
Optimizing Perceived Aesthetics of
UIs Using Metric Guided Generative

Pipelines

Bachelor Thesis - Informatik B.Sc.

Moritz Wörmann
ScaDS.AI, Leipzig University

1. Referee: Dr. Patrick Ebel

Leipzig, 15.08.2024

Declaration

Ich versichere, dass ich die vorliegende Arbeit selbstständig und nur unter Verwendung
der angegebenen Quellen und Hilfsmittel angefertigt habe, insbesondere sind wörtliche
oder sinngemäße Zitate als solche gekennzeichnet. Mir ist bekannt, dass Zuwiderhandlung
auch nachträglich zur Aberkennung des Abschlusses führen kann. Ich versichere, dass
das elektronische Exemplar mit den gedruckten Exemplaren übereinstimmt.

Leipzig, August 16, 2024

Moritz Wörmann

iii

Abstract

User Interfaces (UIs) and their design are an integral part of the User Experience (UX)
of mobile applications and the preference of users to choose one app over another. While
it is an important part of mobile application development, it is often a complex and time-
consuming task for the developer to come up with an aesthetic UI design. Therefore,
automating or assisting this task is a relevant topic that has been researched extensively.

This thesis explores the metric-guided generation of UIs to ensure that the generated
UIs conforms to users’ expectations in terms of aesthetics. Different generative processes
are explored that are guided by a Convolutional Neural Network (CNN) that predicts
how users will rate aesthetics. This predicted metric is used as a score which is optimized
in a gradient descent pipeline. A key problem is the optimizer "learning" weaknesses in
the metric predictor that increase the metric without meaningfully changing the actual
UI. Despite exploring many different generative processes and testing a large number of
hyperparameters, this problem could not be overcome.

iv

Contents

List of Figures vii

List of Acronyms ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition . 2
1.3 Contributions . 2
1.4 Results . 3
1.5 Structure . 3

2 Background 5
2.1 Machine Learning . 5

2.1.1 Gradient Descent . 5
2.1.2 Differentiable Image Translation 6

2.2 Convolutional Neural Nets . 8
2.2.1 Neural Nets . 8
2.2.2 Architecture . 9
2.2.3 Common Convolutional Neural Net Architectures 9

2.3 Diffusion Models . 9
2.3.1 Introduction to Diffusion Models 9
2.3.2 Architecture . 10
2.3.3 Stable Diffusion . 11

2.4 Variational Auto Encoders . 11

3 Related Work 15
3.1 Prediction of Perceived Aesthetics . 15
3.2 UI Generation . 15

3.2.1 Generative Adversarial Network Based UI Generation 16
3.2.2 Diffusion-Based UI Generation . 16

3.3 Non-Subjective Metrics . 16
3.4 UI Datasets . 17

3.4.1 RICO Dataset . 17
3.4.2 Annotations for RICO . 18

4 Methods & Results 19
4.1 Diffusion-Based UI Generation . 19

4.1.1 Dataset Creation . 19
4.1.2 Model Training . 21
4.1.3 Metric Selection . 21
4.1.4 Evaluation Setup . 21

v

Contents

4.1.5 Evaluation . 23
4.2 Optimizing Layout via Latent Space Representation 23

4.2.1 Data . 24
4.2.2 Metric . 24
4.2.3 Evaluation Setup . 24
4.2.4 Evaluation . 25

4.3 VAE Latent Space . 27
4.3.1 Data . 27
4.3.2 VAE Architecture . 28
4.3.3 Evaluation Setup . 28
4.3.4 Evaluation . 29

4.4 Positions as Latent Space: Intersection over Union and Alignment . . . 29
4.4.1 Metric . 29
4.4.2 Evaluation Setup . 31
4.4.3 Evaluation . 32

5 Final Evaluation & Discussion 33

Bibliography 35

vi

List of Figures

2 Background
2.1 Standard Transformations With Affine Matrices 7
2.2 Sigmoid function . 8
2.3 StableDiffusion architecture, reproduced from [1] 11
2.4 Conventional Auto Encoder . 11
2.5 Variational Auto Encoder . 12

3 Related Work
3.1 Double Diamond. 16
3.2 Unconditional Generation by LayoutDiffusion, reproduced from [2] . . . 17

4 Methods & Results
4.1 Conditioned captioning with Bootstrapping Language-Image Pre-training

(BLIP) . 20
4.2 Generated image with fine-tuned model 21
4.3 Optimization process with automated initial prompt captioning 22
4.4 Optimization Step 1 and 49 . 23
4.5 Multiple optimization examples . 26
4.6 Variational Auto Encoder (VAE) Architecture 28
4.7 Initial and reconstructed image . 30
4.8 CNN Architecture, generated with [3] . 31
4.9 Optimzation progress . 32

vii

List of Acronyms

AI Artificial Intelligence

BLIP Bootstrapping Language-Image Pre-training

CNN Convolutional Neural Network

DM Diffusion Model

ELBO Evidence Lower Bound

FID Fréchet Inception Distance

GAN Generative Adversarial Network

GUI Graphical User Interface

IoU Intersection over Union

LLM Large Language Model

MSE Mean Squared Error

NN Neural Network

OS Operating System

PDF Probability Density Function

ReLU Rectified Linear Unit

RL Reinforcement Learning

SD Stable Diffusion

UI User Interface

UX User Experience

VAE Variational Auto Encoder

ix

Chapter 1

Introduction

In recent years smartphones have become increasingly indispensable for almost everyone.
Most interactions with these smartphones happen through apps. Today, the Operating
System (OS) Android has a market share of around 80% of the global smartphone
market [4]. Accordingly, most applications are retrieved or downloaded via the Google
Play Store, which currently holds around 2.5m different apps [5]. Users can interact
with the applications using Graphical User Interfaces (GUIs). While common design
principles, such as Material Design 1, vastly different designs still exist. Users usually
prefer an application with an appealing design over an application with an inferior UI
design, even when its usability is rated lower [6].

1.1 Motivation

UI design is one of the most important factors for a user’s decision to choose one appli-
cation over another since it is the primary way a user interacts with the application and
the UX is heavily influenced by this [7]. UI Design consists of multiple different compo-
nents, which include color scheme, font choices, layout, and size of UI elements. Utilizing
an aesthetically pleasing user interface for the application while simultaneously setting
it apart from similar applications is therefore an important factor in the application be-
ing successful and adopted by a large user base. Although common design guidelines,
especially OS-specific ones, exist, developers might want to use a more customized UI
to stand out across all applications.

Through UI design tools like Figma 2, it gets easier to create UIs for apps and websites.
However, designing visually pleasing UIs still proves to be a complicated task, especially
since these metrics are highly subjective [8]. This challenge becomes even more significant
when considering the impact initial impressions of a UI can have on the users’ perception
and on the willingness to stay on the website or the mobile app [9]. Automating the
task of creating UI or providing assistance through automatic algorithms is therefore a
worthwhile topic. An end-to-end process of creating UIs, or at least optimizing existing
ones, can reduce time and effort.

The UI design process is divided by the Design Council into four separate sections:
Discover, Define, Develop, Deliver [10]. This division is also discussed in the next sections.
While all of the steps are time-consuming, this research will primarily focus on the
“Develop” section, since the layout and design choices are made mostly during this stage.

There are numerous ways to assist developers and UI designers in this process. This
thesis focuses on the task of deciding on a layout for all UI components. The choice of
this subproblem is advantageous as the amount and type (Buttons, Text boxes, etc.) ofUI

1https://m3.material.io
2https://www.figma.com/

1

https://m3.material.io
https://www.figma.com/

1.2 Problem Definition

components is usually already predetermined and dictated by the functionality. Other
design components, such as font and color, are often constrained by corporate design or
similar guidelines.

As previously discussed, Artificial Intelligence (AI)-assisted UI design can provide
meaningful help in the design process. Thus, different processes and generative techniques
for automated UI design have been researched [2, 11] in this area. While these approaches
leverage datasets consisting of existing UIs to train generative models, this generation
can be considered unguided, meaning that some initial requirements can be specified
(e.g. amount and type of input elements), but the final generation is not refined in any
way. This thesis focuses on an iterative improvement of the generated UI with a focus on
perceived aesthetics instead of technical metrics such as alignment measures. With this
approach it is ensured that the final generated UI actually conforms to user expectations
in terms of aesthetics.

1.2 Problem Definition

The main objective of this thesis is to create a methodology that creates a layout for
existing UI elements that is aesthetically pleasing. This could either be used directly
when no prior layout exists or as a mechanism to provide alternative designs if a layout
already exists. What users consider aesthetically pleasing should be predicted by a
model, trained on annotated screenshots of UIs. To optimize a given UI, which is stored
in a latent representation from which it can be rendered and graded by the aesthetics
predictor, the predicted score is optimized via a gradient descent pipeline.

Another challenge explored by this thesis is the segmentation of existing user interfaces
if no prior segmentation exists. After a UI has been segmented, it can then be passed to
the aforementioned process to create an optimal layout. This part is therefore also an
integral part of the central problem discussed, however, initially only pre-segmented UI
datasets will be used.

Additionally, the task of (automatically) predicting how users perceive UIs is explored
as the central grading mechanism used to guide the layout generation process. Different
existing approaches for this task are compared for their applicability in this use case.

