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Abstract

The alignment of reused passages between documents
is a central task when handling large collections. Cur-
rent alignment algorithms for generic text similarity
relations are too heterogeneous and thus impossible to
compare and improve. With seed-and-extend, these
algorithms can be built with a unified strategy. This
thesis provides a model for the seed-and-extend strat-
egy for text-alignment and analyses performance eval-
uation and optimization of its components. The seed-
ing analysis describes a neighborhood relation between
different seeders, called relaxation, which can be used
to optimize within the configuration space. The ex-
tension analysis first adapts DBScan to cluster similar
passages of text and then evaluates self-tuning of the
clustering parameters for different text similarity rela-
tions. Results for seeding show that relaxation can be
used to search and optimize in the configuration space
of seeding algorithm. Results for extension show that
the adapted DBScan can cluster passages of text and
hyperparameters can be estimated from the seeds. The
conclusion is that, with seed-and-extend, based on re-
laxation and self-tuning seed clustering, it is possible
to do a large-scale automated search for the best text-
alignment algorithm.
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Chapter 1

Introduction

A central task when handling large collections of text is the retrieval and
extraction of reused text passages between documents, so-called text reuse.
The detection of text reuse has applications in plagiarism detection, informa-
tion flow analyses, and copyright enforcement. Text reuse detection comprises
the subproblems of source-retrieval and text-alignment. Retrieval algorithms
efficiently find candidate documents which might contain reused text. Text-
alignment algorithms detect the specific passages of reused text in a given pair
of documents.

The goal of text alignment is to find all pairs of text passages (s, s′) that
fulfill a target relation R(s, s′), where s is a passage in a document d and
s′ a passage in a document d′. This target relation R(s, s′) can range from
exact duplication, reordering or paraphrasing to summarization, expansion or
plagiarism. For simple relations like exact string or substring matching there
are efficient algorithms like Karp-Rabin, Smith-Waterman for local sequence
alignment, or Needleman-Wunsch for global alignments. Considering more
complicated relations, like summarization, there are no efficient algorithms to
find all matching pairs of reused text in a pair of documents.

Seed-and-extend is a sequence-alignment strategy that can be used to de-
tect generic relations. It originated in gene sequence alignment and was used
to find functional/ancestral relations or to compensate for sequencing errors.
With some modifications, this paradigm can be applied to natural language
text (see Figure 1.1).

The seeding step first splits the documents into atomic units of text, like
tokens or sentences, and then forms sequences of these units called seed candi-
dates. Then, each sequence from a document d is compared to every sequence
from a document d′. If both sequences fulfill a similarity relation, they form
a so-called seed. The extension step then merges adjacent seeds to complete
alignments, discarding noise and outliers. These alignments reflect the reused
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Figure 1.1: Symbolic visualization of the seed-and-extend strategy for extracting
aligned pairs of passages (s, s′) from documents (d, d′)

passages between the two documents. Chapter 2 will review how previous re-
search on text-alignment already employs algorithms that roughly follow the
seed-and-extend strategy.

Seeding and extension are usually tightly integrated with those algorithms.
Furthermore, the wide range of possibilities to process and compare text allows
constructing many different algorithms that employ the seed-and-extend strat-
egy. All of those algorithms will vary substantially in the techniques they use
to process text. To gain insights into which parts of the algorithms are respon-
sible for performance, it is not sufficient to only evaluate the alignment results.
This is why Chapter 3 introduces a unified model that formulates seeding as
a 5-step process of tokenization, filtering, feature extraction, sequencing, and
matching. Section 3.1.4 introduces a neighborhood-relation called relaxation
based on these components. It will be shown in Section 3.3 that a search in
the relaxation-space can be used to optimize the performance of seeders.

In Chapter 4 possible extension strategies will be discussed and it will be
explained why density-based clustering is the most promising. A distance func-
tion for seeds called boxdistance will be derived. It will be shown that hyper-
parameters for density-based clustering can be estimated on a per-document
basis from the structural properties of the seeds.

Lastly, Chapter 5 serves as an outline for further research based on this
thesis. Possibilities to increase alignment performance by combining special-
ized seeders will be derived in this chapter and an optimization scheme to
automatically derive the best possible alignment algorithm will be introduced.
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Chapter 2

Background

The seed-and-extend strategy originated, like most sequence-alignment algo-
rithms, in bioinformatics. Seed-and-extend is a general purpose paradigm to
find functional/ancestral relations or to compensate for sequencing errors in
protein alignment. The goal of this strategy in gene-alignment is to find strings
or sequences of acids two proteins share. The seeding step refers to, for ex-
ample, scanning the acid sequences of two proteins and find matching pairs
of sequences. Each matching pair is called a seed. The extension step groups
adjacent seeds into similar sequences of maximal length.

This chapter serves as an introduction to the current state of text alignment
research. First, the primary literature from the most influential fields, gene
alignment and plagiarism detection, will be reviewed. After that, the most
cutting edge technologies in the field of text reuse detection will be discussed.
Finally, some background on performance analysis for text-alignment will be
provided.

2.1 Related Work
The field of string matching and sequence alignment has been extensively re-
searched in both computer science theory as well as bioinformatics. The most
comprehensive work on string and sequence matching, indexing, and dynamic
programming is Algorithms on Strings, Trees, and Sequences: Computer Sci-
ence and Computational Biology by Gusfield [15]. This book covers most
standard algorithms, like Needleman-Wunsch and Smith-Waterman, as well as
indexing structures like suffix-trees. The second essential textbook is Bioin-
formatics: Sequence and Genome Analysis by Mount [20]. This book takes
a deeper look at specific computational methods, most notably predictions of
proteins and protein structure, phylogenetic analysis and fast database search
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CHAPTER 2. BACKGROUND

systems for sequence alignments like FASTA or BLAST. The BLAST algo-
rithm has been adapted for use in information retrieval as eTBLAST [19].

Besides the influences from bioinformatics, text-alignment is a generaliza-
tion from plagiarism detection, which has been extensively researched in the
past. The largest competition on plagiarism and authorship analysis is the
PAN competition.1 PAN originally provided two challenges on plagiarism de-
tection: external and intrinsic, as described by Stein et al. [35]. The external
task was about, given a suspicious document, retrieving potential sources from
a collection. The intrinsic task focused on analyzing the suspicious document
and detecting plagiarism based on style and authorship analysis. In later PAN
competitions, the intrinsic detection task has been merged with the authorship
tasks and the external task has been generalized to text reuse, with a source
retrieval and a text alignment category.

The last PAN including English language text alignment took place in 2014
and provided a set of extensive text reuse corpora and an elaborate evaluation
scheme. Both of them will be used in this thesis and are described in detail in
Section 2.2 and 2.3. A detailed review of software submissions to PAN and their
performance can be found in Overview of the 6th International Competition
on Plagiarism Detection by Potthast et al. [25]. Another central contribution
from this latest instance of the PAN competition is the theoretical derivation
of the seed-and-extend strategy for text-alignment. The authors also provide
a rough classification of how the submissions fit this paradigm.

From the 11 submissions to the 6th PAN in the text-alignment task, Ober-
reuter and Eiselt [21], Gillam and Notley [12] and Palkovskii and Belov [22] do
not provide sufficient publicly available information to reconstruct the details
of their algorithms. Therefore, they will be omitted in the following. Algo-
rithm details like preprocessing, that are common to all approaches, will also
be omitted. An overview of the algorithms analyzed for this thesis is given
in Table 2.1.

The best performing run was submitted by Sanchez-Perez et al. [28]. Their
alignment software uses term frequency * inverse sentence frequency (tf-isf)
vectors as atomic units. Tf-isf is similar to tf-idf but regards each sentence as
a single document and only the two documents (d, d′) as the corpus for calcu-
lating the vocabulary and inverse. Two tf-isf vectors are marked as similar if
both cosine similarity and dice coefficient are above a threshold of 0.3. Addi-
tionally, the algorithm applies a custom divisive clustering approach for seeds.
First, the clustering merges all subsequent seeds within a broad gap threshold
into what the authors denote as fragments. Each fragment is then repeatedly
divided into smaller ones, until every fragment left passes a similarity thresh-

1PAN keeps a history of all past tasks and their respective results at http://pan.webis.de.
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old. All resulting fragments are then retrieved as aligned pairs of passages if
they are longer than 150 characters.

Glinos [13] introduce a modified version of the Smith-Waterman algorithm.
Their version is able to detect multiple matches and join adjacent subse-
quences. The modifications also involve matching two set of stop-words that
are approximately equal. After extracting the matched substrings, the algo-
rithm discards every token except for the top 20 most frequent words in the
document pair which are longer than 5 characters. After that, the software
forms bi-grams as seeds from the remaining tokens. Finally, these seeds are
merged if less than 15 characters apart from each other. Clusters of less than
40 characters of length in both documents are discarded.

Shrestha et al. [31] apply an algorithm with two seeders. The first seeder
exactly matches token bi-grams, the second one applies the TER-plus [33]
metric for machine translation similarity to sentences. Both sets of seeds are
combined and seeds are merged when they are closer than a fixed character
distance.

Rodríguez Torrejón and Martín Ramos [26] use a version of sorted skip-
grams, which they call surrounding context n-grams and odd-even n-grams.
These special skip-grams are supposed to be robust against translation and
paraphrase obfuscation. The algorithm matches pairs of n-grams if they are
exact identical. Afterwards, the software applies a so called granularity filter,
which combines matching pairs within a certain distance from each other.
Similarly, Gross and Modaresi [14] use skip-grams which match exactly but
use single-link clustering to merge adjacent matches below a certain distance
threshold. Gross and Modaresi [14] also remove alignments with less than 15
characters in length.

The algorithm submitted by Kong et al. [17] extracts all sentences from the
candidate documents and matches them, similarly to Sanchez-Perez et al. [28],
based on cosine similarity. Additionally, the algorithm matches two sentences
if large parts of the containing words are identical. The authors used this
matching system since PAN 2012 and now vary the cosine threshold after
detecting the type of reuse in the respective documents.

Abnar et al. [1] used several types of n-grams: traditional n-grams, skip-
grams, stop word n-grams and expanded n-grams. Expanded n-grams are
synonym-based substitutions of the original n-gram and is meant to capture
paraphrase obfuscation. The software matches two n-grams based on trans-
formation distance. This technique views two n-grams as a bipartite graph
with edges connecting each one word in the first n-gram with each word of the
second one. Each edge has a weight with the probability that one word can
be replaced by the other one. The similarity between two n-grams is repre-
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CHAPTER 2. BACKGROUND

Table 2.1: Overview of results and component choices of PAN 2014 submis-
sion. Submissions are ranked by the PAN competitions performance metric plagdet
(see Section 2.3).

Team PlagDet Units Matching Extension
Sanchez-Perez [28] 0.878 sentences vector cosine divisive
Glinos [13] 0.859 token n-grams approximate match agglomerative
Shrestha [31] 0.844 sentences and tokens TER-p and exact match agglomerative
Torrejon [26] 0.829 token n-grams exact match agglomerative
Gross [14] 0.826 token n-grams exact match agglomerative
Kong [17] 0.821 sentences vector cosine agglomerative
Abnar [1] 0.672 token n-grams approximate match density
Alvi [3] 0.659 character n-grams exact match agglomerative

sented by the normalized maximum-weight match for this graph. The resulting
matches are then clustered using DBScan with a fixed parameter setting.

Alvi et al. [3] use character 20-grams and the Rabin-Karp algorithm for
matching strings between suspicious and source document. The algorithm
merges all exact matching passages if they are less than 200 characters apart
in the source document and less than 100 in the suspicious document. The
software then discards alignments of less than 200 characters in total length.

Several relevant trends can be observed from these state-of-the-art detec-
tion algorithms (see Table 2.1). Notable is that all participants roughly follow
the seed-and-extend paradigm in that their algorithms first generate match-
ing pairs of text fragments, like token n-grams or sentences, and then merge
them afterwards. As unit choices, only token n-grams and sentences are repre-
sented, with none being obviously better regarding the final result. Matching
on sentences is most commonly done using vector based metrics like cosine
similarity, with the exception of Shrestha et al. [31] using a metric for ma-
chine translation. Matching on n-grams is more diverse, including exact sub-
string matches, approximate matches of exact subsequences (like in Glinos
[13]) or exact matching of approximate subsequences (like in Abnar et al. [1])
or combinations of those. Chapter 3 will provide a more in-depth analysis and
comparison of seeding approaches.

Most participants use some form of hierarchical clustering to extend match-
ing passages into alignments. This means, merging the closest neighboring
seeds if they exceed a certain character distance threshold. Notable excep-
tions are Sanchez-Perez et al. [28], who use divisive clustering and Abnar et al.
[1], who use density-based clustering. Chapter 4 will provide a more in-depth
analysis and comparison of extension approaches.

Considering the seeding step, there are two notable general trends: firstly
to include adaptive parameter selection for thresholds and token sequence sizes
and secondly to use dynamic programming to adapt seeding procedures to the

6



CHAPTER 2. BACKGROUND

Table 2.2: Statistics of the PAN13-test and PAN13-training corpora. This table
shows how many labeled pairs of documents are in each category, how long each
reused passage is on average and how many reused passages are in each labeled pair
of documents on average.

PAN13-training

Category Total No
Plagiarism

No
Obfuscation

Random
Obfuscation

Translation
Obfuscation

Summary
Obfuscation

number of pairs 5185 1000 1000 1000 1000 1185
avg. length of passage 1318 0 1090 977 1050 5735
avg. nr. of passages 0.773 0.0 1.252 1.267 1.250 0.201

PAN13-test
number of pairs 5185 1000 1000 1000 1000 1185
avg. length of passage 1331 0 1054 987 1095 5944
avg. nr. of passages 0.779 0.0 1.206 1.292 1.308 0.199

respective documents. Shrestha et al. [31], for example, combine a token-based
exact match seeder to detect exact relations like non-obfuscated plagiarism
and a more relaxed sentence-similarity-based seeder to detect paraphrases or
summarizations. Chapter 5.1 will provide a more in-depth analysis of seeder
combinations and combinatorial optimization.

