
Bauhaus-Universität Weimar
Faculty of Media
Degree Programme Computer Science and Media

Content Extraction from
Webpages Using Machine Learning

Master’s Thesis

Hamza Yunis

1. Referee: Prof. Dr. Benno Stein
2. Referee: Dr. Andreas Jakoby

Submission date: December 16, 2016



Declaration

Unless otherwise indicated in the text or references, this thesis is
entirely the product of my own scholarly work.

Weimar, December 16, 2016

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hamza Yunis



Abstract

The content extraction problem has been a subject of study ever since the
expansion of the World Wide Web. Its goal is to separate the main content of
a webpage, such as the text of a news story, from the noisy content, such as
advertisements and navigation links.

Most content extraction approaches operate at a block level; that is, the
webpage is segmented into blocks and then each of these blocks is determined
to be part of the main content or the noisy content of the webpage.

In this thesis, we try to apply content extraction at a deeper level, namely
to HTML elements. During the course of the thesis, we investigate the notion
of main content more closely, create a dataset of webpages whose elements
have been manually labeled as either part of the main content or the noisy
content, and apply machine learning to this dataset in order to induce rules
for separating the main content and the noisy content. Finally, these induced
rules are evaluated using a different dataset of manually labeled webpages.



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Importance of Content Extraction . . . . . . . . . . . . . . . . . 2
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 5
2.1 Body Text Extraction . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 DOM-Based Content Extraction . . . . . . . . . . . . . . . . . . 7
2.3 Vision-Based Content Extraction . . . . . . . . . . . . . . . . . 8
2.4 Wrappers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Template Recognition . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Methodology and Setup 15
3.1 Defining the Main Content . . . . . . . . . . . . . . . . . . . . . 15
3.2 Types of Webpages . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 The Main Content in Different Types of Webpages . . . 17
3.3 The Non-Main Content . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Using Machine Learning for Content Extraction . . . . . . . . . 20

3.4.1 Content Extraction as a Classification Problem . . . . . 20
3.4.2 Building Classifiers Using Machine Learning . . . . . . . 20

3.5 Types of HTML Elements . . . . . . . . . . . . . . . . . . . . . 21
3.6 The Dataset Format . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 Creating the Dataset . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7.1 The Training and Test Sets Used in This Work . . . . . 26
3.7.2 Annotating the HTML Documents . . . . . . . . . . . . 27
3.7.3 Annotation Guidelines . . . . . . . . . . . . . . . . . . . 30
3.7.4 The Language Dependence of Our Approach . . . . . . . 31

3.8 Feature Engineering . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.8.1 Features Used in Other Works . . . . . . . . . . . . . . . 32
3.8.2 The Raw Features . . . . . . . . . . . . . . . . . . . . . 33

i



CONTENTS

3.8.3 Remarks About the Raw Features . . . . . . . . . . . . . 37
3.8.4 Derived Features . . . . . . . . . . . . . . . . . . . . . . 38

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Experiment and Evaluation 41
4.1 Using Decision Trees as Predictive Models . . . . . . . . . . . . 41

4.1.1 The rpart Package . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Splitting Criteria . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Evaluating the Performance of a Binary Classifier . . . . . . . . 44
4.2.1 Errors in Binary Classification . . . . . . . . . . . . . . . 44
4.2.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . 44
4.2.3 A Clarification About the Evaluation Values . . . . . . . 45

4.3 Using Different Decision Trees for Different Element Types . . . 46
4.3.1 The Elements to be Classified . . . . . . . . . . . . . . . 47
4.3.2 Filtering Out Certain Elements . . . . . . . . . . . . . . 48
4.3.3 Manually Classifying Certain Elements . . . . . . . . . . 48

4.4 Evaluation Scores for Text Elements . . . . . . . . . . . . . . . 49
4.5 Evaluation Scores for Image Elements . . . . . . . . . . . . . . . 51
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Conclusion and Potentional Future Work 53
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A Utilizing Headers in Content Extraction 55

Bibliography 60

ii



Chapter 1

Introduction

1.1 Motivation
The webpages1 (also referred to web documents) that constitute the World
Wide Web are sources of very diverse categories of information. These in-
clude news, reference materials, forum discussions, and commercial product
descriptions, just to name a few. Each category of information can in turn
have various media formats, such as textual, graphical, or video. This vast
amount of information is used by ordinary web users throughout the world,
as well as by automated crawlers that traverse the Web for various purposes,
such as web mining or web indexing.

In most cases, however, a single webpage consists of distinct “parts,” which
will be referred to in this thesis as the contents of the webpage. Only one
type of content, which will be referred to as themain content of the webpage,
is what makes the webpage a useful source of information. Other contents
include advertisements, navigation buttons, page settings, and legal notices;
these contents will be collectively referred to as the noisy content of the
webpage. The process of identifying the main content of a webpage is called
main content extraction, or more briefly content extraction.2

For most webpages, a human user can intuitively and quickly identify the
main content. However, from an HTML markup perspective or from a DOM
perspective, the main and the noisy contents are closely intermingled; there-
fore, separating them presents a significant challenge for automated informa-
tion extractors. Due to the fact that webpages can have countless different
formats (at both the structure layer and the style layer), there are no univer-
sal rules for accurately separating the main content and the noisy content.

The goal of this thesis is to induce new rules for content extraction using
1The solid spelling webpage will be used in this work instead of web page.
2This is the commonly used term in literature.

1



CHAPTER 1. INTRODUCTION

supervised machine learning algorithms based on a sample of webpages with
manually labeled contents; that is, the contents of these webpages have been
identified as main or noisy by a human annotator. In addition, the content
extraction performance under these rules should be evaluated.

Machine learning has previously been used for content extraction [Louvan,
2009], [Zhou and Mashuq, 2014] and other similar tasks, such as spam email
detection [Guzella and Caminhas, 2009] and Wikipedia vandalism detection
[Smets et al., 2008]; these tasks are similar to content extraction in the sense
that a human user can relatively easily identify a spam email or a vandalistic
Wikipedia edit, but these are not straightforward tasks for computer programs.

The approach that is used in this work relies on a combination of ideas
that have been used in earlier works. In addition, newly-introduced ideas
are utilized, in particular, the inspecting of the context of a specific webpage
element, as discussed in Section 3.8.2.

1.2 Importance of Content Extraction
Identifying the main content of a webpage is useful for various applications.
One such an application is web mining, which is the application of data mining
to the World Wide Web. In general, data mining attempts to extract useful
information from a large data set. In web mining, the data set consists of
webpages. Therefore, it is imperative, when carrying out web mining, to sep-
arate the main content from the noisy content of webpages, so that the latter
is discarded and not used in the mining process.

Another application where content extraction is important is web search
engines. Web search engines use crawlers to traverse the Web and copy the
content of each document they visit into a document data store [Croft et al.,
2010]. When processing a user query, the web search engine uses a ranking
algorithm that identifies the relevance of each document in the document data
store to the given query. For this purpose, the ranking of a document should
depend only on its main content. For example, Figure 1.1 shows the upper
part of a news article webpage from http://reuters.com. The webpage
has a section called Tending Stories, which contains links to trending stories at
the time the webpage was accessed. The textual content of these links should
not be considered when ranking the webpage because they are not related to
the subject of the webpage.

Content extraction can be useful not only for automated crawlers, but also
for human users. For instance, content extraction can be used to set the focus
on the main content when rendering webpages on small-screen devices, such as
mobile phones and PDA’s, so that the user does not have to scroll and search

2

http://reuters.com


CHAPTER 1. INTRODUCTION

Figure 1.1: A screenshot of the upper part of a news story from http://
reuters.com. Obviously, the story is not about the U.S. decision to halt the
construction of the North Dakota pipeline (listed in the Trending Stories section).
Thus, a search query like “North Dakota pipeline” should not lead to this webpage.

for the main content. Additionally, content extraction is especially important
for visually-impaired or unsighted users, where the main content has to be
visually emphasized or synthetically read aloud.

1.3 Thesis Organization
The remainder of this work is organized as follows:

• Chapter 2 provides a survey of previously developed approaches for con-
tent extraction.

• Chapter 3 provides a deeper inspection of the concept of content extrac-
tion, a formulation of content extraction as a classification problem that

3

http://reuters.com
http://reuters.com


CHAPTER 1. INTRODUCTION

can be handled by machine learning, a description of the manual anno-
tation process of webpages, and a description of the features to be used
in the learning process.

• Chapter 4 provides a description of the learning process and the evalu-
ation scores of the content extractor that the learning process has pro-
duced.

• Chapter 5 provides a recapitulation of this work, along with list of po-
tential improvements to the applied approach.

4



Chapter 2

Related Work

Since the expansion of the World Wide Web, numerous methods for content
extraction have been proposed, many of of which were developed in the context
of one of the applications of content extraction, rather than when treating the
problem of content extraction itself [Gottron, 2009]. Many of these methods
rely on heuristics, which can be applied to

• the HTML source of the webpage; or

• the DOM tree of the webpage; or

• the visual rendering of the webpage.

Sections 2.1, 2.2, and 2.3 give an example of each of these types of methods,
respectively. In addition, Sections and 2.4 and 2.5 give an overview of wrappers
and template recognition.

2.1 Body Text Extraction
Body Text Extraction (BTE) was introduced and described by Finn et al.
[2001] as a method for identifying the main textual content of a webpage,
which they refer to as the main body of text. The BTE algorithm is based on
the observation that the main body of text of a webpage consists primarily of
text and very little markup.

BTE starts by assigning all tokens in the HTML source of the webpage
into one of two categories: HTML tag tokens and word tokens. Consequently,
the webpage is viewed as a sequence {Bi} of bits, with Bi = 1 when the ith
token is a tag, and Bi = 0 when the ith token is a word. This sequence
can be represented by the document slope curve, as shown in Figure 2.1. A
point (x, y) that lies on the curve basically tells us: In the first x tokens of

5



CHAPTER 2. RELATED WORK

the webpage, there are y tag tokens. Therefore, segments that have low slope,
usually referred to as plateaus, correspond to portions in the webpage source
that have a small number HTML tags inside them.

Token Count

Tag Tokens

0 500 1000 1500 2000 2500
0

100

200

300

400

500

600

Figure 2.1: An example of the document slope curve. The area where the curve
plateaus (drawn in bold) contains few or no HTML tags, so it should correspond to
the main body of text.

BTE attempts to find a segment on the document slope curve that has a
very low slope. Additionally, this segment should not not be too short; that
is, it should correspond to a sufficiently long block of text. In other words,
BTE tries find two indices i and j such that the number of tag tokens before
i and after j is maximized, while the number of word tokens between i and j
is also maximized. Formally, we search for two values i and j that maximize
following function:

Ti,j =
i−1∑
n=0

Bn +

j∑
n=i

(1−Bn) +
N−1∑
n=j+1

Bn,

where N is the total number of tokens in the document.
The main drawback of BTE is that it makes the implicit assumption that

the main body of text is connected; that is, there are no blocks of noisy content
inside of it. Pinto et al. [2002] improved this method, so that it searches for
multiple plateaus on the document slope curve, rather than just one.

6



CHAPTER 2. RELATED WORK

2.2 DOM-Based Content Extraction
The Document Object Model (DOM) is a is a language-neutral programming
interface to HTML documents [Stenback et al., 2003]. Thus, it provides a layer
of abstraction over the raw HTML source of the webpage. DOM represents
HTML documents using a tree strcuture, as shown in Figure 2.2.

<html>

<head>

<title> <meta>

<body>

<h1> <div>

<p> <img>

Figure 2.2: The DOM tree of a simple HTML document.