1.3 Contributions

With this thesis, we present a nouveau approach to metric-guided UI generation. This
is done in an experiment setup that ensures the generated UIs conforms to users’ UX
expectations. Additionally, we contribute a fine-tuned Stable Diffusion (SD) model which
can be used to generate images of UIs based on a text prompt3 The dataset used to
train this model, which contains text-image pairs is also made available.4 Furthermore,
we present a VAE architecture used to create a latent representation of UI layouts. The
code for this thesis is publicly available.5

3https://huggingface.co/mowoe/stable-diffusion-v1-4-rico-blip-large-conditioned
4https://huggingface.co/datasets/mowoe/rico-captions-blip-large-conditioned
5https://github.com/mowoe/bachelorthesis

2

https://huggingface.co/mowoe/stable-diffusion-v1-4-rico-blip-large-conditioned
https://huggingface.co/datasets/mowoe/rico-captions-blip-large-conditioned
https://github.com/mowoe/bachelorthesis

1.4 Results

1.4 Results

Different model architectures for predicting the perceived aesthetics of UIs have been
explored. While all of them showed promising accuracy results during training and
evaluation, this did not translate to the actual use case of them in this thesis, which is the
usage as a metric for an optimizer. The optimizer quickly “learned” weaknesses present
in the predictor models and exploited them which caused the predicted score to increase
rapidly without changes in the generated UI reflecting or justifying the higher score. This
can be considered to be an accidental adversarial attack against the predictor models.

1.5 Structure

The thesis is structured in the following way. Section 2 provides a theoretical background
for the techniques used that allows the reader to understand the proposed concepts.
Chapter 3 discusses research efforts related to the one presented in this thesis. After that
Chapter 4 goes over the performed experiments and showcases the results individually.
Finally Chapter 5 summarizes the key results of this thesis and gives an outlook into
future work.

3

Chapter 2

Background

2.1 Machine Learning

This chapter provides the reader with background information on a selection of machine
learning concepts used throughout this thesis. While the scope of all important concepts
is too large to include them in this thesis, this chapter aims to focus on the most
important concepts.

2.1.1 Gradient Descent

This section provides the reader with the necessary background information about gra-
dient descent, which is central to the metric-guided optimization part of this thesis.

Gradient Descent is one of the integral building blocks of modern machine learning[12].
It allows models to learn from data and be optimized with regard to a cost function,
such as a loss, through an iterative process. Most classic machine learning models can
be written as some equation containing parameters and variables. The goal is to find
a set of parameters for this equation such that the cost function is minimized across
the training data. While the entire model can be viewed as a single equation, the same
holds true for the cost function. If we consider the very basic prediction problem that is
defined by a dataset created with f(x) = 2x, we can define a model with one parameter
θ and one variable x as

m(x) = θ × x (2.1)

If we want to optimize the parameter θ, we can use the common loss function Mean
Squared Error (MSE), which measures, as the name suggests, the mean squared deviation
from each datapoint in the training set:

MSE = 1

n

n

∑
i=1

(yi − ŷi) (2.2)

with n being the size of our training dataset, yi being the real value (yi = 2 × x in this
case) and ŷi being the predicted value (ŷi = θ × x in this case). The next step is to view
MSE not as a function of ŷi but of θ, which is done by substituting ŷi with m(x):

MSE(θ) = 1

n

n

∑
i=1

(yi − (θ × xi)) (2.3)

The core idea behind gradient descent is to differentiate this parameterized loss function
with regards to the trainable parameter [12]. With this differentiation, the gradient at
the current parameter point is retrieved. This point is part of whats considered to be the
"loss landscape" in which the optimization happens. If the direction (or rather the sign)
of the gradient is inverted, the direction in which the parameter needs to be modified to
decrease the loss is retrieved [12].

5

2.1 Machine Learning

In the case of a model/equation which is dependant on multiple parameters, the loss
function needs to be partially differentiated with regards to each parameter individually.

After the gradient (i.e. the direction), in which the parameter(s) needs to be modified,
in order to decrease the loss, is retrieved, the optimization can be performed. The
optimization step is described as

θ′ = θ − α∂ MSE(θ)
∂ θ

(2.4)

with α being the learning rate. This additional training (hyper-)parameter controls the
size of the modification to the parameters and is a crucial component of the training
process. If the learning rate is chosen too small, the model might not converge fast
enough and if it is chosen too large, the optimal parameters are possibly never found, as
they are "skipped over" [12].

In practice, the loss calculation and optimization is not always performed for each
training sample individually, but for a number of examples at once. This is considered
Batch Gradient Descent (BGD).

Besides these basic optimization algorithms, there are a number of other more complex
algorithms, which all rely more or less on these basic constructs. These include

• Adam [13]

• Stochastic Gradient Descent (SGD) [14]

• AdamOnLion [15]

This optimization process can not only be used for training model parameters, but also
for optimizing the result of some generative process with regards to a metric, such as
optimizing the prompt for generating an image such that the image conforms to some
predefined metric, e.g. amount of the color blue.

2.1.2 Differentiable Image Translation

As is described in Section 2.1.1, to optimize a parameter with regards to a metric, the
calculation of the metric on the basis of the parameter is differentiated. The implication
of this is that the entire computation must actually be differentiable. For most opera-
tions, this is relatively straightforward, although not always as canonical as in a simple
multiplication (e.g., in the case of clamping). A central operation, which is used in sev-
eral stages of this thesis, that is however not differentiable, is the placing of smaller im-
age segments on a larger canvas. Mathematically, this operation can be seen as indexing
a matrix and overwriting the (pixel) values already present there. However, this is not
differentiable with regards to the index itself, which is the parameter to be optimized.

To avoid this problem, the process of affine transformation is used throughout this
thesis. The main concept behind this transformation is the use of a 3 × 3 matrix, called
the affine matrix, to control the transformation of an image. One of the key properties
of the affine transformation, is that parallel lines in the original image will always stay
parallel in the resulting image. The transformation consists of a linear transformation
and a translation (shifting each point by a vector).

6

2.1 Machine Learning

⎛
⎜
⎝

1 cx = 0.5 0
cy = 0 1 0
0 0 1

⎞
⎟
⎠

Shear

⎛
⎜
⎝

cx = 2 0 0
0 cy = 1 0
0 0 1

⎞
⎟
⎠

Scale

⎛
⎜
⎝

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎞
⎟
⎠

Rotate

⎛
⎜
⎝

−1 0 0
0 1 0
0 0 1

⎞
⎟
⎠

Reflection

⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠

Identity

⎛
⎜
⎝

1 0 vx > 0
0 1 vy = 0
0 0 1

⎞
⎟
⎠

Horizontal Translation

Figure 2.1: Standard Transformations With Affine Matrices

Formally, the transformation can be written as matrix multiplication with an aug-
mented matrix (linear transformation) and vector (translation):

M =
⎛
⎜
⎝

a11 a12 ∣ b1
a21 a22 ∣ b2
0 0 ∣ 1

⎞
⎟
⎠

(2.5)

which is equivalent to

y = Ax + b (2.6)

With this setup, a variety of different standard transformations can be created: For
this thesis, the horizontal translation is the most important one. With this translation,
the placement of image segments on a bigger canvas can be realized while keeping
differentiability. Both vy and vx can be used as parameters for moving the segment on a
blank canvas around. When applying the translation for multiple segments individually
and then stacking the resulting images on top of each other, multiple segments (e.g. UI
elements) can be arranged on a canvas.

7

2.2 Convolutional Neural Nets

2.2 Convolutional Neural Nets

This section provides the reader with high-level concepts related to CNNs and briefly
discusses the necessary background information to understand their usage in this thesis.
CNNs are primarily used throughout this thesis as predictors for various metrics for
which a given UI is optimized for. The models output is subsequently used as a cost/loss
function used in the gradient descent process.

Originally presented in LeCun et al. [16], CNNs are a class of Neural Networks (NNs)
which have been modeled after the visual cortex of animals and are designed to learn
spatial hierarchies in images. Although the concept of CNNs dates back to the 1990s,
the emergence of powerful GPU architectures and larger datasets have helped CNNs
to gain popularity in most vision-related machine learning tasks. After AlexNet was
presented in 2012 by Krizhevsky et al. [17], which achieved a new state-of-the-art score
in the popular image recognition challenge "ImageNet Large Scale Visual Recognition
Challenge" (ILSVRC) [18], CNNs have become the de-facto standard for object detection
tasks.

2.2.1 Neural Nets

To understand the concept of CNNs, a basic understanding of NNs is necessary. In essence,
a NN consists of multiple matrices, called "layers", which are made up of a fixed number
of trainable weights. These layers are then chained together and an input value, often
also a matrix, is multiplied with each layer sequentially [19]. This process can be viewed
as if each weight in a layer was a singular entity, sometimes called a "Neuron", which
has a connection to each Neuron in the following layer. This connection is the trainable
parameter, which is just a factor that the output of the neuron gets multiplied with,
before it is passed to the next layer. In each neuron, all incoming "signals" are then just
summed up. What is taking NNs beyond just being a more complex linear calculation,
are activation functions [19]. These activation functions introduce nonlinearity into the
NN when they are added to the output of a layer. While a lot of different activation
functions exist, one of the more common ones is the sigmoid function [20], which maps
all x values into the interval [0,1], which can be seen in Figure 2.2. This nonlinearity

−6 −4 −2 0 2 4 6

0.5

1

σ(x)

Figure 2.2: Sigmoid function

is what allows NNs to learn complex non-linear relationships in data. Additionally to
these simple NNs, larger models, called Deep Neural Networks, with essentially the same
architecture are used for more complex problems [19].

8

2.3 Diffusion Models

2.2.2 Architecture

Instead of the common linear layers (sometimes referred to as "fully connected layers"), of
which common NNs are constructed, CNNs consist of convolutional layers. These layers
consist of a learnable filter, known as the "kernel", which revolves over the input image,
during which the dot product of each individual pixel, along with the pixels around it, with
the kernel is computed and passed to the next layer. Through this process, a feature map
is created which is able to capture high-level spacial data, like edges, in images. Similarly
to conventional NNs, activation functions are used to introduce nonlinearity into the
model. For CNNs, the most commonly used function is Rectified Linear Unit (ReLU):

ReLU =max(0, x) (2.7)

Since most CNNs are used for classification tasks, the final layer in such models is often a
softmax layer, which converts the raw values into probabilities, representing the likelihood
of each class.

