# Identifying Controversial Topics in Largescale Social Media Data

## Master's Thesis

Olaoluwa Anifowose

Fakultät Medien Bauhaus-Universität Weimar

31.03.2016

Supervised by:

Prof. Dr. Benno Stein Prof. Dr. Sven Bertel

Advisors:

Dr. Henning Wachsmuth Michael Völske

## Outline

#### Introduction











▶ ▲ 王

EL OQO

## Introduction

Controversies and the Web

#### Controversy

A state of prolonged public dispute or debate, usually concerning a matter of conflicting opinion or point of view<sup>a</sup>

<sup>a</sup>https://en.wikipedia.org/wiki/Controversy

#### Controversies on the web

- The web: a platform to express opinions or point of views
- A place to identify controversies.

#### **Effects of Controversies**

- Facilitates productive debates
- Provides balanced view about a topic
- Can lead to tension and conflict

#### Why detect controversies

- Avoid or detect tension and conflict
- Used by search engines in meeting users information need

Manual Controversy Detection Challenges

- The size of the web
- The diversity of the web
- The dynamic nature of the web
- The context and scope of controversy

Automatic Controversy Detection : Related Work

- Controversy Ranked Models [Vuong et al 2008]
  - Domain: Wikipedia
  - Objective: Detect if a page is controversial

Automatic Controversy Detection : Related Work

- Controversy Ranked Models [Vuong et al 2008]
  - Domain: Wikipedia
  - Objective: Detect if a page is controversial
- Regression Machine Learning [Popescu et al 2010]
  - Domain: Twitter
  - Objective: Ranking of how controversial a discussion is

#### Automatic Controversy Detection : Related Work

- Controversy Ranked Models [Vuong et al 2008]
  - Domain: Wikipedia
  - Objective: Detect if a page is controversial
- Regression Machine Learning [Popescu et al 2010]
  - Domain: Twitter
  - Objective: Ranking of how controversial a discussion is
- Fine grained [Bykau et al 2015]
  - Domain: Wikipedia
  - Objective: What, Where, When, Who

4 E N 4 E N

#### Objectives Research Questions

- How easily identifiable are controversies in a large domain?
- How early can these controversies be detected?
- How effective are the known controversial measures in detecting controversies?





Election 2016 How I see the US presidential election as a nerd. (imgur.com) submitted 10 days ago by bawbrosss ③ 4449 comments share

#### top 200 comments show 500

sorted by: best **v** 

🔶 [-] Joal0503 3306 points 10 days ago

#### 🔸 ted cruz as "The Penguin"

#### permalink



🔸 I was about to Photoshop that up, and I just decided to do a google search: http://i.imgur.com/2pDjZcL.jpg

permalink parent

[-] DMann420 1141 points 10 days ago

Well that's convenient.

permalink parent

🔶 [-] wnbaloll 526 points 10 days ago

🕨 Internet has done it again

permalink parent

- 🔶 [-] d\_haven 420 points 10 days ago
- 🕈 Great job everyone! Let's go home.



Reddit Dataset





#### 196.5M submissions & 1.7B July, 2006 to May, 2015 comments



Olaoluwa Anifowose (Bauhaus Universität Weldentifying Controversial Topics in Large-scale Master's Thesis Defense, 2016 8 / 26

## Reddit

Reddit Representation

- A page p = (s, c, t). Where
  - s is the page submission
  - c, the comments associated with the submission
  - t, the time the submission was created
- A page is controversial if it has at least one controversial comment
  - Using the the controversiality field of comments metadata
- Equal number of controversial and non-controversial pages
  - Balanced across subreddit and time

## Reddit

Dataset Balancing

| Pages<br>       | Pages<br><i>n</i> <sub>11</sub> . |
|-----------------|-----------------------------------|
| n <sub>11</sub> | n <sub>11</sub>                   |
| ·<br>·          |                                   |
|                 |                                   |
|                 | •                                 |
| •               | •                                 |
| n <sub>1j</sub> | n <sub>1j</sub>                   |
| •               |                                   |
| •               |                                   |
| •               | •                                 |
| n <sub>ii</sub> | n <sub>ii</sub>                   |
|                 |                                   |
| •               |                                   |
| •               |                                   |
| <b>D</b>        | nii                               |
|                 |                                   |

Olaoluwa Anifowose (Bauhaus Universität Weldentifying Controversial Topics in Large-scale<mark>Master's Thesis Defense, 2016 10 / 26</mark>

#### Supervised Learning Problem

 Label data as controversial or not



-

Supervised Learning Problem

- Label data as controversial or not
- Learn from examples from the past
  - Training set



Supervised Learning Problem

- Label data as controversial or not
- Learn from examples from the past
  - Training set



・ 同 ト ・ ヨ ト ・ ヨ ト

JIN NOR

Supervised Learning Problem

- Label data as controversial or not
- Learn from examples from the past
  - Training set
- Make predictions on recent data
  - Test set



A B M A B M

EL OQO

Supervised Learning Problem

- Label data as controversial or not
- Learn from examples from the past
  - Training set
- Make predictions on recent data
  - Test set



A B M A B M

EL OQO

### Approach Feature Engineering

Structural Features

• Linguistic Features

Sentiment Features

• Age Dependent Features

-

Feature Engineering

#### Structural Features

- Features derived from the composition of the data
- Mainly from the metadata of the dataset
- Examples: number of comments, depth of comments, average timestamp of comments etc.
- Linguistic Features

