Bauhaus-Universität Weimar Fakultät Medien

Authorship Verification and Obfuscation Using Distributional Features

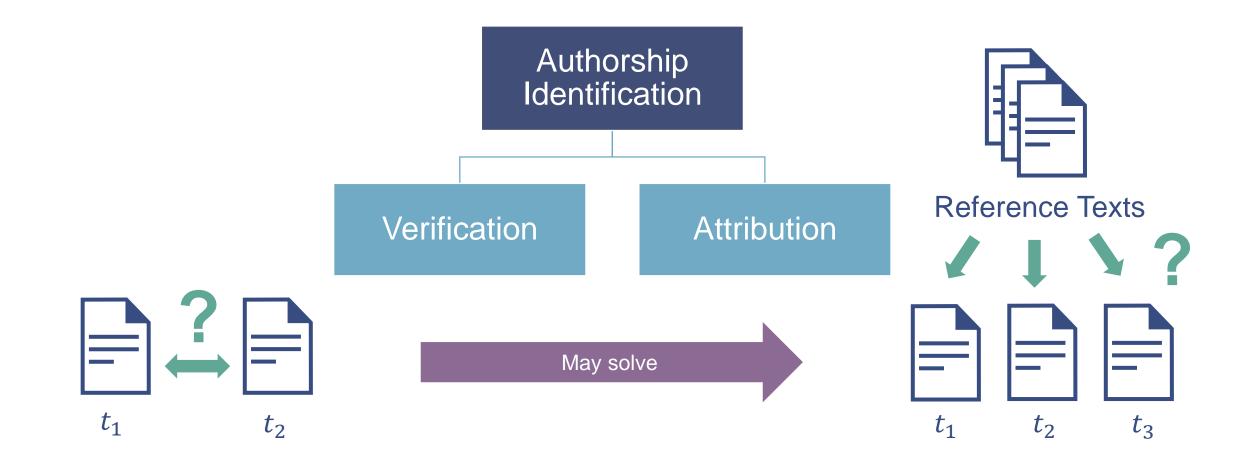
Bachelor's Thesis Defense by Janek Bevendorff

Date: 27. October 2016

Referees:

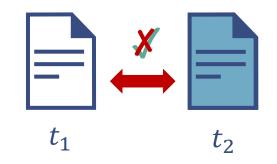
Prof. Dr. Benno Stein PD Dr. Andreas Jakoby

What Is Authorship Verification?



What Is Authorship Obfuscation?

"Given two documents by the same author, modify one of them so that forensic tools cannot classify it as being written by the same author anymore."

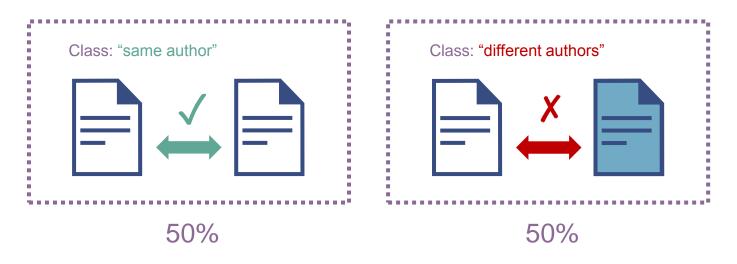


Reasons for Obfuscating Authorship

- General privacy concerns
- Protection from prosecution
- Anonymity of single / double blind reviews
- Style imitation (writing contests)
- Impersonation (malicious intents)

Used corpus: PAN15 Corpus (English)

- Training / test: 100 / 500 cases
- Two classes with balanced number of cases
- > Each case consists of two documents either by the same or different author(s)
- > Test documents have 400-800 words on average



