaged across the entire dataset
for comprehensive assessment.

The prompt in Figure 4.9 leverages zero-shot prompting, a technique where
a LLM is instructed to perform a task without explicit training or in-prompt
examples of how to complete it.

Figure 4.9: Relevancy prompt.

62

CHAPTER 4. EVALUATION

Faithfulness:

Faithfulness serves as the primary metric in the evaluation of generation,
aiming to identify any instances of inaccurate information within the generated
responses. It assesses the degree to which the generated answer aligns with
the provided context chunks. This evaluation process involves the provision of
a few-shot prompt, which guides the evaluation LLM in determining whether
the generated answer faithfully represents the content provided and effectively
addresses the query. Similar to the relevancy metric, faithfulness provides
both an explanatory rationale for the decision made by the evaluation LLM
and an outcome, quantified as either 0 (indicating a lack of faithfulness) or 1
(indicating fidelity), derived from that explanation.

The prompt in Figure 4.10 incorporates the few-shot prompting principle.
In this approach, the LLM is tasked to adapt to new tasks with minimal
exemplars provided within the prompt itself.

Figure 4.10: Faithfulness prompt.

63

CHAPTER 4. EVALUATION

Semantic Similarity:

Semantic similarity is established through the calculation of cosine similar-
ity between the generated answer and the corresponding chunk. This process
primarily aims to gauge the proximity of the generated answer to the chunk
while ensuring semantic coherence is maintained. The encoding of both the
chunk, and the generated answer is done through the BGE Large embedding
model that was used previously for the retrieval evaluation.

4.3.4 Results

Table 4.9 presents the results of various evaluations across different chunk sizes,
namely 256, 512, and 1024, as well as sentence window 3 and 6. In Figure 4.11
the resulting JSON file for a single Q&A example can be seen.

In terms of faithfulness, the chunk size of 256 exhibits the highest per-
formance, with a score of 0.933, indicating a strong alignment between the
generated answers and the provided chunks. Conversely, the chunk size of
1024 demonstrates the lowest faithfulness score of 0.585.

Regarding relevancy, the chunk size of SW 6 performs the best, achieving a
score of 0.714. In contrast, the chunk size of 1024 displays the lowest relevancy
score of 0.541.

In semantic similarity, the chunk size of SW 6 also emerges as the top
performer, with a score of 0.547, indicating a high degree of similarity between
the generated answers and the provided chunks. Conversely, the chunk size of
512 exhibits the lowest semantic similarity score of 0.480.

These preliminary findings provide insights into the varying performance of
different chunk sizes across the metrics of faithfulness, relevancy, and semantic
similarity. Further exploration and detailed analysis of these results will be
discussed in Chapter 5.

Table 4.9: Results of different evaluations.

Chunk Size Relevancy Faithfulness Semantic Similarity

256 0.653 0.933 0.545
512 0.674 0.879 0.511
1024 0.541 0.585 0.48
SW 3 0.689 0.91 0.53
SW 6 0.714 0.883 0.547

64

CHAPTER 4. EVALUATION

Figure 4.11: Evaluation response JSON.

4.4 Chapter Conclusion
This chapter delves into the comprehensive evaluation process of the RAG
pipeline. It begins by outlining the rationale behind synthetic data generation
and subsequently establishes a two-step evaluation approach.

The initial step meticulously evaluates the retrieval component across vari-
ous parsing methods and retrieval algorithms. To assess retrieval effectiveness,
two key metrics were employed: MRR and Hit Rate. The evaluation revealed
that the Hybrid retrieval method emerged as the most suitable choice for the
utilized IR-Anthology dataset.

The second step focuses on evaluating the generation component, again
employing different parsing methods. This section establishes the evaluation
metrics by detailing the utilization of Prometheus 13B for generating Faithful-
ness and Relevancy metrics. Furthermore, it explains the setup of the Semantic
Similarity metric as a numerical value through cosine similarity. The evalua-
tion yielded compelling results, indicating that smaller chunk sizes demonstra-
bly improve both faithfulness and relevancy in the generated responses.