All of the software submissions described above were evaluated with the
corpora and the evaluation measure provided by the PAN competition. Both
of them will be used in this work. Besides the fact that there are no com-
parably sophisticated resources for scientific analysis of text reuse, using the
PAN corpora and evaluation measures allows for comparison with the PAN
submissions.

2.2 Evaluation Corpora
In total there are five English language PAN text reuse corpora available
2, two for training and three for evaluation. Since the first test corpus
PAN12-Test is only a subset of documents of PAN13-Test and the third one
PAN14-Supplemental does not cover all reuse types, only PAN13-Test will be
used. Similarly, only PAN13-Training will be used when necessary. Each cor-
pus features 5 sub-categories for different reuse relations, as described by Pot-
thast et al. [24]:

• No plagiarism, where there is no reuse in the document pairs. This
category acts as a penalty for false positive detections.

2All corpora are publicly available at http://pan.webis.de/data.html
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Figure 2.1: Distribution of the number of annotated reused passages within a
pair of documents for different categories. The left graph shows the distribution in
PAN13-Test, the left graph in PAN13-Training. Each bar shows the distribution of
documents with none, one and more than one reused passage for one category. This
graph shows two essential observations: (1) only few document pairs in the corpus
have more than one alignment and (2) summarization obfuscation category has a
very different distribution than the other ones.

• No obfuscation, where the annotated passages are identical in both
documents.

• Random obfuscation is meant to test robustness against machine obfus-
cation. It is comprised of random text operations like shuffling, addition,
deletion, synonym replacement and/or paraphrasing of words or short
passages.

• Cyclic translation obfuscation is created using a random sequence
of machine translations from English into different languages like Ger-
man, Spanish, Arabic or Japanese and back to English.

• Summarization obfuscation is created by injecting a summarization
from the Document Understanding Conference (DUC) 2001 corpus 3 into
documents from the DUC 2006 corpus.

The corpora contain all raw text source and suspicious documents, a list
of candidate pairs of documents and the true alignments. This truth denotes
the document identifiers, the category of reuse and for each alignment start
character position and length in characters for both documents. Table 2.2
shows the exact numbers for these.

3The public DUC corpora can be found at https://duc.nist.gov/data.html.
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A notable inconsistency within the dataset is the difference between sum-
mary obfuscation and the other categories. Note that the summarization cat-
egory is created differently compared to the other ones. The documents for
summarization are sampled from a news article corpus, while the other cat-
egories also use text extracted from web documents and other sources. An-
other important detail of this discrepancy is the difference in length of the
reused passages. There is no difference between the no obfuscation, random
obfuscation and translation obfuscation categories on the average length of the
reused passages, but summarizations are (naturally) longer. These differences
in length and origin have been used, for example, by [3] to distinguish between
those categories and adapt their approach. Another important characteristic
is the average number of reused passages per document pair (see Figure 2.1).
In total, about 40 percent of annotated documents pairs have no reused pas-
sages. About half of them in the no plagiarism category and the other half in
the summarization category. Additionally, only about 10 percent of document
pairs contain more than one annotated reuse and less than one percent 4 or
more.

Especially the expected length and number of passages in a document may
introduce a considerable bias towards discarding short passages. This can be
noticed especially when analyzing the extension modules of the participants’
submissions, where the majority discards short passages to improve results.
This is in part refined into detecting summarizations and adapting thresholds
for merging and discarding accordingly.

2.3 Evaluation Metrics
In addition to the corpora, the PAN competition also provides a comprehensive
series of metrics [25] to evaluate the performance of detection algorithms. For
the sake of comparability, these metrics will also be used for performance
evaluation in this thesis.

A true reused passage in a pair of documents is defined as a reuse case
s = 〈ssusp, dsusp, ssrc, dsrc〉, s ∈ S. Here, S denotes the set of all reuse cases
in the corpus. dsusp and dsrc are references to the documents, where one is
labeled as the source and the other as the suspicious document. ssusp and
ssrc denote the character positions of the reused passages. Each seed s can be
represented by its starting character position and length in both documents
as s = (sstartsrc , slensrc, s

start
susp , s

len
susp) Similarly, a passage that has been found by the

algorithm is defined as a detection case r = 〈rsusp, dsusp, rsrc, dsrc〉, r ∈ R and
represented by r. A detection of s by r is defined as

r detects s⇔ s ∩ r 6= ∅,

9
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a fast brown fox jumps over a sluggish pup

the quick brown fox jumps over the lazy dog

the quick brown fox jumps over the lazy dog

a fast brown fox jumps over a sluggish pup

rsrc

rsusp

ssrc
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dsusp

dsrc dsusp

dsrc

s r

Figure 2.2: Visualization of an example pair of documents dsusp and dsrc and reuse
and detection cases.

and the character sequences ssusp overlaps with rsusp and ssrc with rsrc (com-
pare Figure 2.2). The strength of the detection is measured in the length of
the set of unique overlapping characters in the relating passages in source and
suspicious documents, denoted as |s u r|, where

s u r =

{
s ∩ r, if r detects s
∅, otherwise

Precision and recall for a detection algorithm can be calculated over all
cases based on the definition of overlap:

prec(S,R) =
1

|R|
∑
r∈R

|
⋃

s∈S(s u r)|
|r|

rec(S,R) =
1

|S|
∑
s∈S

|
⋃

r∈R(s u r)|
|s|

The formulas above describe the macro-averaged variations, where recall
and precision is first calculated for each reuse and detection case and then av-
eraged over all cases. The alternative is micro-averaging, where all overlapping
character positions are unified and recall and precision are calculated once over
this union. Macro-averaging is in general more robust, while micro-averaging
is more precise. The disadvantage of micro-averaging precision and recall is
that longer passages have a much higher impact on the total result. Since
the length of the passages in the corpus show a high deviation depending on
category (see Figure 2.1), missing a passage in summarization would have a
much higher impact on the total.

10
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Figure 2.3: Comparison of different possibilities to calculate recall and precision.
For this example, the Picapica text alignment algorithm was used. For case level, τ1

and τ2 are set to 1.

Recall and precision can also be defined based on case and document-level.
A reuse case has a case-level recall of 1 if the ratio of detected to missed char-
acters (the character-level recall) is above a threshold τ1 and 0 otherwise. A
detection case has a case-level precision of 1 if the ratio of missed to total char-
acters of that case (the character-level precision) is above a threshold τ2 and
0 otherwise. The total case-level recall and precision is the average of these
values over all detection and reuse cases in the corpus. Document-level perfor-
mance is averaged over all documents, where a document is defined as detected
if at least one case within the document is detected following the definition of
case level performance. See Potthast et al. [25] for more details on alternative
performance measures. Figure 2.3 shows a comparison of macro, micro, and
case-level performance. For this example, the text-alignment implementation
from Picapica [23] was used. Picapica is an online text-reuse analysis tool. Its
text-alignment module also follows the seed-and-extend paradigm and uses to-
ken 5-grams for seeding and a density-based clustering on 2D representations
of seeds.

Case and document-level performance is most useful with a τ of 0, where
it can be used to show how many cases overlap somehow with produced seeds.
For τ larger than 1, case-level performance is but a more forgiving variation of
character-level performance. It is however very likely that most seeders based
on smaller units like tokens find at least one seed if there is any noticeable
similarity between passages. Thus, case and document-level performance are
usually irrelevant (compare Figure 2.3). If not specified differently, recall and
precision in this thesis always refer to macro-averaged character-level.

11
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Figure 2.4: Complete extrinsic evaluation of Picapicas text alignment module.
The graphic shows micro and macro-averaged plagdet, precision and recall for each
category and both corpora.

Besides recall and precision, the PAN evaluation also considers how many
detections are needed to cover a reuse case. This term is called granularity
and is quantified as:

gran(S,R) =
1

|SR|
∑
s∈SR

|Rs|

SR ⊆ S is the subset of reuse cases detected by detections in R, and Rs ⊆ R
are all detections of a specific reuse case s. The combined evaluation metric
for alignment performance is called plagdet4 and calculated as the harmonic
mean of recall and precision (F1), weighted by granularity:

plagdet(S,R) =
F1

log2(1 + gran(S,R))
,

4The original evaluation script is available at http://pan.webis.de/sepln09/pan09-
code/pan09-plagiarism-detection-performance-measures.py. This software has been largely
reused for plagdet computation, with some modifications for performance.
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where F1 = 2 ∗ prec(S,R) ∗ rec(S,R)

prec(S,R) + rec(S,R)
.

In conclusion, the the complete impression of performance of a text reuse
detector is given by precision, recall, and plagdet, in the micro and macro-
averaged variant, for both corpora and split by categories. Figure 2.4 shows
this more complete evaluation on Picapicas alignment algorithm. It can be
seen that the difference between both corpora is negligible in terms of insight
gained. Also the difference between micro and macro-averaging is rather in-
significant. Thus, in addition to the discussion above, only macro-averaging
and the PAN13-test corpora will be used, unless noted otherwise. This reduces
the number of scores to evaluate to a manageable level. The performance of Pi-
capicas alignment module also hints on some of the challenges discussed later.
This algorithm matches all identical word-5-grams and is thus rather effective
in terms of detecting none-obfuscated reuse. It can also be seen that precision
is very high, so this algorithm does not mismatch frequently, following the ex-
act matching done. Compared to the PAN participants this algorithm would
score at the lower end, slightly below Alvi et al. [3] (compare Table 2.1).
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Chapter 3

Seeder Evaluation

The analysis of the current state of text-alignment in Section 2.1 reveals that
token n-grams and sentences are the go-to atomic unit sequences so far. More-
over, matching these sequences is primarily based on the identity of units and
approximations like cosine similarity between frequency vectors. However, the
performance of the seeders or its components can not be compared based on
the performance of the whole text-alignment algorithm. This follows from the
fact that, at least in the competition results, there is no clear tendency towards
any of these components being notably better in the end.

To compensate this lack of separation, this chapter describes how to uni-
formly model and evaluate the seeding step. This model of seeding is, in theory,
capable of deriving every possible relation between passages from two given
documents. In turn, an implementation of this model is capable of analyzing
the strength and weaknesses of very different seeders and compare their per-
formance. The primary goal is to determine what the important properties of
seeders are and how these can be used to improve detection of reused passages.

3.1 Model of Seeding
As mentioned in Chapter 1, a seed-and-extend algorithm consists of a seeding
and an extension step. The seeding-step constructs seeding candidates and
matches them to form seeds. The extension step merges adjacent seeds to
alignments and removes noise seeds (see Figure 3.1).

To construct seeding candidates, both documents d and d′ are first trans-
formed into lists of atomic units d and d’, typically linear in the length of
d and d′, using a seed heuristic h. These atomic units can be one of several
structural units of preprocessed text, from characters, tokens or sentences to
encoded, vector or sequenced representations like n-grams. Each position in
the lists d and d’ is called a seed key. A matrix Mh is then formed from the
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Figure 3.1: Conceptual and model view of a seed-and-extend-based algorithm for
detecting aligned pairs of passages (s, s′) in documents (d, d′)

cross-product of the seed keys of both lists. The i-th row corresponds to the
i-th seed key in d, the j-th column to the j-th seed key in d’. Seeds are formed
based on this matrix by applying a weight function w to each cell Mh(i, j).
The atomic units at the seed keys di and d’j are said to match if the weight
function w(i, j) exceeds a given threshold. In the most simple case, the weight
function is boolean and the units match if they are equal. The weight func-
tion accounts for the target relation R. The complete module responsible for
extracting candidates and forming seeds is in the following called a seeder and
denoted with ϕ.

The second part of the strategy is the extension step, which takes the
weighted matrix Mh as input and outputs a set of pairs of subsequences (s, s′)
of d and d’ that correspond to the aligned passages of the documents d and
d′. Chapter 4 focuses on extension.

In a more abstract view, a seeder consists of a transformation function h,
where h(d) = d, such that |d| = c∗|d| and |d′| = c∗|d′| and a matching function
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w, where w(di,d′j) = mi,j, with mi,j ∈ Mh, di ∈ d, d′j ∈ d′, i ∈ {1, ..., |d|},
and j ∈ {1, ..., |d′|}.

3.1.1 Transformation Function

In layman terms, h combines all operations needed to transform any document
d to a vector representation d, such that d has a constant linear length rela-
tionship c to d depending on h. Please note that c is not required be strictly
constant. Assume the most primitive instance of h to be a whitespace tok-
enizer, then the length of d is the number of all whitespace separated tokens in
d, while the length of d is the number of all characters in d, so c = |d|

|d| . In this
scenario, a c for d and a c′ for d′ would only be equal if the distribution of the
length of the words in d and d′ is equal, which is unlikely. However, assuming
that the documents approximately represent the language they are written in,
these properties approximately follow this language and c is approximately
equal for all documents. This inaccuracy of the definition of c can be ignored
since c is only meant to ensure that a transformation function h transforms
each document equally.

In more detail, h needs to provide four operations to transform a document
into matchable sequences:

• Tokenization of the plain text. These resulting units can be whitespace
separated tokens, but also characters, sentences, syllables or others. To-
kenization here only includes splitting the text by any criterion, so the
concatenation of the tokenized sequences should be equal to the original
sequence when ignoring splitting characters.

• Filtering of the tokens. This includes, for example, only keeping al-
phanumeric tokens, only nouns, removing stop words or any combina-
tion.

• Extracting features from the filtered tokens. This includes all transfor-
mations that change the tokens itself, like stemming, but also encodings
like Soundex codes and vector representations.

• Sequencing the extracted features. This includes, for example, con-
structing n-grams, skip-grams, and sorted n-grams.

The result of these operations, d, has to fulfill two properties: it satisfies
the linear relationship c and the text covered by the matchable sequence di

follows the ordering of d. More specifically, the smallest character position
of the text in d covered by di is larger than the smallest character position
in di+1 and larger than di−1. Thus, almost every d can be the result of the
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transformation, including every permutation of characters in d. It is possible
for d to be of length 0, only contain constant entries or only have one entry
being the text itself. It is however not possible to contain the second half of
the text in d before the first half.