Sentiment Features

• Age Dependent Features

#### Feature Engineering

#### Structural Features

- Features derived from the composition of the data
- Mainly from the metadata of the dataset
- Examples: number of comments, depth of comments, average timestamp of comments etc.
- Linguistic Features
  - Describes the text content of the entire page.
  - Examples: percentage of nouns, percentage of verbs etc.
- Sentiment Features

• Age Dependent Features

#### Feature Engineering

#### Structural Features

- Features derived from the composition of the data
- Mainly from the metadata of the dataset
- Examples: number of comments, depth of comments, average timestamp of comments etc.
- Linguistic Features
  - Describes the text content of the entire page.
  - Examples: percentage of nouns, percentage of verbs etc.
- Sentiment Features
  - Reveals the views and opinions expressed by the authors
  - Examples: fraction of positive words, fraction of negative words etc.
- Age Dependent Features

#### Feature Engineering

#### Structural Features

- Features derived from the composition of the data
- Mainly from the metadata of the dataset
- Examples: number of comments, depth of comments, average timestamp of comments etc.
- Linguistic Features
  - Describes the text content of the entire page.
  - Examples: percentage of nouns, percentage of verbs etc.
- Sentiment Features
  - Reveals the views and opinions expressed by the authors
  - Examples: fraction of positive words, fraction of negative words etc.

4 E N 4 E N

- Age Dependent Features
  - Takes advantage of the age of the page
  - Examples: comments per age etc

**Experiments** Overview

- Time Independent Experiments
  - Training Set: All comments of the page
  - Test Set: All comments of the page

**Experiments** Overview

- Time Independent Experiments
  - Training Set: All comments of the page
  - Test Set: All comments of the page
- Time Dependent Experiments
  - **Training Set:** Only comments of the page at specified age of the page
  - **Test Set:** Only comments of the page at specified age of the page

**Experiments** Overview

- Time Independent Experiments
  - Training Set: All comments of the page
  - Test Set: All comments of the page
- Time Dependent Experiments
  - **Training Set:** Only comments of the page at specified age of the page
  - ► Test Set: Only comments of the page at specified age of the page
- Hybrid Experiments
  - Training Set: All comments of the page
  - **Test Set:** Only comments of the page at specified age of the page

4 E N 4 E N

**Evaluation Metrics** 

• Precision = 
$$\frac{TP}{TP+FP}$$
  
• Recall =  $\frac{TP}{TP+FN}$   
• F-Score =  $2 \cdot \frac{precision+recall}{precision\cdot recall}$ 

ELE NOR

**Experiment Results** 

#### Table: Time Independent Experiment Test Data Result

| Metric                | Value |
|-----------------------|-------|
| % Correctly Predicted | 75.4  |
| Precision             | 0.84  |
| Recall                | 0.63  |
| F-Score               | 0.72  |

Objective

• How easily identifiable are controversies in a large domain?

4 3 5 4 3

#### Experiment Results



#### Objective

#### • How early can controversies be detected?

-

- < A

#### Experiment Results



#### Objective

• Effect of incomplete information in classification.

ъ

**Experiment Results** 

Table: Features Information Gain Ranking of highest ranked features in each Feature Family

| Features              | Family        | Info Gain | Rank |
|-----------------------|---------------|-----------|------|
| numOfComments         | Structural    | 0.422     | 1st  |
| maximumNumOfComments- | Age Dependent | 0.399     | 2nd  |
| InTimeSequences       |               |           |      |
| controversialMix      | Sentiment     | 0.371     | 4th  |
| percentageOfQuestions | Linguistic    | 0.325     | 9th  |

Objective

• How effective are the known controversial measures in detecting controversial topics?

ELE NOR

**Experiment Results** 

Table: Features Information Gain Ranking of lowest ranked features in each Feature Family

| Features               | Family        | Info Gain | Rank |
|------------------------|---------------|-----------|------|
| numOfGildes            | Structural    | 0.001     | 32nd |
| percentageOfSarcastics | Linguistic    | 0.026     | 28th |
| commentsPerAge         | Age Dependent | 0.063     | 27th |
| contradictionScore     | Sentiment     | 0.216     | 18th |

Objective

• How effective are the known controversy detection measures

A B M A B M

ELE NOR



#### • A balanced social media dataset that can be used for research.

Image: A matrix

A B M A B M

ELE DOG



- A balanced social media dataset that can be used for research.
- Knowledge about how early controversies can be detected.
  - ▶ Controversy can be detected within 0.3 days (7 hours 12 minutes)

4 E N 4 E N

EL OQO



- A balanced social media dataset that can be used for research.
- Knowledge about how early controversies can be detected.
  - Controversy can be detected within 0.3 days (7 hours 12 minutes)
- Effect of incomplete information in classification.
  - Lower percentage of page correctly classified for the first two days

- A TE N - A TE N

ELE SOC

- A balanced social media dataset that can be used for research.
- Knowledge about how early controversies can be detected.
  - Controversy can be detected within 0.3 days (7 hours 12 minutes)
- Effect of incomplete information in classification.
  - Lower percentage of page correctly classified for the first two days
- Performance of known controversy detection measures.
  - Sentiment Features: a good measure of controversy
  - Age Dependent Features: a good measure for data with incomplete information



- Effective way of topic extraction
- Feature Engineering: Development of more features

I= nan

#### Thank You