In contrast to BTE and other methods that deal directly with the HTML
source of a webpage, Gupta et al. [2003] suggested an approach that relied
on the DOM tree of the webpage. The DOM tree of a webpage gives better
insight into the structure of webpages than their raw HTML source.

The algorithm begins by first transforming an HTML document into its
DOM tree representation. Next, the DOM tree is traversed and two sets of
filters are applied. The first set consists of simple filters that remove certain
elements such as images, links, scripts, and styles.

The algorithm begins by first transforming an HTML document into its
DOM tree representation. Next, the DOM tree is traversed and two sets of
filters are applied. The first set consists of simple filters that remove elements
such as images, links, scripts, and styles.

The second set consists of more complicated filters that remove advertise-
ments, link lists, and tables that do not contain any “substantive information.”
These filters are based on various heuristics. For example, the values of href
and src attributes are compared with a list of common advertisement servers.
If an address is matched, the node that contained the link is removed from the
DOM page.

After all filters have been applied to the DOM tree, the DOM tree can then
be output in either HTML or plain text format. The plain text output removes
all tags and retains only the text (which was identified as main content) of the
webpage.

7



CHAPTER 2. RELATED WORK

2.3 Vision-Based Content Extraction
Cai et al. [2003] introduced the Vision-Based Page Segmentation Algorithm
(VIPS). It attempts to simulate a human user’s approach for understanding
the content structure of a webpage. A human user does not see the HTML
markup or the DOM of webpage; rather, all she sees is the visual rendering of
the page. VIPS therefore attempts to utilize the same spatial and visual cues
that give hints to a human user about the content structure of the webpage.

VIPS is applied recursively to the DOM tree of the webpage. The first
step in VIPS is block extraction. Starting from the root node down (initially
the root node is the <html> element), each DOM node is inspected to check
whether it represents a single visual block. If so, the block is added into a
block pool. If the node contains multiple visual blocks, the children of that
node are inspected in the same way until all blocks in the current (sub-)page
are extracted and added to the block pool.

Whether a DOM node represents a single visual block or should be further
divided depends on multiple considerations1. For example, if the background
color of a DOM node is different from one of its children’s background color,
then this node should be divided. Another consideration is size: If the relative
size of a DOM node compared to the current subpage is smaller than a specific
threshold, then this node should not be divided.

For each block in the block pool, a degree of coherence DoC is a assigned.
DoC corresponds to the level of “content consistency” within the block. De-
pending on the specific application of VIPS, a permitted degree of coherence
PDoC is pre-defined in order to achieve a certain granularity of the content
structure. Figure 2.3 displays the layout structure of a webpage with relatively
low granularity. To achieve higher granularity, blocks VB1_1 and VB1_2
would have to be further divided.

The next step is separator detection, in which separators between blocks
are detected and their weights are set depending on their visibility. The con-
tent structure (block hierarchy) for the current round is constructed based on
these separators. For instance, in Figure 2.3 the blocks VB3_1 and VB3_2
(separated by white space) are children of the block VB3.

Next, each leaf node (block) in the current content structure is checked
whether it satisfy the granularity requirement, which is DoC > PDoC. Every
node that does not satisfy the granularity requirement is considered a subpage,
and VIPS is applied to it recursively until we obtain a tree in which all leaf
nodes satisfy the granularity requirement.

Remark. VIPS attempts to obtain the content structure of the webpage,
1The original paper lists 13 rules.

8



CHAPTER 2. RELATED WORK

Figure 2.3: The layout structure of a webpage. Blocks VB1_1 and VB1_2 could
be further divided into child blocks.

The Webpage

VB1

VB1_1 VB1_2

VB2 VB3

VB3_1 VB3_2

VB4

VB4_1 VB4_2

Figure 2.4: The vision-based content structure corresponding to the layout struc-
ture in Figure 2.3.

which is a hierarchical representation of webpage’s semantic content. How-
ever, VIPS does not attempt to identify the main content; that is, strictly
speaking, VIPS does not perform content extraction.

Liu et al. [2006] presented a technique that relied on VIPS in order to perform
content extraction on response pages, which are defined by Liu et al. [2006] as
webpages that contain data records that are retrieved from Web information
sources.

First, VIPS is applied to the webpage and the content structure tree is
extracted. The next step is identifying the block in the content structure that
corresponds to the data region, the region where the data records are presented.
In order to do so, two characteristics of the data regions are noted:

• Data regions are always centered horizontally.

• The size of the data region is usually large relative to the size of the

9



CHAPTER 2. RELATED WORK

entire webpage.

Accordingly, all blocks in the content structure are checked if they satisfy these
two conditions. The second characteristic is formalized as

(area)block
(area)webpage

≥ T0,

where the threshold T0 is learned from a sample of response webpages. If
multiple blocks satisfy the two conditions, the one at the lowest level in the
content structure tree is chosen; that is, it is assumed the response page has a
single data region.

After the data region has been discovered, the individual data records
should be extracted. The process of extracting the data records relies on
the following presumed characteristics of data record blocks:

• The data records are usually aligned flush left in the data region.

• All data records are adjoining.

• Adjoining data records do not overlap.

• Data records are very similar in their appearance.

• Data contents of the same type in different data records have similar
presentations.

• All data records have mandatory contents and some may have optional
contents.

• The presentation of contents in a data record follows a fixed order.

The process begins by filtering out visual blocks in the data region that are
not part of any data record. Next boundaries between individual data records,
which correspond to groups of visual blocks, are discovered based on the above
listed characteristics.

2.4 Wrappers
A wrapper is a procedure (program) for extracting database records from
a certain information source, in particular from a webpage. Many webpages
include dynamically-generated contents that are obtained from a query to an
internal database, for example webpages that describe product specifications.
Wrappers attempt to restore this information to its relational form. There are
three ways to construct wrappers [Liu, 2007]:

10



CHAPTER 2. RELATED WORK

Manual coding Wrappers can be created by someone who is familiar with
markup of the webpages that contain the data. For instance, a wrap-
per can be instructed to retrieve the content of certain table cells that
contain the relevant data.

Wrapper induction Supervised machine learning is used to obtain the extrac-
tion rules. This requires a training set of webages with the manually-
labeled relevant data in each webpage.

Automated data extracton Unsupervised machine learning is used instead of
supervised learning to obtain the extraction rules. This obviates the
need to manually label data in the webpages.

It should be noted that a specific wrapper is designed for a specific information
source [Kushmerick et al., 1997].

The tasks of wrappers and content extraction overlap, but they are not
identical [Gottron, 2009]. The difference lies in the data to be extracted.
Wrappers search for structured or semi-structured data in a webpage, which
is usually extracted and subsequently used as input to a relational database.
In contrast, content extraction involves the identifying all the main content in
a webpage, which usually consists of unstructured data.

2.5 Template Recognition
A template can be defined as a webpage layout with slots where variable
contents can be inserted. For instance, product description pages on a certain
e-commerce website usually have the same visual layout. Therefore, a template
is designed for these webpages, with placeholders for contents that should be
specific to each webpage, such as product name, images, and specifications.
Other contents are repeated for many (or all) webpages that are based on the
same template, such as banners and navigation menus. These are known as
the template-generated contents [Gottron, 2009]; they are also referred to as
boilerplate.

In template recognition, we attempt to extract the template structure
of a set of webpages that are based on that template. This in turn facilitates
identifying main content of the webpage, which usually corresponds to the
components that occupy the variable content slots; that is, the webpage-specfic
contents.

Lin and Ho [2002] introduced a system called InfoDiscoverer. The system
attempts to separate the webpage-specific contents (which they refer to as the
informative contents) from the template-generated contents (which they refer
to as the semantically redundant contents).

11



CHAPTER 2. RELATED WORK

A webpage cluster is defined by Lin and Ho [2002] as a set of webpages
that are based on the same template. In order to recognize the template struc-
ture of the webpage cluster, we assume that we have a training set of webpages
that belong to the same webpage cluster. Next, the content blocks of each web-
page are extracted, which results in a content structure tree. Subsequently,
the granularity of the content structure tree is refined.

The methodology by which InfoDiscoverer separates the informative con-
tent blocks from the redundant content blocks is based on the observation that
the redundant content blocks have features2 that are very frequent through-
out the webpage cluster; this is implied by the fact that template-generated
contents are frequently repeated. In the paper by Lin and Ho [2002], the
features correspond to meaningful keywords, which are obtained after the the
stop words are removed from each content block and Porter stemming [Porter,
1980] is applied to the remaining words.

The next step is calculating the entropy value of each feature in the web-
page cluster. In the case of InfoDiscoverer, entropy corresponds to the weight
distribution of the feature in the webpage cluster, where the weight wij of fea-
ture Fi in document Dj is the frequency (the total number of occurrences) of
Fi in Dj. Features that are common throughout the webpage cluster should
have high entropy.

In order to calculate the entropy of each feature, the features from all docu-
ments (webpages) in the webpage cluster are grouped in the feature-document
matrix (F-D Matrix). A simple example of an F-D Matrix is demonstrated in
Table 2.1.

XXXXXXXXXXXXFeature
Document

D1 D2 D3 D4 D5

F1 14 9 8 5 12
F2 0 18 2 4 6

Table 2.1: A simple feature-document matrix. The cell (i, j) displays the frequency
of the feature Fi in the document Dj . In this example, F1 has a relatively high
entropy, whereas F2 has a relatively low entropy.

The entropy of each feature will be calculated using Shannon’s general
formula [Shannon, 2001]:

H = −
n∑
j=1

P(Ej) log2P(Ej), (2.1)

2Not to be confused with features as defined in Section 3.4.

12



CHAPTER 2. RELATED WORK

where P(Ej) is the probability of the event event Ej. In the case of InfoDiscov-
erer, P(Ej) is proportional to the weight of the feature under consideration in
document Dj. Before the weights can be plugged into the Shannon’s formula,
they are normalized, so their values fall into inside interval [1, 0]:

H(Fi) = −
n∑
j=1

wij log2wij. (2.2)

In order to normalize the entropy values to the interval [1, 0], we modify Equa-
tion 2.2 to:

H(Fi) = −
n∑
j=1

wij logdwij, (2.3)

where d is the number of documents in the training set. Features with high
entropy are frequently repeated in the webpage cluster, and therefore should
be typical of template-generated blocks.

After calculating the entropy of all the features in the training set, we can
calculate the entropy of each content block. The entropy of a content block
CBi is defined by

H(CBi) =
1

k

k∑
j=1

H(Fj), (2.4)

where k is the number of features in CBi, and Fj is a feature of CBi.
Based on the original observation behind InfoDiscoverer, that redundant

content blocks have more high-frequency features compared to informative
content blocks, redundant content blocks should have a higher entropy than
informative blocks. Thus, each block is classified as redundant if its entropy is
higher than a certain threshold H0. The value of H0 varies depending on the
webpage cluster.

To find an optimal H0 for a specific training set, Lin and Ho [2002] note
that by increasing the value of H0, the number of features that fall into the
informative blocks will increase; this is because more blocks will be classified
as informative. If the increase in H0 does not add new features to the in-
formative blocks, the boundary between the informative and the redundant
blocks is assumed to have been reached. Accordingly, the following approach
is suggested:

Starting from H0 = 0, increment H0 by 0.1 until the incrementation
does not add any new features to the informative content blocks.

During the experiments that were carried out by Lin and Ho [2002], the optimal
value of H0 ranged from 0.1 to 0.7.

13



CHAPTER 2. RELATED WORK

2.6 Summary
This chapter presented a survey of the diverse approaches to content extrac-
tion. Section 2.1 introduced the Body Text Extraction algorithm, which op-
erates directly on the HTML source of a webpage. Section 2.2 introduced an
approach that operates on the DOM tree representation of a webpage. Section
2.3 introduced the Vision-Based Page Segmentation Algorithm, which oper-
ates on the visual rendering of the webpage. Section 2.4 gave an overview of
wrappers. Finally. Section 2.5 gave an overview the task of template recog-
nition and outlined the workflow of InfoDiscoverer, a system that performs
template recognition.