3.1.2 Matching Function

The matching function w assigns a weight ∈ [0, 1] to each pair (di,d′j) of
matchable sequences. The interval [0, 1] enables granular matching and, in
turn, more sophisticated extension. For this thesis, however, only {0, 1} will
be considered as possible weights, where 1 represents a matching and 0 a non-
matching sequence. This means, that Mh in the following can be assumed to
be a binary matrix.

This definition of w allows all relations between matchable sequences,
with the most general matching function being the trivial matcher, where
∀di ∈ d,d′j ∈ d′ : w(di,d′j) = 1. The most specific matching function is the
impossible matcher, where ∀di ∈ d,d′j ∈ d′ : w(di,d′j) = 0. In case of binary
weights, a seed ς = (smin

di
, smax

di
, smin

d′
j
, smax

d′
j

) is defined as the text between the
smallest and the largest character position of the text covered by di and d′j
if w(di,d′j) = 1. If the weights are defined on a scale w(di,d′j) ∈ [1, 0], the
definition of seed depends on the extension algorithm. This thesis assumes
all weight to be binary, so w can output a set of seeds by character positions
directly. Otherwise, the w would have to output the matching matrix. This
simplification allows the extender to be unaware of the seeder that produced
the seeds and how many different seeders were involved. To simplify the no-
tation, a seed in the following is denoted as ς = (s, s′), ς ∈ Σ and the set of all
seeds as Σ = ϕ(d, d′).

Concluding, a seeder ϕ derives a set of seeds Σ from two documents and
consists of five components: a tokenizer t, a filter f , an extractor e, a sequencer
z and a matcher m, so ϕ = (t, f, e, z,m)

3.1.3 Seeder Performance Evaluation

The performance of a seeder can be evaluated in two ways: extrinsic and in-
trinsic. Extrinsic evaluation compares seeder performance after a complete
seed-and-extend text-alignment pass, where the extension step is constant and
the metrics from Section 2.3 are used. Extrinsic evaluation is not particularly
useful, because the extension has an inductive bias and performance of a con-
stant extender varies depending on the structure of the seeds, as will be shown
in Chapter 4.
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Intrinsic evaluation is also based on recall and precision, like extrinsic eval-
uation, but ignores granularity. Since the model defines the produced seeds
identical to aligned passages, precision and recall can be calculated on the
seeds directly. The granularity term can be ignored for evaluating seeds since
it would directly correlate with the size of the sequences h produces. There-
fore, the combined intrinsic measure for the performance of a ϕ is the F1 score.
Note that a ϕ1 scoring a higher F1 than a ϕ2 does not imply that this is true
after extension.

3.1.4 Relaxation

This chapter analyzes which properties and components of a seeder influence
its performance, by how much and what can be done to improve it. Formally,
the functional differences of seeders can be described by a half-ordered relation
called relaxation. Assume the most relaxed seeder ϕg = (tg, fg, eg, zg,mg) to
always produce the all-ones unit matrix and the most specific seeder ϕs =
(ts, fs, es, zs,ms) the zero matrix. Assume further that each component of the
most relaxed/specific seeder is the most relaxed/specific component. A seeder
ϕ2 is called a relaxation ϕ1 @ ϕ2 of a seeder ϕ1 if it fulfills the seed-subset
property (SSP). The SSP is fulfilled if

∀d, d′ ∀ςb ∈ ϕ2(d, d′) ∃ςa ∈ ϕ1(d, d′),

such that

smin
a,di
≤ smin

b,di
∧ smax

a,di
≥ smax

b,di
∧ smin

a,d′
j
≤ smin

b,d′
j
∧ smax

a,d′
j
≥ smax

b,d′
j
.

Assume two seeders ϕ1 and ϕ2 to be identical except for one variable compo-
nent ζ1 in ϕ1 and ζ2 in ϕ2. If it can be shown that ϕ2 always is a relaxation of
ϕ1 for any configuration of identical components, then ζ2 is a relaxation of ζ1.
From this theory follows that all possible seeders can be half-ordered by relax-
ation between the most general and the most specific seeder. Therefore, the
problem of finding the best seeder can be described as a search problem within
the space of configurations. While indisputably fascinating, there are some
practical limitations in solving text reuse detection by search in the seeder re-
laxation space. In theory, there is an ideal seeder that can construct a match
matrixMh that perfectly captures the reuse in a document pair. It is not clear,
however, if this seeder can be found since it is unclear how the complete com-
ponent space looks like. Also, it is not clear how to show that a found seeder is
ideal for every pair of documents or for every possible relation. Thus, a search
in the space of all known seeders is, in the best case, a heuristic to find the
best seeder with incomplete knowledge of components, documents, and reuse
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relations. Relaxation is still a useful relation to research at this point because
it can be used to improve and refine seeders or as neighborhood relation for
heuristic search. Relaxation predicts the following changes on seeder perfor-
mance: The recall of the relaxed seeder is always equal or higher than that
of its predecessor. The fact that recall can never fall in case of a relaxation
follows directly from the definition of the SSP. If the specialized seeder already
detects certain parts of true reuse cases and the SSP holds, then the relaxed
seeder also detects those cases but possibly more. This implication does not
hold for precision. Precision of seeders considers the ratio of true to false pos-
itives, so the new found passages can have a lower or higher ratio, thus the
total precision can be lower or higher.

The increase in seeder performance can refer to increasing recall, precision
or both, depending on use case. It may also be advantageous to trade precision
for recall, since the extension algorithm may be able to handle the additional
noise and/or outliers that may cause lower precision. If the goal is to not miss
any reuse cases, for example, heavily relaxed seeders may be better, even if
precision is low. Please note that finding the ideal seeder to capture all relations
in the corpus is vastly out of scope for this thesis, due to the aforementioned
implications of the theory. However, it should suffice for now to prove some
fundamental predictions of the model for seeding. This means: If a component
can be shown to always relax a seeder, the SSP between a seeder and its
relaxation is fulfilled and recall does not fall.

3.2 Method
To test the predictions of relaxation, it is necessary to first implement the
model of seeding from Section 3.1, including a set of relaxing components.
Then, a series of experiments can be derived and executed on the corpora
described in Section 2.2.

3.2.1 Model Implementation

This section describes the implementation of the model described in Sec-
tion 3.1, specifically the necessary components that will be used in the ex-
periments in Section 3.2.2 and the evaluation in Section 3.3. The extension
module will be described in Chapter 4. Not all component implementations
mentioned in this chapter are used for seeder evaluation in this thesis but are
a prerequisite for extension experiments and future work.

Figure 3.2 shows an overview of the processing pipeline for seeding, starting
with the two plain text documents as input and computing a list of seeds. Each
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Figure 3.2: Symbolic representation of the text-processing components each seeder
is build upon. Both documents d, d′ are processed using the same tokenizer, filter,
feature extractor and sequencer to compute d and d’. The matcher then finds seeds
from the sequences of both documents.

seed is described as per definition as ς = (smin
di

, smax
di

, smin
d′
j
, smax

d′
j

). The compu-
tation of Σ is a five-step process through all components of ϕ = (t, f, e, z,m)
in that order. Several possible instances of these components have been im-
plemented. For each specific seeder instance, the configuration of these com-
ponents has to be determined before execution. The following section will
describe each component and its parameters for calibration. Please note that
the implementation introduces some computational constraints, thus losing
some of the generality of the model. This does not impact the experiments
and the conclusion.

The first component of each seeder instance is the tokenizer t. The tokenizer
takes a plain text document and splits it, depending on configuration, into
atomic units of text. These units are then passed to the filter component.
Following tokenizer instances are available:

• The character tokenizer. Characters are the most basic unit defined,
where each character in the document is transformed to a character unit.

• The whitespace tokenizer splits text, following the common under-
standing of tokens, by whitespaces, separates special characters like dots,
commas and colons and leaves URLs and abbreviations intact. This com-
ponent wraps the InfexBA tokenizer from AITools [2].

• The syllable tokenizer is based on the word tokens produced by the
whitespace tokenizer. The syllable tokenizer uses the AITools wrapper
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of David Tolpins TexHyphenator-J1 [37], which in turn is an implemen-
tation of Frank Liang’s TexHyphenator [? ].

• The sentence tokenizer splits the text into sentences. It uses the Ar-
guAna sentence splitter from AITools, which is rule-based, respects ab-
breviations and targets at well-formatted texts like news articles, which
are similar to the documents in the PAN corpora used in this thesis.

• The paragraph tokenizer also use an AITools implementation, which
splits paragraphs based on double line separators.

The list of tokens output by t is the input for the filter component f . The
filter component removes certain units from the list, following its configuration.
Following filters have been implemented:

• The regular expression filter removes all tokens that do not match a
given regular expression.

• The character-list filter removes all characters on a list of not allowed
characters.

• The word-token filter, or just word-filter, removes every token that does
not exclusively contain letters.

• The word-list filter removes every token that is on a given list of words.

• The Part-of-Speech filter removes every token whose POS-Tag is not
of the allowed types. Please note that POS-Tags and named entities are
determined before tokenization, using the TT4J library2 [38], which is
based on Schmidt [29].

• The named entity filter removes every token that is not part of a named
entity.

• Boolean operators AND, OR and NOT have been added to combine and
negate filters.

The extractor component e takes the filtered list of atomic units and ex-
tracts the features which the matching algorithm will be based on. Following
feature extractors have been implemented:

1TexHyphenator-J was used in version 1.1.
2TT4j was used in version 1.2.1.
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• The text of the given unit is the most basic feature. Text can be ex-
tracted as is, as lowercase, truncated (only the first n characters of the
unit), stemmed or lemmatized. Stemming is based on the snowball stem-
mer [36] and lemmatizing is based on TT4J.

• Part-of-Speech-Tags and named entities as described above. It is
also possible to extract the reduced POS-tags as used by Wordnet,
namely nouns, verbs, adjectives or adverbs.

• Text with normalized synonyms or hypernyms. This extractor is based
on Wordnet [39] and the JWI library by Finlayson [11]. Wordnet con-
solidates synonym words into synsets, depending on its part-of-speech.
It assigns each word a fixed index within the synset. Thus, synonym
normalization means finding the appropriate synset of a word and ex-
tracting the word at the first index as a feature. Synsets in Wordnet
are connected by hyponym-hypernym relations, which are also indexed.
Therefore, hypernym normalization extracts the word token at the first
index of the first hypernym-synset. This synset-normalization has some
additional configuration options: To use the synset according to a word
tokens POS-Tag or the synset of a specific POS-Tag. For example, the
word running as a noun is in the synset of track, as a verb in operate
and as an adjective in running. Additionally, it is possible to normalize
hypernyms iteratively. The normalized hypernym of text for example is
matter in the synset matter, affair, thing. The normalized hyper-
nym of matter is concern3.

• Term frequency vectors represent a set of words by their frequency of
occurrence. A widely used term frequency vector is the term frequency
- inverse document frequency (tf-idf) vector, commonly computed over
complete documents. Here, each index represents a word from the col-
lection that can occur in a document, each entry contains the absolute
frequency of the word in the document multiplied by the inverse of the
frequency of the word in the whole collection. This extractor can either
use precomputed inverse term frequencies from an external collection or
assume the document pairs d and d′ as the complete internal collection.
Meaningful vectors can be computed, for example, over paragraphs or
sentences.

• Soundex4 is a one-letter and three-number encoding of words or phrases
that aims to preserve phonetic similarity. Although it is possible to

3Examples are taken from http://wordnetweb.princeton.edu/perl/webwn
4Here the implementation of Soundex in the apache.commons.codec package, version 1.8,

was used.
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encode sentences or longer units, this is not particularly useful since
Soundex would be heavily truncated for longer passages of text.

The sequencer component z concatenates the features of the corresponding
atomic units to matchable sequences of these features. For this thesis, two
sequencers have been implemented: n-grams and skip-grams. For both n
can be freely configured, where n=1 transforms each feature to a sequence of
one element. Additionally, the overlap of n-grams and the skip-distance for
skip-grams can be configured. The given skip-distance in the implementation
includes all lower skip-distances. This means, that each n-gram is contained
in every skip-n-gram as the 0-skip.

The matcher component compares each matchable sequence from d with
any component from d′ and combines them to a seed if they fulfill the matching
condition. Implemented matching conditions are:

• Exact identity, which is true if each feature at the same position in
both sequences is equal.

• Sorted exact identity, which is true if two sequences are exact iden-
tical after sorting the features alphabetically.

• Jaccard similarity is the size of the intersection of the sets of features
from both sequences, divided by the size of the union. The matcher
based on this is true if the Jaccard similarity is above a threshold.

• Dice and cosine similarity compare the similarity of vector represen-
tations. Two sequences, represented as vectors, match if the dice/cosine
coefficient is above a threshold.

3.2.2 Experiments

The following experiments have been constructed to show relaxation of seeders
and the predicted effects. Experiments are split into multiple sets, where each
set covers multiple relaxations of a seeder by relaxing one variable component
multiple times.

The seeders have been implemented using the framework described in Sec-
tion 3.2.1. One experiment includes running a seeder on every pair of doc-
uments in the PAN13-test corpus5. After computing every set of seeds, the
predicted relaxations can be verified. Note that the used corpora contain some
inconsistencies, like reuse cases that are not noted in the truth. There might
also be some errors in the thirdparty or experiment software. This makes the

5This execution has been done in parallel over all document pairs using hadoop 2.7.2 [16].
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strict SSP slightly unreliable. To cope with this, the SSP is assumed to be ful-
filled if the character-miss-rate (CMR) is below 1%. The CMR is the number
of characters covered by ς1 but not by the relaxed ς2, divided by the number of
characters covered by ς1. The following five sets of seeders have been derived,
each targeting a different type of component relaxation and highlight a differ-
ent benefit. Table 3.1 shows a comprehensive view of all component settings
for the experiments described above and Table 3.2 shows an overview of the
important relaxation relationships.