2.2.3 Common Convolutional Neural Net Architectures

Since the inception of AlexNet [17], multiple more advanced model architectures have
been presented. These include:

ResNet: Presented in He et al. [21], ResNet (short for "Residual Networks") introduced
the concept of residual layers, which create connection skipping layers, enabling the
training of very deep networks, normally suffering from vanishing gradients.

VGG-Net: Originally presented in Simonyan and Zisserman [22], VGG-Net pioneered
the usage of 3×3 kernel sizes throughout the network and achieved state of the art scores
in common object detection challenges, such as ILSVRC [18].

GoogLeNet: Presented in Szegedy et al. [23], GoogLeNet, codenamed "Inception",
introduced the concept of chaining multiple different filter sizes in order to learn multi-
scale features.

By removing the final layer in these models, which produce the classification logits,
and replacing it with a new layer that only has one output value, these pre-trained
models can be fine-tuned for a different metric, such as aesthetics. This is the primary
way CNNs are used in this thesis.

2.3 Diffusion Models

This section provides the reader with the concept of Diffusion Models (DMs) and nec-
essary background information to understand the associated concepts. As DMs are not
integral to the key results of this thesis, only a brief overview will be given, allowing the
reader to have a general intuition for what diffusion is.

2.3.1 Introduction to Diffusion Models

DMs, as introduced originally by Sohl-Dickstein et al. [24], are a category of generative
models that use two Markov chains to transform a data distribution, like Gaussian Noise,
into a target data distribution. This is done in two distinct phases where noise is first
subsequently added to the data and after that a denoising process, which has been trained

9

2.3 Diffusion Models

on removing the noise again, removes it again. This denoising process has been optimized
during the training phase by generating random noise, overlaying it on top of an existing
image and training a model to predict this "noise residual" which has to be removed from
the combined image in order to retrieve the original image again. A reconstruction loss is
used to compare the original image and the image with the noise residual removed. With
this two-phased process, DMs can generate data fitting to the desired target distribution.

2.3.2 Architecture

As previously described, DMs generate data by first destroying structure in existing data
and then trying to reverse this process by removing noise [24]. Both of these processes
can be thought of as trainable markov chains [25].

By keeping the steps in the noise adding process T relatively small, the otherwise
complex task of predicting the previous data structure in the reverse process becomes
manageable [24].

Generally speaking, the forward markov chain is called the "noise scheduler" and the
reverse process is called the "denoiser".

2.3.2.1 Noise Scheduler

The noise scheduler is the forward process of a diffusion model and what controls the
noise addition in each step. During training of the model, this part of the model learns
the amount of noise added to the image in each step.

Mathematically speaking, the noise scheduler controls the variance of gaussian noise
added in each timestep [25]:

xt =
√
αt ∗ x0 +

√
1 − αt ∗ ϵt (2.8)

with x0 being the original image, xt the image with added noise up to timestep t and
αt the cumulative product of αs up to timestep t. The most important part is et, the
gaussian noise sampled at timestep t with variance βt. The core parameter of the noise
scheduler is the variance βt, defining the noise scheduling in each step with

βt = 1 −
αt

αt−1
(2.9)

Different noise scheduling strategies exist, which include linear or cosine trajectories for
the noise variance in each step [26].

2.3.2.2 Denoiser

The denoising process is effectively the inverse of the noise scheduler. It consists of
iteratively removing the noise again, which was added in the previous steps. To do this,
the noise residual is predicted in each step and then removed from the image:

xt−1 =
xt −
√
βt ∗ ϵθ(xt, t)√
αt−1

(2.10)

with ϵθ(xt, t) being the prediction of the noise residual for a timestep t. This step is done
until t = 0 and the final image is retrieved again.

10

2.4 Variational Auto Encoders

Semantic
Map

crossattention

Latent Space Conditioning

Text

Diffusion Process

denoising step switch skip connection

Repres
entations

Pixel Space

Images

Denoising U-Net

concat

Figure 2.3: StableDiffusion architecture, reproduced from [1]

x Encoder z Decoder x̂

Figure 2.4: Conventional Auto Encoder

2.3.3 Stable Diffusion

Presented in Rombach et al. [1], StableDiffusion is one of the most widely known diffu-
sion model architectures. While its architecture, shown in Figure 2.3, contains multiple
additional elements and is more complex, it still relies on the basic concepts described in
Section 2.3.2. StableDiffusion will be the primary model used in experiments leveraging
DMs throughout this thesis.

2.4 Variational Auto Encoders

This section presents VAEs and provides the reader with the necessary background
information to understand how VAEs work and how they are leveraged in this thesis.

As the name implies, VAEs are similar to conventional Autoencoders. The primary
goal is to translate some data X into a latent space and then reconstruct X from this
latent space, usually denoted as X̂. In most Autoencoder applications, the latent space
z is fixed and defined prior to training. Conventional Autoencoders can be seperated
into two parts: (1) the encoder and (2) the decoder. Both of these modules are NNs
which subsequently translate the input data into a latent space. The decoder can be
viewed as the inverse of the encoder, both figuratively and in a technical sense. However,
it is worth to note that they do not share the same weights. Conventional Autoencoders
are usually used for graphical data like images. Hence, the model architecture mostly
consists of convolutional layers.

11

2.4 Variational Auto Encoders

x Encoder
µ

σ

z Decoder x̂

Sampling

Figure 2.5: Variational Auto Encoder

Figure 2.4 illustrates the encoder and decoder part as well as the input data X and
decoded data X̂. The delta between X and X̂ is considered the reconstruction loss
during training and the main metric to be optimized for. While this model architecture
is well suited for the task of mere reducing the dimensionality of input data, it has a
major drawback when trying to create new data, i.e. sample from the latent space. Since
the Autoencoder has been trained on specific training data, generating new data is not
something it was optimised for. If the latent space is sufficiently large, it might even
lead to overfitting [27], which, for this model architecture, means in the case of images
that each training example gets a discrete point assigned in the latent space, effectively
creating a dictionary, rather than an encoder. This causes the latent space to consist of
some discrete data points corresponding to the training data but without any meaningful
data in between. This data in between is generally regarded as “noise” since it does not
produce any meaningful data when passed to the decoder.

This is where the VAE shows large performance improvements over a conventional
Autoencoder [28]. The key difference between the two models is the lack of a fixed latent
space and the usage of a distribution instead. While the VAE architecture also uses the
two-part encoder and decoder architecture, the two elements are not directly connected.
Instead, the encoder has two outputs: (1) a mean µ and (2) a standard deviation σ. These
describe a distribution inside of the latent space, the dimensionality of which is again
predefined prior to training. During training, a datapoint is passed to the encoder, which
produces the parameters for a gaussian distribution. A data point from this distribution is
then sampled and passed to the decoder, after which the reconstruction loss is calculated.
This causes the VAE to be inherently nondeterministic. Additionally to the expected
capabilities, encoding and decoding with minimal reconstruction loss, the VAE also
learns the distribution of all possible z vectors, that is, all vectors that generate plausible
data points when passed to the decoder. This distribution is considered to be the prior
distribution pθ(z). The encoder subsequently learns the posterior distribution pθ(z∣x)
and the decoder learns the likelihood distribution pθ(x∣z). To generate a new datapoint, a
vector z∗ is sampled from pθ(z), and a decoded x is created via the likelihood distribution
x = pθ(x∣z = z∗). Since the actual parameter θ is unknown, only an approximation ϕ with
distribution qϕ(z∣x) can be reached during training. To get closer to the actual parameter
during training, the Kullback Leibler Divergence would be used. However, this is not
computable since the real parameter is still unknown. Instead, the Evidence Lower Bound
(ELBO) function is used as a loss function [29]. It is comprised of (1) the reconstruction

12

2.4 Variational Auto Encoders

loss and (2) the KL Divergence. To reiterate, while the actual KL divergence would be:

DKL(q0∣∣p0) = Eqθ[log
qθ(z∣x)
pθ(z∣x)

] (2.11)

Instead, the ELBO function is used [30]:

ELBO = Eqθ[log p0(z∣x)] −Eqθ[log
qθ(z∣x)
pθ(z)

] (2.12)

With the first part being the reconstruction loss:

LRecon = Eqθ[log p0(z∣x)] (2.13)

During training, the distribution of z is assumed to be N(0,1), which additionally keeps
the latent space from getting too complex, avoiding overfitting.

The key difference between conventional autoencoders and VAE leads to an additional
challenge during the training phase. Since the encoder does not produce a latent vector
directly, but rather the parameters to a distribution, the reconstruction would be non-
deterministic, due to the sampling. This would lead to the process not being differentiable,
making the training of the VAE impossible. To combat this, the training phase employs
a method commonly referred to as the "Reparameterization Trick" [29, 30]. Instead of
sampling z via

z ∼ N(µ,σ) (2.14)

the following trick is used:

z = µ + σ ⊙ ϵ, where ϵ ∼ N(0,1) (2.15)

This leads z to still be random and additionally conform to the distribution. Finally, the
sampling process is differentiable with regards to µ and σ.