14



Chapter 3

Methodology and Setup

This chapter begins by trying to define the concept of main content more
accurately than stated in Chapter 1. Next, we formulate the task of content
extraction as a classification problem, which is a common problem that is
treated by machine learning. Sections 3.5, 3.6, and 3.7 describe the process of
creating the training set and the test set to be used in the learning and the
evaluation processes. Section 3.8 provides a description of the features that
will be used in the learning process.

3.1 Defining the Main Content
In Chapter 1, the main content was introduced as “the part of a webpage that
makes it a useful source of information,” but this definition is rather vague. In
this section, we attempt to formulate a more accurate definition. However, as
we shall see, the concept of main content is highly subjective, and a precise
formal definition cannot be easily given.

Throughout the course of his treatise on content extraction, Gottron [2009]
implicitly gives three definitions of main content:

(3.1.1) The main content is what the webpage is supposed to communicate
(according to its publisher)1.

(3.1.2) The main content is what makes the webpage interesting to the user.

(3.1.3) The main content consists of the contents of a webpage that are unique
to that webpage; that is, they cannot be found in other webpages.

Definitions (3.1.1) and (3.1.2) try to capture the point of view of the webpage
publisher and that of the webpage user, respectively. They were motivated by

1Gottron [2009] did not explicitly specify according to whom.

15



CHAPTER 3. METHODOLOGY AND SETUP

webpages that feature a news story or an encyclopedia article. For example,
a webpage about a certain news story should communicate information that
are relevant to that story. Conversely, it is the information that are relevant
to the news story that give Web users, in general, interest in that webpage.
However, both of these definitions have complications.

Definition (3.1.1) has the problem of identifying the publisher. Although
most websites (and consequently webpages) are owned by a single party, many
webpages include contents that have been posted (published) by multiple par-
ties, such as advertisements and comments. Therefore, according to their
publishers, advertisements include information that the webpage is supposed
to communicate. In fact, even if the webpage has a single publisher, it is not
always clear what the publisher wants to communicate. For instance, some
publishers would like the user to read the links to similar webpage on the
website, so that the user might visit these webpages.

Definition (3.1.2) has the problem that different users might have different
interests in the webpage. For instance, many users prefer to read only the
article synopsis, skipping the article body, and many users are interested in
the links to related articles that the webpage provides, which most content
extraction algorithms classify as non-main.

Definition (3.1.3) is the most objective of the three definitions because it
is based on concrete concrete facts, assuming we can identify identical (dupli-
cated) contents. For simplicity, we will assume that contents are identical if
and only if they are equal in their raw form. For instance, two paragraph are
considered identical if they are literally equal, character for character. If two
paragraph contain the same semantic information, but are formulated differ-
ently, they will not be considered identical.

Definition (3.1.3) has the problem that most information on the Web is
duplicated; that is, included in multiple webpages2. Therefore, most webpages
will have no main content at all according to Definition (3.1.3).

Definition (3.1.3) can be made more practical by restricting the comparable
webpages to the same website or webpage cluster; in fact, this definition of main
content roughly corresponds to the informative content term used during the
discussion of the InfoDiscoverer system for template recognition (see Section
2.5). However, Definition (3.1.3) will still be inaccurate in some cases. For
example, when two different webpages in the same website feature the same
topic, they will have duplicated contents, such as images.

2The Wayback Machine, accessible under http://archive.com, stores archived ver-
sions of approximately 445 billion webpages as of Nov, 2015. [Forbes Magazine, 2015]

16

http://archive.com


CHAPTER 3. METHODOLOGY AND SETUP

The Definition of Main Content Used in This Work

In this work, the main content of a webpage will be defined as consisting of
all contents of the webpage that are not noisy. The rationale behind this
definition is that the noisy content is easier to define than the main content,
as will be clarified in Section 3.3.

3.2 Types of Webpages
Webpages can be divided into the following broad categories depending upon
their purpose:

Directory webpages Contain links to other webpages, and include no elaborate
information. The user visits these webpages in order to obtain the links to
other webpages that include detailed information about a certain topic.
The homepages of most websites fall into this category. Other examples
of directory webpages include search result webpages and the main pages
of specific website sections, such as News, Weather, Sports, and so on.
It should be noted that directory webpages may include non-detailed
information, such as synopses of news stories in the linked-to webpages.

Form webpages The main purpose of these webpages is to receive information
from the user, rather than provide information to the user. Examples
of form webpages include registration pages, settings pages, and email
composition pages.

Article webpages Contain detailed information about a certain subject. The
user visits these webpages primarily in order to access this information.
This definition of article webpages encompasses not only webpages that
include an article in the common sense, such as news article or an en-
cyclopedia article, but also webpages that include detailed information
of any kind, such as product specifications, statistical figures, forum dis-
cussions, and so forth.

The line between these types of webpages can be blurry in some cases. For
instance, article webpages may accept input from the user, such as commenting
on a news story or posting an opinion in a forum discussion.

3.2.1 The Main Content in Different Types of Webpages

It should be pointed out that the notion of main content varies depending on
the type of webpage that us being dealt with, in particular when consider-
ing the user’s perspective. For instance, Figure 3.1a displays the webpage of a

17



CHAPTER 3. METHODOLOGY AND SETUP

video from Bauhaus-Universität Weimar’s channel on Vimeo. The webpage in-
cludes a section called “More from Bauhaus-Universität Weimar” that features
other videos from the same channel, including, for example, a link to a video
called Bibclips R©—Teil 1: Einfache und thematische Suche (highlighted with
a rectangle). This link would be considered noisy content because the user
presumably visits this webpage in order to watch the video that the webpage
itself features.

In comparison, Figure 3.1b displays a webpage that provides a list the
videos posted by Bauhaus-Universität Weimar. In this case, obtaining the
links to Bauhaus-Universität Weimar’s videos is the reason for which the user
visits this webpage. Therefore, the link to the same video (also highlighted
with a rectangle) would be considered main content in this webpage.

(a) The webpage of a video titled Klaus
Bondam: News From Cycling Copenhagen
– and Cycling Denmark from Bauhaus-
Universität Weimar’s channel on Vimeo.

(b) The Videos webpage of Bauhaus-
Universität Weimar’s channel on Vimeo.

Figure 3.1: In (a), the highlighted video link is considered noisy content, while the
same link is considered main content in (b).

Remark. In this thesis, content extraction will be restricted to article web-
pages.

3.3 The Non-Main Content
As mentioned earlier, the noisy content of a webpage consists of all of its
contents that are not main. However, the noisy contents can be further sub-
categorized into distinct types. In the following list we attempt to provide an

18



CHAPTER 3. METHODOLOGY AND SETUP

exhaustive categorization of all possible contents of a webpage that will not be
considered main.

Advertisement This is the most obvious type of noisy content. Many web-
pages include paid advertisements of commercial products, which are
sometimes related to the topic of the webpage (targeted marketing).

Navigation Most websites include a navigation menu (or bar). It consists of
links to certain (usually important or frequently accessed) webpages on
the website, such as the home page and the FAQs page.

Promoted webpages These include links to webpages other than the current
webpage. The links may refer to

• webpages about the same topic as the current webpage or about a
similar topic

• webpages that are currently trending; that is, frequently read, shared,
or commented on.

The referred-to webpages can reside on the same website as the original
webpage or on a different website

Legal information This category includes contents such as copyright notices
and privacy notices.

Irrelevant information Some webpages include extra information, such as weather
forecast or stock market indices, which may or may not be related to the
topic of the webpage.

Sources and references Some webpages provide a list of sources of the infor-
mation they contain or references for further reading.

Input elements These are the elements that receive input from the user of any
kind, such as text boxes and check boxes. This category also includes
elements that allow the user to perform any action, such as Like, Share,
Print, and Send buttons. Although these elements may be important
to the user, it was decided to treat them as non-main content because
content extraction deals with webpages as information sources and does
not deal with their interactive aspect.

This list is useful (in terms of content extraction) because each category can
be easily and unambiguously identified by a human observer. For example,
it is trivial to decide whether a certain content belongs to the advertisement

19



CHAPTER 3. METHODOLOGY AND SETUP

category or not. In other words, there will be no disagreement between human
observers about these categories.

Consequently, it was decided that in this work that every content that does
not belong to one of the categories in the above list will be considered main
content. This definition served as a guideline for annotating webpages during
the preparation training set (see Section 3.7.3).

3.4 Using Machine Learning for Content Extrac-
tion

3.4.1 Content Extraction as a Classification Problem

The problem of content extraction can be regarded as a classification prob-
lem. In a classification problem, we attempt to assign a new instance (some-
times called an observation) to exactly one class (sometimes called a category).
The set of possible classes is pre-defined and finite. The instances to be classi-
fied should have the same type, such as a person, a vehicle, a rasterized image,
text document, and so on.

Instances of a certain type have features, which are individual measurable
properties of the phenomenon that each instance abstracts [Bishop, 2006].
From a classification algorithm’s perspective, an instance is fully described by
the combination of its feature values. For example, in a certain classification
problem, a car could be represented by its engine displacement, maximum
speed, and brand name. These feature values are utilized by the classification
algorithm when trying to classify an instance.

In the case of content extraction, an instance would be a webpage content,
such as a single HTML element or a group of HTML elements, the pre-defined
set of possible classes would be “main” and “noisy,” and the features would be
properties such as the length of the inner text, the number of certain words in
the inner text, the visual position of the content inside the webpage, and so
on.

3.4.2 Building Classifiers Using Machine Learning

Classification is a common problem that is treated by machine learning. In
this work, supervised machine learning will be used. A training set that con-
sists of instances with known classes is used by a supervised machine learning
algorithm to induce rules for predicting the classes of future instances (whose
classes are not known). These induced rules are then used to construct a clas-
sifier, which is itself a classification algorithm. In other words, the output

20



CHAPTER 3. METHODOLOGY AND SETUP

of applying a machine learning algorithm to a training set is a classification
algorithm.

After a classifier has been created, its performance is usually evaluated
using a test set. A test set consists of instances with known classes (like a
training set), but these instances were not used for training the classifier.

When training and evaluating a classifier that performs content extraction,
the training set and the test set should consist of webpages whose contents
have been manually classified (by a human user) as either “main” or “noisy.”

3.5 Types of HTML Elements
As stated in Section 3.4, content extraction is a classification problem, where
we classify arbitrary contents as either main or non-main. However, in most
content extraction algorithms, the content to be classified is a set of one or
more visually contiguous HTML elements, usually referred to as a block.

Before discussing further details about this thesis’ training set, a clarifi-
cation should be made about the types of HTML elements. For purpose of
content extraction, we will make the following categorization, which encom-
passes most HTML elements:3

Sectioning elements Contain other HTML elements (child elements), rather
than data directly. Their goal is to organize the child elements in a
certain way or to indicate that they are semantically related. Examples
of sectioning elements include <table>, <ol>, and <div>.

Content elements Contain data directly (as a child node) and define its struc-
tural type, for instance whether the marked-up data is represents a para-
graph of a list item. They may additionally include other elements.
Examples of content elements include <li>, <p>, and <img>.

Inline semantic elements Define a semantic meaning for an arbitrary piece of
text [Mozilla Developer Network, 2016]. Inline semantic elements are
normally children of textual content elements. Examples of inline se-
mantic elements include <span>, <cite>, and <q>.

It should be noted that some HTML elements could belong to more than one
category, depending upon their role. For instance, the element <div> can be
used as both a sectioning element and a content element.

