Optimizing Stable Diffusion Prompts in Text Space

Bachelor's Seminar

Moritz Böhme Supervised by Niklas Deckers

Institute of Computer Science

Introduction

Optimizing Prompt for Aesthetics

Manual Prompt Engineering: Flaws

Manual Prompt Engineering: Potetial Solutions

Modifying Prompt Embeddings

Proposed Solution

Related Work

Method

Experiments

Future Work

Context: Text to Image Generation

Users generate an image from a prompt using latent diffusion

Context: Text to Image Generation

- Users generate an image from a prompt using latent diffusion
- Example: "realistic spaceship rocket design."

Context: Text to Image Generation

- Users generate an image from a prompt using latent diffusion
- Example: "realistic spaceship rocket design."

Most Common Scenario: Improving Aesthetics

Problem: Descriptive Prompt → **Good Aesthetics**

- Example: "realistic spaceship rocket design." produces a matching, but unappealing image
- Prompt language distinct from user's language
 - → Iterative trial and error (prompt engineering)

Common Solution: Prompt Modifiers

- Add suffixes (prompt modifiers): "hd", "high quality", etc.
 - \rightarrow "realistic spaceship rocket design. high quality"

Common Solution: Prompt Modifiers

- Add suffixes (prompt modifiers): "hd", "high quality", etc.
 → "realistic spaceship rocket design. high quality"
- Result still not ideal

Common Solution: Prompt Modifiers

- Iterate with more or other suffixes

Manual Prompt Engineering: Flaws

Highly arbitrary

Manual Prompt Engineering: Flaws

- Highly arbitrary
- Does not generalize

Manual Prompt Engineering: Flaws

- Highly arbitrary
- Does not generalize
- Inaccessible to non-experts

User study to find good suffixes

- User study to find good suffixes
 - Highly user dependent

- User study to find good suffixes
 - Highly user dependent
 - Does not generalize over prompts

- User study to find good suffixes
 - Highly user dependent
 - Does not generalize over prompts
- Use classifier pretrained on user preferences to improve generated images as in Deckers et al. [1]

Modifying Prompt Embeddings [1]

"realistic spaceship rocket design."
Before (left) and after (right) optimization.
Reproduced from Deckers et al. [1]

- Problem with method of Deckers et al. [1]: Does not yield an improved prompt

- Problem with method of Deckers et al. [1]: Does not yield an improved prompt
- Our proposed solution yields a prompt

- Problem with method of Deckers et al. [1]: Does not yield an improved prompt
- Our proposed solution yields a prompt
 - → Users can interpret and edit prompt

- Problem with method of Deckers et al. [1]: Does not yield an improved prompt
- Our proposed solution yields a prompt
 - → Users can interpret and edit prompt
 - → Allows reuse for different prompts

"realistic spaceship rocket design."

Before (left) and after (right) optimization

"realistic spaceship rocket design. sts crispy affirting fanny dechomo earn " Before (left) and after (right) optimization

- CLIP converts prompt to embedding

- CLIP converts prompt to embedding
- Diffusion model generates latent representation of an image using the prompt embedding as condition

- CLIP converts prompt to embedding
- Diffusion model generates latent representation of an image using the prompt embedding as condition

- CLIP converts prompt to embedding
- Diffusion model generates latent representation of an image using the prompt embedding as condition

- CLIP converts prompt to embedding
- Diffusion model generates latent representation of an image using the prompt embedding as condition

- CLIP converts prompt to embedding
- Diffusion model generates latent representation of an image using the prompt embedding as condition
- Diffusion was trained to have resulting image match the description

"prompt"

Generating Prompt Embedding Using CLIP

This embedding needs to be trained to control the prompt tokens

```
\[ \cdots \cdots
```


Potential shortcut because CLIP space is the same for images and text

"prompt"

```
Tokenize
"prompt"<sup>&</sup> embed [ ]768
277
```

```
Tokenize Positional "prompt" \stackrel{\$ \text{ embed}}{\longrightarrow} \left[ \begin{array}{c} 768 \\ \times 77 \end{array} \right] \stackrel{\$ \text{ CLIP}}{\longrightarrow} \left[ \begin{array}{c} 768 \\ \times 77 \end{array} \right]
```


Given embeddings

- []_{768×77}
- []_{768×77}

Given embeddings

Given embeddings

Given embeddings

Given embeddings

Wen et al. [5] proposed projection into discrete token space

Not all 77 token embeddings are altered

- Not all 77 token embeddings are altered
- We want to change suffix tokens only

- Not all 77 token embeddings are altered
- We want to change suffix tokens only
- Prevents alteration of displayed objects

