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Motivation
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● Quoting

●  Verbatim

●  Paraphrasing

●  Translation

● Summarization
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Wikipedia vs The World
Motivation

● Digital Encyclopedia

● Collaborative environment

● Giant public source of 

information

● Free to use 
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Scientific 
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Motivation

Wikipedia vs The World

- Web pages = Wikipedia text + advertisements
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Research Questions

➔ What kinds of text reuse occur within Wikipedia? 

➔ How much of the web is a copy of Wikipedia content?

➔ How much revenue does this content generate?
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Text Reuse Pipeline

TR Pipeline
D1

D2

➔ Input: Two datasets

➔ Output: Text reuse 

cases
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Text Reuse Pipeline

Text 
Preprocessing

Candidate 
Elimination

Text 
Alignment
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➔ Content extraction

➔ Chunking

➔ Feature extraction

A Pipeline for Scalable Text Reuse Extraction
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➔ Content extraction

➔ Chunking
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Text Reuse Pipeline

Text 
Preprocessing

Candidate 
Elimination

Text 
Alignment

➔ Content extraction

➔ Chunking

➔ Feature extraction

➔ Pairwise scan

➔ Text Reuse heuristics

➔ Detailed scan of text 

reuse

➔ Picapica framework
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Candidate Elimination

Text 
Preprocessing

Candidate 
Elimination

Text 
Alignment

Keys for scaling-up:

➔ Cluster computing

➔ Heuristics based candidate elimination 

algorithms

22

A Pipeline for Scalable Text Reuse Extraction



05.07.2018Pipeline for TR extractionMilad Alshomary

Candidate Elimination

Text 
Preprocessing

Candidate 
Elimination

Text 
Alignment

Keys for scaling-up:

➔ Cluster computing

➔ Heuristics based candidate elimination 

algorithms

23

A Pipeline for Scalable Text Reuse Extraction



05.07.2018Pipeline for TR extractionMilad Alshomary

Candidate Elimination

For a candidacy function we proposed 

the following methods:

- Cosine similarity of TF-IDF (semantic)

- Paragraph embedding (semantic)

- Stopwords N-grams (structure)

- Weighted average of Stopwords Ngrams and 

Paragraph embedding (semantic + structure)

24

d2n

D1 D2

candidacy(d11, d21) → [0, 1]

d11 d21

d22d12

d1n

A Pipeline for Scalable Text Reuse Extraction
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Candidate Elimination

Wikipedia Document 
Sample

Text alignment using 
picapica framework

TR sample

Sample 1k 
documents

Generate TR Sample from Wikipedia:

- Sample 1k documents from 

Wikipedia

- Using Picapica framework to find 

TR cases
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- 232 documents

- ~ 90% have < 10 alignements (TR case)

A Pipeline for Scalable Text Reuse Extraction
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Candidate Elimination

TR sampleEvaluation of “candidacy” function:

- For each document in TR sample:

- Sort all Wikipedia articles 

according to the proposed 

“candidacy” .

- Precision/Recall on  

Thresholds of [1, 101,..,100k]

- A True Positive (TP) is a pair of 

documents that have TR.
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T1 T2 T3

A Pipeline for Scalable Text Reuse Extraction
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Candidate Elimination

TR sampleEvaluation of “candidacy” function:
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T1 T2 T3

r1
r2

p1

p2

A Pipeline for Scalable Text Reuse Extraction
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Candidate Elimination

Semantic hashing function:

- Hashes documents into binary 

hashes.

- Similar documents get similar or 

exact binary hash.
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011001 011001
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Candidate Elimination

Semantic hashing function:

- Hashing all documents.

- Inverted index.

- Hash document’s chunks.

- Apply candidacy function only on 

documents that intersect in one 

hash at least.
001001

011001

001000

Inverted index

011001

011001

D1
D2
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Semantic hashing function:

- Hashing all documents.

- Inverted index.

- Hash document’s chunks.

- Apply candidacy function only on 

documents that intersect in one 

hash at least.