The classifier that we attempt be construct over the course of this thesis
will be used to classify only content elements as either belonging to the main

3Exceptions include scripting elements and webpage metadata elements. However, this
categorization will be sufficient for the purpose of this thesis.

21



CHAPTER 3. METHODOLOGY AND SETUP

content or the noisy content. Other types of elements will be classified in-
directly. For instance, if we wish to classify a list as main or noisy, we first
classify each of its items. If all of the items are main, so is the list. It is
possible that some, but not all, items are main, in which case the list is par-
tially main—in fact, this is an advantage of our approach, which enables us
to perform fine-grained content extraction in cases when sectioning elements
contain both main and noisy contents. On the other hand, if we have a <q>
element (an inline semantic element) that is the child of a <p> element (a
content element), we first classify the <p> element, and the same classification
applies to the <q> element.

It should be noted that the data inside a single content element will be
considered atomic in terms of classification, for example a <p> element is
either entirely main or entirely non-main.

3.6 The Dataset Format
This section discusses the formats of two previously created datasets of web-
pages with manually labeled contents that are publicly accessible (the CleanEval
dataset and the L3S-GN1 dataset) before it discusses the format of the dataset
that will be used in this thesis.

The CleanEval Dataset

As part off CleanEval competition for cleaning webpages in 2007, a gold stan-
dard of annotated webpages was created [Baroni et al., 2008]. The dataset
contains 681 webpages and is restricted to textual contents; that is, only tex-
tual contents is classified as either main or noisy. The output of annotating an
HTML document by a human user is a text document with all noisy contents
removed and simple markup added. The markup indicates the original tag of
the text.

For example, for the following HTML segment:

<a href="http://www.environment-agency.wales.gov.uk/">
<img src="/common/images/toolbar/banner_index_home_off.gif"

width=47
height=24 hspace=0 vspace=0 border=0 alt="Home" align="left"
name="banner_index_home"></a>
<a href="http://www.environment-agency.gov.uk/news/?lang=_e">
<img src="/common/images/toolbar/banner_index_news_off.gif"

width=40
height=24 hspace=0 vspace=0 border=0 alt="News" align="left"
name="banner_index_news"></a>

22



CHAPTER 3. METHODOLOGY AND SETUP

<h3><font face="Arial"><a name="eutro"></a>Eutrophication</font
></h3>

<p><font face="Arial" size="2">Concentrations in Welsh rivers
of the main

plant nutrients (phosphate and nitrate) are generally much
lower than those

found in the midlands and south-east England.</font></p>

the result of the annotation was:

<h>Eutrophication

<p>Concentrations in Welsh rivers of the main plant nutrients (
phosphate

and nitrate) are generally much lower than those found in the
midlands

and south-east England.

The L3S-GN1 Dataset

The L3S-GN1 dataset consists of 621 webpages and was created during the
process of preparing Kohlschütter et al. [2010]. Like the CleanEval dataset,
the L3S-GN1 dataset is restricted to textual contents. The result of labeling an
HTML document is the same HTML document, with the textual main contents
being enclosed by <span> elements. The class of each <span> element can be
x-nc-sel1 through x-nc-sel5, which encode the text as headline, full text,
supplemental, related content4, and user comments, respectively. Unselected
text (not enclosed by the described <span> elements) is regarded as noisy
content.

All the webpages in the L3S-GN1 are in the English language, and an ex-
amination of the webpages revealed that they all belong to the category of
article webpages.

For example, for the following HTML segment:

<p>
Along the way, Fearnley-Whittingstall cooks some really nice

food to prove that free-range chicks are best (though a chef
-prepared risotto would surely taste good regardless of
where the chicken came from); persuades a local tool company
&#8217;s canteen to &#8216;do a Jamie Oliver&#8217;, that is

4These include links to other webpages. In the L3S-GN1 dataset, they are considered
main content.

23



CHAPTER 3. METHODOLOGY AND SETUP

, dump catering cuisine and cook &#8216;real&#8217; food
instead; and finally, as is common to most TV production
today, he makes some Axminster locals cry about their
lifestyle choices (with weeping children for extra moral
pressure!) when they visit his factory-farmed bird shed.

</p>
<p>
Happily, one of the Axminster locals, a generously proportioned

single mum called Hayley, rather impressively refuses to
cry or get upset on cue for the cameras. The reality of
chicken farming is exactly what she imagined it might be
like, she says. She&#8217;d probably prefer to eat the free-
range stuff, but she&#8217;s just fine with intensive
farming as it means she can afford to eat chicken and feed
her family. She clearly hadn&#8217;t read the script.

</p>

the result of the annotation was:

<p>
<span class="x-nc-sel2">Along the way, Fearnley-Whittingstall

cooks some really nice food to prove that free-range chicks
are best (though a chef-prepared risotto would surely taste
good regardless of where the chicken came from); persuades a
local tool company?s canteen to ?do a Jamie Oliver?, that

is, dump catering cuisine and cook ?real? food instead; and
finally, as is common to most TV production today, he makes
some Axminster locals cry about their lifestyle choices (
with weeping children for extra moral pressure!) when they
visit his factory-farmed bird shed.</span>

</p>
<p>
<span class="x-nc-sel2">Happily, one of the Axminster locals, a

generously proportioned single mum called Hayley, rather
impressively refuses to cry or get upset on cue for the
cameras. The reality of chicken farming is exactly what she
imagined it might be like, she says. She?d probably prefer
to eat the free-range stuff, but she?s just fine with
intensive farming as it means she can afford to eat chicken
and feed her family. She clearly hadn?t read the script.</
span>

</p>

24



CHAPTER 3. METHODOLOGY AND SETUP

The Format of the Dataset in This Thesis

In the annotation process used for this thesis, the output of annotating an
HTML document is the same HTML document with some descendants of the
<body> having the class CEML___MAIN__CONTENT5 (in addition to their
original classes); this class designate these elements as main contents. Ele-
ments that do not have this class are considered noisy contents.

For example, for the following HTML segment (many tags and attributes were
removed in order to improve readability):

<h1 class="header">Control </h1>
<table cellpadding="3" cellspacing="0" border="0" width="100%">
<tbody><tr>
<td valign="top" class="content" width="25%"><div class="

wobjectSQLReport" id="wobjectId98">
<a name="98"></a><table class="toplinks">
<tbody><tr>
<td>
<a href="#54">Brush-B-Gone / Roundup</a><p>
<a href="#55">General Discussion</a></p><p>
<a href="#56">Household mixtures to kill poison ivy plants</a

></p><p>
</p></td>
</tr>
</tbody></table></div>
</td>
<td valign="top" class="content" width="75%"><div class="

wobjectItem"
id="wobjectId52" style="background-color: rgba(255, 0, 0,

0.0980392);">
<a name="52" style="background-color: rgba(255, 0, 0,

0.0980392);"></a>
Some suggestions on controlling poison ivy, oak and sumac

plants.
If you’re lucky you may be able to fully remove the plants -
I’ve only been able to get them under control.
</div>

the result of the annotation was:

<h1 class="header CEML___MAIN__CONTENT">Control </h1>
<table cellpadding="3" cellspacing="0" border="0" width="100%">
<tbody><tr>

5CEML stands for “Content Extraction Using Machine Learning”

25



CHAPTER 3. METHODOLOGY AND SETUP

<td valign="top" class="content" width="25%"><div class="
wobjectSQLReport" id="wobjectId98">

<a name="98"></a><table class="toplinks">
<tbody><tr>
<td>
<a href="#54">Brush-B-Gone / Roundup</a><p>
<a href="#55">General Discussion</a></p><p>
<a href="#56">Household mixtures to kill poison ivy plants</a

></p><p>
</p></td>
</tr>
</tbody></table></div>
</td>
<td valign="top" class="content" width="75%"><div class="

wobjectItem CEML___MAIN__CONTENT"
id="wobjectId52" style="background-color: rgba(255, 0, 0,

0.0980392);">
<a name="52" class=" CEML___MAIN__CONTENT" style="background-

color: rgba(255, 0, 0, 0.0980392);"></a>
Some suggestions on controlling poison ivy, oak and sumac

plants.
If you’re lucky you may be able to fully remove the plants -
I’ve only been able to get them under control.
</div>

The details of the annotation process will be discussed in Section 3.7.2. It
should also be noted that the annotated document is not used directly by the
machine learning algorithm, rather it is transformed to CSV format before
being used for training, as discussed in Section 3.7.2.

3.7 Creating the Dataset
Before a classifier can be trained, a set of webpages with manually labeled
contents (by a human user) should be available. This section describes the
process of creating the training set and the test set that were used in this
thesis.

3.7.1 The Training and Test Sets Used in This Work

The training set that was used to train the classifier in this work consisted of
30 manually-selected article webpages, each webpage from a different website.
The webpages were manually selected, so that diverse genres were represented
in the training set. These genres included news articles, encyclopedia articles,
product description webpages, forum discussions, and video webpages.

26



CHAPTER 3. METHODOLOGY AND SETUP

Figure 3.2: The manual annotation of a webpage. After injecting the JavaScript
code into the page, the user can draw labeling rectangles on the webpage using the
mouse. An element should lie entirely inside at least one labeling rectangle to be
labled as main. Otherwise, it will be labeled as noisy.

The test set included 30 webpages with URLs that were randomly chosen
from the L3S-GN1 dataset. Many webpages were no longer available, in which
case they were replaced by webpages from the same website if the website
itself was still operating. Additionally, 10 webpages from the same websites
that were used in the training set were used in the test set. The webpages
in the test set were manually annotated in the same way as the those in the
training set.

3.7.2 Annotating the HTML Documents

In order to facilitate manual annotation, a JavaScript program was developed
and injected into each webpage that had to be annotated. The JavaScript
program allows the user to draw labeling rectangles on the webpage in order
to identify the main content. HTML elements whose visual rendering lies
entirely inside at least one of the labeling rectangles are labeled as main. All
other HTML elements are labeled noisy, as shown in Figure 3.2.

27



CHAPTER 3. METHODOLOGY AND SETUP

Figure 3.3: An inspection of the header element from a news story from http:
//reuters.com. In order to label the header as main, the user must draw a
labeling rectangle that surrounds the entire bounding rectangle of the <h1> element.
However, as can be seen, the bounding rectangle, which invisible to the user during
annotation, is significantly wider than the visible text.

A technical complication arises as a result of this labeling approach. The
JavaScript program relies on the Element.getBoundingClientRect()
function to check whether a certain HTML element is located inside a certain
labeling rectangle. However the bounding rectangle returned from
getBoundingClientRect() extends well beyond the “visible" portion of
the element. Figure 3.3 gives a demonstration of this issue.

In order to overcome this complication, the JavaScript program allows the
user (at any point during the annotation process) to press C, upon which the
program identifies all the elements whose bounding rectangle currently lies
inside at least one of the labeling rectangles and changes their background
color to light red. This allows the user to notice the elements that are not
contained in a labeling rectangle (although they should be), so that she can
draw a larger rectangle around these elements, as demonstrated in Figure 3.4.

When the user has finished annotating the webpage, she presses D, upon
which the JavaScript program identifies all the elements that lie entirely inside
at least one labeling rectangle and adds the class CEML___MAIN__CONTENT
to these elements. Subsequently, feature extraction is performed, during which
the features of every HTML element6 that descends from <body> are calcu-
lated, including its label (classification), and a CSV file containing feature
values of each element is created and saved. The specific features that are
calculated will be discussed in Section 3.8.

The result of annotating a single webpage is a single CSV file. The final
step in creating the training set is concatenating the individual CSV files that
resulted from the annotation of each webpage, as demonstrated in Figure 3.5.
The test set was created in the same way, using a different set of webpages.

