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Abstract

User Interfaces (Uls) and their design are an integral part of the User Experience (UX)
of mobile applications and the preference of users to choose one app over another. While
it is an important part of mobile application development, it is often a complex and time-
consuming task for the developer to come up with an aesthetic UI design. Therefore,
automating or assisting this task is a relevant topic that has been researched extensively.

This thesis explores the metric-guided generation of Uls to ensure that the generated
Uls conforms to users’ expectations in terms of aesthetics. Different generative processes
are explored that are guided by a Convolutional Neural Network (CNN) that predicts
how users will rate aesthetics. This predicted metric is used as a score which is optimized
in a gradient descent pipeline. A key problem is the optimizer "learning" weaknesses in
the metric predictor that increase the metric without meaningfully changing the actual
UI. Despite exploring many different generative processes and testing a large number of
hyperparameters, this problem could not be overcome.
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Chapter 1

Introduction

In recent years smartphones have become increasingly indispensable for almost everyone.
Most interactions with these smartphones happen through apps. Today, the Operating
System (OS) Android has a market share of around 80% of the global smartphone
market [4]. Accordingly, most applications are retrieved or downloaded via the Google
Play Store, which currently holds around 2.5m different apps [5]. Users can interact
with the applications using Graphical User Interfaces (GUIs). While common design
principles, such as Material Design !, vastly different designs still exist. Users usually
prefer an application with an appealing design over an application with an inferior Ul
design, even when its usability is rated lower [6].

1.1 Motivation

UI design is one of the most important factors for a user’s decision to choose one appli-
cation over another since it is the primary way a user interacts with the application and
the UX is heavily influenced by this |7]. UI Design consists of multiple different compo-
nents, which include color scheme, font choices, layout, and size of Ul elements. Utilizing
an aesthetically pleasing user interface for the application while simultaneously setting
it apart from similar applications is therefore an important factor in the application be-
ing successful and adopted by a large user base. Although common design guidelines,
especially OS-specific ones, exist, developers might want to use a more customized Ul
to stand out across all applications.

Through UT design tools like Figma 2, it gets easier to create Uls for apps and websites.
However, designing visually pleasing Uls still proves to be a complicated task, especially
since these metrics are highly subjective [8|. This challenge becomes even more significant
when considering the impact initial impressions of a UI can have on the users’ perception
and on the willingness to stay on the website or the mobile app [9]. Automating the
task of creating Ul or providing assistance through automatic algorithms is therefore a
worthwhile topic. An end-to-end process of creating Uls, or at least optimizing existing
ones, can reduce time and effort.

The UI design process is divided by the Design Council into four separate sections:
Discover, Define, Develop, Deliver [10]. This division is also discussed in the next sections.
While all of the steps are time-consuming, this research will primarily focus on the
“Develop” section, since the layout and design choices are made mostly during this stage.

There are numerous ways to assist developers and Ul designers in this process. This
thesis focuses on the task of deciding on a layout for all Ul components. The choice of
this subproblem is advantageous as the amount and type (Buttons, Text boxes, etc.) of Ul

1https://m3.material.io
2https://www.figma.com/
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components is usually already predetermined and dictated by the functionality. Other
design components, such as font and color, are often constrained by corporate design or
similar guidelines.

As previously discussed, Artificial Intelligence (Al)-assisted Ul design can provide
meaningful help in the design process. Thus, different processes and generative techniques
for automated Ul design have been researched [2, 11| in this area. While these approaches
leverage datasets consisting of existing Uls to train generative models, this generation
can be considered unguided, meaning that some initial requirements can be specified
(e.g. amount and type of input elements), but the final generation is not refined in any
way. This thesis focuses on an iterative improvement of the generated Ul with a focus on
perceived aesthetics instead of technical metrics such as alignment measures. With this
approach it is ensured that the final generated Ul actually conforms to user expectations
in terms of aesthetics.

1.2 Problem Definition

The main objective of this thesis is to create a methodology that creates a layout for
existing Ul elements that is aesthetically pleasing. This could either be used directly
when no prior layout exists or as a mechanism to provide alternative designs if a layout
already exists. What users consider aesthetically pleasing should be predicted by a
model, trained on annotated screenshots of Uls. To optimize a given U, which is stored
in a latent representation from which it can be rendered and graded by the aesthetics
predictor, the predicted score is optimized via a gradient descent pipeline.

