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Most Common Scenario: Improving Aesthetics
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Problem: Descriptive Prompt -» Good Aesthetics

— Example: "realistic spaceship rocket design.”
produces a matching, but unappealing image

- Prompt language distinct from user’s language
— Iterative trial and error (prompt engineering)
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Common Solution: Prompt Modifiers

- Add suffixes (prompt modifiers): “hd"”, "high quality”, etc.
— "realistic spaceship rocket design. high quality”
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Common Solution: Prompt Modifiers

- Add suffixes (prompt modifiers): “hd"”, "high quality”, etc.
— "realistic spaceship rocket design. high quality”

— Result still not ideal
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Common Solution: Prompt Modifiers

— Iterate with more or other suffixes

Prompt Image

L Prompt Engineering J
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Manual Prompt Engineering: Flaws

- Highly arbitrary
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Manual Prompt Engineering: Flaws

- Highly arbitrary
- Does not generalize

- Inaccessible to non-experts
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- User study to find good suffixes
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Manual Prompt Engineering: Potential Solutions

- User study to find good suffixes

- Highly user dependent
- Does not generalize over prompts

- Use classifier pretrained on user preferences to improve generated images as
in Deckers et al. [1]
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Modifying Prompt Embeddings [1]

"realistic spaceship rocket design.”
Before (left) and after (right) optimization.
Reproduced from Deckers et al. [1]
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Proposed Solution

- Problem with method of Deckers et al. [1]: Does not yield an improved prompt
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Proposed Solution

- Problem with method of Deckers et al. [1]: Does not yield an improved prompt

— Our proposed solution yields a prompt
— Users can interpret and edit prompt
— Allows reuse for different prompts

Introduction : Proposed Solution
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Proposed Solution
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"realistic spaceship rocket design.”

Before (left) and after (right) optimization
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Proposed Solution

"realistic spaceship rocket design.
sts crispy affirting fanny dechomo earn
Before (left) and after (right) optimization
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Latent Diffusion

— CLIP converts prompt to embedding
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Latent Diffusion

Image
768x77
%Conditioning VAE d?coder
Initial Resulting
latent —> f‘ Diffusion step ‘ > latent
(noise) 70 x (denoised)

— CLIP converts prompt to embedding

- Diffusion model generates latent representation of an image
using the prompt embedding as condition

- Diffusion was trained to have resulting image match the description

Related Work



Generating Prompt Embedding Using CLIP
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Generating Prompt Embedding Using CLIP

“prompt"

Tokenize

[<start> --- <end>]

Related Work

Token
embedding

768x77

Positional encoding

768x77

This embedding needs
to be trained to con-
trol the prompt tokens

CLIP

transformer
—_—>

768x77
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Computing Aesthetic Score Based on Schuhmann [4]
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Computing Aesthetic Score Based on Schuhmann [4]
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Computing Aesthetic Score Based on Schuhmann [4]

768x77

Pooling
—>

768x1

Single linear layer

Aesthetic
score

- Potential shortcut because CLIP space is the same for images and text

Related Work
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Projection to Find Token Representation for Given Prompt Embedding
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Projection to Find Token Representation for Given Prompt Embedding

Given embeddings

equals B .,
[ ]768X77 [ ]768x77 <—> “some prompt
[ ]768x77 getsLm: [ ]768X77 <—> "some other prompt”
[ ]768><77

- Wen et al. [5] proposed projection into discrete token space
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Restricting Manipulation to Suffixes

- Not all 77 token embeddings are altered
- We want to change suffix tokens only
- Prevents alteration of displayed objects

— This resembles prompt modifiers in prompt engineering

Method
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1. Add Projection [5] to Deckers et al. [1]

(@]
=
Tokenize Positional s °
& embed & CLIP =4 o | Aesthetics i
"orompt” e [ 176 5 !_atept R ‘ |, Aesthetic
x77 x77 S diffusion |= predictor score

- Alter prompt embedding to improve aesthetic score [1]

- Add projection [5]
— Results not as good as in Deckers et al. [1]
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1. Add Projection [5] to Deckers et al. [1]
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Before (left) and after (right) optimization
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2. Occasional Projection
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2. Occasional Projection
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3. Damped Projection (Upcoming)

— Do not project to real embeddings
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3. Damped Projection (Upcoming)

— Do not project to real embeddings
- Only nudge embeddings in direction of their discrete counterparts

- Should also make exploration of embedding space easier

Experiments : Projection Variants
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4. Skip Image Generation
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- Use aesthetics predictor directly on CLIP embedding
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4. Skip Image Generation
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Use Different Optimization Target Metrics

Style score: comic, pixel art, film, painting, ...

Artist classifier: da Vinci, van Gogh, ...

Different classes: cat, dog, fish, ...

Safety classifier: SFW, privacy, gender bias, ...

Future Work

More granular aesthetics: image composition, contrast, ...
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Exploration of Embedding Dimensions

TexSliders

Figure 1: Reproduced from Guerrero-Viu et al. [2]

- Let users control embedding dimensions akin to Guerrero-Viu et al. [2]
- Manipulation of texture generation
- Example: given a stone texture, change stone size using slider

— Changes should be resembled in text
— Useful adapter for the Infinite Index Explorer

Future Work 35
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Exploration of Affix Types

Explore differences between prefix, infix and suffix

For infix: choice of insertion in prompt

Use replacements (beyond affixes)

Might introduce alteration of displayed objects

Future Work
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Conclusion

— Assisted prompt engineering required

— Our proposed solution: Generate prompt suffix to optimize aesthetic score
Results show improvement of aesthetic score

Current suffixes lack interpretabilty

Improvements to generalization might increase interpretabilty
Final goal: Find list of suffixes which work for every prompt and image seed
Skipping latent diffusion is feasible, further investigation required

Thank you!

Conclusion
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Generalization Over Different Initial Latents (Upcoming)

- Initial latents significantly influence final image
— Users do not typically choose seed or initial latent

- Latent specific suffix has limited use
— Train using batches of different initial latents simultaneously
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Test Generalization of Suffixes Over Multiple Prompts (Upcoming)

— Generate optimal suffix on one prompt
— Test effect over 10 other prompts
- Repeat for each of the 10 other prompts
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Train Prompt Independent Suffix (Upcoming)

- If suffix does not generalize in previous experiment:
use same suffix for different prompts during training
- Such a suffix may not be optimal
- Find optimal suffix for groups/clusters of prompts
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Latent Diffusion [3]
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Rerpoduced from Rombach et al. [3]
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