The subsequent Chapter 5 will delve deeper into potential explanations for
the observed results and the rationale behind the chosen evaluation methods.

65

Chapter 5

Discussion & Analysis

As explored in the preceding chapters, the RAG framework offers promising so-
lutions to the limitations encountered with standalone LLMs in NLP. Chapter
2 laid the groundwork by discussing the potential of RAG in addressing issues
like hallucination, information cutoff, and domain specificity, while Chapter 3
delved into the implementation details of the RAG pipeline, highlighting key
components such as the LLMs used, the quantization technique, embedding
models, and the orchestration framework, Llamaindex. Furthermore, Chap-
ter 4 provided insights into the evaluation methodologies employed to assess
the performance of the RAG pipeline, particularly focusing on the two-step
evaluation process for the retrieval and generation components.

This chapter aims to analyze the findings from the evaluation process and
propose avenues for further exploration and improvement within the RAG
framework. Following the two-step evaluation process introduced in Chapter
4, which served as an ablation study to isolate the impact of each component,
this section analyzes the insights gained from each step. This analysis informs
the selection of the configuration for the IR-Anthology and possible trade-
offs. The discussion will first explore the findings from each evaluation stage,
followed by a comprehensive overview of the potential final setup.

5.1 Analysis of Retrieval Results
For the retrieval component the results of Table 4.7 clearly shows that sparse
methods (BM25), are outperforming dense methods (HNSW) throughout all
the metrics (MRR, and Hit Rate). This could be attributed to the IR-Anthology
having more factual and use specific terminology compared to general text.
BM25 is a term-frequency based method that rewards documents with a high
frequency of query terms. BM25 prioritizes documents with matching key-
words, which can be effective for retrieving relevant chunks, especially for

66

CHAPTER 5. DISCUSSION & ANALYSIS

factual queries. Dense methods like HNSW might capture more semantic rela-
tionships between chunks, but these might not be as crucial for factual searches
in scientific research. However, a combination of both BM25 and HNSW re-
sulted also in the best performing hit rate which could be attributed of getting
the best of both worlds from both the algorithms.

Chunk size exhibited a significant influence on retrieval performance, with
opposing effects on sparse and dense retrieval models. Sparse retrieval al-
gorithms, like BM25, demonstrated improved performance with increasing
chunk size. This can be attributed to the term frequency weighting mechanism
within BM25, which benefits from a wider range of terms to assess relevance.
Conversely, dense retrieval models experienced performance degradation with
larger chunk sizes.

The reranker does not offer improvement to the hit rate metric as the
required chunk is still within the topk, but its ranking withint the topk impacts
the MRR metric.

The introduction of HyDE resulted as seen in Table 4.8 shows a decrease
in performance across all evaluated configurations. This decline is likely at-
tributable to the query rewriting process, which may introduce irrelevant terms
("hallucinations") during expansion. For retrieval models like BM25, which
rely heavily on the presence of original query terms, this can be particularly
detrimental as relevant keywords might be removed or altered. Conversely,
HNSW exhibited a smaller performance drop with HyDE. This suggests that
the transformed queries may have remained within a similar semantic space to
the original, potentially aligning with the intended behavior of HyDE.

Figure 5.1: Evaluation results grouped by different chunk sizes, for each retrieval
method.

67

CHAPTER 5. DISCUSSION & ANALYSIS

In Figure 5.1 the plotting of all the grouped chunk sizes with their respective
retrieval algorithms can be observed. The following are the best performing
findings in terms of the retrieval method for each chunk size:

• 256 - Sparse: Hit Rate 0.83, MRR 0.778

• 512 - Sparse, with Reranker: Hit Rate 0.88, MRR 0.811

• 1024 - Hybrid: Hit Rate 0.92, MRR 0.798

5.2 Analysis of Generation Results
The results in Table 4.9 offer valuable insights into the challenges LLMs face
with longer inputs. This observation can be explained by limitations in the
self-attention mechanism.