A Pipeline for Scalable Text Reuse Extraction



05.07.2018Pipeline for TR extractionMilad Alshomary

Candidate Elimination

001001

011001

001000

Inverted index

011001

011001

D1
D2

33

Semantic hashing function:

- Hashing all documents.

- Inverted index.

- Hash document’s chunks.

- Apply candidacy function only on 

documents that intersect in one 

hash at least.
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Semantic hashing function:

- Hashing all documents.

- Inverted index.

- Hash document’s chunks.

- Apply candidacy function only on 

documents that intersect in one 

hash at least.
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Candidate Elimination

Proposed semantic hashing methods:

- Random Projection (data 

independent)

- Variational Deep Semantic 

Hashing (data dependent)
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Candidate Elimination

Proposed semantic hashing methods:

- Random Projection (data 

independent)
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Hashing (data dependent)
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Learning

VDSH
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Candidate Elimination

Transform

011001
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Learning

VDSH VDSH

Proposed semantic hashing methods:

- Random Projection (data 

independent)

- Variational Deep Semantic 

Hashing (data dependent)

A Pipeline for Scalable Text Reuse Extraction
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Candidate Elimination
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Hashing methods evaluation:

- Using same TR sample for 

evaluation.

- Hashing all documents using the 

proposed hashing function.

- Compute precision and recall.

TR sample

A Pipeline for Scalable Text Reuse Extraction
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Hashing methods evaluation:

- Using same TR sample for 

evaluation.

- Hashing all documents using the 

proposed hashing function.
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Candidate Elimination
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Hashing methods evaluation:

- Using same TR sample for 

evaluation.

- Hashing all documents using the 

proposed hashing function.

- Compute precision and recall.

TR sample
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Precision = 2/3 
Recall      = 1.0
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Candidate Elimination

Random 
projection

bits precision recall

…. 8 3.1 x 10-4 0.8741

…. 16 9.9 x 10-4 0.324

VDSH bits precision recall

…. 8 2.8 x 10-4 0.88

…. 16 4.5 x 10-3 0.73
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Hashing methods evaluation

- Using same TR sample for 

evaluation.

- Hashing all documents using the 

proposed hashing function.

- Compute precision and recall.

A Pipeline for Scalable Text Reuse Extraction
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Candidate Elimination

VDSH bits precision recall

8 2.8 x 10-4 0.88

16 4.5 x 10-3 0.73

● Retains 73% of the recall
● By experiment:

○ Reduces the computations needed by  3 
order of magnitude
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Hashing methods evaluation

- Using same TR sample for 

evaluation.

- Hashing all documents using the 

proposed hashing function.

- Compute precision and recall.

A Pipeline for Scalable Text Reuse Extraction
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Text Reuse In Wikipedia
Application on Wikipedia

➔ What kinds of text reuse occur within Wikipedia? 

➔ How much of the web is a copy of Wikipedia content?

➔ How much revenue does this content generate?
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Text Reuse In Wikipedia
Application on Wikipedia

100 million text reuse

TR 
Pipeline

Wikipedia

Wikipedia
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Wikipedia Articles

360k Wikipedia Article
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What kinds of text reuse occur in 

Wikipedia?

- Reasons behind text reuse:

(1) Two texts describe the same 

topic.

(2) Two texts describe two 

different topics, that share similar 

characteristics

47

Text Reuse In Wikipedia
Application on Wikipedia
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Text Reuse In Wikipedia
Application on Wikipedia

- Vertical alignment → Content TR

- Horizontal alignment → Structure TR

Vertical relation Horizontal relation
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Common Crawl
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Wikipedia vs The Web
Application on Wikipedia and Common Crawl
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➔ What kinds of text reuse occur within Wikipedia? 

➔ How much of the web is a copy of Wikipedia content?

➔ How much revenue does this content generate?
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Wikipedia vs The Web

WWW

- Crawling

Extracted web 
content

- Content extraction

- Keeping only english 

pages

Web Sample

 10% random 

sample
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Wikipedia vs The Web

WWW

- Crawling

Extracted web 
content

- Content extraction

- Keeping only english 

pages

Web Sample

 10% random 

sample

- 59 million web pages.