Reference Classifier

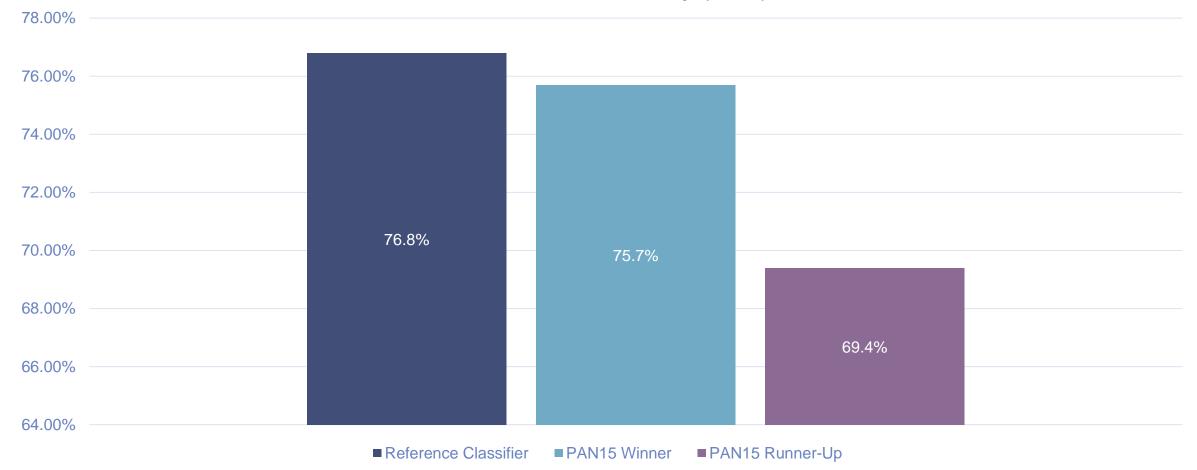
Decision tree classifier with 8 features:

- > Kullback-Leibler divergence (KLD)
- Skew divergence (smoothed KLD)
- Jensen-Shannon divergence
- Hellinger distance
- Cosine similarity with TF weights
- Cosine similarity with TF-IDF weights
- Ratio between shared n-gram set and total text mass
- > Average sentence length difference in characters

The first 7 features use character 3-grams

Classification Results

Classification Accuracy (c@1)



Obfuscation Idea (1)

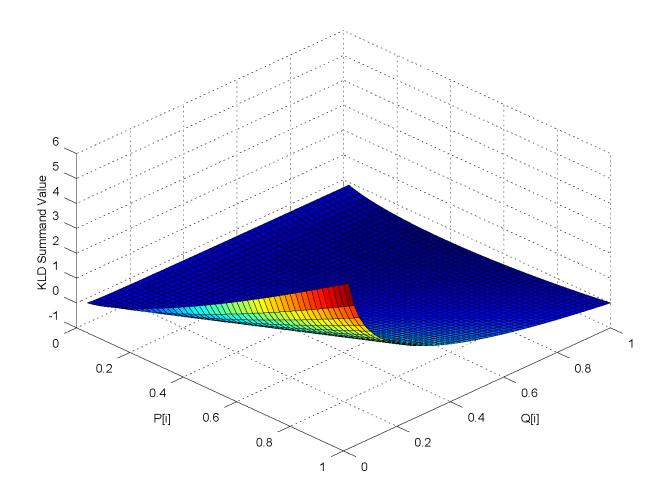
- Attack KLD as main feature
- Assumes other features not to be independent

$$KLD(P||Q) = \sum_{i} P[i] \log_2 \frac{P[i]}{Q[i]}$$

KLD Definition

Variables:

- \succ *i*: n-gram appearing in both texts t_1 and t_2
- \succ P[i]: relative frequency of n-gram i in the portion of t_1 whose n-grams also appear in t_2
- \succ Q[i]: analogous to P[i]



- ➤ KLD range: [0,∞)
- \succ KLD = 0 for identical texts
- PAN15 corpus: 0.27 < KLD < 0.91</p>
- > KLD only defined for n-grams where Q[i] > 0
- PAN15 corpus: at least 25% text coverage by only using n-grams that appear in both texts

Obfuscation Idea (2)

Idea: obfuscate by increasing the KLD

- > Assumption: not all n-grams are equally important for the KLD
- > Only touch those with highest impact
- High-impact n-grams can be found by KLD summand derivative:

$$\frac{\partial}{\partial q} \left(p \log_2 \frac{p}{q} \right) = -\frac{p}{q \ln 2}$$