The first set ϕ1,1 @ ϕ1,2 is intended to show relaxation through sorting
and its effect on performance. The identical components are the whitespace
tokenizer, the trivial filter that accepts everything, the lowercase-text extrac-
tor, and a 4-overlap-5-gram sequencer. The relaxed component here is the
matcher, where ϕ1,1 uses the exact identity matcher and ϕ1,2 uses the sorted
identity matcher. The sorted identity matcher is a relaxation of the exact
identity matcher because every sequence pair that matches in its original or-
der still matches after sorting both sequences. The expected result is a slightly
lower precision overall and a slightly higher recall on the random obfuscation
category. Some of the documents in this category have been obfuscated by
shuffling the order of a phrase or passage. From a high-level perspective, re-
laxing the requirements on the order of a text should lead to better detection
of order-based or syntactical obfuscation.

The second set ϕ2,1 @ ϕ2,2 @ ϕ2,3 @ ϕ2,4 is intended to show relaxation
through approximate matching. The identical components are the whitespace
tokenizer, the trivial filter, the lowercase-text extractor, and a 7-overlap-8-gram
sequencer. The variable component is the matcher, where ϕ2,1 uses the Jaccard
matcher with a threshold of 1.0, which is comparable to the sorted identity
matcher. ϕ2,2 uses the Jaccard matcher with a threshold of 0.75, ϕ2,3 with 0.5
and ϕ2,4 with 0.25. Jaccard similarity is a relaxation of exact match, so if two
sequences match exactly, all features in the sequence are equal. If only 75% of
features in both sequences have to be equal and all of them are, the sequences
still match. Jaccard similarity has to be more relaxed than sorting from ϕ1,2

since Jaccard also ignores the order. The effects on recall and precision should
be more significant than for the first set. Precision should decrease the lower
the threshold. Recall, on the contrary, should increase in both random and
translation obfuscation. On a high-level perspective, relaxing the requirements
for identity and order is quite powerful, up to a point. This relaxation captures
many types of obfuscation but also can generate many false positives at lower
thresholds.

The third set ϕ3 is intended to show relaxation through semantics. The
identical components are the whitespace tokenizer, the word token filter, a
4-skip-5-gram sequencer and the sorted identity matcher. The variable com-
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Table 3.1: Description of the components of the seeders constructed for the exper-
iments, as described in Section 3.2.2.

Name Tokenizer Filter Extractor Sequencer Matcher
ϕ1,1 whitespace trivial lowercase text 4-overlap-5-grams exact
ϕ1,2 whitespace trivial lowercase text 4-overlap-5-grams sorted
ϕ2,1 whitespace trivial lowercase text 7-overlap-8-grams Jaccard 1.0
ϕ2,2 whitespace trivial lowercase text 7-overlap-8-grams Jaccard 0.75
ϕ2,3 whitespace trivial lowercase text 7-overlap-8-grams Jaccard 0.5
ϕ2,4 whitespace trivial lowercase text 7-overlap-8-grams Jaccard 0.25
ϕ3,1 whitespace word token lowercase text 4-skip-5-grams sorted
ϕ3,2 whitespace word token strict synonym 4-skip-5-grams sorted
ϕ3,3 whitespace word token noun-synonym 4-skip-5-grams sorted
ϕ3,4 whitespace word token strict hypernym 4-skip-5-grams sorted
ϕ3,5 whitespace word token noun-2-hypernym 4-skip-5-grams sorted
ϕ4,1 sentence trivial tf-isf vector 1-grams cosine 1.0
ϕ4,2 sentence trivial tf-isf vector 1-grams cosine 0.75
ϕ4,3 sentence trivial tf-isf vector 1-grams cosine 0.5
ϕ4,4 sentence trivial tf-isf vector 1-grams cosine 0.25
ϕ5,1 whitespace trivial lowercase text 4-overlap-5-grams exact
ϕ5,2 whitespace stopword lowercase text 4-overlap-5-grams exact
ϕ5,3 whitespace neg.stopword lowercase text 4-overlap-5-grams exact

ponent is the feature extractor, with relaxes synonym relations. The identical
components have been chosen to reduce the influence of reordering, insertions,
and deletions in the corpus. This should make the word-paraphrasing part
more clear. ϕ3,1 uses lowercase-text features. ϕ3,2 uses the strict synonym-
normalized lowercase-text extractor where each token is normalized according
to its own POS-tag. ϕ3,3 uses the noun-synonym-normalization. This means,
this seeder assumes every word to be a noun and uses the first synonym from
a words noun-synset for normalization. If there is no noun-synset, because a
word has no noun form, then the synset according to the POS-tag is used. ϕ3,4

is strict hypernym normalized with one iteration and ϕ3,5 is noun-hypernym
normalized with two iterations. These synset normalizations have to be relax-
ations because two identical word tokens have identical normalized synonyms
and hypernyms. The effects on recall and precision should be rather minimal.
The more relaxed seeders should show slight performance increases on ran-
dom and translation obfuscation since paraphrasing is part of the construction
process of random obfuscation and a translation may also return synonyms.
Relaxation effects should be noticeable from ϕ3,1 to every other one.

The fourth set ϕ4,1 @ ϕ4,2 @ ϕ4,3 @ ϕ4,4 is intended to show relaxation
through approximate matching via frequency vectors. The identical compo-
nents are the sentence tokenizer, the trivial filter, the tf-isf [28] extractor, and
the trivial 1-gram sequencer. The relaxed component is the matcher, where
ϕ4,1 uses the cosine similarity matcher with a threshold of 1, ϕ4,2 uses cosine
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with a threshold of 0.75, ϕ4,3 with 0.5 and ϕ4,4 with 0.25. These seeders should
behave similarly to set 2, since they match more approximatively with lower
thresholds and also ignore the order. However, the reuse cases in the PAN cor-
pora are completely based on complete sentences. This means a sentence based
seeder should have notably higher precision than the 8-gram based seeder from
set 2. This should be especially notable with more drastically relaxed thresh-
olds.

The fifth set of ϕ5,1, ϕ5,2 and ϕ5,3 is intended to show the effect filters have
on relaxation and performance. Filter are special in that they can fulfill the
requirements above and show the effect, but in that this can rarely be shown
to be true for all documents and seeder configurations. A seed produced by a
seeder with a different filter than the trivial one is defined over the text covered
by the matched sequence. If two filtered sequences are matches, all previously
removed units between the ones in the sequence are also matched. Also, the
filtered-out units between two sequences are never matched, assuming the se-
quences do not overlap. The identical components in set 5 are the whitespace
tokenizer, the lowercase-text extractor, a 4-overlap-5-gram sequencer and the
exact identity matcher. The differing component is the filter, where ϕ5,1 uses
the trivial filter, ϕ5,2 uses a stop word filter, that removes all stop words and
ϕ4,3 is the negated stop word filter, which removes everything but stop-words.
The expected effect on performance is that precision is lower for the filtered
seeder, notably for the negated stop word filter and recall higher since the
sequences overlap. Please note that the trivial filter is more relaxed than the
other filters. Also, note that the trivial filter is not the most relaxed filter in
theory since the model assumes that the most relaxed filter fg is always more
relaxed than any other. This is not strictly true for the trivial filter, according
to the argumentation above.

3.3 Results and Discussion
This section shows the results of the experiments described before. For each
set, the predicted relaxation effects should hold. This is indicated by the
fulfillment of the SSP or, more precisely, when the CMR is below one percent.
Additional observations of the performance of components and seeders will be
made when appropriate. Table 3.2 shows the CMR of the predicted seeder
relaxations. As predicted, all relaxations except filtering fulfill this criterion.
The following section discusses the seeder performance.

The first set of experiments shows the relaxation of sorting the matchable
sequences, where seeder ϕ1,2 is a relaxation of ϕ1,1. The performance can be
seen in Figure 3.3. Please note that the no reuse category has been omitted in
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Table 3.2: Overview of relative CMR of the seeder relaxation experiments. The
relative CMR is the average percentage of characters covered by the seeds of the
more specific seeder which have not been found by the relaxed seeder.

relaxation CMR
ϕ1,1 @ ϕ1,2 0.0046
ϕ2,1 @ ϕ2,2 6 ∗ 10−6

ϕ2,2 @ ϕ2,3 1 ∗ 10−6

ϕ2,3 @ ϕ2,4 5 ∗ 10−7

ϕ3,1 @ ϕ3,2 0.0016

relaxation CMR
ϕ3,1 @ ϕ3,3 0.0030
ϕ3,1 @ ϕ3,4 0.0074
ϕ3,1 @ ϕ3,5 0.0026
ϕ4,1 @ ϕ4,2 0.0173

relaxation CMR
ϕ4,2 @ ϕ4,3 0.0020
ϕ4,3 @ ϕ4,4 0.0076
ϕ5,2 @ ϕ5,1 0.1208
ϕ5,3 @ ϕ5,1 0.3572

the figures but is still used to calculate the total. In a nutshell, precision and
recall are about as predicted. Sorting the sequences slightly increases recall by
up to two percentage points per category and slightly reduces precision by up
to one percentage point. The effect of this relaxation is negligible for this seeder
configuration. Also, simple reordering without additional obfuscation is a rare
border case in the PAN13-test corpus. The performance differences are still
not trivial, considering there are about 5.24 million characters in PAN13-test
part of a true reuse case. So a one percentage point increase in total recall
means about 52.400 additionally detected characters, which is roughly up to
52 additionally detected passages.

Another notable observation is the precision of 0.51 in the no obfuscation
category. This category should only contain identical copies of passages, which
ϕ1 should be able to almost completely detect. The same effect can be observed
in the case of larger n-gram sizes, for example the sorted 5-gram seeder ϕ1,2

and the 1.0 threshold Jaccard 8-gram seeder ϕ2,1. The sorted skip-4-5-gram
seeder ϕ3,1 with word-filter mitigates this, however. ϕ6,1 (see Figure 3.8) is
identical to ϕ1,2 but uses the word-filter. This change drastically increases
precision by up to 35 percentage points on no obfuscation but with a slightly
lower recall. ϕ6,3 is also identical to ϕ1,2, but replaces the 4-overlap-5-grams
with 4-skip-5-grams. The sorted skip-grams also increase precision by up to 15
percentage points on no obfuscation with increased recall. If precision increases
significantly when only consider all-letter 5-grams, then there are many false
positives involving 5-grams with numbers, punctuations, diacritics and so on.
This phenomenon frequently occurs with unclean web-content extraction. If
a web-content extractor removes all HTML-tags, for example, this may leave
sequences of special characters like commas or colons. The PAN corpora have
partially been created from web collections, so this is a likely explanation.

The hypothesis for the second set of experiments is that a lower threshold
for the Jaccard similarity implies a relaxation of the seeder. For 8-grams
based seeders, a threshold decrease of 0.25 means two fewer units need to
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Table 3.3: Description of the components of ϕ1. The variable component is the
matcher.

Name Tokenizer Filter Extractor Sequencer Matcher
ϕ1,1 whitespace trivial lowercase text 4-overlap-5-grams exact
ϕ1,2 whitespace trivial lowercase text 4-overlap-5-grams sorted

precisionF1 recall

0.45 0.55 0.52 0.69 0.7 0.72 0.38 0.79 0.23 0.21 0.09

0.44 0.55 0.51 0.7 0.7 0.73 0.37 0.79 0.22 0.19 0.08

total total no ob rnd transl sum total no ob rnd transl sum

φ1, 1

φ1, 2

Figure 3.3: Results of the first set of experiments with a focus on relaxing the order
requirements for matching. ϕ1,1 is the 5-gram exact match seeder, ϕ1,2 relaxes the
matcher to sorted identity.

match exactly for the sequence to match. The performance changes displayed
in Figure 3.4 show the effects. The predicted increase in recall is, as expected,
quite notable. Approximate matching that also ignores order is one of the
most powerful relaxations. It equals the most general matcher at the lowest
threshold and therefore relaxes all relations. The results also show that there
is an optimal threshold for ϕ2, with regards to F1, somewhere between 0.5 and
0.25. Notable is the drastic drop in precision from four of eight required token
matches in ϕ2,3 to two in ϕ2,4. Also, the most notable increase in recall happens
at the random and translation obfuscation categories, but not so much for
summarization. These two observations mean that the random and translation
obfuscation techniques leave, on average, a little less than half of the tokens in
an eight token radius intact. For summarizations, however, the F1 decreases
about ten percentage points when decreasing the Jaccard threshold from 0.75
to 0.5. Considering that the extension may be robust to some of these false
positives, the increase in recall may still be worth it. It should be clear that just
relaxing the requirements for matching will not solve summarization detection.
The last notable observation in this set of experiments is that reducing the
requirements for matching from 1.0 notably increases precision, which seems
unintuitive. The most likely cause for this is again the text extraction done
while creating the corpora, as described in the discussion of set 1 above.

The third set of experiments shows the effects of relaxing the semantics of
single words by normalizing synonym words to a uniform one or to a common
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Table 3.4: Description of the components of ϕ2. The variable component is the
matcher.

Name Tokenizer Filter Extractor Sequencer Matcher
ϕ2,1 whitespace trivial lowercase text 7-overlap-8-grams Jaccard 1.0
ϕ2,2 whitespace trivial lowercase text 7-overlap-8-grams Jaccard 0.75
ϕ2,3 whitespace trivial lowercase text 7-overlap-8-grams Jaccard 0.5
ϕ2,4 whitespace trivial lowercase text 7-overlap-8-grams Jaccard 0.25

0.17 0.09 0.12 0.12 0.08 0.07 0.89 0.95 0.9 0.87 0.58

0.7 0.73 0.75 0.76 0.66 0.69 0.68 0.91 0.67 0.57 0.17

0.58 0.75 0.73 0.83 0.82 0.91 0.47 0.85 0.35 0.3 0.09

0.41 0.6 0.57 0.77 0.86 0.96 0.31 0.77 0.11 0.13 0.05

total total no ob rnd transl sum total no ob rnd transl sum

precisionF1 recall

φ2, 1

φ2, 2

φ2, 3

φ2, 4

Figure 3.4: Results of the second set of experiments, showing relaxation of order
and identity with Jaccard similarity. The seeders use token 8-grams and relax the
threshold of the Jaccard similarity matching in steps of 0.25.

hypernym. The evaluation results can be seen in Figure 3.5. Because the
PAN corpora mix different obfuscation strategies to generate reuse cases, the
identical components have been chosen to mitigate ordering and word-insertion
and deletion effects. Also, all non-word tokens have been filtered out to avoid
negative side effects of the corpus creation. A notable observation here is that
the up to four percentage points gain in recall is lower than expected but
about double the gain of simple sorting as done in set 1. Also, this increase
is not completely compensated by a drop in precision, especially on the most
relaxed two iteration noun-hypernym normalized ϕ3,5. The low increase in
recall overall is likely based on a lack of purely word-level based paraphrasing
in the corpus.