13

Chapter 3

Related Work

3.1 Prediction of Perceived Aesthetics

Predicting how users perceive the aesthetics of UIs has been the subject of multiple
research efforts [31, 32]. de Souza Lima et al. [32] presented a CNN based on fine-tuned
versions of RESNET, originally presented in He et al. [33], which can reliably predict
how users will perceive the aesthetics of a user interface. The data that the model in
de Souza Lima et al. [32] was trained on consists of parts of the RICO [34] dataset and
a newly created dataset which contains screenshots of applications created with MITs
AppInventor.1

A similar approach was presented in Leiva et al. [31], where different CNN architectures
are compared. Fine-tuned versions of the popular RESNET [33] and DENSENET [35]
architectures and a custom CNN model architecture were evaluated, with the custom
architecture outperforming the fine-tuned models. The custom-architecture-based model,
which was ultimately chosen as the best-performing one, was modified to include factors
such as gender and age into its prediction to improve its performance further. The dataset
used to train the model is part of the LabInTheWild [36] project, which conducts large-
scale online experiments, where users answer different questions to create large datasets.
The original objective of the experiment was to allow users to compare their own tastes
with other parts of the world.2 As the dataset created during this experiment contains
labels (score 1-9) of roughly 400 websites and 32k participants and is therefore fitting
for usage as training data in this task.

Both of the showcased approaches presented in Leiva et al. [31] and de Souza Lima
et al. [32] provide models which are beneficial for a number of different research areas.
In this research, they are primarily used as grading mechanisms for generated UIs.

3.2 UI Generation

In a recent literature review in the area of AI assisted UI generation by Lu et al. [37], the
work in this research area is divided in the four sections of the double-diamond model,
proposed by the Design Council [10] (Figure 3.1).

Since the main focus of this research is on the “Develop” phase of the Double Diamond
process, the emphasis is on related work in this specific phase.

A selection of previous research efforts in the area of automated UI generation, which
can be divided into Generative Adversarial Network (GAN)- and DM-based is showcased
in the following sections.

1https://appinventor.mit.edu
2https://www.labinthewild.org/studies/aesthetics/

15

https://appinventor.mit.edu
https://www.labinthewild.org/studies/aesthetics/

3.3 Non-Subjective Metrics

Discover

Develop
De
liv
er

De
fin
e

Figure 3.1: The Double Diamond Model as proposed by the Design Council

3.2.1 Generative Adversarial Network Based UI Generation

Since the emergence of GANs [38] and their use for image generation has been showcased,
various attempts have been made to use the results for UI generation [11]. In LayoutGAN,
Li et al. [11] proposed a novel GAN which models relationships between graphic elements
of UI to synthesize new UIs. The model produces a wireframe-aligned output which can
then be optimized using a CNN based discriminator.

3.2.2 Diffusion-Based UI Generation

Since Diffusion models gained traction after their initial presented applicability in image
generation in Rombach et al. [1], multiple research efforts have gone into exploring their
capabilities in UI generation [2, 39]. While the increase in popularity of DMs has largely
been due to the emergence of image-creating models such as in Rombach et al. [1], most
approaches leveraging diffusion for UI generation are using a discrete diffusion process,
which, as the name suggests, does not map data into a continuous distribution, like image
data, but rather a discrete feature space. Such a space consists of different properties,
such as UI element type, position, and size. This approach is presented in Zhang et al.
[2] and Inoue et al. [39]. The approach by Zhang et al. [2], called LayoutDiffusion uses a
feature vector to represent a single UI. This feature vector contains sizing and position
information as well as the category for each individual element in the UI. It is then
used in a forward corruption and backward denoising process like it is common for DMs.
The discrete DM is trained on the RICO [34] dataset. Some selected examples of the
unconditional layout generation can be seen in Figure 3.2.

3.3 Non-Subjective Metrics

Besides the previously described metric, aesthetics, which relies purely on human inter-
rogation for labeling UI examples, there are a number of non-subjective metrics that can
be computed purely with the known UI layout. The two most widely known metrics are
Intersection over Union (IoU) and alignment, which have been used by similar research
efforts, such as in Zhang et al. [2]. Both of these metrics are calculated pairwise for two
UI elements and then averaged across the entire UI. These metrics are often used as
benchmarks for automatic UI generation since they are straightforward to calculate for
new data, and their respective “normal” expected values are known for large datasets like
RICO [2, 39, 40]. While these metrics are usually easy to calculate and optimize for, they

16

3.4 UI Datasets

Figure 3.2: Unconditional Generation by LayoutDiffusion, reproduced from [2]

do not always align with the actual perceived UX [40]. Due to this, it is desirable to opti-
mize directly for perceived aesthetics. However, this is usually harder to do, since for non-
subjective metrics, the task can be broken down to solve a simple equation, but for per-
ceived aesthetics a robust prediction model as well as a capable optimizer are necessary.

3.4 UI Datasets

While multiple different UI datasets, such as WebUI [41], MUD [42] and Screen2Words [43],
have been presented in the past, this thesis will largely focus on the RICO dataset [34],
due its size and the amount of metadata included in the dataset.

3.4.1 RICO Dataset

The RICO dataset [34, 44] is one of the largest datasets in the UI space. Deka et al. [34]
proposed a mining infrastructure that can automatically download applications from one
of the largest app marketplaces for the Android OS, Google’s Play Store.3 This agent
then runs various simulations of user interactions with the applications. This process
generates a large dataset of user interface traces and layouts. The advantage of this
research is that the dataset is automated and therefore continuously growing. While the
original research is already seven years old, its results are still used in a number of modern
different research fields and approaches, like traditional UI generation [45] and even Large
Language Model (LLM) assisted generation [46], as well as UI design choices studies [47].

As the presented automated agent has direct access to the application’s source code,
allowing for a precise understanding of the code and markup, the dataset not only
provides graphical elements of the applications but also a hierarchical definition of the
UI elements. Thus, the dataset can also be used for tasks that require segmented UIs.
The dataset differs from other UI segmentation datasets, such as in the WebUIProject
[48], as no precision is lost due to imperfect models since the agent has direct access
to the hierarchical segmentation. As a result, the dataset is fitting for tasks where one
objective is the rearrangement of UI elements.

3https://play.google.com

17

https://play.google.com

3.4 UI Datasets

Additionally, Deka et al. [34] presented an autoencoder that transforms a layout of a
user interface into a 64-dimensional latent space, from which a similar UI can be retrieved
again, when “reversing” the autoencoder.

3.4.2 Annotations for RICO

de Souza Lima et al. [32] presented a NN based on a fine-tuned version of RESNET,
which was originally presented in He et al. [33], which can reliably predict perceived
aesthetics of UIs. The presented research includes both a new dataset and a model trained
on it. The dataset consists of Screenshots obtained by the researchers and screenshots
previously presented in RICO [34]. Both the model and the dataset are useful resources
when considering automated layout generation, especially when using automated grading
and evaluation.

18

Chapter 4

Methods & Results

This section provides the reader with four different experiments designed to answer the
stated research questions. The last three experiments are similar and directly built on
top of each other. All of the experiments involve

4.1 Diffusion-Based UI Generation

As generative models like StableDiffusion [1] have become ubiquitous, the challenge to
create images from prompts that satisfy the users’ intention has become increasingly
more visible. This, among advances in other generative AI fields, has led to a separate
field known as “prompt engineering”. Past research has shown that this process can be
partly automated by leveraging a metric representing the users’ objective. Such a metric
may be aesthetics. By gradually improving the input to a generative model, the prompt,
with regard to the metric, represented by a predictor model, the generated image gets
closer to an image that satisfies the metric. This process can be considered a generic
gradient descent pipeline [49].

The objective of this thesis is to improve existing UIs, guided by a metric representing
perceived aesthetics. This problem can be considered a special instance of the aforemen-
tioned, already-researched problem. The difference is that the objective is to improve an
existing image and not create an entirely new image. Generative models like StableDif-
fusion not only support the Text2Image task, in which a new image is created based on
random noise but also the Image2Image task, in which a new image is created based on
some initial latents that are retrieved from an existing image. DMs such as StableDiffu-
sion do not operate, directly on the pixel space but rather an intermediate and latent
representation, called latents. The Text2Image pipeline of any SD-based model can eas-
ily be adapted to optimize an existing UI.

In this experiment, we develop a custom generative model based on the StableDiffu-
sion [1] architecture and use its Img2Img pipeline to optimize a screenshot of an existing
image, guided by an aesthetics predictor. This experiment can be divided into 4 tasks:
(1) dataset creation (2) model training (3) metric selection and (4) evaluation.

4.1.1 Dataset Creation

Text2Image models primarily learn the connection between text tokens and images by
using a model like CLIP [50, 51, 52], which maps both in the same latent space. This
model ensures a close cosine similarity between two vectors corresponding to close
semantic meaning. Therefore, a dataset containing pairs of text and images is necessary
for training such a model.

19

4.1 Diffusion-Based UI Generation

“a mobile screen showing”

BLIP

“a mobile screen
showing a log in
with your email”

Figure 4.1: Conditioned captioning with BLIP

Due to its performance and amount of past research, StableDiffusion [1] was chosen
as the Text2Image model for this experiment. It is not feasible to train the entire model
“from scratch” specifically for this task, as the amount of parameters is too large. Instead,
a process known as fine-tuning, originally presented for SD in Ruiz et al. [53] is used to
both leverage the existing model weights but also adapt a model to a specific task, in
this case generating UIs. The fine-tuning methodology consists, in essence, of retraining
the U-Net component of SD. However, while the dataset does not have to be as big as
the original dataset used to train the model (which has 5 billion examples [54]), it still
surpasses what a single human could reasonably annotate.

As all of the larger UI datasets, such as RICO [34], WebUI [41], MUD [42] and
Screen2Words [43] were created for a different task and do not contain any text anno-
tations, we use an automatic image captioning approach to create the dataset. Specifi-
cally, the image-text retrieval model BLIP, originally presented by Li et al. [55] is used
to create conditioned captions for images from the RICO dataset presented in Deka et al.
[34], which contains screenshots from various android apps. BLIP allows for conditioned
captioning where an initial string is given and the model completes it. In this case, the
initial string chosen was “a mobile screen showing”. Through this process, we created a
dataset of 66k examples. We have made the dataset publicly available.1

1https://huggingface.co/datasets/mowoe/rico-captions-blip-large-conditioned

20

https://huggingface.co/datasets/mowoe/rico-captions-blip-large-conditioned

4.1 Diffusion-Based UI Generation

4.1.2 Model Training

With the created dataset, the model Stable Diffusion V1.4 [1] was finetuned using the
described process. We have made the model publicly available.2 The trained model
can be used for simple Text2Image applications. An example of the prompt-to-image
capabilities can be seen in Figure 4.2.