Another challenge explored by this thesis is the segmentation of existing user interfaces
if no prior segmentation exists. After a Ul has been segmented, it can then be passed to
the aforementioned process to create an optimal layout. This part is therefore also an
integral part of the central problem discussed, however, initially only pre-segmented Ul
datasets will be used.

Additionally, the task of (automatically) predicting how users perceive Uls is explored
as the central grading mechanism used to guide the layout generation process. Different
existing approaches for this task are compared for their applicability in this use case.

1.3 Contributions

With this thesis, we present a nouveau approach to metric-guided Ul generation. This
is done in an experiment setup that ensures the generated Uls conforms to users’ UX
expectations. Additionally, we contribute a fine-tuned Stable Diffusion (SD) model which
can be used to generate images of Uls based on a text prompt® The dataset used to
train this model, which contains text-image pairs is also made available.* Furthermore,
we present a VAE architecture used to create a latent representation of Ul layouts. The
code for this thesis is publicly available.®

3https://huggingface.co/mowoe/stable—diffusion-v1-4-rico-blip-large-conditioned
4https://huggingface.co/datasets/mowoe/rico—captions—blip—large—conditioned
5https://github.com/mowoe/bachelorthesis
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1.4 Results

1.4 Results

Different model architectures for predicting the perceived aesthetics of Uls have been
explored. While all of them showed promising accuracy results during training and
evaluation, this did not translate to the actual use case of them in this thesis, which is the
usage as a metric for an optimizer. The optimizer quickly “learned” weaknesses present
in the predictor models and exploited them which caused the predicted score to increase
rapidly without changes in the generated Ul reflecting or justifying the higher score. This
can be considered to be an accidental adversarial attack against the predictor models.

1.5 Structure

The thesis is structured in the following way. Section 2 provides a theoretical background
for the techniques used that allows the reader to understand the proposed concepts.
Chapter 3 discusses research efforts related to the one presented in this thesis. After that
Chapter 4 goes over the performed experiments and showcases the results individually.
Finally Chapter 5 summarizes the key results of this thesis and gives an outlook into
future work.






Chapter 2

Background

2.1 Machine Learning

This chapter provides the reader with background information on a selection of machine
learning concepts used throughout this thesis. While the scope of all important concepts
is too large to include them in this thesis, this chapter aims to focus on the most
important concepts.

2.1.1 Gradient Descent

This section provides the reader with the necessary background information about gra-
dient descent, which is central to the metric-guided optimization part of this thesis.
Gradient Descent is one of the integral building blocks of modern machine learning|[12].
It allows models to learn from data and be optimized with regard to a cost function,
such as a loss, through an iterative process. Most classic machine learning models can
be written as some equation containing parameters and variables. The goal is to find
a set of parameters for this equation such that the cost function is minimized across
the training data. While the entire model can be viewed as a single equation, the same
holds true for the cost function. If we consider the very basic prediction problem that is
defined by a dataset created with f(x) = 2z, we can define a model with one parameter
0 and one variable x as
m(x)=60xx (2.1)

If we want to optimize the parameter 6, we can use the common loss function Mean
Squared Error (MSE), which measures, as the name suggests, the mean squared deviation
from each datapoint in the training set:

MSE = z<y ) (2:2)

with n being the size of our training dataset, y; being the real value (y; = 2 x x in this
case) and g; being the predicted value (g; = @ x = in this case). The next step is to view
MSE not as a function of g; but of 6, which is done by substituting y; with m(z):

MSE(9) = © Z(y (@ xa) (2.3)

The core idea behind gradient descent is to differentiate this parameterized loss function
with regards to the trainable parameter [12]. With this differentiation, the gradient at
the current parameter point is retrieved. This point is part of whats considered to be the
"loss landscape" in which the optimization happens. If the direction (or rather the sign)
of the gradient is inverted, the direction in which the parameter needs to be modified to
decrease the loss is retrieved [12].
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In the case of a model/equation which is dependant on multiple parameters, the loss
function needs to be partially differentiated with regards to each parameter individually.

After the gradient (i.e. the direction), in which the parameter(s) needs to be modified,
in order to decrease the loss, is retrieved, the optimization can be performed. The
optimization step is described as

& MSE(9)

,—_
0 =0-a«a 50

(2.4)

with « being the learning rate. This additional training (hyper-)parameter controls the
size of the modification to the parameters and is a crucial component of the training
process. If the learning rate is chosen too small, the model might not converge fast
enough and if it is chosen too large, the optimal parameters are possibly never found, as
they are "skipped over" [12].