6These include non-content elements, which will be discarded during the learning process.

28

http://reuters.com
http://reuters.com


CHAPTER 3. METHODOLOGY AND SETUP

Figure 3.4: When the user presses C, the JavaScript program identifies all elements
whose bounding rectangle lies completely inside at least one labeling rectangle, and
changes their background color to light red. In this example, the bounding rectangle
of the story header does not lie entirely inside the drawn labeling rectangle, so the
user has to draw a larger labeling rectangle in order for the header to be labeled as
main content.

29



CHAPTER 3. METHODOLOGY AND SETUP

HTML Doument

HTML Document

HTML Document

CSV Document

CSV Document

CSV Document

Feature Extraction

Feature Extraction

Feature Extraction

Concatenation CSV Document

Figure 3.5: The workflow of creating the training set. The CSV file on the extreme
right will be the training set. The workflow of creating the test set is identical.

3.7.3 Annotation Guidelines

Although identifying the main content is considered a relatively easy task for
human users, disagreements about whether some portions of a webpage belong
to the main content can arise between human users.

As mentioned in Section 3.1, there is no plain definition of main content that
users can strictly follow when performing annotation. However, in Section 3.3,
a list containing a categorization of noisy contents was given. Each category in
the list is trivially and unambiguously identifiable by a human user. Therefore,
it was decided that when performing annotation, if a content does not belong
to one category in List 3.3, this content will be considered main.

Another guiding rule is that elements that contain information (data) that
is not repeated in other webpages should be labeled as main content. For
example, Figure 3.6 demonstrates the annotation of the Youtube comment
action bar, located at the bottom of every comment on a Youtube video. The
“Reply,” “Thumbs Up,” and “Thumbs Down” buttons promote the user to take
actions, rather than provide her with information, so they are not labeled as
main content. In contrast, the number of likes that the comment has received
represents a piece of information that may be interesting to the user, and
this information cannot be found in other webpages, so the number of likes is
labeled as main content.

This example demonstrates the “deep” level at which the annotation process
was performed, and the the high degree of granularity of the resulting training
set and test set. Constructing a classifier that can accurately perform content
extraction at the same degree of granularity represents a significant challenge.

30



CHAPTER 3. METHODOLOGY AND SETUP

Figure 3.6: The annotation of the Youtube comment action bar. The only piece
of information found in the action bar is the number of likes that the comment has
received, so it is the only part that is labeled as main content.

In fact, most content extraction methods would classify the entire action bar
in Figure 3.6 (as noisy content), rather than its individual sub-blocks. How-
ever, the goal of the annotation process was to produce a fine-grained gold
standard. The performance of the classifier that would be constructed based
on that gold standard is a separate issue.

It should be noted that there are some cases in which annotation with such
high granularity is not possible. For example, Figure 3.7 displays a header from
a Wikipedia article. The title of the header (“Overview”) should be labeled as
main content, and the clickable text ([Edit]) should be labeled as noisy
content. However, this is not possible because the clickable text (delimited by
a <span> element) lies entirely inside the header element <h2>. Therefore, it
is not possible label the text “Overview” as main content without also labeling
the clickable text [Edit] as such.

Figure 3.7: An inspection of a header element that contains the title of a section in
a Wikipedia article. It is not possible to label the title (“Overview”) as main content
without also including the clickable text ([Edit]).

3.7.4 The Language Dependence of Our Approach

During the course of webpage annotation, it was imperative that the annotator
understood the textual contents of the webpage, so that she could decide which
contents are main and which are noisy. In fact, some text blocks had to be
carefully inspected in order to decide whether they were main or noisy.

In addition, some of the features that our learning process uses are language
dependent, as will be discussed in Section 3.8. Therefore, all the webpages in
our dataset are in the English language. However, the approach used in this
thesis can be easily extended to other languages.

31



CHAPTER 3. METHODOLOGY AND SETUP

3.8 Feature Engineering
Most content extraction algorithms (including those based on machine learn-
ing) classify entire webpage blocks as either main or noisy. A webpage block
usually corresponds to a <div> element, including its descendants. Blocks
vary widely in size, and can in many cases include mixed contents (both main
and noisy).

In contrast, as mentioned in Section 3.5, the classifier to be constructed in
this thesis will operate on individual content elements, which contain indivisi-
ble pieces of data (from a structural point of view).

Determining whether the data that a content element contains is main
or noisy depends on several factors, many of which are not inherent in the
content element. The most obvious of these external factors is the location of
the element on the webpage. For example, main content is usually displayed
in the middle of the webpage; therefore, an element that is displayed in the
middle of the webpage is more likely to belong to the main content than an
identical element that is displayed at one side of the webpage.

Other significant external factors include the description of ascendant HTML
elements. For example, a paragraph element (<p>) that descends from a
<div> element that has the class "cookies" is probably a statement re-
garding the website’s use of cookies.

The first step in building the content classifier is translating these factors
(both internal and external) to features.

3.8.1 Features Used in Other Works

Song et al. [2004] used supervised machine learning to produce a classifier to
identify the the level of importance of webpage segments (blocks). The used
features include:

Spatial features The dimensions and coordinates of the segments.

Content features These included, among others, the number of images inside
the segment, the number of links inside the segment, and the length of
the inner text of the segment.

Louvan [2009] applied supervised machine learning to segment-based content
extraction. The used features include:

stopWordRatio The ratio of stop words that is contained in all of the text
nodes of a particular DOM node.

32



CHAPTER 3. METHODOLOGY AND SETUP

domHeight The maximum depth that can be reached from a particular DOM
node to a certain leaf node.

headerAround Whether there are here are any header elements near a partic-
ular DOM node.

Zhou and Mashuq [2014] applied unsupervised machine learning (clustering) to
text blocks, which they describe as HTML block elements that contain texts.
The used features include:

Text length The number of non-whitespace characters.

Tag path The path it takes to navigate the DOM tree from its root to the
text block, for example "body>div>p". Each different tag path was
uniquely treated and this feature was vectorized.

CSS properties These include color, font-size, font-style, line-height, and so
on.

3.8.2 The Raw Features

The injected JavaScript program (described in Section 3.7.2) calculates a set
of features for every element in the webpage that descends from <body>.
These features include every factor that we thought could play a role in the
classification of an element.

However, many of these raw features are textual and cannot be used directly
by machine learning algorithms. Therefore, they are processed later to produce
other features that are boolean, nominal, or numerical.

For instance, the inner text of certain types of HTML element (such as <p>
and <li>) was extracted by the JavaScript program. Subsequently, various
features could be extracted from the inner text, such text length and the ratio
of stop words inside the text. It is these later extracted features that are used
by the machine learning algorithm to train the classifier.

The following list describes the raw features that are extracted by the in-
jected JavaScript code for each HTML element. The page-related features and
the contextual features represent the “external factors” that affect the element’s
role in the webpage. The inherent features represent inherent properties of the
HTML element that are not related to other elements in the webpage.

Remark. For boolean features, "true" values were encoded by "1" and
"false" values were encoded by "0". This remark holds for both the raw
features and the derived features, discussed in Section 3.8.4.

33



CHAPTER 3. METHODOLOGY AND SETUP

Page-Related Features

These features will be identical for elements of the same webpage.

url The URL of the webpage

title The title of the webpage.

meta_description The content of the description <meta> element of the
webpage (if present). This features, along with title, give give hints
about the topic of the webpage.

doc_dom_depth The maximum depth of the DOM tree of the webpage.

Contextual Features

These features are related to the “context” that surrounds the HTML element
in the webpage, both from a visual point of view or a structural point of view.
They also include properties of “surrounding” elements, which give hints about
the role of the HTML element under consideration.

ancestors_names A comma-separated list of the tag names of the ancestor
elements until, but not including, <body>. A simple example: DIV,
DIV, OL.

ancestors_ids A comma-separated list of the id’s of the ancestor elements
until, but not including, <body>. When an element does not have an
id, the value CEML___NO__ID is used.

ancestors_classes A comma-separated list of the classes of the ancestor ele-
ments until, but not including, <body>. The classes of a single element
are separated by whitespace. When an element does not have classes,
the values CEML___NO__CLASSES is used.

siblings_names A comma-separated list of the tag names of the siblings of
the element.

siblings_ids A comma-separated list of the id’s of the sibling elements.

siblings_classes A comma-separated list of the classes of the sibling ele-
ments.

nearest_header The inner text of the nearest header element in the DOM
tree (not necessarily visually) that has a lower DOM depth than the
current element, if such a header element exists. This is supposedly the

34



CHAPTER 3. METHODOLOGY AND SETUP

Figure 3.8: Part of the language setting section in the homepage of http://bbc.
com. Each of the displayed options (<li> elements) has its nearest_header
feature value equal to "More Languages".

header that describes the HTML element under consideration. The value
of this feature can give a hint about the role of the element. For instance,
if the value includes the string "languages", the element is probably
located in the language setting section, as shown in Figure 3.8.

normalized_top The normalized vertical coordinate of the upper edge of
the bounding rectangle relative to the webpage’s upper-left corner.

normalized_bottom The normalized vertical coordinate of the bottom edge
of the bounding rectangle relative to the webpage’s upper-left corner.

is_middle "1" if the element client bounding of the element intersects with
the bisector of the webpage, otherwise "0".

is_leftmost "1" if the leftmost edge of the bounding rectangle of the ele-
ment touches the leftmost edge of the webpage and is_middle="0",
otherwise "0".

is_rightmost "1" if the rightmost edge of the bounding rectangle of the ele-
ment touches the rightmost edge of the webpage and is_middle="0",
otherwise "0". Figure 3.9 demonstrates the horizontal positioning fea-
tures.

num_siblings The number of sibling elements of the element under consid-
eration.

distance_to_root The depth of the node that corresponds to the element
under consideration in the webpage DOM.

35

http://bbc.com
http://bbc.com


CHAPTER 3. METHODOLOGY AND SETUP

is_rightmost="0"
is_leftmost ="0"
is_middle ="0"

is_rightmost="0"
is_leftmost ="0"
is_middle ="1"

is_rightmost="0"
is_leftmost ="0"
is_middle ="1"

is_rightmost="1"
is_leftmost ="0"
is_middle ="0"

is_rightmost="0"
is_leftmost ="0"
is_middle ="1"

is_rightmost="0"
is_leftmost ="1"
is_middle ="0"

is_rightmost="0"
is_leftmost ="0"
is_middle ="0"

Figure 3.9: A demonstration of the horizontal positioning features.

36



CHAPTER 3. METHODOLOGY AND SETUP

Inherent Features

These features represent properties of the HTML element, and are not related
to its surroundings.

tag_name The tag name of the element.

element_id The id of the element (if any).

class_name The classes of the element (if any).

children_names The tag names of the direct children.

children_ids A comma-separated list of the id’s of the direct child elements.

children_classes A comma-separated list of the classes of the direct child
elements.

image_alt The alternate text of an image, if present (applicable only to
<img> elements).

rect_size The size of the bounding client rectangle of the element.

num_child_elements The number of the direct child elements of the ele-
ment under consideration.

dom_subtree_depth The maximum depth of the DOM subtree whose root
is the element under consideration.

inner_text The inner text of the element. This feature is applicable to
textual content elements.

child_text The text that is directly contained as a child node of the element.
This feature is applicable to textual content elements.

3.8.3 Remarks About the Raw Features

• Section 4.3.1 clarifies which elements will be considered textual content
elements.

• When features are not applicable, special values were used. For instance,
for elements other than <img>, the value of the image_url feature is
CEML_NON_IMG_TAG.

• When a features value is not present, a special value is used. For in-
stance, if an <img> element does not have an alt attribute, the value
CEML_NO_ALT is used.