The fourth set of experiments show the relaxation of the cosine similarity
threshold on tf-isf vectors. The tested thresholds are 1.0, 0.75, 0.5 and 0.25.
Note that frequency vectors are always in the positive space, so the cosine is
in [0, 1]. These seeders are based on Sanchez-Perez et al. [28] seeding strategy
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Table 3.5: Description of the components of ϕ3. The variable component is the
feature extractor.

Name Tokenizer Filter Extractor Sequencer Matcher
ϕ3,1 whitespace word token lowercase text 4-skip-5-grams sorted
ϕ3,2 whitespace word token strict synonym 4-skip-5-grams sorted
ϕ3,3 whitespace word token noun-synonym 4-skip-5-grams sorted
ϕ3,4 whitespace word token strict 1-hypernym 4-skip-5-grams sorted
ϕ3,5 whitespace word token noun-2-hypernym 4-skip-5-grams sorted

0.59 0.89 0.91 0.8 0.8 0.88 0.44 0.82 0.32 0.27 0.09

0.58 0.9 0.91 0.82 0.81 0.89 0.43 0.82 0.3 0.26 0.09

0.58 0.9 0.91 0.81 0.81 0.89 0.43 0.82 0.3 0.26 0.09

0.58 0.9 0.91 0.81 0.81 0.88 0.43 0.82 0.3 0.27 0.09

0.57 0.89 0.91 0.81 0.81 0.88 0.41 0.81 0.28 0.24 0.08

precisionF1 recall

total total no ob rnd transl sum total no ob rnd transl sum

φ3, 1

φ3, 2

φ3, 3

φ3, 4

φ3, 5

Figure 3.5: Results of the third set of experiments. All seeders use 4-skip-5-grams
and sorted identity matching to eliminate ordering, insertion and deletion effects
of the obfuscation on the comparison. The variable component is synonym and
hypernym normalization.

and are quite similar in effect to the approximate matching seeders from set 2.
The cosine based seeder ϕ4, as seen in Figure 3.6, has lower recall but higher
precision with comparable thresholds than seeder ϕ2. The likely reason is that
ϕ4 compares complete sentences and the reuse cases have been constructed
based on sentences. Also notable is that cosine similarity falls less steep with
lower matching requirements compared to Jaccard similarity.

Observe that recall for ϕ4,1, which only matches identical sentences, is about
28 percentage points lower on no obfuscation cases than that of ϕ2,1. This is
the reverse effect to the low precision in this category shown by other seeders
without word-filter. If the non-obfuscated reuse cases are not completely equal,
the token-based ϕ2,1 can still detect the exact parts of these sentences while
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Table 3.6: Description of the components of ϕ4. The variable component is the
matcher.

Name Tokenizer Filter Extractor Sequencer Matcher
ϕ4,1 sentence trivial tf-isf vector 1-grams cosine 1.0
ϕ4,2 sentence trivial tf-isf vector 1-grams cosine 0.75
ϕ4,3 sentence trivial tf-isf vector 1-grams cosine 0.5
ϕ4,4 sentence trivial tf-isf vector 1-grams cosine 0.25

0.65 0.55 0.54 0.57 0.51 0.71 0.81 0.9 0.82 0.8 0.28

0.71 0.85 0.85 0.85 0.82 0.99 0.62 0.86 0.55 0.55 0.12

0.46 0.89 0.9 0.86 0.85 0.99 0.31 0.71 0.13 0.16 0.04

0.28 0.91 0.92 0.84 0.86 1 0.17 0.49 0.02 0.04 0.01

total total no ob rnd transl sum total no ob rnd transl sum

precisionF1 recall

φ4, 1

φ4, 2

φ4, 3

φ4, 4

Figure 3.6: Results of set 4 of experiments, showing relaxation of order and identity
over sentences with cosine similarity of frequency vectors. The seeders are based on
cosine similarity on tf-isf vectors and relaxation of the cosine threshold needed for
matching.

ϕ4,1 can not. There is also the possibility that some documents in the corpus
are not completely well-formed, so the sentence splitter does not work precisely.

The premise of the fifth set of experiments is that the neighborhood in
the relaxation space of all seeders can be predicted by component relaxation.
This can be used to guide a heuristic for optimization of seeders but does not
necessarily predict the whole relaxation space. In layman terms, a component
replacement can relax one specific seeder, but not necessarily all. Replacement
of components is not the defining factor of the relaxation space. This effect is
more difficult to utilize for a search. It is possible that a relaxing replacement
can only be shown empirically by applying and evaluating the results.

In the designed experiments, replacing the stop-word filter with the trivial
filter is not a relaxation, considering the relative CMR of 12 percent (see
Table 3.2), even though ϕ5 uses overlapping n-grams. The results of the fifth
set of experiments are shown in Figure 3.7. Also remember the effects of the
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Table 3.7: Description of the components of ϕ5. The variable component is the
filter.

Name Tokenizer Filter Extractor Sequencer Matcher
ϕ5,1 whitespace trivial lowercase text 4-overlap-5-grams exact
ϕ5,2 whitespace stop word lowercase text 4-overlap-5-grams exact
ϕ5,3 whitespace neg.stop word lowercase text 4-overlap-5-grams exact

0.42 0.76 0.81 0.7 0.55 0.73 0.29 0.7 0.16 0.1 0.03

0.41 0.86 0.89 0.65 0.76 0.78 0.27 0.71 0.05 0.11 0.05

0.44 0.55 0.51 0.7 0.7 0.73 0.37 0.79 0.22 0.19 0.08

total total no ob rnd transl sum total no ob rnd transl sum

precisionF1 recall

φ5, 1

φ5, 2

φ5, 3

Figure 3.7: Results of set 5 of experiments about filtering, showing that seeders
can be relaxations, even if the components do not strictly require them to. Here,
the seeder ϕ5,1 without filtering is a relaxation of the other two, where ϕ5,2 remover
stop words and ϕ5,3 removes all non-stop words.

word-token filter and how it applying it reduces recall since it specializes the
seeder.

The last notable observation over all experiments is that none of the de-
signed seeders is particularly effective on the summarization obfuscation cat-
egory. The highest recall here is 0.58 by ϕ2,4, which in turn has a precision
of 0.07. In other words, this seeder likely matched a lot of passages quite lib-
erally and managed to include some passages in this category. While it can
be assumed that the extender can compensate for false positives, as will be
discussed in Chapter 4, it is unlikely to work on this scale with only this one
seeder. Summarization is difficult because of the difference in length of the
passages. This means, for example, that one sentence in the source document
has to match multiple sentences in the suspicious document. In theory, there
exists a seeder capable of doing this. Still, a different strategy seems more
promising for now: combining seeders. Since the output of a seeder in the
model is defined over the character positions in the document, it is possible
to combine the seeds output by different seeders into one set as input for the
extension. This means, multiple seeders that detect different relations can be
constructed and their seeds combined. These combined set of seeds may detect
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Table 3.8: Description of the components of ϕ6

Name Tokenizer Filter Extractor Sequencer Matcher
ϕ6,1 whitespace word token lowercase text 4-overlap-5-grams sorted
ϕ6,2 whitespace trivial lowercase text 4-skip-5-grams exact
ϕ6,3 whitespace trivial lowercase text 4-skip-5-grams sorted
ϕ6,4 whitespace word token lowercase text 4-skip-5-grams exact

0.55 0.9 0.92 0.82 0.82 0.89 0.4 0.81 0.27 0.21 0.08

0.56 0.7 0.69 0.76 0.63 0.81 0.47 0.82 0.41 0.28 0.1

0.54 0.69 0.67 0.76 0.64 0.83 0.44 0.81 0.38 0.24 0.09

0.49 0.84 0.87 0.76 0.75 0.81 0.35 0.77 0.16 0.19 0.08

precisionF1 recall

φ6, 1

φ6, 2

φ6, 3

φ6, 4

total       total  no ob   rnd   transl  sum       total  no ob   rnd   transl  sum 

Figure 3.8: Evaluation of the seeders ϕ6, as described in Table 3.8. This graphic
illustrates the effects of skip-grams and the word-token filter on seeder performance.

difficult relations like summarization more easily. The advantages and pitfalls
of seeder combination will be discussed in Section 5.1.

Concluding, this chapter provided detailed insights about seeding in theory
and on how to construct and evaluate seeders. This has been done by defining
the components of seeders and the relations between them. It should be clear
that seeders can be optimized based on relaxation to better capture relations
of similarity between passages of text. The following chapter will discuss how
to extend the seeds into aligning passages, including their capabilities to close
gaps between seeds and filter false positives to find the best matching reuse
detection indicated by the seeds.
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Chapter 4

Seed Extension

Extension is the second part of seed-and-extend text-alignment. In the gen-
eral model (see Section 3.1) the extender is defined as a transformation of a
weighted matrix Mh to a set of a set of pairs of subsequences (s, s′) of d and
d’ that correspond to the aligned passages of the documents d and d′.

Section 3.1.2 describes a simplification for binary matrices Mh, where the
extender takes a set of seeds Σ as input instead of a weighted matrix. This
simplification allows a single extender to accept seeds generated by multiple
seeders without any additional knowledge about these seeders. The assumption
for extension is, that aligning passages in the documents are structures formed
by the detected seeds. This means that, in the model of seeding with binary
matching functions, seed extension can be solved using adaptations of common
clustering strategies. These adaptations need to handle outliers, noise, artifacts
and distance functions for seeds.

This chapter should first introduce different approaches to seed clustering,
discuss the problems and limitations specific to the seeds properties. After-
ward, the DBScan [10] algorithm will be adapted for seed extension. Finally,
the problem of selecting good hyperparameters will be discussed. Then, possi-
ble strategies to determine good parameters will be derived: estimating good,
fixed parameters for each seeder, optimizing parameters from cluster evalua-
tion and learning parameters from the structure of the seeds.

4.1 Overview of Existing Extension Strategies
As described in Section 2.1, all participants in the latest PAN competition
on English language text-alignment use alignment clustering at some point in
their algorithms, although not always explicitly. The most common algorithm
used is a version of hierarchical, agglomerative single-link clustering, although
participants do refer to it usually as distance-based merging. The idea is that
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two seeds can be merged if the distance (or gap) between the passages in the
source document is below a threshold θ1 and in the suspicious document below
θ2. The distance between two sequences in the same document is usually
the single-link distance between the two closest character position. If the
passages overlap, the distance is usually zero. A few participants used more
advanced extension strategies. The algorithm by Sanchez-Perez et al. [28] used
a variation of hierarchical, divisive clustering. Here, seeds are first merged
into one cluster and then divided into smaller ones. This division is repeated
until the passages of maximum length are found. The maximum length here
means, that there is no longer alignment that still fulfills the cosine-similarity
requirement of its frequency vectors. Abnar et al. [1] employed a density-based
clustering with the DBScan algorithm.

4.1.1 Discussion of Alternatives

Single-link is the most popular clustering strategy among PAN participants,
likely due to its simplicity and effectiveness on the PAN corpora. The problem
with the applied versions of single-link is that they need three hyperparame-
ters: the thresholds for source and suspicious document and the threshold for
filtering outliers and artifacts. It seems likely that single link only works well
in the PAN competitions because the number and the average length of the
reused passages follow a rather strict pattern. This can be seen in the analysis
of the PAN corpora in Section 2.2. This suspicion is supported by another
observation: There is a notable structural difference between the summariza-
tion category and the other ones and there is a strong tendency within the
PAN submissions to classify the detections into summarization and others and
adapt the parameters accordingly. Similarly, the divisive algorithm depends

dbscan 0.61 0.59 0.6 0.7 0.61 0.38 0.65 0.92 0.62 0.47 0.38

single link 0.5 0.91 0.91 0.93 0.9 0.98 0.35 0.81 0.12 0.22 0.05

none 0.08 0.55 0.51 0.7 0.7 0.73 0.37 0.79 0.22 0.19 0.08

total

precision

total no ob rnd transl sum

recallplagdet

total no ob rnd transl sum

Figure 4.1: Examples of precision, recall and plagdet of different clustering strate-
gies with identical seeders. Granularity of no extension (none) is 28 and close to 1
for the other two.
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on a fixed similarity measure, which works well on the PAN corpora but may
not generalize well. Density-based clustering is the most promising here since
it only needs two hyperparameters and can detect outliers and noise without
additional thresholds or post-extension filtering. It is also not necessary to
determine different parameters for different reuse types. Thus, it should gen-
eralize well if the hyperparameters and the distance function are chosen well.
Figure 4.1 shows the difference in precision, recall and plagdet with different
extension modules. The identical seeder used for these examples is a basic
4-overlap-5-gram seeder with whitespace tokenizer, the trivial filter, and ex-
act matching. The single link variant uses the hyperparameters used by Alvi
et al. [3], which is a 200/200 character merge-threshold in source and suspi-
cious document and 200/100 character threshold for post-extension filtering.
The DBScan variant uses an epsilon of 1600 and a minPts of 3. The example
without extension is the baseline for comparison with low precision and low
recall. The plagdet without extension is naturally really low because plagdet
is weighted by granularity, as described in Section 2.3. The single-link variant
using Alvis parameters has high precision since outliers and noise are filtered
strictly by post-processing. Single-link does, however, underperform at closing
gaps, which is especially important for exact matching sequences in the more
difficult categories. The DBScan, which will be explained in more detail in the
next section, performs worse in precision, since outliers are not filtered that
strictly, but achieves higher recall. This means DBScan is better at detecting
the underlying structures of the alignments.

