Incident Linking: Assigning Tweets to Entries in a Disaster Database

Master's Thesis Defence

Prof. Dr. Benno Stein

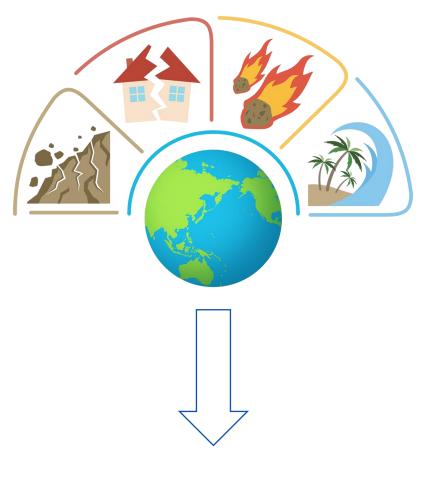
Prof. Dr.-Ing. Volker Rodehorst

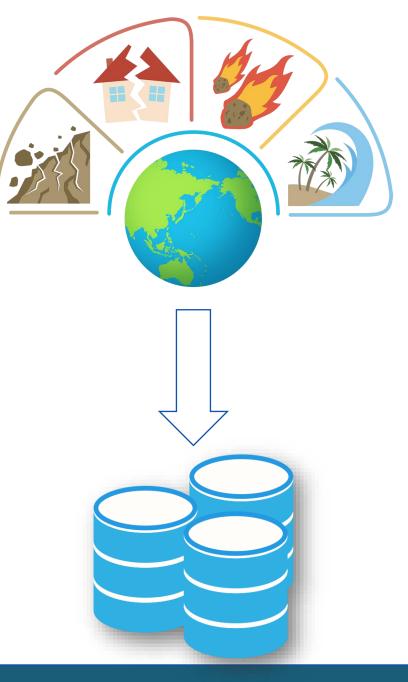
Siva Bathala

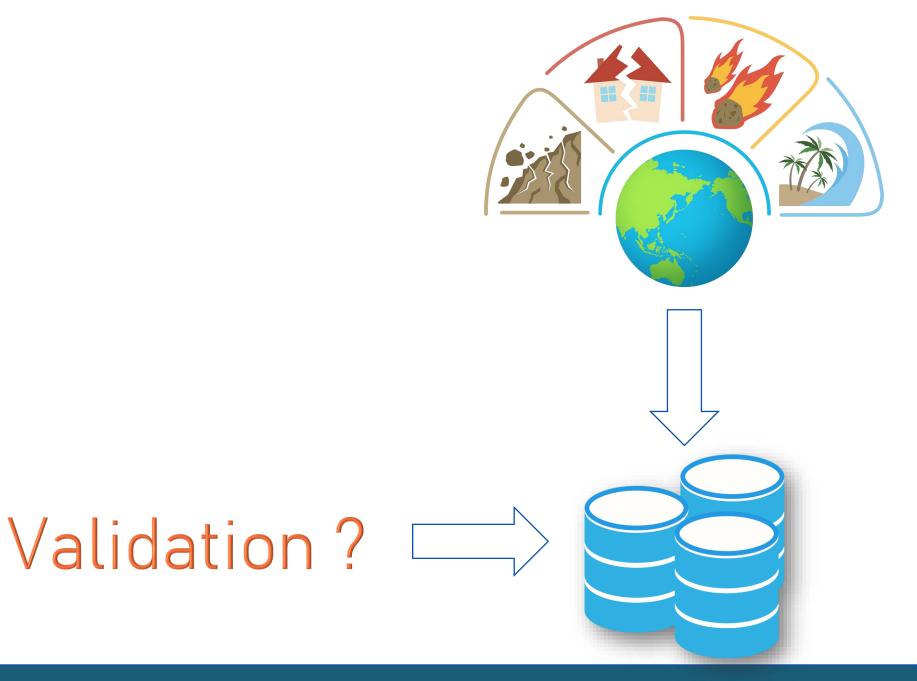
Bauhaus-Universität Weimar

CONTENTS

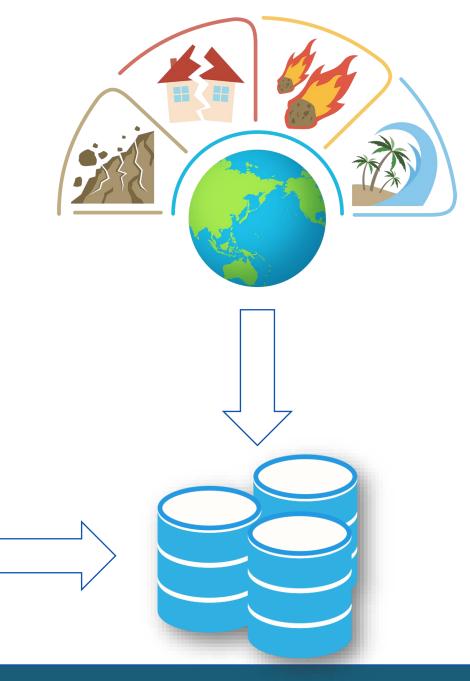
PROPOSED METHOD

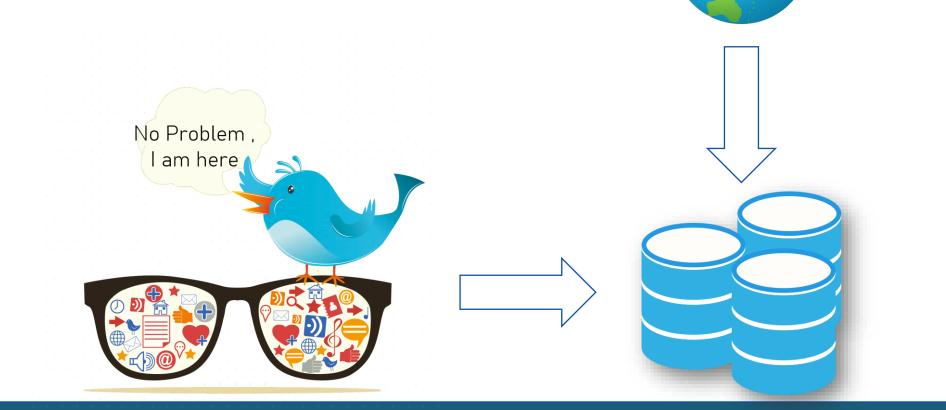

RESULTS AND DISCUSSION

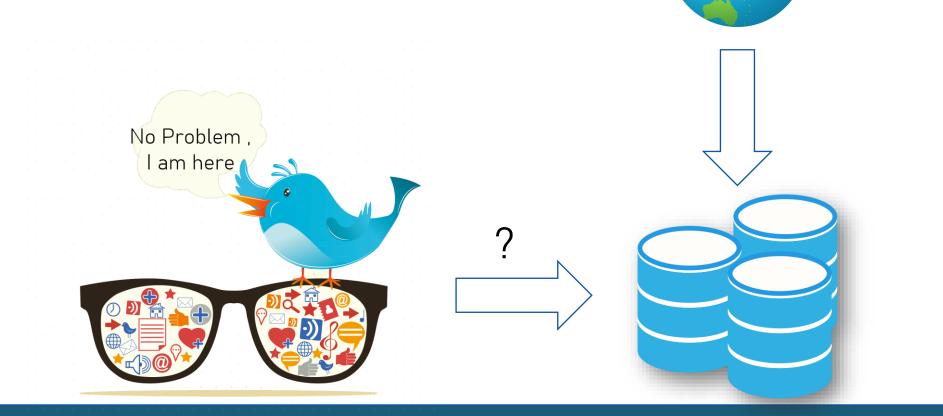

CONCLUSION AND FUTURE WORK

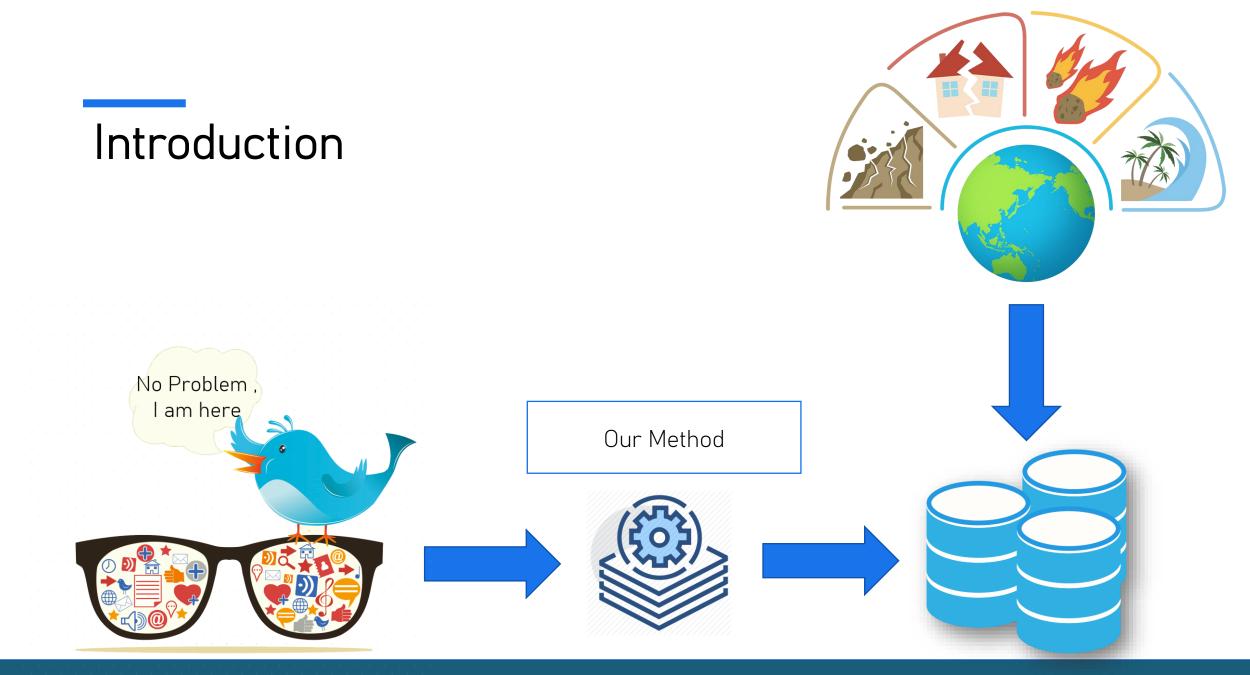

- DATASETS
- INTRODUCTION

2









Manual Validation

Mudslide collapses on bus in Colombia, 6 dead; one victim called for help by cellphone uninews.us/vq57mW #Colombia

12:45 AM · Dec 9, 2011 · SocialFlow

Sample part of incident database entry from EM-DA	λT
---	----

incident_id	47108fe1-5c04-472c-b534-75a51b747489