37



CHAPTER 3. METHODOLOGY AND SETUP

• Many of these raw features were not utilized in training the content
classifier in these thesis.

3.8.4 Derived Features

As mentioned earlier, raw text cannot be used directly by machine learning
algorithms. Therefore, new features that could be used by machine learning
algorithms were derived from the raw textual features. Additionally, more
features were derived from other raw non-textual features.

During the course of this thesis, we tried using numerous different features;
some of these features were useful, while others were not. The following list
contains features that we found useful:

is_desc_a "1" if the element descends from an <a> element, otherwise "0".

is_desc_X "1" if one of the element’s ancestors has the class or id X
(ignoring case), otherwise "0". The values of X that were used in-
clude"navigation", "advertisement", "comment", "main",
"footer", "wrapper", and "aside".

inner_text_length The word count of inner_text.

child_text_length The word count of child_text.

contains_X "1" if the inner text contains the string X (ignoring case), other-
wise "0". The values of X that were used include "rights reserved",
"like", and "share".

is_sib_X "1" if the element a sibling X element, otherwise "0". In partic-
ular, is_sib__p was very useful when classifying <p> elements. Other
useful variations include is_sib__a and is_sib__input.

has_children "1" if the element has child elements, otherwise "0".

is_uppermost_or_bottommost "1" if normalized_bottom>0.97 or
normalized_top<0.03, otherwise "0". In other words, this feature
specifies whether the element is very close to either the bottom or the
top of the webpage.

is_on_side "1" if either is_leftmost="1" or is_rightmost="1",
otherwise "0".

is_link "1" if the element has no child nodes other than a single <a> element,
otherwise "0".

38



CHAPTER 3. METHODOLOGY AND SETUP

is_thumbnail "1" if the element under consideration is the only child node
of an <a> element, otherwise "0". This feature was used only when
classifying <img> elements, although it is theoretically applicable to
any type of element.

Remark about Class Name and ID Variations

Different webpages use different class names and IDs to denote navigation and
advertisement sections. Common class names for navigation sections include
"navbar", "nav-bar", "nav-main", "navigation-menu", and so on.
Thus, the solution we used was to search for the string "nav" in the
ancestor_classes and ancestor_id and set is_desc_nav="1" if the
string was found.

The situation with "advertisement" is more complicated because the
variations include "ad-box", "adblock", "advert-box", "img_ad",
"ads-section", and so on. Thus, we created a collection of regular ex-
pressions that match the commonly used advertisement class names and IDs,
listed in Table 3.1.

\bad- -ad\b
\bad_ _ad\b
\badv- -adv\b
\badv_ _adv\b
advert \bads
adblock adbox

Table 3.1: A list of regular expression patterns that are used when searching for
class names or IDs that designate an advertisement section. If a class name or an ID
matches one of these patterns, the respective element (along with its descendants)
will be considered part of the advertisement section of the webpage.

3.9 Summary
In Section 3.1, we took a closer look at the concept of main content and out-
lined the complications that arise when we try to accurately define it. We
then defined defined the main content as the non-noisy content of a webpage.
Section 3.2 provided a categorization of webpages and narrowed down the con-
tent extraction process to article webpages. In Section 3.3, we attempted to
define the noisy content. In Section 3.4, we formulated content extraction as
a classification problem that will be treated using machine learning and iden-
tified the instances to be classified as HTML elements. Section 3.5 provided a

39



CHAPTER 3. METHODOLOGY AND SETUP

categorization of HTML elements and narrowed down the content extraction
process to content elements. Section 3.6 described the format of the dataset to
be used in this thesis and compared it with the formats used in other datasets.
Section 3.7 described the process of annotating the webpages and producing
the training set and the test set. Section 3.8 discussed the raw extracted fea-
tures from webpages, along with the derived features that could be used by a
machine learning algorithm.

40



Chapter 4

Experiment and Evaluation

This chapter begins by giving a brief description of decision trees, which is
the model that we will try to induce. Additionally, an overview of the rpart
package, the software package used in this thesis, is given.

Section 4.2 discusses the metrics that are usually used to evaluate the per-
formance of binary classifiers in general, including content extractors. Section
4.3 discusses the HTML elements that we will build models for. Finally, Sec-
tions and 4.4 and 4.5 list the performance scores of our induced text and image
element classifiers, respectively.

4.1 Using Decision Trees as Predictive Models
A predictive model is a simplified, high-level representation of a classifier.
The predictive model that we attempt to construct in this work will be a
decision tree, which is considered to be one of the most popular approaches
for representing classifiers [Rokach and Maimon, 2005].

A decision tree is a finite tree graph. Each internal node in a decision
tree corresponds to a test that is applied to a single feature of the instance
that we wish to classify. The branches that stem from the node represent all
the possible outcomes of the test. Leaf nodes represent predicted classes.

An example of a decision tree is demonstrated in Figure 4.1. In this ex-
ample, the value of a specific feature is checked at each internal node; the
branches that stem from the node form a partition of all the possible values
of the feature that the node corresponds to.

4.1.1 The rpart Package

The rpart package [Therneau et al., 2015] was used to construct the decision
trees in this thesis. The rpart package generates decision trees using ideas

41



CHAPTER 4. EXPERIMENT AND EVALUATION

F1

F2 C1 F3

C3 C1 C2 C1

= v11

= v12

= v13, v14

= v21 = v22 ≤ v31 > v31

Figure 4.1: An example of a decision tree. The feature F1 can have the values v11,
v12, v13, and v14. If F1 = v12, then the class C1 is predicted for the instance. If
F1 = v11, then the value of F2 is checked. If F2 = v21, then the class C3 is predicted.
If F2 = v22, then the class C1 is predicted. If F1 = v13 or F1 = v14, then the value
of F3 is checked. If F3 ≤ v31, then the class C2 is predicted. If F3 > v31, then the
class C1 is predicted.

introduced by Breiman et al. [1984].
The decision trees that rpart constructs are classification and regression

trees (CARTs) [Therneau et al., 1997]. A CART is a binary decision tree, in
which each internal node corresponds to a boolean condition that is applied to
one feature. The left branch that stems from the node represents the case that
the boolean condition holds, while the right branch represents the case that
the condition does not hold. Figure 4.2 demonstrates an example of a CART.

The rpart package employees recursive partitioning when building decision
trees. The process of tree construction begins by finding the feature that best
splits the training set into two subsets (based on the different values that the
feature can take). Next the same process is repeated recursively with each
new subset. The process stops when the size of the of the subsets reach a
pre-defined minimum or until no more improvements can be made; that is,
there is no splitting that can improve the current predictive model.

4.1.2 Splitting Criteria

When constructing trees, rpart tries to make the leaf nodes as “pure” as pos-
sible. Formally, the impurity of a node A is defined as

I(A) =
C∑
i=1

f(piA), (4.1)

42



CHAPTER 4. EXPERIMENT AND EVALUATION

F1 > v11

C1 F2 = v21, v22

F1 = v12 F3 = v31

C1 C3 C2 C1

Yes No

Yes No

Yes No Yes No

Figure 4.2: An example of a classification and regression tree. Each internal node
represents a test that compares an exactly one feature against a single possible value
(as in the case of the features F1 and F3) or a set of values (as in the case of the
feature F2). It should be noted that the same feature can appear multiple times on
the same path from the root node to a leaf node, for example F1 in this tree.

where C is the number of possible classes, piA is the proportion of instances in
node A that belong to the class i, and f is some impurity measure.

The two candidates for f are the information index f(p) = −p log(p) and
the Gini index f(p) = p(1 − p). According to Tan et al. [2006], the choice of
impurity measure has little effect on the performance of decision tree induction
algorithms because many impurity measures are consistent with each other.
In this work, the information index was used.

When performing splitting, rpart tries to find the split with the maximum
impurity reduction1. The impurity reduction that results from splitting a node
A into two nodes AL and AR is given by

∆I = p(A)I(A)− p(AL)I(AL)− p(AR)I(AR), (4.2)

where p(A) is the number of instances in node A.
1impurity reduction is known as information gain when the information index is used as

the impurity measure.

43



CHAPTER 4. EXPERIMENT AND EVALUATION

4.2 Evaluating the Performance of a Binary Clas-
sifier

When evaluating the performance of a binary classifier, we are interested in
the number of errors that this classifier makes when applied to a specific test
set, as well as the types of these errors.

4.2.1 Errors in Binary Classification

When carrying out binary classification, there are two types of errors that may
occur:

Type I error Occurs when an instance is classified as positive when it is
actually negative. Such an instance is said to be a false positive. In the
case of content extraction, a type I error occurs when a noisy content is
classified as main.

Type II error Occurs when an instance is classified as negative when it is
actually positive. Such an instance is said to be a false negative. In the
case of content extraction, a type II error occurs when a main content is
classified as noisy.

Deciding which type of error is more grievous than the other depends on the
specific application of content extraction.

4.2.2 Evaluation Metrics

In order to assess the performance of applying a given binary classifier C on a
specific test set S, we first define the following subsets:

• Sp is the set of positive instances in S

• Sn is the set of negative instances in S

• Cp is the set of instances in S that were classified as positive by C. In
content extraction, members of Cp are said to have been retrieved by C.

• Cn is the set of instances in S that were classified as negative by C.

44



CHAPTER 4. EXPERIMENT AND EVALUATION

Then the following metrics are defined as follows2:

tp (number of true positives) = |Cp ∩ Sp| (4.3)

tn (number of true negatives) = |Cn ∩ Sn| (4.4)

fp (number of false positives) = |Cp ∩ Sn| (4.5)

fn (number of false negatives) = |Cn ∩ Sp| (4.6)

precision =
|Cp ∩ Sp|
|Cp|

(4.7)

recall =
|Cp ∩ Sp|
|Sp|

(4.8)

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

(4.9)

In the context of content extraction, precision is the ratio of the actual main
content that was retrieved by the classifier to the entire content that was
retrieved, while recall is the is the ratio of the actual main content that was
retrieved by the classifier to the entire actual main content in the test set.

The Fβ metric a weight average of the precision and the recall, where β is
a variable parameter. A higher value of β attaches more importance to the
recall [Rijsbergen, 1979]. Usually the value β = 1 is chosen, which gives the
precision and the recall the same importance, and the resultant metric is called
the F1 metric. The F1 metric will be used in this thesis.

In addition, a confusion matrix is usually constructed to provide a summary
of the performance of a binary classifier. The general form of a confusion matrix
is illustrated in Table 4.1.

hhhhhhhhhhhhhhhhhhActual Class
Predicted Class

"False" "True"

"False" tn fp
"True" fn tp

Table 4.1: The general form of a confusion matrix for a binary classifier.

4.2.3 A Clarification About the Evaluation Values

The sets defined in Section 4.2.2 consist of instances. As mentioned in Sec-
tion 3.5, the classifier that we attempt to construct in this thesis operates on
HTML content elements, such as paragraphs and headers. Thus, the unit of

2The notation |A| denotes the number of elements in a set A.

45



CHAPTER 4. EXPERIMENT AND EVALUATION

measurement for the derived evaluation metrics is an HTML element. How-
ever, the size of text inside a single textual content element varies widely, so
the values of these evaluation metrics may not convey the performance of a
content classifier in terms of text size (measured in word number).

Nonetheless, it should be noted that the elements that contain a short
inner text usually include important information, such as an author name or
a section header. Therefore, it was decided in this thesis to calculate the
evaluation metrics’ values for the induced classifier when applied to textual
content elements twice:

1. once using the classified HTML elements as units; and

2. once using individual words in each HTML element as units.

These values will be referred to as element based and text based, respectively.
Given a confusion matrix with HTML elements as units, the text based

values can be easily obtained by concatenating the inner text of the HTML
elements in each cell (given that the elements themselves are available).