In practice, the loss calculation and optimization is not always performed for each
training sample individually, but for a number of examples at once. This is considered
Batch Gradient Descent (BGD).

Besides these basic optimization algorithms, there are a number of other more complex
algorithms, which all rely more or less on these basic constructs. These include

e Adam [13]
e Stochastic Gradient Descent (SGD) [14]
e AdamOnLion [15]

This optimization process can not only be used for training model parameters, but also
for optimizing the result of some generative process with regards to a metric, such as
optimizing the prompt for generating an image such that the image conforms to some
predefined metric, e.g. amount of the color blue.

2.1.2 Differentiable Image Translation

As is described in Section 2.1.1, to optimize a parameter with regards to a metric, the
calculation of the metric on the basis of the parameter is differentiated. The implication
of this is that the entire computation must actually be differentiable. For most opera-
tions, this is relatively straightforward, although not always as canonical as in a simple
multiplication (e.g., in the case of clamping). A central operation, which is used in sev-
eral stages of this thesis, that is however not differentiable, is the placing of smaller im-
age segments on a larger canvas. Mathematically, this operation can be seen as indexing
a matrix and overwriting the (pixel) values already present there. However, this is not
differentiable with regards to the index itself, which is the parameter to be optimized.

To avoid this problem, the process of affine transformation is used throughout this
thesis. The main concept behind this transformation is the use of a 3 x 3 matrix, called
the affine matrix, to control the transformation of an image. One of the key properties
of the affine transformation, is that parallel lines in the original image will always stay
parallel in the resulting image. The transformation consists of a linear transformation
and a translation (shifting each point by a vector).
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Figure 2.1: Standard Transformations With Affine Matrices

Formally, the transformation can be written as matrix multiplication with an aug-
mented matrix (linear transformation) and vector (translation):

a1 aiz | b
M = as1 a9y ‘ bg (2.5)
0 0 | 1
which is equivalent to
y=Az+b (2.6)

With this setup, a variety of different standard transformations can be created: For
this thesis, the horizontal translation is the most important one. With this translation,
the placement of image segments on a bigger canvas can be realized while keeping
differentiability. Both v, and v, can be used as parameters for moving the segment on a
blank canvas around. When applying the translation for multiple segments individually
and then stacking the resulting images on top of each other, multiple segments (e.g. Ul
elements) can be arranged on a canvas.
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2.2 Convolutional Neural Nets

This section provides the reader with high-level concepts related to CNNs and briefly
discusses the necessary background information to understand their usage in this thesis.
CNNs are primarily used throughout this thesis as predictors for various metrics for
which a given Ul is optimized for. The models output is subsequently used as a cost/loss
function used in the gradient descent process.

Originally presented in LeCun et al. [16], CNNs are a class of Neural Networks (NNs)
which have been modeled after the visual cortex of animals and are designed to learn
spatial hierarchies in images. Although the concept of CNNs dates back to the 1990s,
the emergence of powerful GPU architectures and larger datasets have helped CNNs
to gain popularity in most vision-related machine learning tasks. After AlexNet was
presented in 2012 by Krizhevsky et al. [17], which achieved a new state-of-the-art score
in the popular image recognition challenge "ImageNet Large Scale Visual Recognition
Challenge" (ILSVRC) [18], CNNs have become the de-facto standard for object detection
tasks.

2.2.1 Neural Nets

To understand the concept of CNNs, a basic understanding of NNs is necessary. In essence,
a NN consists of multiple matrices, called "layers", which are made up of a fixed number
of trainable weights. These layers are then chained together and an input value, often
also a matrix, is multiplied with each layer sequentially [19]. This process can be viewed
as if each weight in a layer was a singular entity, sometimes called a "Neuron", which
has a connection to each Neuron in the following layer. This connection is the trainable
parameter, which is just a factor that the output of the neuron gets multiplied with,
before it is passed to the next layer. In each neuron, all incoming "signals" are then just
summed up. What is taking NNs beyond just being a more complex linear calculation,
are activation functions [19]. These activation functions introduce nonlinearity into the
NN when they are added to the output of a layer. While a lot of different activation
functions exist, one of the more common ones is the sigmoid function [20]|, which maps
all z values into the interval [0, 1], which can be seen in Figure 2.2. This nonlinearity