type	landslide
start_time	2011-12-08T08:00:00.000Z
location	Colombia ; Bosa ; Bogota
deaths	6

Bauhaus-Universität Weimar

...

Research Questions

• RQ 1

What are the possible features that we can extract from tweets that match with those of typical knowledge databases?

Research Questions

• RQ 1

What are the possible features that we can extract from tweets that match with those of typical knowledge databases?

• RQ 2

How can we build a linking model that will link the each tweet to entries in the disaster database based on the features from **RQ1**?

Research Questions

• RQ 1

What are the possible features that we can extract from tweets that match with those of typical knowledge databases?

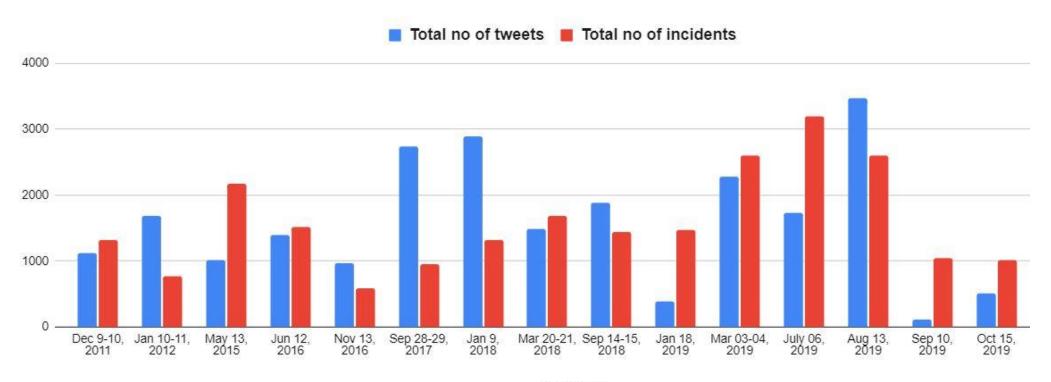
• RQ 2

How can we build a linking model that will link the each tweet to entries in the disaster database based on the features from **RQ1**?

