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What Is Authorship Verification?
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What Is Authorship Obfuscation?

“Given two documents by the same author, modify one of them so that forensic 
tools cannot classify it as being written by the same author anymore.”
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Reasons for Obfuscating Authorship

 General privacy concerns

 Protection from prosecution

 Anonymity of single / double blind reviews

 Style imitation (writing contests)

 Impersonation (malicious intents)

 …
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Corpus Setup

Used corpus: PAN15 Corpus (English)

 Training / test: 100 / 500 cases

 Two classes with balanced number of cases

 Each case consists of two documents either by the same or different author(s)

 Test documents have 400-800 words on average
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Reference Classifier

Decision tree classifier with 8 features:

 Kullback-Leibler divergence (KLD)

 Skew divergence (smoothed KLD)

 Jensen-Shannon divergence

 Hellinger distance

 Cosine similarity with TF weights

 Cosine similarity with TF-IDF weights

 Ratio between shared n-gram set and total text mass

 Average sentence length difference in characters

The first 7 features use character 3-grams
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Classification Results
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 Attack KLD as main feature

 Assumes other features not to be independent

Variables:

 𝑖: n-gram appearing in both texts 𝑡1 and 𝑡2

 𝑃[𝑖]: relative frequency of n-gram 𝑖 in the portion of 𝑡1 whose n-grams also appear in 𝑡2

 𝑄[𝑖]: analogous to 𝑃[𝑖]

Obfuscation Idea (1)
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KLD(𝑃||𝑄) = 

𝑖

𝑃[𝑖] log2
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𝑄[𝑖]

KLD Definition



 KLD range: [0,∞)

 KLD = 0 for identical texts

 PAN15 corpus: 0.27 < KLD < 0.91

 KLD only defined for n-grams where 
𝑄 𝑖 > 0

 PAN15 corpus: at least 25% text 
coverage by only using n-grams that 
appear in both texts
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Obfuscation Idea (2)

Idea: obfuscate by increasing the KLD

 Assumption: not all n-grams are equally important for the KLD

 Only touch those with highest impact

 High-impact n-grams can be found by KLD summand derivative:

where 𝑝 and 𝑞 denote probabilities 𝑃[𝑖] and 𝑄[𝑖] for any defined 𝑖
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Only need to consider the (modifiable) n-gram 𝑖 that maximizes

Obfuscator Implementation
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𝑃[𝑖]

𝑄[𝑖]

I: Reduction

N-gram 𝑖 in 𝑡1:

N-gram 𝑖 in 𝑡2:

…

II: Extension

…

Three possible obfuscation strategies:

III: Hybrid

+
… …

-



Obfuscation Results
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Obfuscation Results

27. October 2016 13



Obfuscation Results
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Obfuscation Results
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Obfuscation Results
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Obfuscation Results
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Obfuscation Results
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Observation Hybrid: accuracy rises 
despite KLD increase

Possible explanation: adding n-
grams improves other features.

Cross-validation with single features 
confirms explanation:

Solution: only use reductions
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Obfuscation Results

Baseline Accuracy 20 Iterations

KLD 67.2% 51.4%

TF-IDF 74.4% 82.2%



Results Analysis

 Significant KLD increase possible with only few iterations

 KLD histograms fully overlap after 10-20 iterations (~2% of text modified)

 Overall classification accuracy down to ~66%

 Extensions are problematic for TF-IDF

27. October 2016 20



Corpus Flaws

Results promising, but corpus appears to be flawed

 Very short texts

 Test corpus much larger than training corpus

 Corpus-relative TF-IDF very strong feature (discrimination by topic)

 Only chunks of 15 different stage plays by 5 unique authors

 No proper text normalization
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Development of New Corpus
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New corpus was developed with books from Project Gutenberg:

 274 cases from three genres and two time periods

 Authors unique within genre / period

 Avg. text length of 4000 words (few exceptions)

 Proper text normalization

 70 / 30 split into training / test (192 / 82 cases)



Classifier Changes

Cosine similarity (TF and TF-IDF) features were removed to avoid accidental 
classification by topic
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Classification Results
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Summary

 Medium / high classification accuracy with only simple features

 Obfuscation possible by attacking main feature

 Results reproducible on more diverse corpus

 Obfuscation also works against other verification systems
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Future Work

 Improve classifier by

 …adding more features

 …integrating “Unmasking” by Koppel and Schler [2004]

 Attack more features

 Use paraphrasing

 Randomize obfuscation to harden against reversal
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Thank you
for your attention