4.1.2 DBScan for Seed Extension

The original DBScan algorithm [10] clusters points based on density. It uses
two hyperparameters, epsilon, and minPts. Each point is a core point if it has
at least minPts other points within an epsilon radius. A point that is not a
core point but is within epsilon of one is called a border point. A point that is
neither core nor border point is called a noise point. Two points are density-
reachable if they are within an epsilon distance and one of them is a core point
or if there is a path of density-reachable points between them. Two points are
part of a cluster if they are density reachable and if both are density-reachable
from every other point in this cluster.

A seed is defined as ς = (smin
di

, smax
di

, smin
d′
j
, smax

d′
j

), where sdi
and sdj

are
the complete text in the documents d and d′ covered by the two matching
sequences. The first and last character index of the sequence in the original
document are denoted by smin and smax. In the 2-dimensional space spanned
by the character indices of d and d′, each seed is defined by the two points
(xmin, ymin) and (xmax, ymax), where xmin = smin

di
, ymin = smin

d′
j
, xmax = smax

di
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and ymax = smax
d′
j

. These two points in the 2-D space can be interpreted as
lines or boxes (see Figure 4.2)), while the DBScan algorithm is defined using
n-dimensional points. DBScan can be adapted in two ways to work with seeds.
When interpreting seeds as a line, the Euclidean distance between the two
closest points of each seed can be used as the distance function. This strategy
works under ideal conditions where seeds do not overlap and are arranged on
a line. This is usually not the case, especially not with short or overlapping
seeds (see Figure 4.2). Also, DBScan would be required to always compare
both points of each seed to find the closest distance, which is impractical. The
second possibility is to interpret seeds as boxes that span a space. If two seeds
cover the same text in both documents the boxes will overlap. In this case,
the distance between two seeds should be 0. If a position in one document
matches multiple positions in the other document, there will be multiple seeds
overlapping on one axis. Here, the distance should be the difference on the
non-overlapping axis. If the boxes do not overlap at all, the Euclidean distance
between the two closest points can be used as distance-metric between the
seeds. All those cases can be uniformly represented using the box spanned

0 1000 2000 3000 4000 5000
character positions in the source document

0

2000

4000

6000

8000

ch
a
ra

ct
e
r 

p
o
si

ti
o
n
s 

in
 t

h
e
 s

u
sp

ic
io

u
s 

d
o
cu

m
e
n
t

Figure 4.2: Plot of the seed clustering of one example pair of documents. The grey
lines are the matching sequences of atomic units (seeds). The darker the grey areas,
the more seeds overlap at this position. The line-representation of the resulting
alignment is colored red, the box-representation is blue. This example shows the
DBscan extender with an epsilon of 1600 and a minPts of 3.
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boxdistance

ymin

ymax

ymin

ymax
2

2

1

1

xmin
1 xmax

1 xmin
2 xmax

2

Seed 1

Seed 2

Figure 4.3: Annotated example of the distance function boxdistance between two
seeds. The boxdistance is the length of the diagonal of the box between the closest
two non-overlapping points of each seed. The left example shows that boxdistance
for non-overlapping boxes is just the Euclidean distance between the closest two
points. In the right example the boxes overlap at y, so boxdistance here is only the
x-distance.

between the closest start point of one seed and end point of the other seed
(see Figure 4.3). More precisely

boxdistance(ς1, ς2) = 2

√
max
x∈X

x2 + max
y∈Y

y2,

where
X = {0, xς2min − xς1max, x

ς1
min − xς2max}

and
Y = {0, yς2min − yς1max, y

ς1
min − yς2max}.

If the boxes only overlap on the x-axis, the box separating the seeds will
have no width and the distance will be the difference on the y-axis and vice
versa. If the seeds overlap completely, the distance will be 0. If the seeds do
not overlap at all, the distance is the Euclidean distance between the closest
points of each seed.

The extension module of the text-alignment framework built for this thesis
implements DBScan for seeds by wrapping the ELKI [30] implementation of
the generalized DBScan. Boxdistance has been passed to the ELKI implemen-
tation as a custom distance function. In the algorithm, one seed is represented
as a 4-dimensional point.
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4.2 Hyperparameter Estimation
As mentioned before, DBScan uses two hyperparameters: epsilon and minPts.
Increasing epsilon generally closes gaps because it increases the distance for
points to become density-reachable so farther away points count towards the
cluster. Increasing minPts increases the number of density-reachable points
required to form a cluster. This has the effect that higher minPts discards
clusters in low-density areas. Both parameters are in a way dependent on
each other, so increasing or decreasing both might have, to a certain degree,
no effect. For seed extension, increasing only epsilon merges adjacent seed
clusters. Increasing minPts discards small clusters which are farther away
from other clusters. If epsilon becomes too large compared to minPts, seed
clusters that are far away will be merged. This means, all the text between the
merged clusters will be part of the alignment. This may be beneficial but will
likely introduce many false positives. If minPts becomes too large compared
to epsilon the algorithm will discard many small clusters, even if they are close
together. These effects can be seen in Figure 4.4.

The selection of parameters depends on the seeds itself. If those seeds are
large and overlap is low, like sentence seeds, for example, a low epsilon and
low minPts might be best. If epsilon is too high in this example, a sentence in
between the seeds which is not covered by a seed itself might be included in
the alignment. Non-overlapping sentences also likely require a lower minPts
because non-adjacent sentence seeds are much farther away. Overlapping to-
ken n-gram seeds require completely different parameters because there are
many more seeds in a much closer area. It is therefore essential to find good
parameters and there is no sweet spot that works reasonably well for all types
of seeds. Additionally, through filters and the combination of seeds from dif-
ferent seeders increases the range of seed structures immensely. Following
this, it is necessary to determine the hyperparameters for every extension run,
depending on the set of seeds passed to the extender.

4.2.1 Parameter Evaluation

There are two possibilities to evaluate the performance of an extender, given
the seeds are static. The first one is internally by comparing the increase
in precision, recall and/or F1 through extension between different extenders.
The second one is extrinsically by plagdet (see Section 2.3). Plagdet is the
better choice because it is the same as F1 but considers granularity. The
increase compared to seeder performance is not relevant since the seeders used
for evaluation are static.
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Figure 4.4: This graph shows the different outcomes of seed-clustering with different
parameter settings. It can be seen that a larger epsilon increases the are in which
seeds are clustered, while a higher minPts discards more sparse and distant areas as
noise.

The optimal parameter selection can be found using a grid search. Since
initial experiments show the plagdet function to be approximately convex,
the grid can be constrained to determine an optimum. Figure 4.5 shows the
result of a grid search of the DBscan extender for a simple word-token 4-
overlap-5-gram seeder with exact matching. The optimum for this seeder is
around a minPts of 3 and an epsilon of 1600. As can be seen in the figure,
these parameters do not need to be overly precise. At least for this seeder, any
combination of parameters between a minPts of 3-4 and an epsilon between 500
and 2000 will be near-optimal. A grid search is however quite time-consuming.
If the goal is to find the best seeder, seeder combination or just determining the
selection for many documents, a grid search is too time-consuming. This is why
the following sections will discuss how to find these near-optimal parameters
without searching the whole grid.

Considering the analysis of the effects of epsilon and minPts in Section 4.2,
the plagdet function over the parameter space has to be approximately convex.
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Figure 4.5: Plagdet of DBScan extension over a grid of parameter choices. One
seeder was used to generate a static input. This seeder used 4-overlap-5-grams of
word tokens and exact matching.

The assumption is that there is a "sweet spot" of both parameters where the
plagdet score will be maximal. If any or both parameters become too low
or high, the clustering will deteriorate and the plagdet will fall. If the truth
is known, the optimum for a static seeder can be found easily using local
optimization.

To use the truth is, however, impractical for several reasons. First, a truth
may not always be available when comparing algorithms for specific purposes.
Secondly, the corpora only cover a selection of possible reuse categories and
test and training corpora are very similar in structure. Therefore it is likely
that selecting parameters based on the truth will overfit, which should be
avoided. The third and probably most important argument is about doc-
ument versus collection-level parameter selection. Document-level selection
refers to determining the best hyperparameters for each document individu-
ally while collection-level refer to determining one set of parameters for the
whole collection. If parameters are determined via optimization against the
truth, they will have to be used for all future documents equally. Consider
the results of the grid search from Figure 4.5. Here, the parameters at each
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grid point are the same for each document pair in the collection. The best
collection-wide plagdet score is 0.601, archived with an epsilon of 1600 and a
minPts of 3. Now, if the best performing parameters for each document pair
is selected from the grid individually, the collection-wide plagdet is 0.716. It
can be expected that, especially when combining seeders with different spe-
cializations, document-level parameter selection outperforms collection-level.
Note that this optimal document-level plagdet score is an upper bound and
determined with a known truth. It likely can not be reached otherwise.

The goal for the following sections is to find out if parameters can be
estimated on document-level without consulting the truth and if performance
is equal or even better than predetermined parameters.

4.2.2 Local Optimization

One possibility to select parameters on a per-document basis without consult-
ing the truth is to use a convex optimization strategy on an internal cluster
validation metric. These validation metrics are commonly used for unsuper-
vised comparison of alternative clusterings and are useful for estimating, for
example, the ideal number of clusters. These metrics usually compute a score
that either represents favorable structural properties or how good a point fits
its cluster. Examples for the first metric are the Dunn or Davies-Bouldin index,
an example of the second one is the silhouette index. If one of these metrics
becomes optimal in the near-optimal parameter space, it could be used for
optimization instead of the truth.

The Dunn [9] index of a clustering C is defined as

Dunn(C) =
min
i 6=j
{dC(Ci, Cj)}

max
1≤l≤k

{∆(Cl)}
,

where dC(Ci, Cj) is the distance between the two clusters Ci and Cj and ∆(Cl)
is the length/diameter of a cluster. For seeds, the distance between two clusters
is the boxdistance and the diameter of a cluster is the length of the diagonal of
the box that spans all seeds within. The Dunn index grows larger if the largest
cluster shrinks and if the closest clusters move farther away from each other.
Optimizing against the Dunn index can produce smaller and more distant
clusterings. The problem for seed extension is that Dunn is only defined if
there is more than one cluster. In the used corpora, as well as in most real
applications, having more than one reused passage is a rather rare case (see
Section 2.2). When defining the distance as a very large or very small value, in
case there is only one cluster left, the index would become very small/large in
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return, so the last remaining clusters would either never or always be merged.
Both of those adaptations defy the purpose of the metric (see Figure A.1).

The Davies-Bouldin index [8] is defined as

Davies-Bouldin(C) =
1

N

N∑
i=1

max
j

s(Ci) + s(Cj)

dC(Ci, Cj)
.

dC is again the boxdistance. s(Ci) is a measure of the tightness or scatter of the
cluster i, defined as the average distance of each point within to the centroid
of that cluster. Davies-Bouldin is quite similar to the Dunn index but is based
on scatter and is not strictly biased towards only the worst sub-structure. It
still requires multiple clusters to be defined and is thus similarly unusable for
the scenario in this thesis (see Figure A.2).

The Silhouette [27] is originally meant as a tool for visual inspection of how
well a point k fits the cluster it is in. The silhouette is calculated as

Silhouette(k) =
md(k, Ck)−min

i
md(k, Ci)

max {md(k, Ck),min
i

md(k, Ci)}
,

where md(k, Ci) is the mean distance of the point k to every other point in
the cluster Ci, Ck is the cluster k belongs to and mini md(k, Ci)} is the mean
distance to every point in the neighboring cluster of Ck. The silhouette of a
point k is in [−1, 1], where 1 means the point fits perfectly in its cluster and -1
it fits perfectly in the neighboring cluster. Averaging the silhouette provides
an impression of the tightness of each cluster, which can interpret how well
each point fits its cluster and thus how good the clustering is. Amorim and
Hennig [4] used this in combination with feature rescaling to better predict the
correct number of spherical clusters with noise features. The average silhouette
measure is still ill-defined when the most common number of clusters is one or
none (see Figure A.3). When using average silhouette as fitness-function for
local optimization, this leads to the same conclusion for the one-cluster-case
as for Dunn or Davies-Bouldin: either the last two clusters are never merged
or the heuristic tries to merge all points, including noise, into one cluster.

In conclusion, internal validity measures work for seed extension as long
as it expects more than one cluster. A measure that does not expect more
than one cluster is however not useful to compare different clusterings because
there will be only one anyways. If there is only one cluster left for a parameter
setting, all that can be analyzed is the diameter and scatter of this one cluster
and the noise points. It is though pointless to derive a fitness function using
only scatter and diameter. Clusters of seeds are very elliptical in nature, so
merging adjacent clusters or including noise-points would increase the length
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Table 4.1: List of the seeders and components used for learning good DBScan
hyperparameters.

Name Tokenizer Filter Extractor Sequencer Matcher
ϕ7,1 whitespace word lowercase text 4-overlap-5-grams exact
ϕ7,2 sentence trivial tf-isf vectors uni-grams 0.3 cosine
ϕ7,3 whitespace only stopwords lowercase text 2-overlap-3-grams exact
ϕ7,4 whitespace word lowercase text 0-overlap-8-grams 0.5 Jaccard

and scatter. Any metric using a linear relationship of length and scatter would
either never or always merge clusters and noise-points (compare Figure A.4).

4.2.3 Estimation from Seeds

However, internal validity might not be the only way to suggest a parameter
setting for a good clustering. It has been noted before that the parameters
depend on the seeds. Sentence-based seeds, for example, work well with low
minPts (see Figure A.5). Token n-grams and very relaxed seeders, especially
with overlapping seeds, work well with high minPts and large epsilon (see Fig-
ure 4.5 and Figure A.6). Those settings avoid artifacts and fragmented clusters
more effectively.