• RQ 3

How accurate this model to use for disaster linking?

DATASETS


Data

• Tweets and Incidents – December 2011 to October 2019

Tweets Dataset	Incident datasets
23673 Total no of tweets	23723 Total no incidents
15 sets	15 sets
1578 Avg. tweets in each set	1581 Avg. incidents in each set

Annotations dataset

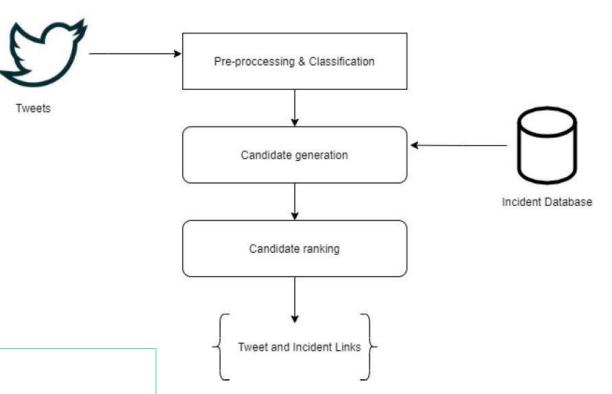
Datasets

Proposed method

Incident Linking Framework(ILF)

ILF contains three different steps:

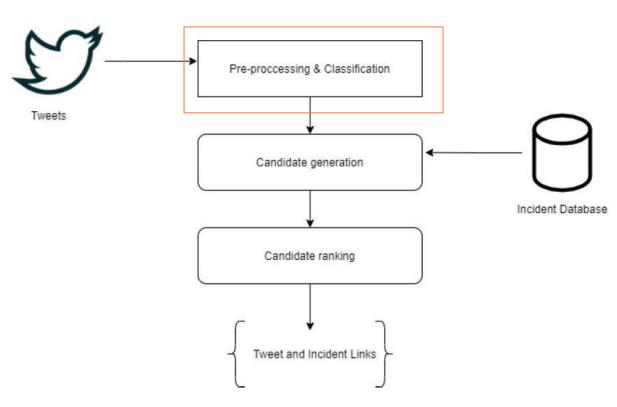
Pre-processing and classification for tweets


Candidate generation

Candidate ranking

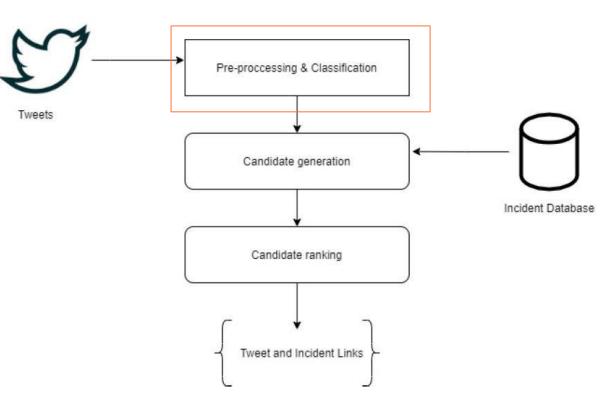
Incident Linking Framework(ILF)

ILF contains three different steps:


- Pre-processing and classification for tweets
- Candidate generation
- Candidate ranking

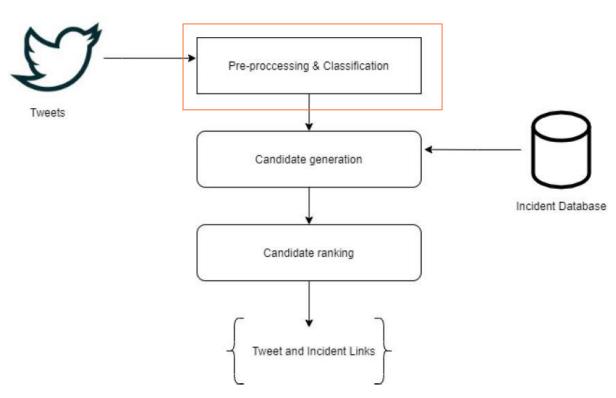
Pre-processing and classification for tweets

Remove noise from the tweets

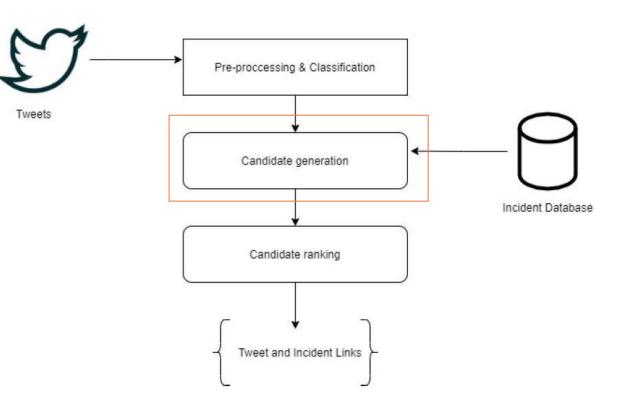

- Normalize piece of text
- Tweets that's not linkable

Pre-processing and classification for tweets

Remove noise from the tweets


- Normalize piece of text
- Tweets that's not linkable
- Pre-processing
 - URL's , Hashtags , Emoji's , Smileys
 - Convert text into numbers

Pre-processing and classification for tweets


Remove Noise from the tweets

- Normalize piece of text
- Tweets that's not linkable
- Pre-processing
 - URL's , Hashtags , Emoji's , Smileys
 - Convert text into numbers
- Classification
 - Filter disaster related tweets
 - State-of-the-art pre-trained models

Candidate generation

- Input
 - Normalized tweets
 - Incident database
- Output
 - Candidate sets

Candidate generation

- Entities extraction using NER
- Generate the candidates based on the similarity between tweet entity mentions and Incidents entities
- Candidate generation divided into four steps

Candidate generation

- Entities extraction using NER
- Generate the candidates based on the similarity between tweets and Incidents to entities
- Candidate generation divided into four steps
 - Location-based candidates
 - Disaster type-based candidates
 - Impact-based candidates
 - Time-based candidates