- 1.4 million websites.

- 70% of these websites 

contains less than 10 web 

pages

Number of web pages

N
um

be
r 

of
 w

eb
si

te
s
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Wikipedia vs The Web

TR 
Pipeline

Web Sample

Wikipedia

- 1.6 million text reuse cases.

- 15k pages reuse Wikipedia text.

- 4.8k websites reuse Wikipedia text.
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Application on Wikipedia and Common Crawl
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Wikipedia vs The Web

Monthly revenue estimation:

- Rough estimate of Ads revenue

- Based on CPM (Cost Per Millie)

- Sampled 100 webpages and 

manually checked the existence of 

Advertisements.
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Application on Wikipedia and Common Crawl
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Wikipedia vs The Web

Revenue estimation:

- Per website (all websites)

- Per website (highly reusing)

- Per Wikipedia web page
website Monthly 

revenue Percentage of reuse Monthly 
Wikipedia value

pdxretro.com $195 0.012 $2.5

seqrchquarry.com $8,850 0.096 $850

asiatees.com $36,000 0.017 $613

…. ….. ….. ….

Total $1.2 million

61

Application on Wikipedia and Common Crawl



05.07.2018Pipeline for TR extractionMilad Alshomary

Wikipedia vs The Web

Revenue estimation:

- Per website (all websites)

- Per website (highly reusing)

- Per Wikipedia web page
website Monthly 

revenue Percentage of reuse Monthly 
Wikipedia value

pdxretro.com $195 0.012 $2.5

seqrchquarry.com $8,850 0.096 $850

asiatees.com $36,000 0.017 $613

…. ….. ….. ….

Total $1.2 million

62

Application on Wikipedia and Common Crawl



05.07.2018Pipeline for TR extractionMilad Alshomary

Wikipedia vs The Web

Revenue estimation:

- Per website (all websites)

- Per website (highly reusing)

- Per Wikipedia web page
website Monthly 

revenue Percentage of reuse Monthly 
Wikipedia value

pdxretro.com $195 0.012 $2.5

seqrchquarry.com $8,850 0.096 $850

asiatees.com $36,000 0.017 $613

…. ….. ….. ….

Total $1.2 million

63

Application on Wikipedia and Common Crawl



05.07.2018Pipeline for TR extractionMilad Alshomary

Wikipedia vs The Web

Revenue estimation:

- Per website (all websites)

- Per website (highly reusing)

- Per Wikipedia web page
website Monthly 

revenue Percentage of reuse Monthly 
Wikipedia value

pdxretro.com $195 0.012 $2.5

seqrchquarry.com $8,850 0.096 $850

asiatees.com $36,000 0.017 $613

…. ….. ….. ….

Total $1.2 million

64

Application on Wikipedia and Common Crawl



05.07.2018Pipeline for TR extractionMilad Alshomary

Wikipedia vs The Web

Revenue estimation:

- Per website (all websites)

- Per website (highly reusing)

- Per Wikipedia web page
website Monthly 

revenue Percentage of reuse Monthly 
Wikipedia value

pdxretro.com $195 0.012 $2.5

seqrchquarry.com $8,850 0.096 $850

asiatees.com $36,000 0.017 $613

…. ….. ….. ….

Total $1.2 million

The rough estimate of monthly revenue of 
Wikipedia content
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Wikipedia vs The Web

Revenue estimation:

- Per website (all websites)

- Per website (highly reusing)

- Per Wikipedia web page

- Percentage of pages reusing Wikipedia >= 0.5

- 87 websites.

- Estimated monthly revenue:  $15k
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Wikipedia vs The Web

Extracted from 
Wikipedia API
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Revenue estimation:

- Per website (all websites)

- Per website (highly reusing)

- Per Wikipedia web page Reused Wikipedia 
page

Average page 
views Average CPM Average monthly 

revenue

Nuclear 
renaissance 645 $2.8 $1.806

Second Chechen 
War 34655 $2.8 $97

Enumerated 
powers 12858 $2.8 $36

…. ….. ….. ….