Therefore, it should hypothetically be possible to estimate good parameters
from the length and number of seeds, following above observations. The idea
is if there are few, large seeds, then minPts and epsilon should be rather low
and if there are many short seeds, minPts and epsilon should be high. More
precisely, the hypothesis is that the hyperparameters have some form of a
functional relationship to the distribution of the length of the seeds. A good
approximation of this function could be used to calculate the parameters for
any seeder or combination of seeders used.

However, the length of the seeds from different seeders do not follow the
same distribution (see Figure 4.6), especially not if produced from a seeder
combination. This means, the parameter-function cannot be simply inferred
from the distribution, although it is possible to learn this function from exam-
ple seeders.

The experiments in the following chapters should show that this functional
relationship exists and that it can be learned from the examples. More pre-
cisely, it should be possible to learn from one seeder and predict a different
one reasonably well, as long as the length distribution is similar. This should
also hold for seeder combinations, in that the function can be learned from
the seeders and generalized to the combinations and vice versa. Also, these
experiments should show how well generalization to unseen seeders and seeder
combinations works.
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Figure 4.6: Histogram of the seeds length for different seeders (see Table 4.1).

4.3 Parameter Learning
This section describes the algorithms, encodings, and components needed to
learn the parameters from the seeds. Section 4.3.1 a set of different seeders
to generate examples, a good parameter setting for these examples, features
representing the seeds and an appropriate machine learning model. The eval-
uation scheme is described in Section 4.3.2.

4.3.1 Machine Learning Model

The seeders used to generate the examples determine the quality of the general-
ization of the model to a degree. Table 4.1 lists the seeders used for parameter
learning. It was mentioned before that the learned function over the length
distribution should generalize well no matter what seeders are used to learn it.
However, a machine learning model can only approximate what can be found
in the examples. If the seeders chosen to learn from are biased towards a cer-
tain distribution, the model will not generalize well. Compare for example the
histogram differences in Figure 4.6 between ϕ7,1 and ϕ7,2. These seeders have

45



CHAPTER 4. SEED EXTENSION

been chosen to show that a model trained on one seeder generalizes well to a
different seeder with a similar distribution of seed length. Observe how ϕ7,1

and ϕ7,3 have similar histograms. Additionally, if multiple seeders with differ-
ent histograms are used to train the model then it should generalize better to
unseen seeders with a still different histogram.

Each of these seeders has been run on the whole PAN13-training corpus
to generate the seeds for each document pair. For extension, a grid search
has been done as shown in Figure 4.5. This way, the plagdet over the whole
corpus could be computed for each combination of epsilon and minPts. The
parameters ranged from epsilon from 0 to 2000 in steps of 100 and for minPts
from 0 to 9 in steps of 1. This way, there are 168 different clusterings for each
pair of documents for each seeder. For each pair of documents, the parameter
set with the highest plagdet from the grid has been chosen as an example. This
results in 5185 examples for each seeder. Note that it is a common case for an
example to have multiple clusterings with the same plagdet. This is because
of the convex nature of the optimal setting described in Section 4.2.1. If this
was the case for one example, the medoid setting has been chosen as the best.
The medoid has been calculated using the Euclidean distance with epsilon and
minPts being considered as the two coordinates in the Euclidean space of a
parameter setting. For this calculation, minPts has been upscaled by a factor
of 100. Otherwise, any difference in epsilon would completely neglect minPts.

To learn from these examples, the aforementioned distribution of the length
of the seeds has to be encoded into features to train the model on. There are
two possibilities for this encoding. First, to use statistics of the seeds like the
total number or the mean, mode, or median length of the seeds. Second, to
generate a histogram with fixed value ranges. The histogram has been chosen
because it describes the distribution in more detail. The histogram features
for a pair of documents are created by first rounding the length of all seeds
down to their next multiple of 10 and then counting the number of seeds with
a length of 0,10,...,290, and 300 and more. This results in 31 discrete features.

As for the model, a multilayer perceptron regressor (MLPR) was chosen.
Using a neural network allows to easily verify certain properties of the rela-
tionship between the histogram and the parameters without fundamentally
changing the underlying model. For example, if prediction performance of a
three hidden-layer MLPR is similar to that of the same model with just one
computing layer, then the parameters could be predicted independently. This
does not mean the parameters are independent. Also, if the performance is
comparable when changing the activation function from a linear to a non-linear
one, then the function learned is linear in nature. For the experiments, the
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MLPR implementation from scikit-learn1 was used. For each experiment, the
weights were initialized in a fixed random state. Concluding, the MLPR used
has 31 input nodes, 31 hidden nodes per layer and two output nodes, one for
epsilon and one for minPts. The scikit implementation does no computation
in the input layer, so the number of hidden layers equals the number of com-
puting layers. The MLPR used later in this chapter to predict the parameters
has three hidden layers and uses a rectified linear unit (relu) as the activation
function. In a prior test, there seems to be no notable difference between three
or more layers. Also, relus provided more reliable results than sigmoid or htan
neurons. Some experiments in Section 4.4 examine the choice of activation
function and the number of layers in hindsight of the linearity of the function.

4.3.2 Evaluation Scheme

The evaluation scheme needs to show how close the predicted parameters are
to the actual optimal ones. For this, plagdet as external metric and mean
squared error as internal metric have been chosen.

Three plagdet measurements have to be considered for the external evalu-
ation: the predicted document-level, collection-level, and optimal document-
level plagdet. The predicted document-level plagdet represents the perfor-
mance of an extender using the previously learned model to predict the DB-
Scan hyperparameters for each seeder and each document based on the seeds.
The model will be trained on examples from the PAN13-Training corpus, the
plagdet will be calculated based on the predictions for the PAN13-Test corpus.
The collection-level plagdet measures aligner performance when a static set of
parameters has been used for every document. This static set will be deter-
mined via grid search on PAN13-Training and measured on PAN13-Test. For
the optimal document-level pladget, a grid search has been done for each doc-
ument pair in PAN13-Test. Then, the parameter set with the highest plagdet
has been chosen for this document pair and those plagdets have been averaged
for the whole collection.

Note that it can be expected that multiple parameter settings produce
the same clustering, as described earlier. This means that the results of a
plagdet comparison may equalize performance differences. Therefore, the mean
squared error (MSE) will be, additionally, used as the internal metric to judge
prediction quality in more detail. For internal performance evaluation, ep-
silon and minPts will be evaluated separately. In the training data, epsilon
and minPts are extracted from the grid-points, so epsilon is between 0 and
2000 and minPts is between 2 and 9. Assuming the model will mostly learn
this hypercube as a boundary for the parameters, the worst MSE on random

1For the experiments, Python 3.5 and scikit-learn 0.19 was used.
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Table 4.2: Overview of the internal and external extension performance of different
parameter prediction models. This table shows, how well the extension performs
if the seeder is the same for training and test. The metrics are explained in Sec-
tion 4.3.2.

Seeder MSE Plagdet
learned predicted epsilon minPts pred. doc coll-level doc-level
ϕ7,1 ϕ7,1 69374 1.5 0.56 0.62 0.72
ϕ7,2 ϕ7,2 68620 2.7 0.63 0.75 0.87
ϕ7,3 ϕ7,3 92334 1.9 0.55 0.54 0.72
ϕ7,4 ϕ7,4 47822 2.6 0.47 0.57 0.67

predictions would be about 10002 = 1 ∗ 106 for epsilon and 3.52 = 12.5 for
minPts.

4.4 Results and Discussion
To recap the previous argumentation, predicting the parameters based on the
seeds has some major advantages:

• While parameter estimation via grid search or manual tuning yields good
results, it has to be done for each seeder and each combination of seeders.
This is acceptable if only a few of those seeders are used. For large scale
analyses, like automatic optimization or derivation of a seed-and-extend
algorithm, those strategies quickly become infeasible.

• The optimal parameters vary between document pairs, so deriving static
epsilon and minPts for one seeder is imprecise most of the time. Estimat-
ing the parameters for each document pair has the potential to increase
extension performance by about 10%. This can be seen by comparing
the collection-level plagdet with the optimal document-level plagdet from
the experiment results show in Table 4.2, Table 4.3 and Table 4.4.

The experiments in this section show that parameter prediction is appli-
cable reasonably well in those circumstances. The experiments analyze pre-
dictive performance in three distinct situations. The first one is how well the
optimal parameters for one single seeder can be learned. The second is how
well a model generalizes to seeder combinations. The third is how a model
generalizes to unseen seeders. If the optimal parameters follow a functional
relationship to the histogram of the seeds length, as described in Section 4.2.3,
then the model should generalize well to at least combinations and seeders
with a similar seed-length-distribution.
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Table 4.3: Overview of the internal and external evaluation of different models
predicting parameters for extension. This table shows how trained models generalize
to seed combinations. The union symbol ∪ represents a seeder combination.

Seeder MSE Plagdet
learned predicted epsilon minPts pred. doc coll-level doc-level
ϕ7,1, ϕ7,2 ϕ7,1 ∪ ϕ7,2 109082 2.1 0.70 0.69 0.86
ϕ7,1, ϕ7,3 ϕ7,1 ∪ ϕ7,3 106834 1.3 0.58 0.63 0.75
ϕ7,1, ϕ7,2, ϕ7,3 ϕ7,1 ∪ ϕ7,2 ∪ ϕ7,3 131665 1.9 0.67 0.69 0.85

Table 4.2 shows the results of four experiments where a network as de-
scribed in Section 4.3.1 was trained on one of the seeders described in Ta-
ble 4.1 each. Training examples were generated on the PAN13-Training
corpus and the model was used to predict parameters for document pairs
from PAN13-Test, generated by the same seeder the model was trained on.

For all four experiments over four different seeders, the predicted document-
level plagdet is about 10% below the alternative collection-level plagdet, where
only the best average parameter setting was used for each document pair. The
outlier is the stopword 3-gram seeder ϕ7,3, where the plagdet for predicted
and collection-level estimated parameters is about even. Also, predictions are
about 20% lower than the theoretically optimal document-level plagdet. The
internal metrics here give a hint of how hard the parameters are to predict
for each seeder and how high the spread of parameters is for examples with
similar seeds. The average error for epsilon-predictions is between 210 and
300, the average error for predicting minPts is 1.2-1.6. Compared to the size
of the optimal area of parameters, as can be seen in Figure 4.5, Figure A.5,
Figure A.6, and Figure A.7, these errors are acceptable.

It can be assumed that the difference in plagdet between prediction and
collection-level will be similar for all seeders with this model. Thus, if only one
known seeder is employed, a static set of parameters is preferable. However,
selecting parameters on document-level still has the potential to become better
than collection-level, if those parameters can be estimated better. Nonetheless,
the scenario where the seeder is the same for training and test is not the
primary focus for parameter learning. If there are only a few, a priory known
seeders, then manual tuning or more specialized models are preferable anyway.

More interesting is the capability of the model to generalize to seeder com-
binations and to unseen seeders. If the model can generalize to combinations
reasonably well, then the model only needs to be trained once, with examples
from each seeder on its own. Four experiments were made to show how well
the model can predict parameters for seeder combinations when trained on the
component seeders. The results can be seen in Table 4.3. It is notable that
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Table 4.4: Overview of the internal and external evaluation of different models
predicting parameters for extension. This table shows how good a trained model
generalizes to unseen seeders. The union symbol ∪ represents a seeder combination.

Seeder MSE Plagdet
learned predicted epsilon minPts pred. doc coll-level doc-level
ϕ7,1 ϕ7,3 99296 1.9 0.54 0.54 0.72
ϕ7,1 ϕ7,2 96904 4.5 0.48 0.75 0.87
ϕ7,1, ϕ7,3, ϕ7,4 ϕ7,2 91281 4.2 0.46 0.75 0.87
ϕ7,1, ϕ7,2 ϕ7,4 50395 2.5 0.47 0.57 0.67
ϕ7,1, ϕ7,3 ϕ7,1 ∪ ϕ7,2 ∪ ϕ7,3 147903 1.4 0.65 0.69 0.85

the difference between predicted document-level plagdet and collection-level
plagdet is lower for all combinations compared to the single-seeder experi-
ments. The largest difference is 5% for the combination of the token 5-gram
exact match seeder ϕ7,1 and the stopword 3-gram seeder ϕ7,3. For the combi-
nation of ϕ7,1 and the tf-isf cosine-similarity seeder ϕ7,2, the prediction even
performs marginally better than the static estimate via grid search. The differ-
ence between predicted and optimal document-level plagdet is with on average
17% (worst 18%) also slightly lower than for single seeders with 19% (worst
24%). Also, observe how the mean squared error for the epsilon prediction
is higher than for the previous experiments, but the plagdet with predicted
parameters is not worse. The conclusion of these experiments is that param-
eters vary more in combined seeders. This explains both the larger MSE of
epsilon and the reduced performance of collection-level estimate. While the
collection-level estimated parameters are better for single seeders, predicted
parameters for seeder combinations are quite usable.

Besides generalizing to combinations is the ability to generalize to unseen
seeders. If the theory holds that parameters follow a functional relationship to
the seed-length-distribution, then it is possible to learn this from one seeder
and predict reasonable parameters for a different one. Explicitly, a model has
to predict, if the seeder used for testing and the one for training generate seeds
with similar histograms.

Table 4.4 shows the results of the experiments about generalization to un-
seen seeders. The first experiment shows the prediction performance when
the learned seeder (ϕ7,1) has a similar seed-length-distribution of the predicted
seeder (ϕ7,1). The theory predicts that this generalization has to work well.
This is indeed what the results show in that predicted document-level plagdet
is the same as the collection level plagdet, which is the one from the third
experiment in Table 4.2. The score of 0.54 when predicting ϕ7,3 is not much
lower than when predicting ϕ7,1. This is quite different when learning on ϕ7,1

and predicting ϕ7,2, which has a very different seed-length-distribution (com-
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Table 4.5: Changes in prediction error for multiple seeders for different activation
functions and numbers of hidden layers. The seeders are the same for training and
test. Here, the internal metrics have been calculated with a 30-fold 70:30 random
resampling and over the trainings examples. For these experiments (only), weights
have been randomly initiated for each fold.