As the input length increases, self-attention’s effectiveness diminishes. The
model might struggle to efficiently distribute its focus across the entire se-
quence.

By breaking down the input into smaller chunks, it essentially alleviates the
limitations of the self-attention mechanism. With shorter sequences to process,
the model can dedicate its focus more effectively, resulting in outputs that are
both faithful to the original content and relevant to the overall context. This
aligns with the findings in Table 4.9, where smaller chunk sizes yielded better
generation results.

In Figure 5.2 it is observable that as soon as the chunk size increases the
performance drops in all metrics.

Figure 5.2: Evaluation results for the generation. Comparison bar plot for the
different chunk sizes. (Sentence Window - SW)

68

Chapter 6

Conclusion

The objective of this thesis was to utilize RAG to develop efficient interaction
between users and the IR-Anthology, this was done through experimenting
multiple RAG configurations to reach the most optimal setup. Through doing
that it mitigated issues faced within using standalone LLMs that suffer from
hallucinations, information cutoff, and domain specificity.

Chapter Review

• Chapter 1 & Chapter 2: The groundwork was laid for understanding the
potential of RAG in mitigating issues such as hallucination, information
cutoff, and domain specificity. The fundamental concepts of RAG were
introduced (e.g., transformers, LLMs, embedding models), emphasizing
its potential to combine the strengths of RAG with the IR-Anthology to
create a robust tool for researchers within the domain of IR to refer to.

• Chapter 3: Within this chapter it provided detailed insights into the
implementation aspects of the RAG pipeline, including the selection of
LLMs, embedding model, and retrieval methods. The explored method-
ologies for LLMs highlighted the importance of optimization techniques
such as FlashAttention and PagedAttention.

• Chapter 4: The evaluation process discussed offered valuable insights into
the performance of the RAG pipeline, particularly in terms of retrieval
and generation components. Through meticulous evaluation methodolo-
gies, optimal configurations were identified, showcasing the effectiveness
of techniques such as hybrid retrieval methods and smaller chunk sizes
in enhancing both retrieval and generation performance.

• Chapter 5: This chapter further deepened the analysis by dissecting the
retrieval and generation results and exploring explanations for observed

69

CHAPTER 6. CONCLUSION

trends. The analysis of retrieval outcomes highlighted the significance of
sparse retrieval methods like BM25, especially in the context of factual
queries within scientific research. Additionally, the impact of chunk size
on retrieval performance was highlighted, emphasizing the need for a
balanced approach to chunk parsing.

Challenges

The thesis encountered numerous challenges primarily related to frame-
work compatibility, largely stemming from their reliance on closed source APIs.
Given the open source nature of the thesis, significant modifications were nec-
essary to adapt these frameworks to the open source setup employed.

• Evaluation Framework: The evaluation framework had taken a substan-
tial amount of time to setup. This is due to issues faced with closed and
open source models. Most of the evaluation components had to be built
from scratch.

• Computational Time: It is imperative to acknowledge the substantial
time investment required for the evaluation and establishment of these
evaluation pipelines as noted in chapter 4. Notably, executing these
pipelines for both retrieval and generation components consumed a con-
siderable duration, totaling 21 days of constant runtime on A100 GPUs.
This prolonged computational effort underscores the complexity and
resource-intensive nature of comprehensively assessing the efficacy of the
RAG framework.

• Metrics: The evaluation metrics for the retriever adhere to standard-
ized practices within the information retrieval domain, such as MRR
and Hit Rate. However, assessing the generative capabilities of the LLM
presents considerable challenges. Despite the utilization of feedback loops
provided by the evaluation LLM to measure specific metrics like Faith-
fulness, determinism remains elusive.