“a mobile screen
showing a log in
with your email”

Figure 4.2: Generated image with fine-tuned model

4.1.3 Metric Selection

The primary target of this experiment and thesis is to optimize existing UIs with regards
to some metric. To allow for automatic optimization of some parameters through a
gradient-descent process, the metric calculation needs to be fully differentiable. As such,
a human feedback mechanism is not feasible. Instead, a predictor model trained on
perceived aesthetics is used. In this case, the model originally presented in Leiva et al.
[31] is used.

4.1.4 Evaluation Setup

To optimize a given UI, the Img2Img functionality of the fine-tuned SD model is used.
The UI is represented as a screenshot and encoded into latents via the SD internal VAE.
Additionally, the Img2Img functionality takes a prompt which will be used by the SD
model to generate data on top of the initial latents. This prompt can be considered to be
the trainable parameter in the gradient descent optimization process. To initialize this
parameter it is key to choose a value that modifies the image only minimally to ensure
the optimization process will in fact start at the initial given UI. As it is not feasible to
search for this optimal initial value for every new UI, an approximation will be used. The
initial prompt will be approximated by interrogating the BLIP model, similar to how
it was done for the dataset creation, showing in Figure 4.3. After the initial captioning,
the retrieved prompt is considered to be a trainable parameter and together with the
previously presented metric, an optimization via gradient descent is performed.

2https://huggingface.co/mowoe/stable-diffusion-v1-4-rico-blip-large-conditioned

21

https://huggingface.co/mowoe/stable-diffusion-v1-4-rico-blip-large-conditioned

4.1 Diffusion-Based UI Generation

“a mobile screen showing”

SD

BLIP

Figure 4.3: Optimization process with automated initial prompt captioning

22

4.2 Optimizing Layout via Latent Space Representation

4.1.5 Evaluation

We executed the optimization process described in Section 4.1.4 for multiple examples,
however only one is discussed here as an example. The results can be seen in Figure 4.4.
There are multiple issues visible in this example. First, the image from the initial step is
already not a real UI anymore, since the text and logos are distorted and the color scheme
seems to be not matching. This means that after the first optimization step, the generated
UI is already not representing the initial image anymore. Due to the nature of this
optimization process, it is unlikely, that the generated image will get closer to the initial
image again. This is evidently suboptimal for an optimization problem since the original
image does not get optimized, but rather a completely new image is generated. While
this might be expected for a low-grade DMs, state-of-the-art models, like SD, usually
achieve a performance, that the generated image is visually close to the original image.
While the other issue is that the final image (from step 49) does not represent a real UI
anymore, this is more likely to be able to be improved by different models, optimization
techniques, and other hyperparameters. A common metric for image generation models is
the Fréchet Inception Distance (FID). Essentially this metric compares the distribution
of generated images with a ground truth distribution, which is the distribution of the
“real” images, which are real UIs in this case [56]. Without having to calculate the actual
FID, we know that it is below what is considered to be a good value since the generated
images only very faintly represent a real UI, thus the two distributions have to be far
apart. Due to these described shortcomings, it was decided to not continue the approach
of diffusion-based image generation.

Figure 4.4: Optimization Step 1 and 49

4.2 Optimizing Layout via Latent Space Representation

In order to decrease the complexity of the optimization problem, the space, or rather its
complexity, in which a given UI is optimized, has to be decreased. Since the optimization
directly in pixel space, like it is done in Section 4.1, gives a potential optimizer a space

23

4.2 Optimizing Layout via Latent Space Representation

possibly too large to meaningfully navigate through, optimization in a more semantic
approach could provide benefits. A more semantic approach being the optimizable pa-
rameters actually having meaning on their own, e.g. position, size, and color, as opposed
to pixels, which don’t hold any information on their own. This experiment solely focuses
on optimizing the layout of a UI. The goal is to create a process that receives a num-
ber of UI elements (buttons, text inputs, images, etc.) and outputs a finished layout on
a blank canvas for these elements. The process again leverages a gradient descent style
optimization process which uses a prediction model as the metric to be optimized for.

4.2.1 Data

The main source of data for this experiment is the RICO [34] dataset. It contains
screenshots of mobile application UIs along with semantic information about the elements
they consist of. This includes information about at which position the elements are to
be found. This allows for an automatic segmentation of the user interface and therefore
the deconstruction of a given UI into its components. The base data for this experiment
consists of segmented screenshots, i.e. smaller images that contain only one UI element.
During optimization, these smaller images will be placed onto a blank canvas and moved
around according to the optimization of some metric.

4.2.2 Metric

As the main source of data in this experiment is mobile UIs, an aesthetics predictor
specifically designed for mobile UIs is necessary. In this case, the metric and predictor
presented in de Souza Lima et al. [32] was chosen. This metric has been created by
conducting a user study in which 2k screenshots of mobile UIs were rated for their
aesthetics on a scale of 1-5, with 5 being the highest rating. The rating for the UIs is then
averaged across all participants for one UI and the resulting value is then considered to
be the score for a UI. Additionally, de Souza Lima et al. [32] also presented a predictor
model specifically for this dataset. While multiple different model architectures were
explored, the best-performing model was found to be a finetuned version of ResNet50 [33].
The fine-tuned model is modified to only have a singular output logit instead of the full
output layout. This final layer is the only part that we specifically trained.

4.2.3 Evaluation Setup

To optimize a given UI, the positions of individual UI elements, represented as a vector
of their respective x and y coordinates, are considered as trainable parameters. Together
with the previously described metric, a gradient-descent style optimization process is
used to optimize the parameter with regard to the metric. Since the model responsible
for predicting the metric is trained on screenshots of UIs, the given UI needs to be re-
assembled in each training step. Since the optimization process needs to be differentiable
from start to finish, this also applies to the UI reassembly. Arranging smaller images on
a larger canvas can be done using regular matrix indexing when considering the images
as matrices. However, this process is not differentiable with regard to the index itself,
which is the trainable parameter in this case. To circumvent this, an affine transforma-
tion is used to ensure differentiability. An affine transformation uses a 3×3 matrix, called

24

4.2 Optimizing Layout via Latent Space Representation

the affine matrix, which contains the parameters for the transformation. Originally, this
process is used to perform transformations such as shearing, rotating, and scaling. How-
ever, through correctly chosen parameters, the transformation can be used to place a
smaller image onto a bigger canvas and control the position in it. As far as we are aware,
this technique has not been presented before. Through this process, the transformation
is applied to each UI element (now an image) individually, creating a number of images
with the dimensions of the target canvas size. To fully reassemble the UI, the images
can be summed up and clamped down to the maximum values for pixels. This process
ensures that the final metric, the predicted aesthetic score, is differentiable with respect
to the parameters controlling the positions, in this case, the affine matrices.
For the final evaluation, two different approaches were used and compared:

Initialization through initial positions: Since the RICO dataset is made up of real mo-
bile UIs, the positional parameters for each element are already known. In this approach,
these known parameters were used to initialize the trainable parameters. This can be
considered as the task of optimizing an already existing user interface with regard to its
layout.

Random initialization: Alternatively, the trainable parameters can also be initialized
with random values. This approach is closer to the objective of creating a UI without any
prior information or an already existing layout. While this does provide a more generalized
approach to the problem, random initialization poses difficulties when elements get
initialized on top of each other. In this case, there may not be a clear gradient out of this
state since the hidden element is not visible to the aesthetics predictor. To circumvent
this issue, we modified the random generator to only generate positions where no other
element is already placed.

4.2.4 Evaluation

While both approaches described in Section 4.2.3 have been tested, the results are very
similar. While the optimization and score themselves show an improvement over the
course of the optimization, the actual images do not show any significant changes to the
human eye. We randomly selected 20 examples to inspect manually, all of which had the
described issue. This is visible for three selected examples in Figure 4.5.

While it is challenging to find out the exact reason for this behavior, two issues may
be the most prevalent ones. First, the prediction model for the metric is susceptible to
an accidental adversarial attack, sometimes also referred to as “Specification Gaming” or
“Reward Gaming” [57]. In this situation, the optimizer exploits weaknesses in the model
to increase the score with only minuscule changes.

Adversarial attacks have been a long-documented phenomenon [58]. The most common
type of adversarial attack involves some CNN with a classification task. In the attack,
the model is “tricked” into predicting a different class than what would be correct for
the image. This is done by overlaying a very specific filter on top of the image, called
the perturbation, which has been specifically engineered for a specific class and image.
While adversarial attacks are almost always undesired, the described common attack
involves an attacker with (at least crafted) malicious intents, i.e. fooling a harmful content
detection model [58]. In this case, there are no malicious intents, but the setup used in
the experiment is similar to the one that would be used for crafting an adversarial task.
This setup usually consists of an image in which the raw pixel values get optimized to

25

4.2 Optimizing Layout via Latent Space Representation

0 20 40 60 80
Step

0.55

0.60

0.65

0.70

Sc
or

e

Score vs. Optimisation Step

Score progression and initial vs. best image score (0.73 at i=65)

0 20 40 60 80 100
Step

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

Sc
or

e

Score vs. Optimisation Step

Score progression and initial vs. best image score (0.667 at i=47)

0 20 40 60 80 100
Step

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

Sc
or

e

Score vs. Optimisation Step

Score progression and initial vs. best image score (0.852 at i=64)

Figure 4.5: Multiple optimization examples

26

4.3 VAE Latent Space

increase a given score (e.g. a class score in a classification task) without regard for actual
meaningful changes. While in our setup, only the position of elements is changed and
not directly the RGB values, this is still similar, since the optimizer has the ability to
change individual pixel values, even if that entails a change in other areas too.