MSE
seeder layers activation epsilon minPts
ϕ7,1 1 relu 70601 1.5

3 relu 69860 1.5
1 none 72739 1.5
3 none 75009 1.6

MSE
seeder layers activation epsilon minPts
ϕ7,2 1 relu 71844 3.1

3 relu 70183 2.6
1 none 71246 3.1
3 none 71247 2.8

MSE
seeder layers activation epsilon minPts
ϕ7,3 1 relu 95671 1.9

3 relu 93865 1.9
1 none 111483 2.0
3 none 116734 2.1

MSE
seeder layers activation epsilon minPts
ϕ7,4 1 relu 47922 2.6

3 relu 46464 2.5
1 none 48716 2.6
3 none 47559 2.9

pare Figure 4.6). Here, the prediction in notably worse. However, this has
to be expected, since the model can only learn the parameters given in the
training examples. Also, observe how the prediction of ϕ7,2 does not improve
when adding examples from ϕ7,3 and ϕ7,4 to the training set.

Generalization to combinations does, however, show promising results.
When training a model on ϕ7,1, ϕ7,2, and ϕ7,3 and predicting the combina-
tion ϕ7,2 ∪ ϕ7,2 ∪ ϕ7,3, the difference between prediction and collection-level
estimate is only 2%. When removing examples from ϕ7,2 from the training set,
the prediction performance decreases by only another 2%.

Concluding, generalization to unseen seeders works acceptably if the seed-
length-distribution is similar, supporting the theory above. If the training
set covers the different seed-length-distributions used when predicting, the
model also generalizes to variations of them. This is a requirement for the
extension when considering a search in the relaxation-space, for example. Also,
predicting combinations seem to be reliable, even if the model has not been
trained on all seeders used.

The last experiments, shown in Table 4.5, concern the model calibration.
One of the reasons a MLPR was chosen is that it is easy to show if the function
learned is linear in nature and if the parameters are interdependent for pre-
diction, without completely swapping the underlying model. If the prediction
error (here the MSE) is the same for one as for three computing layers, then
the parameters can be learned independently. This is advantageous because it
allows to use different, possibly more appropriate models in the future and tune
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them differently. If the model performs equally after removing the activation
function, then the learned function is linear.

The four combinations for 1 or 3 layers and with and without the activation
function has been tested for each of the four seeders in Table 4.1. For each
seeder, the three-layer MLPR with activation function performed best for both
parameters. However, the difference between layers is marginal and it has to
be assumed that the parameters can be learned independently. The difference
in activation function is notable enough to assume that the learned function
is not completely linear. However, the difference is low enough that a better
but purely linear model might also predict better.

4.5 Conclusion
This chapter discussed the extension step of seed-and-extend text-alignment
algorithms. Several alternative approaches have been analyzed, concluding
that a density-based clustering is the generally most useful one for extension.
DBscan has been adapted to work with seeds by providing boxdistance as a
distance function for seeds, so the regular point-based DBScan algorithm can
be used for 2-dimensional spaces.

Afterwards, several alternatives to determine good parameters for the clus-
tering have been discussed, concluding that local optimization on internal va-
lidity metrics can not work, since having only one cluster in a document pair
is a common case. Both collection-level estimation and parameter learning
have been discussed as alternative ways to determine parameters for different
seeders. The final conclusion of this analysis is that it is possible to learn
good parameters for seeder combination. A parameter prediction model can
also generalize to unseen seeders. However, this requires good training exam-
ples. This makes a large scale search in the relaxation and seeder combination
space computationally feasible. However, collection-level estimation still per-
forms better if the seeder and the truth is known beforehand, at least with the
machine learning model used in this thesis.

It should be noted that there are some more specific clustering algorithms
which might also solve seed extension. The LSDBC algorithm by Biçici and
Yuret [6], for example, starts with the most dense points and expands the
cluster until the density drops below a threshold. The HDBSCAN algorithm
by Campello et al. [7] only needs minPts as hyperparameter and therefore
could reduce the problem. Alternatively, the graph-based approach of Major-
Clust [34] might work well for extension but has a usually much larger runtime
and also depends on hyperparameters.
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Future Work

This thesis presented a detailed look at the seed-and-extend strategy for text-
alignment. The focus was on analyzing the performance and properties of the
seeding and extension steps. However, certain aspects are yet to be explored
for a comprehensive view on the topic. This final chapter will introduce some of
these aspects and explores how to continue research. The first and most impor-
tant section discusses the combined extension of seeds from different seeders.
This should allow the construction of specialized seeders whose combination
might improve detection capabilities. The second section discusses possibili-
ties to find the optimal seed-and-extend text-alignment algorithm. The last
two chapters discuss extensions and amendments to the alignment model and
implementation.

5.1 Seeder Combination
The combination of seeds from different seeders has been mentioned and used
several times in this work, for example in Section 4.2.3 or Section 3.1. The idea
is to not search the single best seeder but to search for multiple seeders, each
excelling in detecting specific relations. Consider the summarization category,
for example. None of the singular seeders discussed in Section 3.2.2 could
detect summarization-based reuse reasonably well. This is a difficult category
for most seeders because they have to match a passage in one document to
multiple passages in the other one. When using several, specialized seeders,
where each detects a different pair of passages, this could be solved.

However, combining sets of seeds will introduce an extension problem. Even
if two seeders match some passages differently, they will still find a lot of com-
mon ones. This is due to the nature of text similarity. Consider the following
example: If two strings of text are very similar in syntax and semantics, they
will be found by each seeder specializing in detecting either. If the similarity
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between passages is coincidental the extension algorithm would usually dis-
card them as outliers. If multiple seeders produce similar false positives these
may form clusters themselves (as artifacts) or may be included in the existing
clusters. This means that one can not simply combine every possible seeder
and hope to improve detection. In conclusion, it is necessary to find a good
selection of seeders for combination to improve detection performance.

5.1.1 Optimization Strategy

Assuming that all seeders in the relaxation space are admissible, including
the most and least relaxed ones, seeder combination becomes combinatorial
in nature. Thus, a heuristic approach is needed to find the best combination.
To plan this heuristic, consider the following properties: First, the combine-
operation is transitive. Combining two seeders simply means merging the sets
of seeds they produce, as described in Chapter 3. Therefore, the ordering does
not matter if all seeders will be added to the combined set in the end. Secondly,
following the same argumentation as for relaxation in Section 3.1.4, the recall
does not decrease when adding more seeds. This means that a combination
of seeders never detects less than each seeder on its own, thus the goal should
be combining as many seeders as possible to increase detection. However, the
combination also merges all false positives. As described in Chapter 4, the
extender detects and removes many of these false positives as outliers or noise.
The clustering algorithms used for extension are largely robust against noise
as long as outliers and noise are somewhat uniformly distributed and do not
form artifacts. A way to determine if a combination of two sets of seeds forms
artifacts is to use Hopkins statistic [5] on the false positives. Hopkins statistic
is a measure for clustering tendency. It is calculated by averaging the distances
of each point to its closest neighbor in a uniformly randomly distributed sample
of points.

The two properties discussed above hint at a greedy, linear time heuristic:
Assume a Markov-property for the combine operation and merge a seeder
to the current state if the false positives are not grouped. This means the
heuristic would loop over all seeders and decide for each if it should be added
to the current state. A seeder that would produce artifacts if added to the
current state would be discarded and denoted as incompatible. This scheme
does not consider the relaxation effect. A relaxed seeder always produces the
same seeds as its specialized version. This means, they also produce the same
false positives, so combining a seeder and its relaxation would make artifacts
more likely. Therefore, a heuristic like that would always include the first
seeder encountered and discard these seeders neighbors in the relaxation space,
independent of performance.
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One solution to this problem is to pre-evaluate all considered seeders and
find all groups of incompatible seeders. Then, the heuristic could choose the
best out of every group and combine only those. Assuming this incompatibility
is a pairwise property, it would suffice to compare the seeders in quadratic time,
so the heuristic would still be faster than an exhaustive solution. However, it
is more likely that incompatibilities are not pairwise but can occur for any
number of combinations. In the latter assumption, detecting incompatible
groups is again combinatorial.

A possible alternative to pre-evaluation is to order the seeders, improving
the greedy search. There are multiple possibilities to sort seeders. Consider,
for example, sorting by cost-benefit estimation. This means, order the seeders
descending by precision. This way, it should take more iterations until the first
seeders have to be rejected, so more seeders can be included and recall should
increase. Also, consider sorting descending by F1-score or recall. This way,
the best seeders will be added first. In the best case, after sorting by F1, the
rejections would not contribute much to the performance anyways.

5.2 Search for the best Algorithm
Another promising project based on the properties discussed in this thesis is to
search for the best possible text-alignment algorithm. Assuming that extension
is mostly solved and need not be worried about, this leaves strategic search in
the relaxation space and a strategic combination of the found seeders.

A promising strategy that incorporates both, seeder-construction and com-
bination, is the genetic algorithm1. A genetic algorithm builds a population
of individuals, breeds and mutates them and then kills the least fit individu-
als. Each individual holds one encoded hypothesis as his genome. For text-
alignment, these hypotheses are seeders, the mutate operation is a step in
the neighborhood of the relaxation space, the breeding operation is the com-
bination of the seeders of both individuals and the fitness function is likely
plagdet.

5.3 Framework Extension
Lastly, there are many possibilities to improve on the technical side of things.
This means, developing more components to construct seeders with, improving
runtime performance and include the more powerful, real-numbered matching.

1Observe that genetic algorithms nicely fit the biological theme of this thesis.
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The components used in this thesis are rather primitive and mostly based
on prior work in the field. With exception of the synonym operators, they all
require the reused passages to be at least somewhat identical. This should be
sufficient for reuse in terms of plagiarism and copyright infringement but not for
complete information reuse. Recent developments in natural language process-
ing, however, allow similarity comparison independent from character identity.
For example, semantic similarity can be calculated based on word embeddings
using Word Mover’s Distance [18], syntactic similarity can be captured using
syntactic n-grams [32].

In terms of runtime performance, indexing structures for matching are nec-
essary. Currently, exact and sorted-identity matchers are built on an index
structure. This reduces the runtime of the alignment algorithm significantly
since matching without indexing structure is quadratic in time. It is also pos-
sible to find good indexes for other matchers. Approximate matching, like the
Jaccard matcher, can be built upon suffix trees. Spacial matchers like cosine
similarity are a tad harder since spacial index structures like R-Trees do not
work efficiently in high dimensions. Performance can also be optimized with
regards to third-party libraries. The framework uses many large libraries,
for example, Deeplearning4j2 for frequency-vector calculation. This is quite
convenient but introduces a lot of overhead, especially in terms of size and
memory usage. For many of the used third-party libraries, a tailored custom
implementation could save a lot in terms of memory consumption and possibly
runtime, as well as allowing more control over certain aspects of behavior and
configurability. Both, resource consumptions as well as runtime performance
are fundamentally important for more complex seeders and for the automated
optimization mentioned in Section 5.1 and Section 5.2.

5.4 Real-Valued Matching
It was noted in Section 3.1 that the matching matrix Mh is always binary in
this thesis. This constraint allowed for uncomplicated seeder combination and
flexible use of extension algorithms. It was also noted that this matching does
not have to be binary but could also be real-valued in [0, 1]. Such a matrix
could allow for a more sophisticated extension since it includes information
about the strength of the match. Also, seeder combination could consider the
strength of the overlapping seeders.

2Deeplearning4j can be found at https://deeplearning4j.org/
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5.5 Conclusion
Concluding, this thesis introduced a theoretical model for seed-and-extend
text-alignment algorithms and an evaluation methodology to compare and op-
timize seeders and extenders for generic similarity relations. The results and
conclusions of this work lay the foundation, together with seeder combination,
to attempt to solve text-alignment also for complex reuse-cases like summa-
rization.
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Figure A.1: Average Dunn index for different combinations of epsilon and minPts
when defining the distance between clusters as Double.Max if there is only one or
no cluster left. In this case the index increases drastically once the last clusters have
been merged. In this case, increasing epsilon will include more noise points in the one
cluster left, so this cluster grows and the Dunn index in this variation also increases.
The optima of this function likely converges when epsilon becomes large enough to
include all points in the same cluster. The seeder used is the same as in Figure 4.5.
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Figure A.2: Average Davies-Bouldin index (DB) for different combinations of ep-
silon and minPts. If there is only one cluster left, this DB variant becomes (close to)
0. The seeder used is the same as in Figure 4.5
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Figure A.3: Average silhouette for different combinations of epsilon and minPts.
The seeder used is the same as in Figure 4.5
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Figure A.4: Average scatter-to-length ratio for each parameter setting, where
scatter-to-length ratio is defined as 1

N

∑N
i=1

s(Ci)
∆Ci

. As with other metrics that ignore
the existence of multiple clusters, this measure is of linear nature to the length. A
heuristic based on the scatter-to-length ratio would always merge more noise-points
when given the chance.

60



APPENDIX A. LIST OF FIGURES

2 3 4 5 6 7 8 9

minPts

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

ep
si
lo

n

0.15

0.30

0.45

0.60

Figure A.5: Plagdet of DBScan extension over a grid of parameter choices. The
static seeder used sentence unigram tf-isf vectors and cosine matching with a thresh-
old of 0.33 (seeder ϕ7,2 in Table 4.1).
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Figure A.6: Plagdet of DBScan extension over a grid of parameter choices. The
static seeder used 2-overlap-3-grams of word tokens, exact matching and a negated
stop-word filter (seeder ϕ7,3 in Table 4.1).
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Figure A.7: Plagdet of DBScan extension over a grid of parameter choices. The
static seeder used 2-overlap-3-grams of word tokens, exact matching and a negated
stop-word filter (seeder ϕ7,4 in Table 4.1).
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