Concluding Remarks

The analysis of generation results underscores the challenges LLMs face
with longer inputs and the effectiveness of smaller chunk sizes in improving
generation quality. By mitigating the limitations of the self-attention mech-
anism, smaller sequences enabled more focused generation, resulting in out-
puts that were both faithful and contextually relevant. However, this analysis

70

CHAPTER 6. CONCLUSION

also leads to the inference that a discernible trade-off exists between retrieval
efficiency and generation quality. Specifically, increasing the size of chunks
enhances the performance of the retrieval process, albeit at the expense of
compromising the generation capabilities of the LLM. This phenomenon can
be analogized to presenting an individual with a sizable textbook and tasking
them with extracting information to answer a query. While the required infor-
mation may indeed be present within the extensive text, the individual faces
challenges in processing the entirety of the textbook simultaneously, possibly
necessitating additional research endeavors, such as fine-tuning, to adapt more
effectively to its contents.

In essence, the journey of implementing RAG within the IR-Anthology
framework illuminated not only the technical hurdles but also the inherent
trade-offs between different aspects of the system. These challenges under-
score the need for further exploration and refinement, particularly in devising
strategies that strike a delicate balance between retrieval efficiency and genera-
tion quality. Future endeavors may focus on innovative approaches to optimize
this trade-off. By addressing these challenges head-on, we can pave the way for
more robust and versatile systems that redefine the landscape of information
retrieval and generation in research domains.

Moving forward, the insights gleaned from this comprehensive analysis
pave the way for further exploration and refinement of the RAG framework.
Future research endeavors could focus on finetuning retrieval and generation
strategies, optimizing chunk segmentation techniques, and exploring novel ap-
proaches to enhance overall performance and scalability.

71

Bibliography

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico
Lebrón, and Sumit Sanghai. GQA: training generalized multi-query trans-
former models from multi-head checkpoints. In Houda Bouamor, Juan Pino,
and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2023, Singapore, Decem-
ber 6-10, 2023, pages 4895–4901. Association for Computational Linguistics,
2023. URL https://aclanthology.org/2023.emnlp-main.298.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-
document transformer, 2020.

Steven Bird, Robert Dale, Bonnie Dorr, Bryan Gibson, Mark Joseph, Min-
Yen Kan, Dongwon Lee, Brett Powley, Dragomir Radev, and Yee Fan
Tan. The ACL Anthology reference corpus: A reference dataset for biblio-
graphic research in computational linguistics. In Nicoletta Calzolari, Khalid
Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis, and
Daniel Tapias, editors, Proceedings of the Sixth International Conference
on Language Resources and Evaluation (LREC’08), Marrakech, Morocco,
May 2008. European Language Resources Association (ELRA). URL http:
//www.lrec-conf.org/proceedings/lrec2008/pdf/445_paper.pdf.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading
wikipedia to answer open-domain questions. In Regina Barzilay and Min-
Yen Kan, editors, Proceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2017, Vancouver, Canada, July
30 - August 4, Volume 1: Long Papers, pages 1870–1879. Association
for Computational Linguistics, 2017. doi: 10.18653/V1/P17-1171. URL
https://doi.org/10.18653/v1/P17-1171.

Gordon V. Cormack, Charles L. A. Clarke, and Stefan Büttcher. Reciprocal
rank fusion outperforms condorcet and individual rank learning methods.
In James Allan, Javed A. Aslam, Mark Sanderson, ChengXiang Zhai, and
Justin Zobel, editors, Proceedings of the 32nd Annual International ACM

72

https://aclanthology.org/2023.emnlp-main.298
http://www.lrec-conf.org/proceedings/lrec2008/pdf/445_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/445_paper.pdf
https://doi.org/10.18653/v1/P17-1171

BIBLIOGRAPHY

SIGIR Conference on Research and Development in Information Retrieval,
SIGIR 2009, Boston, MA, USA, July 19-23, 2009, pages 758–759. ACM,
2009. doi: 10.1145/1571941.1572114. URL https://doi.org/10.1145/
1571941.1572114.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher
Ré. Flashattention: Fast and memory-efficient exact attention with io-
awareness, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding.
In Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings
of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers), pages 4171–4186. Association for Computational Linguistics,
2019a. doi: 10.18653/v1/n19-1423. URL https://doi.org/10.18653/v1/
n19-1423.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding,
2019b.

Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur Güney, Volkan Cirik,
and Kyunghyun Cho. Searchqa: A new q&a dataset augmented with context
from a search engine. CoRR, abs/1704.05179, 2017. URL http://arxiv.
org/abs/1704.05179.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot
dense retrieval without relevance labels, 2022.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei
Chang. REALM: retrieval-augmented language model pre-training. CoRR,
abs/2002.08909, 2020. URL https://arxiv.org/abs/2002.08909.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika,
Dawn Song, and Jacob Steinhardt. Measuring massive multitask language
understanding, 2021.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford,
Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna
Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-
Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

73

https://doi.org/10.1145/1571941.1572114
https://doi.org/10.1145/1571941.1572114
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://arxiv.org/abs/1704.05179
http://arxiv.org/abs/1704.05179
https://arxiv.org/abs/2002.08909

BIBLIOGRAPHY

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran
Lee, Sangdoo Yun, Seongjin Shin, Sungdong Kim, James Thorne, and Min-
joon Seo. Prometheus: Inducing fine-grained evaluation capability in lan-
guage models, 2023.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins,
Ankur P. Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob De-
vlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-
Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov.
Natural questions: a benchmark for question answering research. Trans. As-
soc. Comput. Linguistics, 7:452–466, 2019. doi: 10.1162/tacl_a_00276.
URL https://doi.org/10.1162/tacl_a_00276.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient
memory management for large language model serving with pagedattention,
2023.

Hyun Seung Lee, Seungtaek Choi, Yunsung Lee, Hyeongdon Moon, Shinhyeok
Oh, Myeongho Jeong, Hyojun Go, and Christian Wallraven. Cross encoding
as augmentation: Towards effective educational text classification, 2023.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART:
denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension. CoRR, abs/1910.13461, 2019. URL http:
//arxiv.org/abs/1910.13461.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni,
Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis,
Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela.
Retrieval-augmented generation for knowledge-intensive NLP tasks. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
6b493230205f780e1bc26945df7481e5-Abstract.html.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, Chuang Gan,
and Song Han. Awq: Activation-aware weight quantization for llm compres-
sion and acceleration, 2023.

74

https://doi.org/10.1162/tacl_a_00276
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html

BIBLIOGRAPHY

Yu. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs, 2018.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Ran-
gan Majumder, and Li Deng. MS MARCO: A human generated machine
reading comprehension dataset. In Tarek Richard Besold, Antoine Bor-
des, Artur S. d’Avila Garcez, and Greg Wayne, editors, Proceedings of the
Workshop on Cognitive Computation: Integrating neural and symbolic ap-
proaches 2016 co-located with the 30th Annual Conference on Neural In-
formation Processing Systems (NIPS 2016), Barcelona, Spain, December 9,
2016, volume 1773 of CEUR Workshop Proceedings. CEUR-WS.org, 2016.
URL https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi:
10.48550/ARXIV.2303.08774. URL https://doi.org/10.48550/arXiv.
2303.08774.

Ajay Patel, Bryan Li, Mohammad Sadegh Rasooli, Noah Constant, Colin Raf-
fel, and Chris Callison-Burch. Bidirectional language models are also few-
shot learners. In The Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023. URL https://openreview.net/pdf?id=wCFB37bzud4.