4.3 Using Different Decision Trees for Different
Element Types

As mentioned in Section 3.5, content extraction in this thesis will be applied
only to content elements. During the learning process, it was discovered (un-
surprisingly) that the classifier (as represented by the decision tree) varies
significantly depending on the element type. For example, the decision tree of
<p> elements is completely different from that of <td> elements.

Accordingly, it was decided to divide the training set into multiple training
sets based on element type. Subsequently, a separate classifier for each training
set was constructed using the rpart package. During the evaluation phase, the
test set was divided in the same way as the training set. The learned classifiers
were tested separately, each classifier on its respective test set.

Finally, the total evaluation scores for textual content extraction were com-
puted. This was achieved as follows: Given the different values tp1, tp2, . . . , tpk
as defined in Equation 4.3 for the different classifiers, the total tp value was
computed by summing these values: tp = tp1+tp2+ · · ·+tpk. The same proce-
dure is repeated to obtain the total values for tn, fp, and fn. Finally, the total
evaluation scores, as defined in Equations 4.7, 4.8, and 4.9, were computed.

46



CHAPTER 4. EXPERIMENT AND EVALUATION

4.3.1 The Elements to be Classified

This section lists the content elements for which we will attempt to develop
a predictive model. All of the elements listed in this section, except for the
<img> element, are textual content elements.

Paragraph Elements

The <p> elements are primarily used to mark up a text paragraph. In most
webpages, long blocks of text consist of multiple <p> elements.

<div> Elements

The <div> elements are usually used as containers for organizing the content
in a webpage (sectioning elements). However, there are cases where <div>
elements are used as content elements. In this work, we regard a <div>
element as a sectioning element, and not use it for classification, if either of
the following conditions hold:

• The <div> element includes a content element as a descendant.

• The depth of the DOM subtree that descends from the <div> element
is greater than 2.

These conditions are checked by the injected JavaScript code during the feature
extraction stage (discussed in Section 3.7).

Cell Elements

Cell elements consist of <th> elements (table headers) and <td> elements.
Cell elements are the building blocks of a table, represented by a <table>
element. <table> elements are used to represent tabular data; however, they
are often used for layout organization, in which case the cell elements should
be regarded as sectioning elements. Such elements are filtered out in the same
way as the sectioning <div> elements.

List Item Elements

A list item is represented by an <li> element. They form the building blocks
of ordered lists (<ol> elements), unordered lists (<ul> elements), and menus
(<menu> elements).

47



CHAPTER 4. EXPERIMENT AND EVALUATION

Header Elements

Headers are represented in decreasing importance by the <H1>, <H2>, <H3>,
<H4>, <H5>, and <H6> elements. It should be noted that headers are some-
times represented differently using the <div> element, for example:

<div class="widget-header">Trending</div>

Such cases are handled under the <div> tags.

Caption Elements

The <figcaption> element marks up the caption for the data that is illus-
trated by a <figure> element. The data itself may be textual or pictorial.

Preformatted Text Elements

The <pre> element is used to mark up text with special formatting, usually
computer code.

Image Elements

Images are represented by the <img> element. Its src attribute provides the
URL of the described image.

4.3.2 Filtering Out Certain Elements

Before applying the learning algorithms to the elements in the training set,
certain elements were filtered out. The same elements were filtered out of the
test set before carrying out the evaluation. These elements are:

• All textual content elements with num_words=0. These correspond to
elements that do not contain inner text or contain only whitespace.

• All content elements elements with rect_size=0. These correspond
to elements that were not visible to the user during the annotation.

4.3.3 Manually Classifying Certain Elements

Before applying the learning algorithms, certain elements were filtered out of
the training set and were regarded as noisy. These elements are:

• All <p> elements with is_desc_a="1", is_desc_nav="1",
is_desc_ad="1", and is_link="1".

48



CHAPTER 4. EXPERIMENT AND EVALUATION

• All <div> elements with is_desc_a="1", is_desc_nav="1",
is_desc_ad="1", and is_link="1".

• All <li> elements with is_desc_ad="1".

• All header elements with is_desc_a="1", is_desc_nav="1",
is_desc_ad="1", and is_link="1".

• All <th> and <td> elements with is_desc_nav="1".

The reason for this procedure is that an examination of the training set
revealed that these elements are almost always noisy content. Our orig-
inal intention was to leave these elements in the training set and let the
learning algorithm produce a decision tree that classifies these elements as
noisy. However, a complication occurred due to the relatively small pro-
portion of these elements. For example, Figure 4.3 shows a comparison be-
tween impurity reduction when splitting using the is_sib_p feature and the
is_desc_nav feature of <p> elements. Both of these splits result in one
highly pure node, namely is_desc_nav="1" and is_sib_p="1". The
node is_desc_nav="1" is more pure than the node is_sib_p="1", but
contains far fewer elements. Therefore, in accordance with Equation 4.2, the
split using the is_sib_p feature produces a higher impurity reduction.

4.4 Evaluation Scores for Text Elements
A classifier was built for each type of textual content element and the perfor-
mance scores for these classifiers were combined, as described in Section 4.3.
The combined results were:

The element-based evaluation results:

precision = 0.828

recall = 0.786

F1 = 0.806

hhhhhhhhhhhhhhhhhhActual Class
Predicted Class

"Noisy" "Main"

"Noisy" 4625 211
"Main" 277 1018

49



CHAPTER 4. EXPERIMENT AND EVALUATION

is_desc_nav=0 is_desc_nav=1

%0

%20

%40

noisy main noisy main
Content Type

P
er
ce
nt
ag

e

(a) Content type distribution of <p>
elements grouped by the values of the
is_desc_nav feature.

is_sib_p=0 is_sib_p=1

%0

%10

%20

%30

%40

noisy main noisy main
Content Type

P
er
ce
nt
ag

e
(b) Content type distribution of <p>
elements grouped by the values of the
is_sib_p feature.

Figure 4.3: A comparison between the splits that the is_desc_nav and
is_sib_p features produce. The node is_desc_nav="1" has only one class,
so it has maximum purity, but it has a very small size. Thus, spltting using the
is_sib_p feature is perfered by the tree construction algorithm.

The text-based evaluation results:

precision = 0.893

recall = 0.851

F1 = 0.871

hhhhhhhhhhhhhhhhhhActual Class
Predicted Class

"Noisy" "Main"

"Noisy" 496921 19618
"Main" 28654 163908

Remarks about the results:

Both the evaluation scores and the confusion matrices show that our induced
classifiers performs better on the text-level than on the element-level. This is
because elements that contain short text are generally harder to classify than
those that contain long text.

The confusion matrices show that that most of the content in the test set is
noisy, and that our induced classifiers were able to filter out most of the noisy

50



CHAPTER 4. EXPERIMENT AND EVALUATION

content, as demonstrated by the high number of true negatives. However, the
number of true negatives has no effect on the evaluation scores.

4.5 Evaluation Scores for Image Elements
The <img> elements were subdivided into two groups: One group contains
what we consider small and medium sized images (≤ 40000px), and the other
group contains what we consider large images (> 40000px).

Performance scores for small and medium sized images:

precision = 0.833

recall = 0.205

F1 = 0.328

hhhhhhhhhhhhhhhhhhActual Class
Predicted Class

"Noisy" "Main"

"Noisy" 900 5
"Main" 97 25

Performance scores for large images:

precision = 0.828

recall = 0.743

F1 = 0.783

hhhhhhhhhhhhhhhhhhActual Class
Predicted Class

"Noisy" "Main"

"Noisy" 122 6
"Main" 10 29

Remarks about the results:

Similar to the textual content elements, most of the image elements were noisy,
and our induced classifiers were able to filter out most of the noisy content.
The results also show that our induced classifiers perform better with large
images than with small and medium sized images.

51



CHAPTER 4. EXPERIMENT AND EVALUATION

4.6 Summary
In Section 4.1, we discussed the decision tree model, which we used in this
thesis, and took a closer look at the algorithm that is used by the rpart package
to construct decision trees. Section 4.2 discussed the evaluation metrics that
we used for evaluating the performance of our induced content classifiers and
made the distinction between element-based and text-based values. Section 4.3
discussed the HTML elements that we classified as either main content or noisy
content, and discussed the manual classification that we performed on certain
elements. Section 4.4 listed the element-based and text-based performance
results for our induced classifiers of textual content elements. Section 4.5
listed the performance results of our induced image classifiers.

52



Chapter 5

Conclusion and Potentional Future
Work

This thesis provided a treatment of the problem of content extraction. We in-
troduced the approach of element-based classification, which in turn facilitates
high-granularity content extraction. During the course of the thesis, an anno-
tation method was developed that facilitates the labeling of the main content
of webpages based on the visual rendering of the webpages. A gold standard,
which is easily expandable, was created using this method.

In Chapter 1, we discussed the importance and uses of content extraction.
In Chapter 2, we explored a survey of the diverse approaches of performing
content extraction. In Chapter 3, we investigated the possible definitions of
the main content of a webpage and discussed the complications that can arise
with each definition. Then we defined the main content as the non-noisy
content because we thought the noisy content could be less ambiguously defined
than the main content. Next, we outlined the process of manually annotating
webpages and transforming the annotated webpages into a dataset that can
be used by a machine learning software, were each instance in the dataset
corresponds to an HTML element in a webpage. At the end of Chapter 3, we
gave an overview of the features that we utilized during the process of learning.
In Chapter 4, we discussed the general form of the predictive model that we
attempted to induce in this thesis (namely decision trees), and we also took
a look at the inner workings of rpart, which is the software package that we
used for generating the predictive model. Next, we defined multiple metrics
that are used for evaluating the performance of a binary classifier, and then we
listed the values that we obtained for these metrics when we applied a classifier
that is based on our induced predictive model to a test set.

53



CHAPTER 5. CONCLUSION AND POTENTIONAL FUTURE WORK

5.1 Future Work
The approach we followed in this thesis could be improved in many ways:

Using a larger training set The training set that was used in this thesis con-
sisted of only 30 pages. Using larger training sets generally results in
higher-performance classifiers.

Using other machine learning software In this these, the rpart package was
used. Other machine learning software could produce a superior classi-
fier.

Using different derived features In this thesis, numerous features were derived
from the raw extracted features and used in the learning process, as
discussed in Section 3.8. However, there countless other features that
could be derived.

Using different raw features This would require modifying the injected JavaScript
program.

Utilizing headers This is discussed in Appendix A.

54



Appendix A

Utilizing Headers in Content
Extraction

Simulating the way the user perceives the webpage is an effective method of
carrying out content extraction. As discussed in Section 2.3, the Vision-Based
Page Segmentation Algorithm attempts to simulate the way the user perceives
the visual cues in a webpages.

Another kind of cues that give important hints to the user are the semantic
cues, in particular the headers of webpage sections. For instance, when the
user reads the header “See Also,” she understands that the respective webpage
section contains links to other webpages. Table A.1 contains a list of headers
that are commonly displayed on top of webpage sections that consist entirely
of noisy content. These headers were manually extracted from numerous web-
sites.

Table A.1: Commonly used headers that designate noisy content sections in a
webpage. Any webpage section that has one of these headers can be immediately
filtered out as noisy content.