Second, the optimizer is only trained on real UIs and has never seen “fake” (i.e. random)
UIs. This means that the space in which these broken/fake UIs lie is neither aesthetic nor
non-aesthetic but rather “undefined” and the predictor model has trouble assigning correct
values to this space. The shown examples represent a selection with hyperparameters that
were deemed to be the best-performing ones. While a different set of hyperparameters
as well as the amount of iterations during optimization might alter the results slightly,
there is no indication that these would alleviate the described challenges. The learning
rate (currently lr = 0.05) should not be any lower since the changes would be even
smaller and not any higher since the change in loss is already meaningful enough. The
second example in Figure 4.5 has a delta of around 0.2 between the start and end of the
optimization, which would correspond to a full additional point given by each user on
the 1-5 rating scale of the dataset. As there is virtually no real visible change in the UI,
this decrease is incorrect.

4.3 VAE Latent Space

Since the predictor model used in Section 4.2.2 has been specifically trained to predict how
users would rate aesthetics of a UI, it lacks the capabilities to predict aesthetics for images
that do not represent UIs. The task the classifier is trained on can also be described as

p(imaesth∣im
represents= UI) = ? (4.1)

but it is unknown how the classifier performs on a task like

p(imaesth∣im
represents
≠ UI) = ? (4.2)

To alleviate the challenges associated with this uncertainty, it would be desirable to
ensure only images of actual UIs will be created during the optimization process. In this
case, the optimizer would not run into an issue in which an image is optimized for a
perfect score with regards to the aesthetics predictor, but the resulting image does not
represent a UI, but rather something that might be described as an accidental adversarial
attack. A common way to ensure that generated examples are kept to come from a target
distribution is to use VAEs as an intermediate step. This is because the VAE learns the
distribution of the data during training and can be used to check whether or not a latent
vector is still part of the learned distribution.

4.3.1 Data

For this experiment, the latent space is not the positional vector from Section 4.2, but
the latent vector from a VAE which has been trained to represent/encode a positional
vector. The input vector X of the VAE consists of the relative positions of the 5 largest
UI elements, which are not clickable, and the 2 largest UI elements which are clickable.
Fixating this input size ensures no padding is needed in case a specific UI has a different

27

4.3 VAE Latent Space

number of elements. We decided to avoid any padding since this significantly complicates
the VAE implementation. The amounts of elements were chosen to ensure the dataset
is kept reasonably big without having to discard too many examples (we used 90% as a
threshold) because of too few elements in the respective categories.

4.3.2 VAE Architecture

For the architecture of the VAE, we use a structure presented by Subramanian [59] with
normal fully connected layers instead of the convolutional ones, since x is numerical data
and not images. Figure 4.6 shows the final image of the VAE.

Input (4)

Linear (32) LeakyReLU

Linear (64) LeakyReLU

Linear (128) LeakyReLU

Linear (256) LeakyReLU

Linear (512) LeakyReLU

Flatten

Linear (32) µ Linear (32) log(σ2)

Latent Space (32)

Linear (512 × 7)

Linear (512) LeakyReLU

Linear (256) LeakyReLU

Linear (128) LeakyReLU

Linear (64) LeakyReLU

Linear (32) LeakyReLU

Output (4) Tanh

Figure 4.6: VAE Architecture

4.3.3 Evaluation Setup

To optimize a given UI with the approach described in this experiment, the setup is as
follows: First, the vector x is extracted from the UI. Since the main source of training
examples for this experiment is the RICO dataset, this data just needs to be transformed,
as it is already part of the dataset, albeit in a different representation. After that, this
vector is passed to the VAE and the resulting latent vector is used as a trainable parameter
in a gradient descent pipeline. Additionally to the metric described in Section 4.3.3.1,
which, inverted, is considered to be the loss, a second loss is used. This second loss is
the Probability Density Function (PDF) of the multivariate normal distribution that
has been learned by the VAEs. Due to the challenges described in Section 2.4, this
distribution is assumed to have the parameters N(0,1). The PDF acts as a loss to
penalize latent space vectors which are unlikely to come out of the trained distribution.
This is intended to help the optimization process to achieve the goal of only creating
“real” UIs. Both of the losses are weighted together to create one uniform loss.

28

4.4 Positions as Latent Space: Intersection over Union and Alignment

4.3.3.1 Metric

Similar to the experiment described in Section 4.2.2, the metric used in this experiment
is again the model and metric presented in de Souza Lima et al. [32].

4.3.4 Evaluation

The evaluation of this experiment is, again, presented with one specific example. First,
one UI is selected out of the RICO dataset. This image can be seen in Figure 4.7a.
It is worth noting, that this image is already a reconstructed image from segments,
conforming to the constraints described in Section 4.3.1 (5 largest non-clickable elements,
2 largest clickable elements). This image is then passed to the VAE and the latent vector
is optimized. During the optimization, some increase in the (predicted) aesthetics score
is observable. However, the original goal of this experiment to only generate “real” UIs
could not be reached. This issue is already visible after the initial translation of the image
into the latent space and reconstruction from there to the image, as seen in Figure 4.7b.

The generated image does not represent a realistic looking UI and the VAE seemingly
predicted the same position for all UI elements, which is not desirable. This means the
VAE failed to properly learn the distribution of the data and the reconstruction loss of
the VAE is too high for this task. We were not able to circumvent the issue, either by e.g.
using a different set of hyperparameters, which were selected using a heuristic process,
or by changing the VAE architecture. As this issue is common in VAEs applications,
extensive research into mitigation techniques has been done, such as by Asperti and
Trentin [60], whose work focuses on balancing the Kullback Leibler distance with the
reconstruction loss. These two metrics are somewhat in conflict with each other and have
to be balanced carefully. Asperti and Trentin [60] present a novel approach to calculate
the optimal balance between the two metrics. While we explored a selection of the
mentioned techniques presented by Asperti and Trentin [60], some room for additional
exploration is still present.

4.4 Positions as Latent Space: Intersection over Union and
Alignment

This final experiment is designed to prove the validity of the gradient descent process on
UI images while using positioning as the optimizable parameter. As one possible problem
of the previous experiment is the metric signal being too weak, we aim to prove that with
a different signal, the process itself is still viable. Instead of using a subjective metric
like aesthetics, IoU and alignment are used. However, these metrics are still predicted by
a CNN to ensure the same optimization process as in the previous experiments is used.

4.4.1 Metric

The metric used is a combination of IoU and alignment.

Avg IoU = 1

N

N

∑
i=1

∣Ai ∩Bi∣
∣Ai ∪Bi∣

29

4.4 Positions as Latent Space: Intersection over Union and Alignment

(a) Initial Image (b) Reconstructed image from VAE latent space

(c) Initial Image (d) Reconstructed image from VAE latent space

(e) Initial Image (f) Reconstructed image from VAE latent space

Figure 4.7: Initial and reconstructed image

30

4.4 Positions as Latent Space: Intersection over Union and Alignment

with ∣Ai∩Bi∣ being the area of intersection of two elements and ∣Ai∪Bi∣ being the sum of
their bounding boxes. To calculate the average alignment, the following formula is used:

Avg Alignment = 1

N

N

∑
i=1

N

∑
b=1

min(∣ileft − bleft∣, ∣imiddle − bmiddle∣, ∣iright − bright∣)

It is used to calculate the average minimum distance between the most left, most right,
or middle coordinates (on the x-axis) between a pair of two UI elements.

Since both of these metrics are calculated for two individual UI elements, the averages
for all pairwise values are used for an entire UI. The data on which the predictor CNN
model is trained is again based on the RICO dataset. In a preliminary step, average
IoU and alignment are calculated for each example in the RICO dataset. As the range
for average IoU and alignment is relatively large, instead of the raw values, normalized
values in the form of min-max scaling have been used.

x′ = x −min(x)
max(x) −min(x) (4.3)

A difference from the prior experiments is that these metrics are considered to be better
when they are lower, so no inversion for use as a loss is necessary.

4.4.1.1 Model Architecture

Since the input data for the model are images, a CNN is used as a model. The full model
architecture is visualized in Figure 4.8. It consists of two convolutional layers with a
kernel size of 3 × 3. The final fully connected layer has two outputs since both of the
described metrics are predicted separately.

32 I

conv1

64 I/
2

conv2

128 I/
4

fc1

2 I

fc2

Figure 4.8: CNN Architecture, generated with [3]

4.4.2 Evaluation Setup

To optimize a given UI, the same setup described in Section 4.2 is used. The only difference
to this experiment is the different predictor model. In this case, only the random initial
layout is chosen, since the RICO dataset mostly contains examples that already have a

31

4.4 Positions as Latent Space: Intersection over Union and Alignment

(a) Initial Random Layout (b) Layout after 100 iterations

0 20 40 60 80 100

0.0005

0.0010

0.0015

0.0020

0.0025

(c) Loss progression

Figure 4.9: Optimzation progress

low IoU and a relatively good alignment. To ensure the UI elements are not overlapping
in a way that makes them invisible to the classifier, elements are only randomly placed
in empty spaces.

4.4.3 Evaluation

Prior to the UI optimization, the CNN is trained over the entire RICO dataset in 10
epochs, with the final MSE being at 0.00063. Similar to the previous experiment, the
evaluation is done with one UI as an example. Initially, the layout is random, which can
be seen in Figure 4.9a. After that, the optimization cycle is done for 100 steps. The
loss progression can be seen in Figure 4.9c. Again, the loss seems to decrease, however,
the changes in the resulting image are only minimal, visible in Figure 4.9a. While some
UI elements seem to move closer to the middle of the image, the changes are very
minimal. The loss decrease also seems to be larger than what would be expected for
the amount of changes. If the “real” metric were to be computed, the potential for a
lower loss through further changes to the layout would be large. This indicates that the
same issue occurs, that was already described in Section 4.2.4, i.e. accidental adversarial
attacks. We explored multiple different hyperparameter configurations, however we found
no configuration, that improved the results significantly. Other mitigation approaches
exist, such as augmenting the input [61] and ensembling models [62], which remain to
be explored.