Location- Based candidates

 $C_L = \{(t_j, i_k) \mid \forall \ j \in \{1, ..., n_t\}, k \in \{1, ..., n_i\} : SimF_L(t_j^L, i_k^L) \land \Delta T_{(t_j, i_k)} < \tau\}$

where:

 C_L = Location-based candidates

t = Tweet

i = Incident database entry

 $SimF_L$ = Similarity function for location

 t_i^L = Location mention for tweet j

 i_k^L = Incident location entity

j, k = index values

 $\Delta T_{(t_j,i_k)}$ = Difference between incident entry time and tweet time in hours

 τ = time threshold (based on disaster type)

Location- Based candidates

"incident id": "47108fe1-5c04-472c-b534-75a51b747489", "type": "landslide", "start time": "2011-12-08T08:00:00.000Z", "end time": "NaN". "location": "Colombia ; Bosa ; Bogota" lat : "4.61/6", "lon": "-74.1899", Splinter 🕗 "source database id": "2", @splinter_news "properties": { "id": "4,089", Mudslide collapses on bus in Colombia, 6 dead; one "landslide ": "Mudslide", victim called for help by cellphone uninews.us/vg57mW "trigger": "Downpour", #Colombia "storm name": "nan", "fatalities": "6", 12:45 AM - Dec 9, 2011 - SocialFlow "injuries": "0", "source nam": "nan", "source lin": "http://cnsnews.com/news/article/mudslide-collapses-bus-colombia-6-dead", "location a": "Known within 1 km", "landslide1": "Medium", "photos_lin": "nan", "cat src": "glc", "countrynam": "Colombia", "near": "Soacha", "distance": "5.1765", "adminname1": "Cundinamarca", "adminname2": "nan", "population": "313,945", "countrycod": "nan", "continentc": "SA", "key_": "CO", "version": "1", "user id": "1", "tstamp": "Tue Apr 01 2014 00:00:00 GMT+0000 (UTC)", "changeset ": "1"

Disaster type-Based candidates

 $C_D = \{(t_j, i_k) \mid \forall \ j \in \{1, ..., n_t\}, k \in \{1, ..., n_i\} : Sim F_D(t_j^D, i_k^D) \land \Delta T_{(t_j, i_k)} < \tau\}$

where:

 C_D = Disaster type-based candidates

t = Tweet

i = Incident database entry

 $SimF_D$ = Similarity function for disaster type

- t_i^D = Disaster type mention for tweet j
- i_k^D = Incident disaster type entity

j, k = index values

 $\Delta T_{(t_j,i_k)}$ = Difference between incident entry time and tweet time in hours

 τ = time threshold (based on disaster type)

Disaster type-Based candidates

"incident id": "47108fe1-5c04-472c-b534-75a51b747489", type": "landslide" "start time": "2011-12-08T08:00:00.000Z", "end time": "NaN", "location": "Colombia ; Bola ; Bogota", "lat": "4.6176", "lon": "-74.1899", "source database id": "2", Splinter 🕗 @splinter_news "properties": { "id": "4,089", Mudslide collapses on bus in Colombia, 6 dead; one "landslide ": "Mudslide", victim called for help by cellphone uninews.us/vg57mW "trigger": "Downpour", #Colombia "storm name": "nan", "fatalities": "6", 12:45 AM - Dec 9, 2011 - SocialFlow "injuries": "0", "source nam": "nan", "source_lin": "http://cnsnews.com/news/article/mudslide-collapses-bus-colombia-6-dead", "location_a": "Known within 1 km", "landslide1": "Medium", "photos lin": "nan", "cat src": "glc", "countrynam": "Colombia", "near": "Soacha", "distance": "5.1765", "adminname1": "Cundinamarca". "adminname2": "nan", "population": "313,945", "countrycod": "nan", "continentc": "SA", "key ": "CO", "version": "1", "user id": "1", "tstamp": "Tue Apr 01 2014 00:00:00 GMT+0000 (UTC)", "changeset ": "1"

Impact- Based candidates

 $C_{I} = \{(t_{j}, i_{k}) \mid \forall j \in \{1, ..., n_{t}\}, k \in \{1, ..., n_{i}\} : SimF_{I}(t_{j}^{I}, i_{k}^{I}) \land \Delta T_{(t_{j}, i_{k})} < \tau\}$

where:

 C_I = Impact-based candidates

t = Tweet

i = Incident database entry

 $SimF_I$ = Similarity function for impact

 t_{i}^{I} = Impact mention for tweet j

 i_k^I = Impact disaster type entity

j, k = index values

 $\Delta T_{(t_j,i_k)}$ = Difference between incident entry time and tweet time in hours

 τ = time threshold (based on disaster type)

Impact- Based candidates

"incident id": "47108fe1-5c04-472c-b534-75a51b747489", "type": "landslide", "start time": "2011-12-08T08:00:00.000Z", "end time": "NaN", "location": "Colombia ; Bosa ; Bogota", "lat": "4.6176", "lon": "-74.1899", "source database id": "2", Splinter 🕗 @splinter_news "properties": { "id": "4,089", Mudslide collapses on bus in Colombia, 6 dead; one "landslide ": "Mudslide", victim called for help by cellphone uninews.us/vg57mW "trigger": "Downpour", "storm name": "nan" "fatalities": "6", 12:45 AM · Dec 9, 2011 · SocialFlow "injuries": "0", "source nam": "nan", "source lin": "http://cnsnews.com/news/article/mudslide-collapses-bus-colombia-6-dead", "location a": "Known within 1 km", "landslide1": "Medium". "photos lin": "nan", "cat src": "glc", "countrynam": "Colombia", "near": "Soacha", "distance": "5.1765". "adminname1": "Cundinamarca", "adminname2": "nan", "population": "313,945", "countrycod": "nan", "continentc": "SA", "key ": "CO", "version": "1", "user id": "1", "tstamp": "Tue Apr 01 2014 00:00:00 GMT+0000 (UTC)", "changeset ": "1"