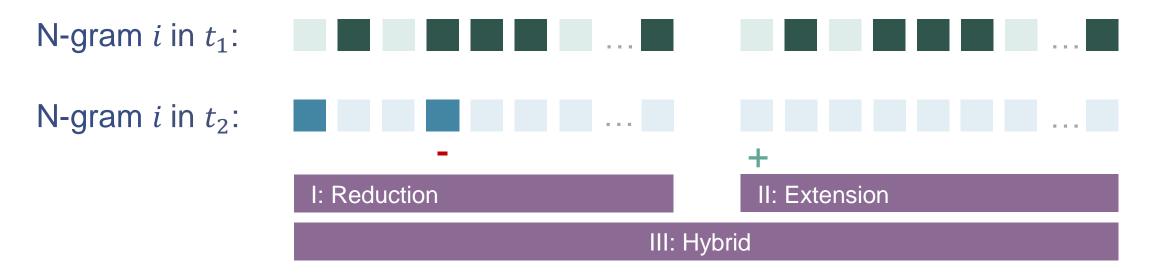
KLD Summand Derivative

where p and q denote probabilities P[i] and Q[i] for any defined i

Obfuscator Implementation

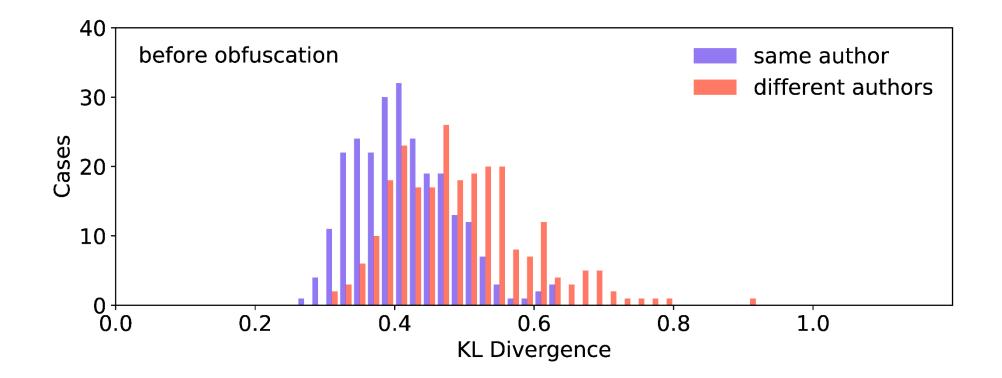
Only need to consider the (modifiable) n-gram *i* that maximizes

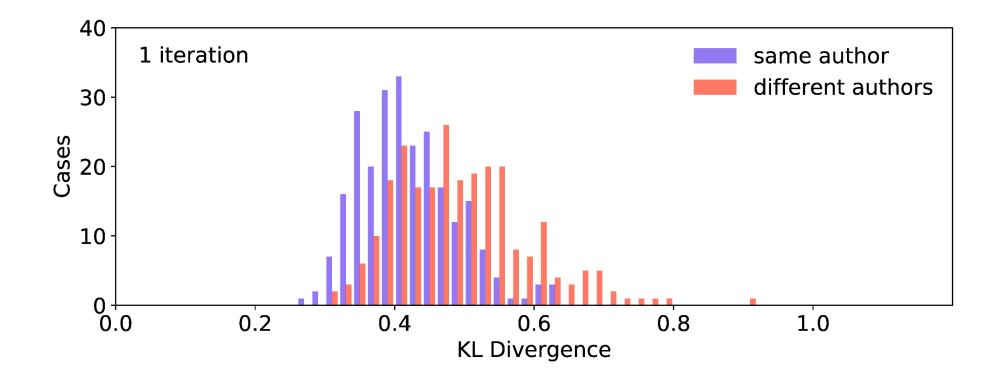
Three possible obfuscation strategies:

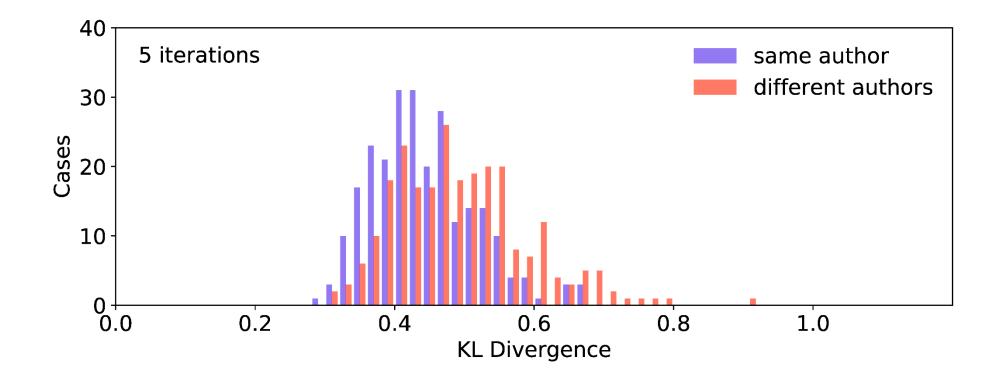


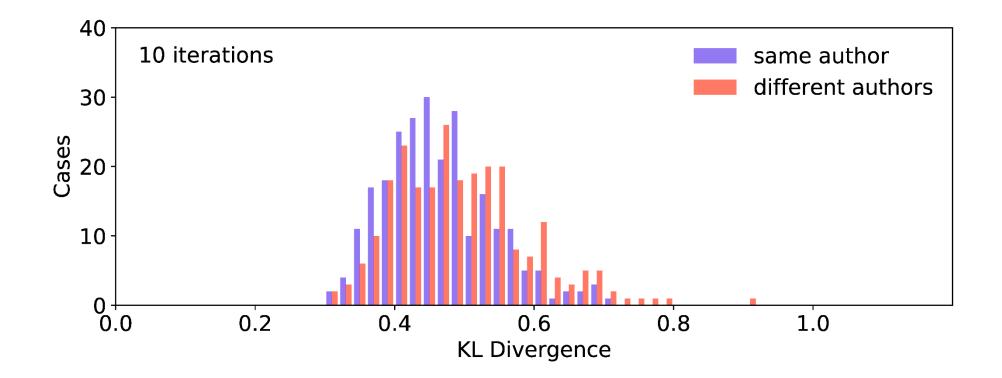
P[i]

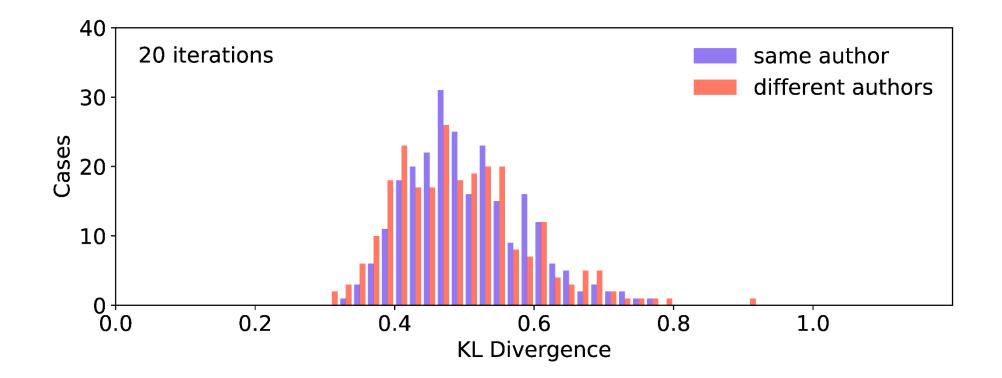
Q[i]