32

Chapter 5

Final Evaluation & Discussion

In this thesis, we explored different approaches and techniques to approach the topic
of metric-guided optimization of existing UIs. We aimed to provide a proof of concept
for automatically optimizing existing UIs to provide designers with a tool assisting in
the complex task of creating new UIs and better UXs. We wanted to automatically
optimize for aesthetics which a model predicts. For this, we explored multiple vastly
different approaches. We first used a DM to create and improve UIs on a direct pixel
basis. After that, we simplified the latent space and directly optimized the element
layout in a latent representation. Additionally, a VAE was evaluated for its ability
to restrict the generation. Finally, we used more technical metrics that can directly
be calculated and used them to try to prove the validity of the optimization method.
During the exploration of these techniques, we faced several challenges mostly related
to the automatic optimization of a model-predicted metric. A key problem is the idea of
aesthetics and what that encompasses. The goal was to optimize directly for aesthetics
since this ensures a good UX without having to define which technical measures, such as
alignment, influence UX to what degree. While some research has been done in predicting
the perceived aesthetics for UIs [31, 32], using these predictor models as a scoring metric
for automatic UI generation is a new concept. Thus, the presented performance metrics
in previous work do not necessarily translate well to this task. Specifically, the occurrence
of “accidental” adversarial attacks, also called reward gaming, when using these models
is a major problem to this research. Pang et al. [63] explored a similar problem in human
annotation-based Reinforcement Learning (RL) for conditional text generation. While
reward gaming in the context of RL has been discussed [64], this is not the case for
the metric-guided generation of UIs. Both Pang et al. [63] and Amodei et al. [64] trace
reward gaming back to shortcomings in the metric, either via mislabeling of the data or
an unintended bias in the data selected for annotation. While these two issues may also
play a role in the aforementioned issue, we suspect a more technical issue with the way
the CNNs predictor models work. As previously described, the issue closely resembles an
adversarial attack, albeit not an intentional one. Therefore another mitigation strategy
would be previously discussed hardening techniques against (intentional) adversarial
attacks. Ranjan et al. [65] presented the concept of Compact Convolution which hardens
CNNs against adversarial attacks. Utilizing this technique in the aesthetics predictor
model would be a topic to explore.

Finally, no complete working proof of concept could be established. However, the
space of hyperparameters, different optimization techniques, metrics, and optimizable
parameters is larger than what a single thesis could encompass. Thus, it is too soon to
say that this approach is flawed by design. We aim to motivate further research into this
topic, to clarify whether the showcased approach is viable. This additional research might

33

4.4 Positions as Latent Space: Intersection over Union and Alignment

include exploring different latent spaces, metrics, or even datasets. Modern DM, such
as discrete diffusion, remains yet to be used for the described metric-based optimization
approach.

The experiments already performed should help others navigate the large space of
different parameters previously described. Thus our research should provide a meaningful
addition to the resources available in UI generation research.

To motivate further research on this topic, we published all code and related models
used in this thesis.1

1https://github.com/mowoe/bachelorthesis

34

https://github.com/mowoe/bachelorthesis

Bibliography

[1] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution
image synthesis with latent diffusion models,” 2021.

[2] J. Zhang, J. Guo, S. Sun, J.-G. Lou, and D. Zhang, “Layoutdiffusion: Improving
graphic layout generation by discrete diffusion probabilistic models,” 2023.

[3] H. Iqbal, “Harisiqbal88/plotneuralnet v1.0.0,” 2018. [Online]. Available: https:
//doi.org/10.5281/zenodo.2526396

[4] IDC. (2024, Apr.) Marktanteil von Android* am absatz von smartphones weltweit
vom 1. quartal 2009 bis zum 1. quartal 2024 [graph]. 15. April, 2024.

[5] AppBrain. (2024, Jan.) Number of available applications in the Google Play Store
from december 2009 to december 2023 [graph]. Statista.

[6] B. S. Chaparro and C. Phillips, “Visual appeal vs. usability: Which one
influences user perceptions of a website more?” 2009. [Online]. Available:
https://api.semanticscholar.org/CorpusID:5933030

[7] D. Greunen, A. Van, A. Van der Merwe, and P. Kotzé, “Factors influencing bpm
tools: The influence on user experience and user interfaces,” International Journal
of Computing and ICT Research, vol. 4, 11 2010.

[8] C. G. von Wangenheim, J. V. A. Porto, J. C. R. Hauck, and A. F. Borgatto, “Do
we agree on user interface aesthetics of android apps?” 2018.

[9] M. Douneva, R. Jaron, and M. T. Thielsch, “Effects of Different Website Designs
on First Impressions, Aesthetic Judgements and Memory Performance after Short
Presentation,” Interacting with Computers, vol. 28, no. 4, pp. 552–567, 06 2016.

[10] D. Council, “The Double Diamond,” https://www.designcouncil.org.uk/our-
resources/the-double-diamond/, this work is licensed under the Creative Commons
Attribution 4.0 International License. To view a copy of this license, visit http:
//creativecommons.org/licenses/by/4.0/.

[11] J. Li, J. Yang, A. Hertzmann, J. Zhang, and T. Xu, “Layoutgan: Synthesizing graphic
layouts with vector-wireframe adversarial networks,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 43, no. 7, pp. 2388–2399, 2021.

[12] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2015. [Online]. Available: http://arxiv.org/abs/1412.6980

35

https://doi.org/10.5281/zenodo.2526396
https://doi.org/10.5281/zenodo.2526396
https://api.semanticscholar.org/CorpusID:5933030
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1412.6980

BIBLIOGRAPHY

[14] S. Ruder, “An overview of gradient descent optimization algorithms,” 2017.

[15] P. Tillet, H. Kung, and D. Cox, “Triton: an intermediate language and compiler
for tiled neural network computations,” Proceedings of the 3rd ACM SIGPLAN
International Workshop on Machine Learning and Programming Languages, 2019.

[16] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural
Computation, vol. 1, no. 4, pp. 541–551, 1989.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing
Systems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds., vol. 25.
Curran Associates, Inc., 2012. [Online]. Available: https://proceedings.neurips.cc/
paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[18] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale
Visual Recognition Challenge,” International Journal of Computer Vision (IJCV),
vol. 115, no. 3, pp. 211–252, 2015.

[19] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks,
vol. 61, pp. 85–117, 2015. [Online]. Available: https://doi.org/10.1016/j.neunet.
2014.09.003

[20] S. Narayan, “The generalized sigmoid activation function: Competitive supervised
learning,” Information Sciences, vol. 99, no. 1, pp. 69–82, 1997. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020025596002009

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2016, pp. 770–778.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
Y. Bengio and Y. LeCun, Eds., 2015.

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June
7-12, 2015. IEEE Computer Society, 2015, pp. 1–9.

[24] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsuper-
vised learning using nonequilibrium thermodynamics,” in Proceedings of the 32nd
International Conference on Machine Learning, ser. Proceedings of Machine Learn-
ing Research, F. Bach and D. Blei, Eds., vol. 37. Lille, France: PMLR, 07–09 Jul
2015, pp. 2256–2265.

36

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://www.sciencedirect.com/science/article/pii/S0020025596002009

BIBLIOGRAPHY

[25] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020.

[26] T. Chen, “On the importance of noise scheduling for diffusion models,” 2023.

[27] J. Mounayer, S. Rodriguez, C. Ghnatios, C. Farhat, and F. Chinesta, “Rank reduction
autoencoders – enhancing interpolation on nonlinear manifolds,” 2024.

[28] Q. Xu, Z. Wu, Y. Yang, and L. Zhang, “The difference learning of hidden layer
between autoencoder and variational autoencoder,” in 2017 29th Chinese Control
And Decision Conference (CCDC), 2017, pp. 4801–4804.

[29] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2022.

[30] L. Weng, “From autoencoder to beta-vae,” lilianweng.github.io, 2018. [Online].
Available: https://lilianweng.github.io/posts/2018-08-12-vae/

[31] L. A. Leiva, M. Shiripour, and A. Oulasvirta, “Modeling how different user groups
perceive webpage aesthetics,” Universal Access in the Information Society, vol. 22,
no. 4, pp. 1417–1424, Nov 2023.

[32] A. L. de Souza Lima, O. P. H. R. Martins, C. G. von Wangenheim, A. von Wangen-
heim, A. F. Borgatto, and J. C. Hauck, “Automated assessment of visual aesthetics
of android user interfaces with deep learning,” in Proceedings of the 21st Brazilian
Symposium on Human Factors in Computing Systems, 2022, pp. 1–11.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
2015.

[34] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li, J. Nichols, and
R. Kumar, “Rico: A mobile app dataset for building data-driven design applica-
tions,” in Proceedings of the 30th Annual Symposium on User Interface Software
and Technology, ser. UIST ’17, 2017.

[35] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 2261–2269.

[36] K. Reinecke and K. Z. Gajos, “Labinthewild: Conducting large-scale online experi-
ments with uncompensated samples,” in Proceedings of the 18th ACM Conference on
Computer Supported Cooperative Work & Social Computing, ser. CSCW ’15. New
York, NY, USA: Association for Computing Machinery, 2015, p. 1364–1378.

[37] Y. Lu, Y. Yang, Q. Zhao, C. Zhang, and T. J.-J. Li, “Ai assistance for ux: A literature
review through human-centered ai,” 2024.