Time- Based candidates

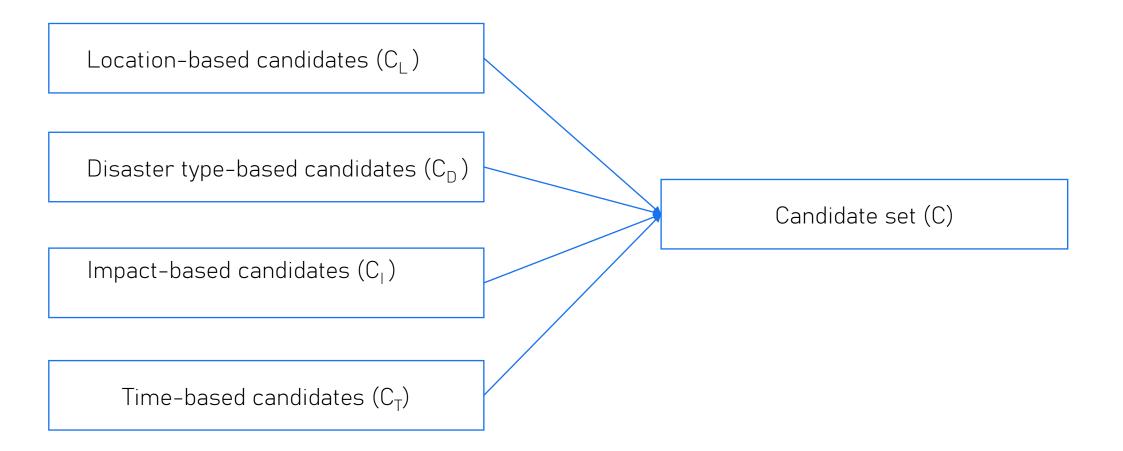
$$C_T = \{(t_j, i_k) \mid \forall \ j = (1, ..., n_t), k = (1, ..., n_i) : \Delta T_{(t_j, i_k)} < \tau = True\}$$

where:

 C_T = Time-based candidates

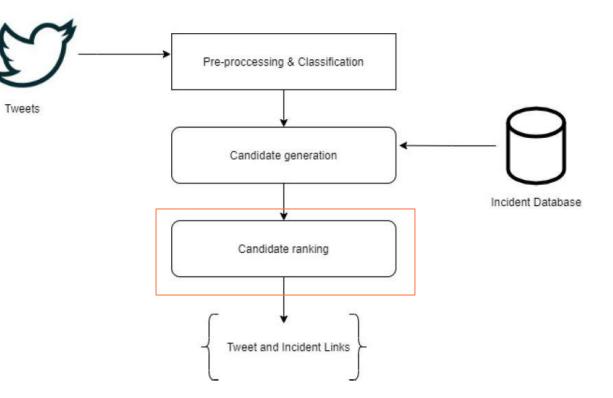
t = Tweet

i = Incident database entry


 $\Delta T_{(t_j,i_k)}$ = Difference between incident entry time and tweet time (no of hours)

- i, j = index values
- τ = time threshold (based on disaster type)

Time- Based candidates


"incident id": "47108fe1-5c04-472c-b534-75a51b747489", "type": "landslide", "start time": "2011-12-08T08:00:00.000Z". end_time": "NaN", "location": "Colombia ; Bosa ; Bogota", "lat": "4.6176", "lon": "-74.1899", "source_database_id": "2", Splinter 🕗 @splinter_news "properties": { "id": "4,089", Mudslide collapses on bus in Colombia, 6 dead; one "landslide ": "Mudslide", victim called for help by cellphone uninews.us/vg57mW "trigger": "Downpour", #Colombia "storm name": "nan", "fatalities": "6", :45 AM · Dec 9, 2011 · SocialFlow "injuries": "0", "source_nam": "nan", "source lin": "http://cnsnews.com/news/article/mudslide-collapses-bus-colombia-6-dead", "location_a": "Known_within 1 km", "landslide1": "Medium", "photos lin": "nan", "cat src": "glc", "countrynam": "Colombia", "near": "Soacha", "distance": "5.1765", "adminname1": "Cundinamarca", "adminname2": "nan", "population": "313,945", "countrycod": "nan", "continentc": "SA", "key ": "CO", "version": "1", "user id": "1", "tstamp": "Tue Apr 01 2014 00:00:00 GMT+0000 (UTC)", "changeset ": "1"

Candidate ranking

- Input
 - Candidates
- Output
 - Tweet and Incident links

Candidate ranking

- Implemented a scoring metric to assign similarity score for each candidate in the candidate list
- Identified Top score candidate to establish the link
- Four different scoring functions are implemented in candidate ranking

Candidate ranking

- Implemented a scoring metric to assign similarity score for each candidate in the candidate list
- Identified Top score candidate to establish the link
- Four different scoring functions are implemented in candidate ranking
 - Location score
 - Disaster type score
 - Impact score
 - Time score

Location score

$$C_{LScore} = SimS_L(t, i), \forall (t, i) \in C_L$$

where:

 C_{LScore} = Location similarity score

t, i = Tweet , Incident entry

 C_L = Location-based candidate set

 $SimS_L$ = Similarity score function for location

Location score example

Tweet Location	Incident location	Score
Colombia bosa	Colombia	0.25
	Colombia; Bosa	0.25+0.25=0.5

Disaster type score

$$C_{DScore} = SimS_D(t, i), \forall (t, i) \in C_D$$

where:

 C_{DScore} = Disaster type similarity score t, i = Tweet, Incident entry C_D = Disaster type-based candidate set $SimS_D$ = Similarity score function for disaster type

Disaster type score example

Tweet disaster type	Incident disaster type	Score
landslide	mudslide	0.4
	landslide	0.6

Impact score

$$C_{IScore} = SimS_I(t, i), \forall (t, i) \in C_I$$

where:

 C_{IScore} = Impact similarity score

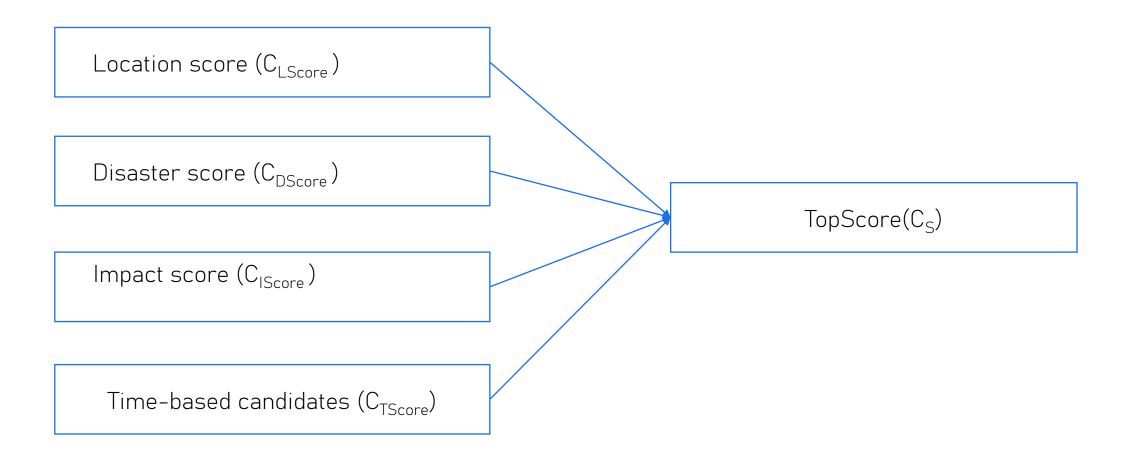
t, i = Tweet , Incident entry

 C_I = Impact-based candidate set

 $SimS_I$ = Similarity score function for impact

Impact score example

Tweet	Incident no of deaths	Score
Mudslide collapses on bus in Colombia, 6 dead	10	0.2
	4	0.3
	6	0.5



$$C_{TScore} = SimS_T(t, i), \forall (t, i) \in C_T$$

where:

- C_{TScore} = Time similarity score
- t, i = Tweet , Incident entry
- C_T = Time-based candidate set
- $SimS_T$ = Similarity score function for time

Generate top score

Experiments

Evaluation Metrics

• Precision , Recall , F1-Score and MRR (Mean Reciprocal Rank)

Evaluation Metrics

- Precision , Recall , F1-Score and MRR (Mean Reciprocal Rank)
- Intrinsic metrics
 - Evaluate each module individually without the side effects from others
 - Candidate generation, Candidate ranking

Evaluation Metrics

- Precision , Recall , F1-Score and MRR (Mean Reciprocal Rank)
- Intrinsic metrics
 - Evaluate each module individually without the side effects from others
 - Candidate generation (recall), Candidate ranking (MRR)
- Extrinsic metrics
 - Measure the whole application with cascading errors
 - Candidate ranking (MRR)

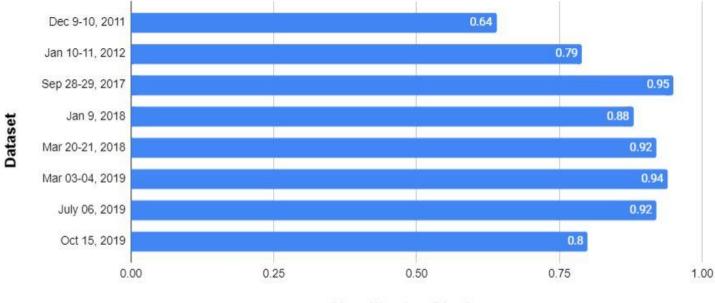
- Two experiments
 - ILF Method 1
 - ILF Method 2

- Two experiments
 - ILF Method 1
 - ILF Method 2

Candidate set	ILF Method -1	ILF Method -2
Location candidates	 Image: A second s	\checkmark
Disaster type candidates		
Impact candidates	Image: A second seco	
Time candidates		

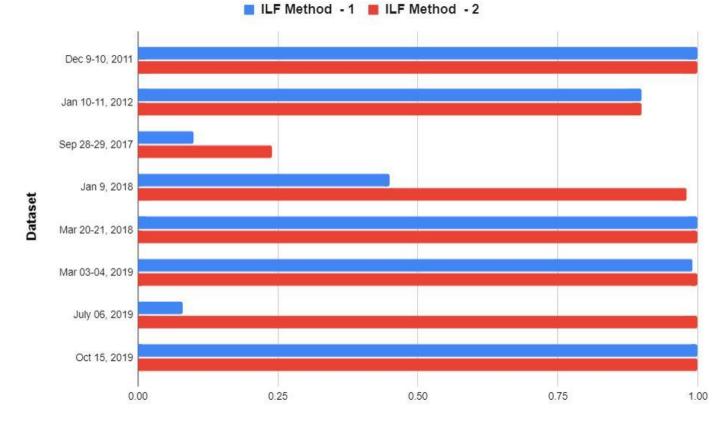
- Two experiments
 - ILF Method 1
 - ILF Method 2
- Aim of these experiments is to check the importance of time constraints

Candidate set	ILF Method -1	ILF Method -2
Location candidates	 Image: A set of the set of the	✓
Disaster type candidates		
Impact candidates	1	
Time candidates		

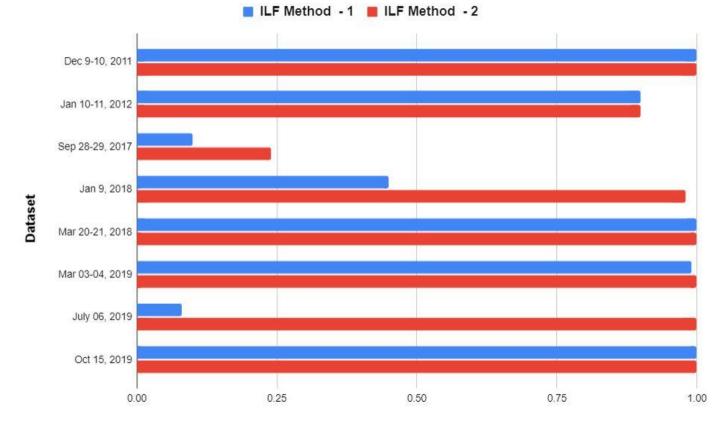

- Two experiments
 - ILF Method 1
 - ILF Method 2
- Aim of these experiments is to check the importance of time constraints
- Classification and ranking module will be the same for both methods

Candidate set	ILF Method -1	ILF Method -2
Location candidates	✓	\checkmark
Disaster type candidates	✓	
Impact candidates		
Time candidates		