6 -4 -2 0 2 4 6
Figure 2.2: Sigmoid function
is what allows NNs to learn complex non-linear relationships in data. Additionally to

these simple NNs, larger models, called Deep Neural Networks, with essentially the same
architecture are used for more complex problems [19].
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2.2.2 Architecture

Instead of the common linear layers (sometimes referred to as "fully connected layers"), of
which common NNs are constructed, CNNs consist of convolutional layers. These layers
consist of a learnable filter, known as the "kernel", which revolves over the input image,
during which the dot product of each individual pixel, along with the pixels around it, with
the kernel is computed and passed to the next layer. Through this process, a feature map
is created which is able to capture high-level spacial data, like edges, in images. Similarly
to conventional NNs; activation functions are used to introduce nonlinearity into the
model. For CNNs, the most commonly used function is Rectified Linear Unit (ReLU):

ReLU = max(0,z) (2.7)

Since most CNNs are used for classification tasks, the final layer in such models is often a
softmax layer, which converts the raw values into probabilities, representing the likelihood
of each class.

2.2.3 Common Convolutional Neural Net Architectures

Since the inception of AlexNet [17], multiple more advanced model architectures have
been presented. These include:

ResNet: Presented in He et al. [21], ResNet (short for "Residual Networks") introduced
the concept of residual layers, which create connection skipping layers, enabling the
training of very deep networks, normally suffering from vanishing gradients.

VGG-Net: Originally presented in Simonyan and Zisserman [22|, VGG-Net pioneered
the usage of 3 x 3 kernel sizes throughout the network and achieved state of the art scores
in common object detection challenges, such as ILSVRC [18].

GoogLeNet: Presented in Szegedy et al. [23]|, GoogLeNet, codenamed "Inception",
introduced the concept of chaining multiple different filter sizes in order to learn multi-
scale features.

By removing the final layer in these models, which produce the classification logits,
and replacing it with a new layer that only has one output value, these pre-trained
models can be fine-tuned for a different metric, such as aesthetics. This is the primary
way CNNs are used in this thesis.

2.3 Diffusion Models

This section provides the reader with the concept of Diffusion Models (DMs) and nec-
essary background information to understand the associated concepts. As DMs are not
integral to the key results of this thesis, only a brief overview will be given, allowing the
reader to have a general intuition for what diffusion is.

2.3.1 Introduction to Diffusion Models

DMs, as introduced originally by Sohl-Dickstein et al. [24], are a category of generative
models that use two Markov chains to transform a data distribution, like Gaussian Noise,
into a target data distribution. This is done in two distinct phases where noise is first
subsequently added to the data and after that a denoising process, which has been trained
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on removing the noise again, removes it again. This denoising process has been optimized
during the training phase by generating random noise, overlaying it on top of an existing
image and training a model to predict this "noise residual" which has to be removed from
the combined image in order to retrieve the original image again. A reconstruction loss is
used to compare the original image and the image with the noise residual removed. With
this two-phased process, DMs can generate data fitting to the desired target distribution.

2.3.2 Architecture

As previously described, DMs generate data by first destroying structure in existing data
and then trying to reverse this process by removing noise [24]. Both of these processes
can be thought of as trainable markov chains [25].

By keeping the steps in the noise adding process T relatively small, the otherwise
complex task of predicting the previous data structure in the reverse process becomes
manageable [24].

Generally speaking, the forward markov chain is called the "noise scheduler" and the
reverse process is called the "denoiser".

2.3.2.1 Noise Scheduler

The noise scheduler is the forward process of a diffusion model and what controls the
noise addition in each step. During training of the model, this part of the model learns
the amount of noise added to the image in each step.

Mathematically speaking, the noise scheduler controls the variance of gaussian noise
added in each timestep [25]:

Tr=vVaoag*xo+V1-0f * e (2.8)

with x¢ being the original image, x; the image with added noise up to timestep ¢ and
a; the cumulative product of oz up to timestep ¢. The most important part is e;, the
gaussian noise sampled at timestep ¢ with variance §;. The core parameter of the noise
scheduler is the variance (3, defining the noise scheduling in each step with

(6
Br=1- Ktl (2.9)

Different noise scheduling strategies exist, which include linear or cosine trajectories for
the noise variance in each step [26].