[38] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications
of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

37

https://lilianweng.github.io/posts/2018-08-12-vae/

BIBLIOGRAPHY

[39] N. Inoue, K. Kikuchi, E. Simo-Serra, M. Otani, and K. Yamaguchi, “LayoutDM:
Discrete Diffusion Model for Controllable Layout Generation,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2023, pp. 10 167–10 176.

[40] K. Kikuchi, E. Simo-Serra, M. Otani, and K. Yamaguchi, “Constrained graphic
layout generation via latent optimization,” in MM ’21: ACM Multimedia Conference,
Virtual Event, China, October 20 - 24, 2021, H. T. Shen, Y. Zhuang, J. R. Smith,
Y. Yang, P. César, F. Metze, and B. Prabhakaran, Eds. ACM, 2021, pp. 88–96.
[Online]. Available: https://doi.org/10.1145/3474085.3475497

[41] J. Wu, S. Wang, S. Shen, Y.-H. Peng, J. Nichols, and J. Bigham, “Webui: A dataset
for enhancing visual ui understanding with web semantics,” ACM Conference on
Human Factors in Computing Systems (CHI), 2023.

[42] S. Feng, S. Ma, H. Wang, D. Kong, and C. Chen, “Mud: Towards a large-scale and
noise-filtered ui dataset for modern style ui modeling,” 2024. [Online]. Available:
https://arxiv.org/abs/2405.07090

[43] B. Wang, G. Li, X. Zhou, Z. Chen, T. Grossman, and Y. Li, “Screen2words:
Automatic mobile ui summarization with multimodal learning,” 2021. [Online].
Available: https://arxiv.org/abs/2108.03353

[44] T. F. Liu, M. Craft, J. Situ, E. Yumer, R. Mech, and R. Kumar, “Learning design
semantics for mobile apps,” in The 31st Annual ACM Symposium on User Interface
Software and Technology, ser. UIST ’18. New York, NY, USA: ACM, 2018, pp.
569–579.

[45] B. Wang, G. Li, and Y. Li, “Enabling conversational interaction with mobile ui
using large language models,” in Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, ser. CHI ’23. New York, NY, USA: Association for
Computing Machinery, 2023.

[46] W. Feng, W. Zhu, T.-J. Fu, V. Jampani, A. Akula, X. He, S. Basu, X. E. Wang, and
W. Y. Wang, “Layoutgpt: Compositional visual planning and generation with large
language models,” in Advances in Neural Information Processing Systems, A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, Eds., vol. 36.
Curran Associates, Inc., 2023, pp. 18 225–18 250.

[47] A. Mathur, G. Acar, M. J. Friedman, E. Lucherini, J. Mayer, M. Chetty, and
A. Narayanan, “Dark patterns at scale: Findings from a crawl of 11k shopping web-
sites,” Proc. ACM Hum.-Comput. Interact., vol. 3, no. CSCW, nov 2019.

[48] WebUIProject, “Ui screenshots dataset,” https://universe.roboflow.com/
webuiproject/ui-screenshots, sep 2023, visited on 2024-08-09. [Online]. Available:
https://universe.roboflow.com/webuiproject/ui-screenshots

[49] N. Deckers, J. Peters, and M. Potthast, “Manipulating embeddings of stable diffusion
prompts,” 2023.

38

https://doi.org/10.1145/3474085.3475497
https://arxiv.org/abs/2405.07090
https://arxiv.org/abs/2108.03353
 https://universe.roboflow.com/webuiproject/ui-screenshots
 https://universe.roboflow.com/webuiproject/ui-screenshots
https://universe.roboflow.com/webuiproject/ui-screenshots

BIBLIOGRAPHY

[50] G. Ilharco, M. Wortsman, R. Wightman, C. Gordon, N. Carlini, R. Taori, A. Dave,
V. Shankar, H. Namkoong, J. Miller, H. Hajishirzi, A. Farhadi, and L. Schmidt,
“Openclip,” Jul. 2021, if you use this software, please cite it as below.

[51] M. Cherti, R. Beaumont, R. Wightman, M. Wortsman, G. Ilharco, C. Gordon,
C. Schuhmann, L. Schmidt, and J. Jitsev, “Reproducible scaling laws for contrastive
language-image learning,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 2818–2829.

[52] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning transferable
visual models from natural language supervision,” in ICML, 2021.

[53] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman, “Dreambooth:
Fine tuning text-to-image diffusion models for subject-driven generation,” 2023.

[54] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti,
T. Coombes, A. Katta, C. Mullis, M. Wortsman, P. Schramowski, S. Kundurthy,
K. Crowson, L. Schmidt, R. Kaczmarczyk, and J. Jitsev, “LAION-5B: an open large-
scale dataset for training next generation image-text models,” in Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - Decem-
ber 9, 2022, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
Eds., 2022. [Online]. Available: http://papers.nips.cc/paper_files/paper/2022/hash/
a1859debfb3b59d094f3504d5ebb6c25-Abstract-Datasets_and_Benchmarks.html

[55] J. Li, D. Li, C. Xiong, and S. Hoi, “Blip: Bootstrapping language-image pre-training
for unified vision-language understanding and generation,” in ICML, 2022.

[56] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local nash
equilibrium,” in Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, I. Guyon, U. von Luxburg, S. Bengio, H. M.
Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds., 2017, pp.
6626–6637. [Online]. Available: https://proceedings.neurips.cc/paper/2017/hash/
8a1d694707eb0fefe65871369074926d-Abstract.html

[57] J. Skalse, N. Howe, D. Krasheninnikov, and D. Krueger, “Defining and
characterizing reward gaming,” in Advances in Neural Information Processing
Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, Eds., vol. 35. Curran Associates, Inc., 2022, pp. 9460–9471.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2022/file/
3d719fee332caa23d5038b8a90e81796-Paper-Conference.pdf

[58] J. C. Costa, T. Roxo, H. Proença, and P. R. M. Inácio, “How deep learning sees
the world: A survey on adversarial attacks amp; defenses,” IEEE Access, vol. 12, p.
61113–61136, 2024. [Online]. Available: http://dx.doi.org/10.1109/ACCESS.2024.
3395118

39

http://papers.nips.cc/paper_files/paper/2022/hash/a1859debfb3b59d094f3504d5ebb6c25-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/a1859debfb3b59d094f3504d5ebb6c25-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/3d719fee332caa23d5038b8a90e81796-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/3d719fee332caa23d5038b8a90e81796-Paper-Conference.pdf
http://dx.doi.org/10.1109/ACCESS.2024.3395118
http://dx.doi.org/10.1109/ACCESS.2024.3395118

BIBLIOGRAPHY

[59] A. Subramanian, “Pytorch-vae,” https://github.com/AntixK/PyTorch-VAE, 2020.

[60] A. Asperti and M. Trentin, “Balancing reconstruction error and kullback-leibler
divergence in variational autoencoders,” IEEE Access, vol. 8, pp. 199 440–199 448,
2020.

[61] P. Qiu, Q. Wang, D. Wang, Y. Lyu, Z. Lu, and G. Qu, “Mitigating adversarial attacks
for deep neural networks by input deformation and augmentation,” in 2020 25th Asia
and South Pacific Design Automation Conference (ASP-DAC), 2020, pp. 157–162.

[62] L. Qendro and C. Mascolo, “Towards adversarial robustness with early exit ensem-
bles,” in 2022 44th Annual International Conference of the IEEE Engineering in
Medicine Biology Society (EMBC), 2022, pp. 313–316.

[63] R. Y. Pang, V. Padmakumar, T. Sellam, A. P. Parikh, and H. He, “Reward gaming in
conditional text generation,” in Annual Meeting of the Association for Computational
Linguistics, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:
253553557

[64] D. Amodei, C. Olah, J. Steinhardt, P. F. Christiano, J. Schulman, and D. Mané,
“Concrete problems in ai safety,” ArXiv, vol. abs/1606.06565, 2016. [Online].
Available: https://api.semanticscholar.org/CorpusID:10242377

[65] R. Ranjan, S. Sankaranarayanan, C. D. Castillo, and R. Chellappa, “Improving
network robustness against adversarial attacks with compact convolution,” CoRR,
vol. abs/1712.00699, 2017. [Online]. Available: http://arxiv.org/abs/1712.00699

40

https://github.com/AntixK/PyTorch-VAE
https://api.semanticscholar.org/CorpusID:253553557
https://api.semanticscholar.org/CorpusID:253553557
https://api.semanticscholar.org/CorpusID:10242377
http://arxiv.org/abs/1712.00699

	List of Figures
	List of Acronyms
	Introduction
	Motivation
	Problem Definition
	Contributions
	Results
	Structure

	Background
	Machine Learning
	Gradient Descent
	Differentiable Image Translation

	Convolutional Neural Nets
	Neural Nets
	Architecture
	Common Convolutional Neural Net Architectures

	Diffusion Models
	Introduction to Diffusion Models
	Architecture
	Stable Diffusion

	Variational Auto Encoders

	Related Work
	Prediction of Perceived Aesthetics
	UI Generation
	Generative Adversarial Network Based UI Generation
	Diffusion-Based UI Generation

	Non-Subjective Metrics
	UI Datasets
	RICO Dataset
	Annotations for RICO

	Methods & Results
	Diffusion-Based UI Generation
	Dataset Creation
	Model Training
	Metric Selection
	Evaluation Setup
	Evaluation

	Optimizing Layout via Latent Space Representation
	Data
	Metric
	Evaluation Setup
	Evaluation

	VAE Latent Space
	Data
	VAE Architecture
	Evaluation Setup
	Evaluation

	Positions as Latent Space: Intersection over Union and Alignment
	Metric
	Evaluation Setup
	Evaluation

	Final Evaluation & Discussion
	Bibliography