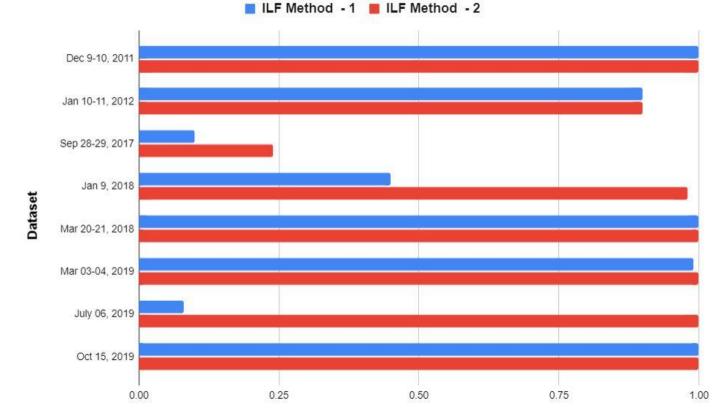
Results and Discussion

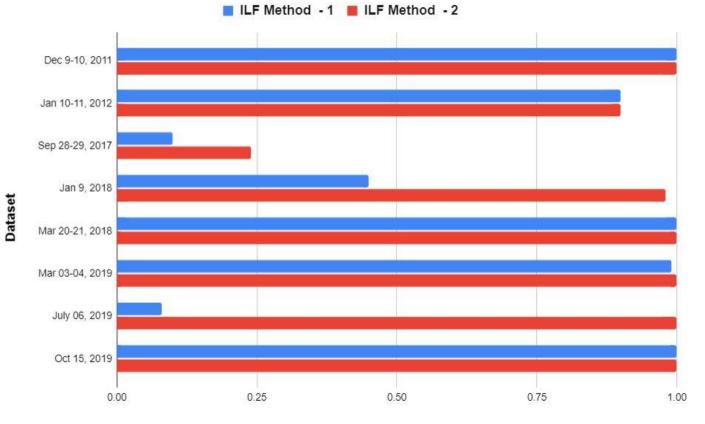

Classification (F1- Score)

- Avg. Score 0.86
- Best Score 0.95

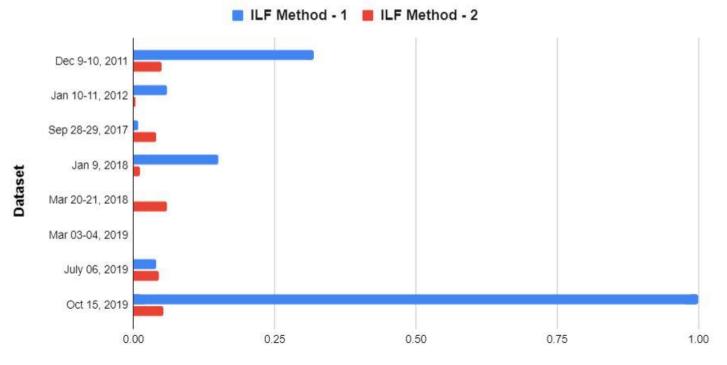


Classification F1 - Score

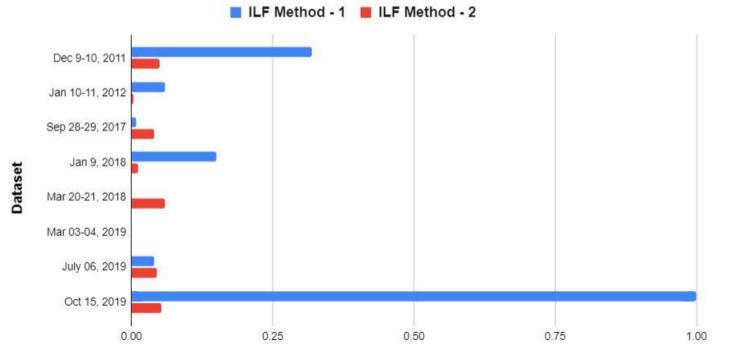

Avg. recall for ILF Method – 1 &
2 is 0.69, 0.89 respectively


- Avg. recall for ILF Method 1 &
 2 is 0.69, 0.89 respectively
- ILF Method 2 is shown
 promising results than ILF
 Method 1

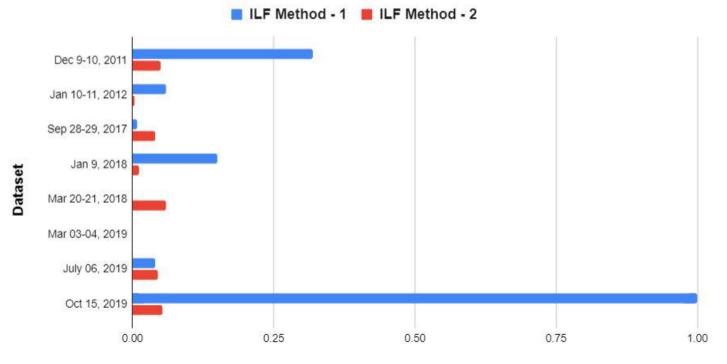
- Avg. recall for ILF Method 1 &
 2 is 0.69, 0.89 respectively
- ILF Method 2 is shown promising results than ILF Method – 1
- More no of candidates
 generated for ILF Method 2


- Avg. recall for ILF Method 1 & 2 is 0.69, 0.89 respectively
- ILF Method 2 is shown
 promising results than ILF Method
 1
- More no of candidates generated for ILF Method – 2
- Avg. no candidates for ILF Method
 1 & 2 are 95, 418 respectively

Candidate ranking (MRR – Intrinsic)

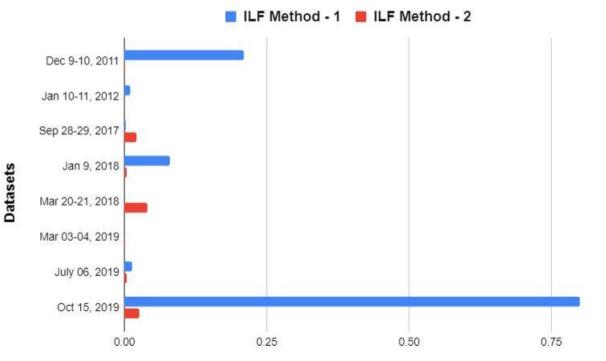

Avg. MRR for ILF Method – 1 &
2 is 0.1972, 0.0329

respectively


Candidate ranking (MRR – Intrinsic)

- Avg. MRR for ILF Method 1 &
 2 is 0.1972, 0.0329
 respectively
- ILF Method 1 is shown promising results than ILF Method – 2