- Not all 77 token embeddings are altered
- We want to change suffix tokens only
- Prevents alteration of displayed objects
- This resembles prompt modifiers in prompt engineering

Introduction

Related Work

Method

Experiments

Baseline

Projection Variants

Skipping Image Generation

Generalization

Future Work

Conclusion

1. Add projection [5] to Deckers et al. [1]

Experiments: Overview

Experiments 23

Experiments: Overview

Experiments 23

5. Generalization over different initial latents

Experiments: Overview

Experiments 23

Alter prompt embedding to improve aesthetic score [1]

- Alter prompt embedding to improve aesthetic score [1]
- Add projection [5]

- Alter prompt embedding to improve aesthetic score [1]
- Add projection [5]
 - \rightarrow Results not as good as in Deckers et al. [1]

Hyperparameter configuration I

Hyperparameter configuration II

"realistic spaceship rocket design.
tha utilize tongue pathic oughton richegregearn "
Before (left) and after (right) optimization

Do not project before each step (only after final iteration)

- Do not project before each step (only after final iteration)
- Idea: Compromise between projection and no projection

- Do not project before each step (only after final iteration)
- Idea: Compromise between projection and no projection
- Add hyperparameter to decide whether to project

"realistic spaceship rocket design."

Before (left) and after (right) optimization

- Results are sometimes better, but inconclusive

"realistic spaceship rocket design.
asco indicates brides exited behavihaeasked earn "
Before (left) and after (right) optimization

- Results are sometimes better, but inconclusive

3. Damped Projection (Upcoming)

Do not project to real embeddings

3. Damped Projection (Upcoming)

- Do not project to real embeddings
- Only nudge embeddings in direction of their discrete counterparts

3. Damped Projection (Upcoming)

- Do not project to real embeddings
- Only nudge embeddings in direction of their discrete counterparts
- Should also make exploration of embedding space easier

- Skip latent diffusion model

- Skip latent diffusion model
- Use aesthetics predictor directly on CLIP embedding

"realistic spaceship rocket design. sts crispy affirting fanny dechomo earn " Before (left) and after (right) optimization

"realistic spaceship rocket design.
minion dumb chalksignalling pooja touches "
Before (left) and after (right) optimization

- Initial latents significantly influence final image

- Initial latents significantly influence final image
 - Train using batches of different initial latents simultaneously

- Initial latents significantly influence final image
 - Train using batches of different initial latents simultaneously
 - → Generalize over different initial latents

- Initial latents significantly influence final image
 - Train using batches of different initial latents simultaneously
 - → Generalize over different initial latents
- Use same suffix for different prompts during training

- Initial latents significantly influence final image
 - Train using batches of different initial latents simultaneously
 Generalize over different initial latents
- Use same suffix for different prompts during training
 - Such a suffix may not be optimal for all prompts

- Initial latents significantly influence final image
 - Train using batches of different initial latents simultaneously
 Generalize over different initial latents
- Use same suffix for different prompts during training
 - Such a suffix may not be optimal for all prompts
 - Find optimal suffix for groups/clusters of prompts

- Initial latents significantly influence final image
 - Train using batches of different initial latents simultaneously
 → Generalize over different initial latents
- Use same suffix for different prompts during training
 - Such a suffix may not be optimal for all prompts
 - Find optimal suffix for groups/clusters of prompts
 - $\rightarrow \text{Generalize over different prompts}$

Method			
Future Work			
Future Work Conclusion			

More granular aesthetics: image composition, contrast, ...

- More granular aesthetics: image composition, contrast, ...
- Style score: comic, pixel art, film, painting, ...

- More granular aesthetics: image composition, contrast, ...
- Style score: comic, pixel art, film, painting, ...
- Artist classifier: da Vinci, van Gogh, ...

- More granular aesthetics: image composition, contrast, ...
- Style score: comic, pixel art, film, painting, ...
- Artist classifier: da Vinci, van Gogh, ...
- Different classes: cat, dog, fish, ...

- More granular aesthetics: image composition, contrast, ...
- Style score: comic, pixel art, film, painting, ...
- Artist classifier: da Vinci, van Gogh, ...
- Different classes: cat, dog, fish, ...
- Safety classifier: SFW, privacy, gender bias, ...