2.3.2.2 Denoiser

The denoising process is effectively the inverse of the noise scheduler. It consists of
iteratively removing the noise again, which was added in the previous steps. To do this,
the noise residual is predicted in each step and then removed from the image:

_ Tt — \/E * 60(%715)

Q-1

Tt-1

(2.10)

with eg(x¢,t) being the prediction of the noise residual for a timestep ¢. This step is done
until £ = 0 and the final image is retrieved again.

10
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Figure 2.4: Conventional Auto Encoder

2.3.3 Stable Diffusion

Presented in Rombach et al. [1], StableDiffusion is one of the most widely known diffu-
sion model architectures. While its architecture, shown in Figure 2.3, contains multiple
additional elements and is more complex, it still relies on the basic concepts described in
Section 2.3.2. StableDiffusion will be the primary model used in experiments leveraging
DMs throughout this thesis.

2.4 Variational Auto Encoders

This section presents VAEs and provides the reader with the necessary background
information to understand how VAEs work and how they are leveraged in this thesis.

As the name implies, VAEs are similar to conventional Autoencoders. The primary
goal is to translate some data X into a latent space and then reconstruct X from this
latent space, usually denoted as X. In most Autoencoder applications, the latent space
z is fixed and defined prior to training. Conventional Autoencoders can be seperated
into two parts: (1) the encoder and (2) the decoder. Both of these modules are NNs
which subsequently translate the input data into a latent space. The decoder can be
viewed as the inverse of the encoder, both figuratively and in a technical sense. However,
it is worth to note that they do not share the same weights. Conventional Autoencoders
are usually used for graphical data like images. Hence, the model architecture mostly
consists of convolutional layers.

1
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Figure 2.5: Variational Auto Encoder

Figure 2.4 illustrates the encoder and decoder part as well as the input data X and
decoded data X. The delta between X and X is considered the reconstruction loss
during training and the main metric to be optimized for. While this model architecture
is well suited for the task of mere reducing the dimensionality of input data, it has a
major drawback when trying to create new data, i.e. sample from the latent space. Since
the Autoencoder has been trained on specific training data, generating new data is not
something it was optimised for. If the latent space is sufficiently large, it might even
lead to overfitting [27], which, for this model architecture, means in the case of images
that each training example gets a discrete point assigned in the latent space, effectively
creating a dictionary, rather than an encoder. This causes the latent space to consist of
some discrete data points corresponding to the training data but without any meaningful
data in between. This data in between is generally regarded as “noise” since it does not
produce any meaningful data when passed to the decoder.

This is where the VAE shows large performance improvements over a conventional
Autoencoder [28]. The key difference between the two models is the lack of a fixed latent
space and the usage of a distribution instead. While the VAE architecture also uses the
two-part encoder and decoder architecture, the two elements are not directly connected.
Instead, the encoder has two outputs: (1) a mean p and (2) a standard deviation o. These
describe a distribution inside of the latent space, the dimensionality of which is again
predefined prior to training. During training, a datapoint is passed to the encoder, which
produces the parameters for a gaussian distribution. A data point from this distribution is
then sampled and passed to the decoder, after which the reconstruction loss is calculated.
This causes the VAE to be inherently nondeterministic. Additionally to the expected
capabilities, encoding and decoding with minimal reconstruction loss, the VAE also
learns the distribution of all possible z vectors, that is, all vectors that generate plausible
data points when passed to the decoder. This distribution is considered to be the prior
distribution py(z). The encoder subsequently learns the posterior distribution pg(z|z)
and the decoder learns the likelihood distribution pg(x|z). To generate a new datapoint, a
vector z* is sampled from py(z), and a decoded z is created via the likelihood distribution
x = pp(x|z = 2*). Since the actual parameter 6 is unknown, only an approximation ¢ with
distribution gy (z|x) can be reached during training. To get closer to the actual parameter
during training, the Kullback Leibler Divergence would be used. However, this is not
computable since the real parameter is still unknown. Instead, the Evidence Lower Bound
(ELBO) function is used as a loss function [29]. It is comprised of (1) the reconstruction
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loss and (2) the KL Divergence. To reiterate, while the actual KL divergence would be:

z|z
Dict(aollpo) = Eyallog )1 (211)
po(z|z)
I