Total $900k

Application on Wikipedia and Common Crawl
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Wikipedia vs The Web

Estimated from 
marketing reports
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Wikipedia vs The Web

Reused Wikipedia 
page

Average page 
views Average CPM Average monthly 

revenue

Nuclear 
renaissance 645 $2.8 $1.806

Second Chechen 
War 34655 $2.8 $97

Enumerated 
powers 12858 $2.8 $36

…. ….. ….. ….

Total $900k
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Revenue estimation:

- Per website (all websites)

- Per website (highly reusing)

- Per Wikipedia web page

Application on Wikipedia and Common Crawl
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Wikipedia vs The Web

71

Monthly revenue:

Application on Wikipedia and Common Crawl

Per Web sample Number of reusing  web 
pages Revenue(per webpage)

59 million 15k $900k

590 million 150k $9 million
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Monthly revenue:

Application on Wikipedia and Common Crawl
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Summary
conclusion
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● Pipeline for TR Extraction

● Text Reuse in Wikipedia

● Text Reuse between 

Wikipedia and the Web

Text 
Preprocessing

Candidate 
Elimination Text Alignment

Text Reuse

Structure Text 
Reuse

Content Text 
Reuse

Per website 
(all websites)

Per website 
(highly reuse)

Per 
Webpage

$1.2 million $15k $900k
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Future Work
conclusion

TR 
Pipeline

Wikipedia

?
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● Using the pipeline to extract and analyze 

TR between Wikipedia and the scientific 

community.

● Experiments on the Text Alignment 

subtask.

● Further analysis of the extracted Text 

Reuse cases.

● More accurate estimation on the 

monthly revenue generated by 

Wikipedia content.
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● Using the pipeline to extract and analyze 

TR between Wikipedia and the scientific 

community.

● Experiments on the Text Alignment 

subtask.

● Further analysis of the extracted Text 

Reuse cases.

● More accurate estimation on the 

monthly revenue generated by 

Wikipedia content.
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Backup Slides
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- Candidate Elimination functions:
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- Stopwords N-grams procedure:

Wiki 
paragraphs stopwords stopword 

ngrams

Extract stop words generate n-grams filtered 
stopword 
ngrams

Top 50 frequent stopwords:

the, of, and, a, in, to,is, was, it, for, with, he, 

be, on, i, that, by, at, you, 's, are, not,his, 

this, from, but, had, which, she, they, or, an, 

were, we, their, been, has, have, will, would, 

her, there, can, all,as, if, who, what, said

filter n-grams

- Let C = {the, of, and, a, in, to, ’s} stopwords that 
increases false positive.

- X is accepted n-gram if:
- It doesn’t contain more than n-1 

stopwords from C
- The maximal sequence of stopwords 

belonging to C is less than n-2

binary 
count 
vector

- Binary count vector ignores the frequency in 
which a specific n-gram happened in a 
paragraph.

- We apply the scoring function on the binary 
count vector
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- VDSH explained:

VDSH USAGE
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- Performance of candidacy functions on different thresholds:

Documents from sample who have number of 
aligned docs <= 10

Documents from sample who have number of 
aligned docs > 10

Thresholds between (1 to 1000 and step of 5)

RECALLRECALL
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- Candidate Elimination procedure over the cluster:
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- Hash based Candidate Elimination procedure over the cluster:
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- Hash based Candidate Elimination procedure over the cluster:
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- Heuristics:

- H1: ne_sim ∈ (0.5, 1.0] AND 10grams_sim > 0.5 AND (s_percent_reused < 0.5 or 

t_percent_reused < 0.5) => content reuse otherwise structure reuse

- 6700 content reuse cases only

- Validation on two random samples of size 100:

Structure reuse Content reuse

Sample1 100% 58%

Sample2 (Text1 or Text2 
> 200)

100% 73%