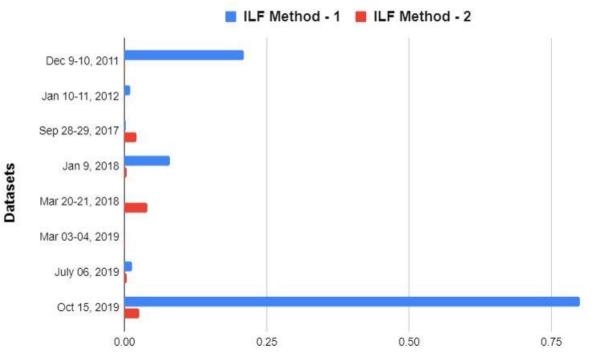
Candidate ranking (MRR – Intrinsic)


- Avg. MRR for ILF Method 1 & 2 is 0.1972, 0.0329 respectively
- ILF Method 1 is shown promising results than ILF Method – 2
- ILF Method 1 shown best results for small datasets

Candidate ranking (MRR – Extrinsic)

Avg. MRR for ILF Method – 1 &
2 is 0.1395, 0.0123

respectively

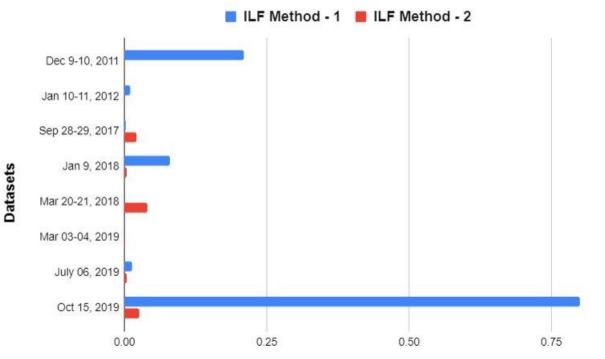


Bauhaus-Universität Weimar

1.00

Candidate ranking (MRR – Extrinsic)

- Avg. MRR for ILF Method 1 &
 2 is 0.1395, 0.0123
 respectively
- ILF Method 1 is shown promising results than ILF Method – 2



Bauhaus-Universität Weimar

1.00

Candidate ranking (MRR – Extrinsic)

- Avg. MRR for ILF Method 1 & 2 is 0.1395, 0.0123
 respectively
- ILF Method 1 is shown promising results than ILF Method – 2.
- ILF Method 1 shown best results for small datasets

Bauhaus-Universität Weimar

1.00

Overview results of ILF Method – 1

- Overall performance of Dec 9– 10 and Oct 15,2019 datasets shown good results
- Candidate ranking could not performed well on Mar 20– 21,2018 and Mar 03–04 datasets

	Classification	Candidate	Candidate	Candidate	Candidate
Datasets	F1 Score	generation	generation	ranking	ranking
Datasets	(Intrinsic)	recall	count	MRR	MRR
	(IIIIIIIIIII)	(Intrinsic)	(Intrinsic)	(Intrinsic)	(Extrinsic)
Dec 9-10, 2011	0.64	1	61.62	0.3200	0.2100
Jan 10-11, 2012	0.79	0.9	47.32	0.0600	0.0100
Sep 28-29, 2017	0.95	0.1	129.03	0.0080	0.0030
Jan 9, 2018	0.88	0.45	94.56	0.1500	0.0800
Mar 20-21, 2018	0.92	1	158.63	0	0
Mar 03-04, 2019	0.94	0.99	128	0	0
July 06, 2019	0.92	0.08	108	0.0400	0.0135
Oct 15, 2019	0.8	1	52	1	0.8000

Overview results of ILF Method – 2

- Candidate generation performed well
- High candidate generation count
- Candidate ranking could not performed well

Class	Classification	Candidate	Candidate	Candidate	Candidate
Datasets	F1 Score	generation	generation	ranking	ranking
Datasets	(Intrinsic)	recall	count	MRR	MRR
	(IIIIIIIIIII)	(Intrinsic)	(Intrinsic)	(Intrinsic)	(Extrinsic)
Dec 9-10, 2011	0.64	1	977	0.0500	0.0010
Jan 10-11, 2012	0.79	0.90	462	0.0031	0.0015
Sep 28-29, 2017	0.95	0.24	557	0.0400	0.0215
Jan 9, 2018	0.88	0.98	918	0.0116	0.0044
Mar 20-21, 2018	0.92	1	145	0.0600	0.0400
Mar 03-04, 2019	0.94	1	128	0.0010	0.0004
July 06, 2019	0.92	1	108	0.0452	0.0034
Oct 15, 2019	0.8	1	52	0.0530	0.0265

Micro averages

- ILF Method 1 performed
 - well in candidate generation
 - also system performance was good when compare to

ILF Method – 2

Classif	Classification	Candidate	Candidate	Candidate	Candidate
Datasats		generation	generation	ranking	ranking
Datasets F1 Score (Intrinsic)		recall	count	MRR	MRR
	(IIIIIIIIIII)	(Intrinsic)	(Intrinsic)	(Intrinsic)	(Extrinsic)
ILF Method - 1	0.84	0.69	95	0.1972	0.1395
ILF Method - 2	0.84	0.89	418	0.0329	0.0123

• RQ 1

What are the possible features that we can extract from tweets that match with those of typical knowledge databases?

• RQ 1

What are the possible features that we can extract from tweets that match with those of typical knowledge databases?

We can extract Location, Disaster type , Impact and Time

• RQ 2

How can we build a linking model that will link the each tweet to entries in the disaster database based on the features from **RQ1**?

• RQ 2

How can we build a linking model that will link the each tweet to entries in the disaster database based on the features from **RQ1**?

Incident Linking Framework implemented with Candidate generation and candidate ranking modules

• RQ 3

How accurate this model to use for disaster linking?

• RQ 3

How accurate this model to use for disaster linking?

ILF is less accurate and need improvements in candidate generation and candidate ranking

Conclusion and Future Work

Conclusion and Future work

- Conclusion
 - Implemented Incident Linking Frame (ILF)
 - Two different NER's makes better recall for candidate generation
 - Low performance due to the heavy no of candidates generated by the system
 - Candidate ranking module needs to be improved

Conclusion and Future work

- Future work
 - Create missing entries in the database
 - Extend these system to other languages
 - Improve candidate ranking method using advanced ML (e.g. CNN)