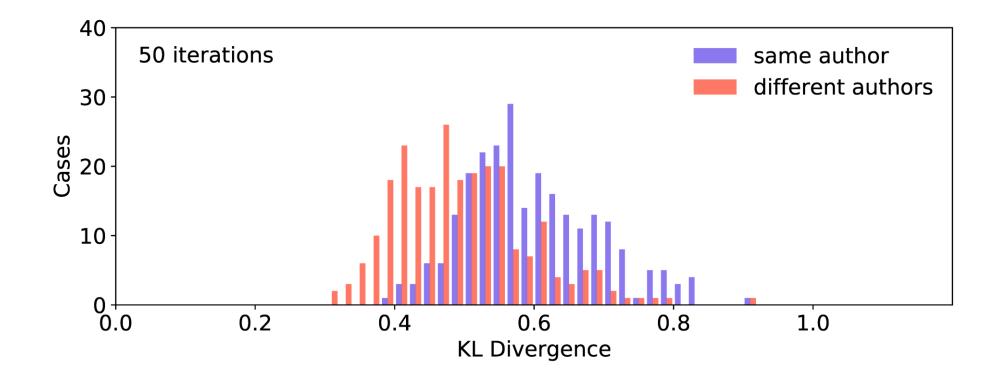


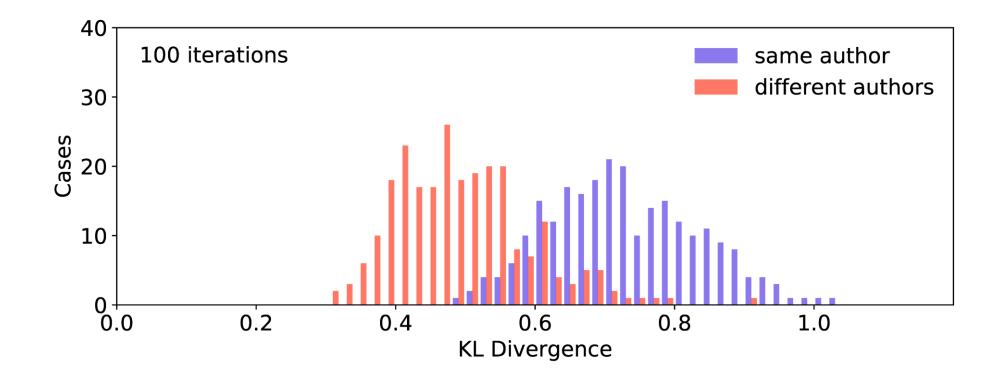


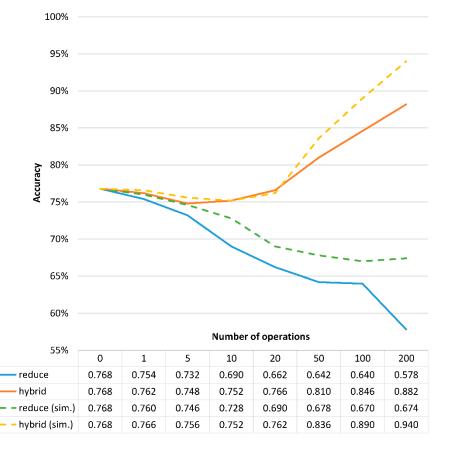












Simulated Obfuscation

Real Text Replacements

Observation Hybrid: accuracy rises despite KLD increase

Possible explanation: adding n-grams improves other features.

Cross-validation with single features confirms explanation:

	Baseline Accuracy	20 Iterations
KLD	67.2%	51.4%
TF-IDF	74.4%	82.2%

Solution: only use reductions

Results Analysis

- Significant KLD increase possible with only few iterations
- KLD histograms fully overlap after 10-20 iterations (~2% of text modified)
- Overall classification accuracy down to ~66%
- Extensions are problematic for TF-IDF

Results promising, but corpus appears to be flawed

- Very short texts
- Test corpus much larger than training corpus
- Corpus-relative TF-IDF very strong feature (discrimination by topic)
- > Only chunks of 15 different stage plays by 5 unique authors
- No proper text normalization

Development of New Corpus

New corpus was developed with books from Project Gutenberg:

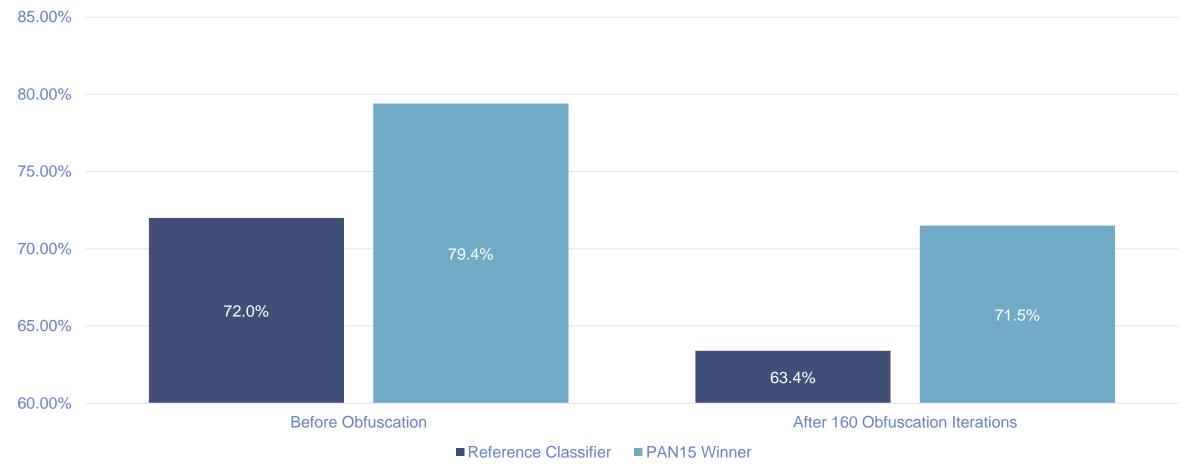
- > 274 cases from three genres and two time periods
- > Authors unique within genre / period
- > Avg. text length of 4000 words (few exceptions)
- Proper text normalization
- > 70 / 30 split into training / test (192 / 82 cases)

Classifier Changes

Cosine similarity (TF and TF-IDF) features were removed to avoid accidental classification by topic

Classification Results

Classification Accuracy (c@1)



- Medium / high classification accuracy with only simple features
- Obfuscation possible by attacking main feature
- Results reproducible on more diverse corpus
- Obfuscation also works against other verification systems

Future Work

- Improve classifier by
 - …adding more features
 - …integrating "Unmasking" by Koppel and Schler [2004]
- Attack more features
- Use paraphrasing
- Randomize obfuscation to harden against reversal

Thank you for your attention

A Second Second

and the state of the second of the state of the