Martin Potthast, Sebastian Günther, Janek Bevendorff, Jan Philipp Bittner,
Alexander Bondarenko, Maik Fröbe, Christian Kahmann, Andreas Niek-
ler, Michael Völske, Benno Stein, and Matthias Hagen. The informa-
tion retrieval anthology. In Fernando Diaz, Chirag Shah, Torsten Suel,
Pablo Castells, Rosie Jones, and Tetsuya Sakai, editors, SIGIR ’21: The
44th International ACM SIGIR Conference on Research and Development
in Information Retrieval, Virtual Event, Canada, July 11-15, 2021, pages
2550–2555. ACM, 2021. doi: 10.1145/3404835.3462798. URL https:
//doi.org/10.1145/3404835.3462798.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits
of transfer learning with a unified text-to-text transformer. J. Mach. Learn.
Res., 21:140:1–140:67, 2020. URL http://jmlr.org/papers/v21/20-074.
html.

Roshan Rao, Joshua Meier, Tom Sercu, Sergey Ovchinnikov, and Alexan-
der Rives. Transformer protein language models are unsupervised struc-
ture learners. In 9th International Conference on Learning Representations,

75

https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://openreview.net/pdf?id=wCFB37bzud4
https://doi.org/10.1145/3404835.3462798
https://doi.org/10.1145/3404835.3462798
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

BIBLIOGRAPHY

ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.
URL https://openreview.net/forum?id=fylclEqgvgd.

Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you
pack into the parameters of a language model? In Bonnie Webber, Trevor
Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP 2020,
Online, November 16-20, 2020, pages 5418–5426. Association for Computa-
tional Linguistics, 2020. doi: 10.18653/V1/2020.EMNLP-MAIN.437. URL
https://doi.org/10.18653/v1/2020.emnlp-main.437.

Stephen E. Robertson and Hugo Zaragoza. The probabilistic relevance frame-
work: Bm25 and beyond. Foundations and Trends in Information Retrieval,
3(4):333–389, 2009.

Shawon Sarkar, Maryam Amirizaniani, and Chirag Shah. Representing tasks
with a graph-based method for supporting users in complex search tasks. In
Jacek Gwizdka and Soo Young Rieh, editors, Proceedings of the 2023 Confer-
ence on Human Information Interaction and Retrieval, CHIIR 2023, Austin,
TX, USA, March 19-23, 2023, pages 378–382. ACM, 2023. doi: 10.1145/
3576840.3578279. URL https://doi.org/10.1145/3576840.3578279.

Noam Shazeer. GLU variants improve transformer. CoRR, abs/2002.05202,
2020. URL https://arxiv.org/abs/2002.05202.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston.
Retrieval augmentation reduces hallucination in conversation. In Marie-
Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih,
editors, Findings of the Association for Computational Linguistics: EMNLP
2021, Virtual Event / Punta Cana, Dominican Republic, 16-20 November,
2021, pages 3784–3803. Association for Computational Linguistics, 2021.
doi: 10.18653/v1/2021.findings-emnlp.320. URL https://doi.org/10.
18653/v1/2021.findings-emnlp.320.

Shamane Siriwardhana, Rivindu Weerasekera, Tharindu Kaluarachchi, Elliott
Wen, Rajib Rana, and Suranga Nanayakkara. Improving the domain adap-
tation of retrieval augmented generation (RAG) models for open domain
question answering. Trans. Assoc. Comput. Linguistics, 11:1–17, 2023. URL
https://transacl.org/ojs/index.php/tacl/article/view/4029.

Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yun-
feng Liu. Roformer: Enhanced transformer with rotary position embedding.
Neurocomputing, 568:127063, 2024. doi: 10.1016/J.NEUCOM.2023.127063.
URL https://doi.org/10.1016/j.neucom.2023.127063.