Advertisement Also In Entertainment News Also Read
Around the Web Cookie Control Editor’s Choice
Elsewhere on [Website Name] External Links Featured Sections
From Around the Web Further Reading Just In
Latest News More News More from [Website Name]
More from the Author More to Explore Most E-Mailed
Most Popular Most Popular Stories Most Viewed Today
News From Your Area Next In Entertainment News On Our Radar
Paid Content Paid Partner Content Partner Content
Recent News Recent Posts References
Related Related Content Related Coverage
Related Links Related to This Story Recommended
See Also Share This Article Share This Story

55



APPENDIX A. UTILIZING HEADERS IN CONTENT EXTRACTION

Sign Up Sponsor Sponsored Content
Sponsored Links Sponsored Posts Sponsored Topics
Sponsored Stories Sport Headlines Subscribe
Subscribe and Follow Take a Look The Best of [Website Name]
Top News Top Stories Trending Articles
Trending Today Trending on [Website Name] What’s Hot
You May Also Like You May Like You Might Like

56



Glossary

article webpageA webpage that includes a substantial amount of information
about a specific topic in the form of textual content.

binary classification problem A classification problem where the set of
classes consists of “true” and “false”.

binary classifier A classifier whose output is either “true” or “false”.
block A visually contiguous portion of a webpage.
boolean feature A feature that can assume either of the values “true” or

“false”. It usually indicates the presence or absence of a property in
the phenomenon that is abstracted by an instance.

classification and regression tree A binary decision tree, in which each
internal node corresponds to a boolean condition that is applied to
one feature, and the branches correspond to whether the condition is
satisfied or not.

classification problem The problem of assigning an instance to an element
of a pre-defined set of classes.

classifier A function from a set of instances of a certain type to a finite set of
classes. This function must be computable by a machine.

confusion matrix A table layout for evaluating the performance of a classifier
on a test set. The rows represented the actual classifications of the
instances in the test set, while the columns represent the predicted
classifications.

content Any arbitrary part of a webpage.
content element An HTML element that enclose a piece of data, identifying

its purpose.
content extraction Another term for main content extraction.

decision tree A predictive model of a classifier in the form of a tree graph.
Each internal node in the tree represent a test that is a applied to
a feature value. Each branch that stems from the node represents a
possible outcome of the test. Leaf nodes represent predicted classes.

57



Glossary

directory webpage A webpage whose purpose is to provide links to other
webpages.

element-based metric value A classifier evaluation metric applied to a con-
tent classifier where the length of content is measured in the number
of HTML elements.

false negative A positive instance that has been falsely classified as negative
by a binary classifier.

false positive A negative instance that has been falsely classified as positive
by a binary classifier.

feature An individual measurable property of a phenomenon being observed.
form webpage A webpage whose purpose is to receive input from the user.

gold standard A term that is used to refer to either the training set or the
test set.

granularity (In the context of content extraction) the level at which webpage
contents are divided and classified as main or noisy.

inline semantic element An HTML element that gives a semantic meaning
to an arbitrary piece of text.

instance A specific observable phenomenon of any type, such as a person, a
rasterized image, or a piece of text. An instance is specified by the
values of its features.

machine learning Either supervised machine learning or unsupervised ma-
chine learning.

main content Roughly speaking, the part of a webpage that makes it useful.
main content extraction The process of identifying the main content in a

webpage.

negative instance An instance whose actual class is “false” in a binary clas-
sification problem.

noisy content Any type of content in a webpage other than the main content.
nominal feature A feature that can assume one value in a finite set of per-

missible values. The permissible values have no meaningful order.
numerical feature A feature that can assume a numerical value.

partition A partition of a set A is a set of disjoint non-empty setsets P =
{A1, A2, ...} such that ⋃

Ai∈P

Ai = A.

.

58



Glossary

positive instance An instance whose actual class is “true” in a binary classi-
fication problem.

precision The ratio of the positive instances to all the instances that were
classified as positive by a binary classifier.

predictive model A high-level abstraction of a classifier.

recall The ratio of the instances that were classified as positive by a binary
classifier to all the positive instances in a test set.

sectioning element An HTML element that includes other HTML elements
in order to organize them in a certain way or to designate them as
semantically related.

supervised machine learning The procedure of inducing a predictive func-
tion (a binary classifier in the case of content extraction) from a train-
ing set.

template A webpage layout that contains slots where arbitrary contents can
be inserted.

template recognition The task of analyzing a set of webpages that are based
on the same template in order to discover the template structure.

test set A set of instances whose classes have been identified (usually manually
by a human user). The test set is used to assess the performance of a
classifier.

text-based metric value A classifier evaluation metric applied to a content
classifier where the length of content is measured in the number of
words.

training set A set of instances whose classes have been identified (usually
manually by a human user). The training set is used by a supervised
machine learning algorithm to train a classifier to automatically classify
instances with unknown classes.

type I error The classification of a negative instance instance as positive in
a binary classification problem.

type II error The classification of a positive instance instance as negative in
a binary classification problem.

unsupervised machine learning Similar to supervised machine learning,
except that the classes of the instances in the dataset do not have to
be identified in advance.

webpage cluster A set of webpages that are based on the same template.
wrapper A program or procedure for extracting information from webpages.

59



Bibliography

Marco Baroni, Francis Chantree, Adam Kilgarriff, and Serge Sharoff.
Cleaneval: a competition for cleaning web pages. In LREC, 2008. 3.6

Christopher Bishop. Pattern recognition and machine learning. Springer, 2006.
3.4.1

Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Clas-
sification and regression trees. CRC press, 1984. 4.1.1

Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. Vips: A vision-based
page segmentation algorithm. Technical report, Microsoft technical report,
MSR-TR-2003-79, 2003. 2.3

W. Bruce. Croft, Donald Metzler, and Trevor Strohman. Search Engines:
Information Retrieval in Practice. Addison-Wesley, 2010. 1.2

Aidan Finn, Nicholas Kushmerick, and Barry Smyth. Fact or fiction: Content
classification for digital libraries, 2001. 2.1

Forbes Magazine. How much of the internet does the
wayback machine really archive, 2015. URL http://
www.forbes.com/sites/kalevleetaru/2015/11/16/
how-much-of-the-internet-does-the-wayback-machine-really-archive.
Accessed: 2016-10-22. 2

Thomas Gottron. Content Extraction: Identifying the Main Content in HTML
Documents. PhD thesis, Johannes Gutenberg-Universität in Mainz, 2009.
2, 2.4, 2.5, 3.1, 1

Suhit Gupta, Gail Ka iser, David Neistadt, and Peter Grimm. Dom-based con-
tent extraction of html documents. In Proceedings of the 12th international
conference on World Wide Web, pages 207–214. ACM, 2003. 2.2

Thiago S Guzella and Walmir M Caminhas. A review of machine learning
approaches to spam filtering. Expert Systems with Applications, 36(7):10206–
10222, 2009. 1.1

60

http://www.forbes.com/sites/kalevleetaru/2015/11/16/how-much-of-the-internet-does-the-wayback-machine-really-archive
http://www.forbes.com/sites/kalevleetaru/2015/11/16/how-much-of-the-internet-does-the-wayback-machine-really-archive
http://www.forbes.com/sites/kalevleetaru/2015/11/16/how-much-of-the-internet-does-the-wayback-machine-really-archive


BIBLIOGRAPHY

Christian Kohlschütter, Peter Fankhauser, and Wolfgang Nejdl. Boilerplate
detection using shallow text features. In Proceedings of the third ACM in-
ternational conference on Web search and data mining, pages 441–450. ACM,
2010. 3.6

Nicholas Kushmerick, Daniel S. Weld, and Robert Doorenbos. Wrapper in-
duction for information extraction. In Proceedings of the International Joint
Conference on Artificial Intelligence, 1997. 2.4

Shian-Hua Lin and Jan-Ming Ho. Discovering informative content blocks from
web documents. In Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 588–593. ACM,
2002. 2.5, 2.5

Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data.
Springer Science & Business Media, 2007. 2.4

Wei Liu, Xiaofeng Meng, and Weiyi Meng. Vision-based web data records
extraction. In Proc. 9th International Workshop on the Web and Databases,
pages 20–25, 2006. 2.3

Samuel Louvan. Extracting the main content from web documents, 2009. 1.1,
3.8.1

Mozilla Developer Network. Html element reference, 2016. URL
https://developer.mozilla.org/en/docs/Web/HTML/
Element#Inline_text_semantics. Accessed: 2016-10-22. 3.5

David Pinto, Michael Branstein, Ryan Coleman, W. Bruce Croft, Matthew
King, Wei Li, and Xing Wei. Quasm: A system for question answering
using semi-structured data. In Proceedings of the 2Nd ACM/IEEE-CS Joint
Conference on Digital Libraries, 2002. 2.1

Martin F Porter. An algorithm for suffix stripping. Program, 14(3):130–137,
1980. 2.5

C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, New-
ton, MA, USA, 2nd edition, 1979. ISBN 0408709294. 4.2.2

Lior Rokach and Oded Maimon. Top-down induction of decision trees
classifiers-a survey. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part C (Applications and Reviews), 35(4):476–487, 2005. 4.1

61

https://developer.mozilla.org/en/docs/Web/HTML/Element#Inline_text_semantics
https://developer.mozilla.org/en/docs/Web/HTML/Element#Inline_text_semantics


BIBLIOGRAPHY

Claude Elwood Shannon. A mathematical theory of communication. ACM
SIGMOBILE Mobile Computing and Communications Review, 5(1):3–55,
2001. 2.5

Koen Smets, Bart Goethals, and Brigitte Verdonk. Automatic vandalism de-
tection in wikipedia: Towards a machine learning approach. In AAAI work-
shop on Wikipedia and artificial intelligence: An Evolving Synergy, pages
43–48, 2008. 1.1

Ruihua Song, Haifeng Liu, Ji-Rong Wen, and Wei-Ying Ma. Learning block
importance models for web pages. In Proceedings of the 13th international
conference on World Wide Web, pages 203–211. ACM, 2004. 3.8.1

Johnny Stenback, Philippe Le Hégaret, and Arnaud Le Hors. Document object
model (dom) level 2 html specification. W3C Recommendation, 2003. 2.2

Pang-Ning Tan et al. Introduction to data mining. Pearson Education India,
2006. 4.1.2

Terry Therneau, Beth Atkinson, Brian Ripley, and Maintainer Brian Ripley.
Package ‘rpart’, 2015. 4.1.1

Terry M Therneau, Elizabeth J Atkinson, et al. An introduction to recursive
partitioning using the rpart routines, 1997. 4.1.1

Ziyan Zhou and Muntasir Mashuq. Web content extraction through machine
learning, 2014. 1.1, 3.8.1

62


	Introduction
	Motivation
	Importance of Content Extraction
	Thesis Organization

	Related Work
	Body Text Extraction
	DOM-Based Content Extraction
	Vision-Based Content Extraction
	Wrappers
	Template Recognition
	Summary

	Methodology and Setup
	Defining the Main Content
	Types of Webpages
	The Main Content in Different Types of Webpages

	The Non-Main Content
	Using Machine Learning for Content Extraction
	Content Extraction as a Classification Problem
	Building Classifiers Using Machine Learning

	Types of HTML Elements
	The Dataset Format
	Creating the Dataset
	The Training and Test Sets Used in This Work
	Annotating the HTML Documents
	Annotation Guidelines
	The Language Dependence of Our Approach

	Feature Engineering
	Features Used in Other Works
	The Raw Features
	Remarks About the Raw Features
	Derived Features

	Summary

	Experiment and Evaluation
	Using Decision Trees as Predictive Models
	The rpart Package
	Splitting Criteria

	Evaluating the Performance of a Binary Classifier
	Errors in Binary Classification
	Evaluation Metrics
	A Clarification About the Evaluation Values

	Using Different Decision Trees for Different Element Types
	The Elements to be Classified
	Filtering Out Certain Elements
	Manually Classifying Certain Elements

	Evaluation Scores for Text Elements
	Evaluation Scores for Image Elements
	Summary

	Conclusion and Potentional Future Work
	Future Work

	Utilizing Headers in Content Extraction
	Bibliography