76

https://openreview.net/forum?id=fylclEqgvgd
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.1145/3576840.3578279
https://arxiv.org/abs/2002.05202
https://doi.org/10.18653/v1/2021.findings-emnlp.320
https://doi.org/10.18653/v1/2021.findings-emnlp.320
https://transacl.org/ojs/index.php/tacl/article/view/4029
https://doi.org/10.1016/j.neucom.2023.127063

BIBLIOGRAPHY

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mit-
tal. FEVER: a large-scale dataset for fact extraction and verification. In
Marilyn A. Walker, Heng Ji, and Amanda Stent, editors, Proceedings of
the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT
2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Pa-
pers), pages 809–819. Association for Computational Linguistics, 2018. doi:
10.18653/V1/N18-1074. URL https://doi.org/10.18653/v1/n18-1074.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi,
Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-Ferrer, Moya
Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kar-
das, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev,
Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael
Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor,
Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama
2: Open foundation and fine-tuned chat models. CoRR, abs/2307.09288,
2023. doi: 10.48550/arXiv.2307.09288. URL https://doi.org/10.48550/
arXiv.2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. CoRR, abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.
03762.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Ju-
lian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Su-
perglue: A stickier benchmark for general-purpose language understand-
ing systems. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, edi-
tors, Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pages 3261–

77

https://doi.org/10.18653/v1/n18-1074
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

BIBLIOGRAPHY

3275, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
4496bf24afe7fab6f046bf4923da8de6-Abstract.html.

Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan, Yu Cheng, Jianfeng
Gao, Ahmed Hassan Awadallah, and Bo Li. Adversarial GLUE: A multi-
task benchmark for robustness evaluation of language models. In Joaquin
Vanschoren and Sai-Kit Yeung, editors, Proceedings of the Neural Informa-
tion Processing Systems Track on Datasets and Benchmarks 1, NeurIPS
Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/335f5352088d7d9bf74191e006d8e24c-Abstract-round2.html.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack:
Packaged resources to advance general chinese embedding, 2023.

Biao Zhang and Rico Sennrich. Root mean square layer normal-
ization. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, edi-
tors, Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pages 12360–
12371, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
1e8a19426224ca89e83cef47f1e7f53b-Abstract.html.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting
Huang, Enbo Zhao, Yu Zhang, Yulong Chen, Longyue Wang, Anh Tuan
Luu, Wei Bi, Freda Shi, and Shuming Shi. Siren’s song in the AI ocean: A
survey on hallucination in large language models. CoRR, abs/2309.01219,
2023. doi: 10.48550/arXiv.2309.01219. URL https://doi.org/10.48550/
arXiv.2309.01219.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. Judging llm-as-a-judge with mt-bench
and chatbot arena, 2023.

78

https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/335f5352088d7d9bf74191e006d8e24c-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/335f5352088d7d9bf74191e006d8e24c-Abstract-round2.html
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://doi.org/10.48550/arXiv.2309.01219
https://doi.org/10.48550/arXiv.2309.01219

	Introduction
	Related Work
	IR-Anthology
	Retrieval Augmented Generation
	Retrieval and Generation
	RAG Evaluation

	RAG Pipeline
	Transformer Architecture
	Large Language Models
	Llama2 Architecture

	Embedding Model
	Chapter Conclusion

	Approach
	Mistral 7B
	Prometheus 13B
	Quantization & vLLM:
	BGE Large:
	Llamaindex
	Parsing/Chunking Methods
	Indexing/Embedding of Chunks
	Retrieval
	Generation

	Retrieval Methods
	Vector Retrieval (HNSW)
	Best Matching 25 (BM25)
	Hybrid Retrieval
	Hypothetical Document Embedding (HyDE)
	Reranker

	Chapter Conclusion

	Evaluation
	Generating Synthetic Data
	LLM Parameters
	Question Generation
	Answer Generation
	Document Selection

	Retrieval Evaluation
	Flow
	Evaluation
	Metrics
	Results

	Generation Evaluation
	Flow
	Evaluation
	Metrics
	Results

	Chapter Conclusion

	Discussion & Analysis
	Analysis of Retrieval Results
	Analysis of Generation Results

	Conclusion
	Bibliography