Figure 1: Reproduced from Guerrero-Viu et al. [2]

Let users control embedding dimensions akin to Guerrero-Viu et al. [2]

Figure 1: Reproduced from Guerrero-Viu et al. [2]

- Let users control embedding dimensions akin to Guerrero-Viu et al. [2]
 - Manipulation of texture generation

Figure 1: Reproduced from Guerrero-Viu et al. [2]

- Let users control embedding dimensions akin to Guerrero Viu et al. [2]
 - Manipulation of texture generation
 - Example: given a stone texture, change stone size using slider

Figure 1: Reproduced from Guerrero-Viu et al. [2]

- Let users control embedding dimensions akin to Guerrero-Viu et al. [2]
 - Manipulation of texture generation
 - Example: given a stone texture, change stone size using slider

Changes should be resembled in text

Figure 1: Reproduced from Guerrero-Viu et al. [2]

- Let users control embedding dimensions akin to Guerrero-Viu et al. [2]
 - Manipulation of texture generation
 - Example: given a stone texture, change stone size using slider
- Changes should be resembled in text
 - → Useful adapter for the Infinite Index Explorer

- Explore differences between prefix, infix and suffix

- Explore differences between prefix, infix and suffix
- For infix: choice of insertion in prompt

- Explore differences between prefix, infix and suffix
- For infix: choice of insertion in prompt
- Use replacements (beyond affixes)

- Explore differences between prefix, infix and suffix
- For infix: choice of insertion in prompt
- Use replacements (beyond affixes)
- Might introduce alteration of displayed objects

- Assisted prompt engineering required

- Assisted prompt engineering required
- Our proposed solution: Generate prompt suffix to optimize aesthetic score

- Assisted prompt engineering required
- Our proposed solution: Generate prompt suffix to optimize aesthetic score

Results show improvement of aesthetic score

- Assisted prompt engineering required
- Our proposed solution: Generate prompt suffix to optimize aesthetic score
- Results show improvement of aesthetic score
- Current suffixes lack interpretability

- Assisted prompt engineering required
- Our proposed solution: Generate prompt suffix to optimize aesthetic score
- Results show improvement of aesthetic score
- Current suffixes lack interpretability
- Improvements to generalization might increase interpretability

- Assisted prompt engineering required
- Our proposed solution: Generate prompt suffix to optimize aesthetic score
- Results show improvement of aesthetic score
- Current suffixes lack interpretability
- Improvements to generalization might increase interpretability
- Final goal: Find list of suffixes which work for every prompt and image seed

- Assisted prompt engineering required
- Our proposed solution: Generate prompt suffix to optimize aesthetic score
- Results show improvement of aesthetic score
- Current suffixes lack interpretability
- Improvements to generalization might increase interpretability
- Final goal: Find list of suffixes which work for every prompt and image seed

Skipping latent diffusion is feasible, further investigation required

- Assisted prompt engineering required
- Our proposed solution: Generate prompt suffix to optimize aesthetic score
- Results show improvement of aesthetic score
- Current suffixes lack interpretabilty
- Improvements to generalization might increase interpretability
- Final goal: Find list of suffixes which work for every prompt and image seed
- Skipping latent diffusion is feasible, further investigation required

Thank you!

References

References I

- [1] Niklas Deckers, Julia Peters, and Martin Potthast. Manipulating embeddings of stable diffusion prompts. CoRR, abs/2308.12059, 2023. doi: 10.48550/ARXIV.2308.12059. URL https://doi.org/10.48550/arXiv.2308.12059.
- [2] Julia Guerrero-Viu, Milos Hasan, Arthur Roullier, Midhun Harikumar, Yiwei Hu, Paul Guerrero, Diego Gutierrez, Belen Masia, and Valentin Deschaintre. Texsliders: Diffusion-based texture editing in clip space. arXiv preprint arXiv:2405.00672, 2024. URL https://arxiv.org/abs/2405.00672.
- [3] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pages 10674–10685. IEEE, 2022. doi: 10.1109/CVPR52688.2022.01042. URL https://doi.org/10.1109/CVPR52688.2022.01042.

References 4

References II

- [4] Christoph Schuhmann. Laion-aesthetics, 8 2022. URL https://laion.ai/blog/laion-aesthetics/.
- [5] Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Hard prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/a00548031e4647b13042c97c922fadf1-Abstract-Conference.html.

References 41

Initial latents significantly influence final image

- Initial latents significantly influence final image
- Users do not typically choose seed or initial latent

- Initial latents significantly influence final image
- Users do not typically choose seed or initial latent
- Latent specific suffix has limited use

- Initial latents significantly influence final image
- Users do not typically choose seed or initial latent
- Latent specific suffix has limited use
 - ightarrow Train using batches of different initial latents simultaneously

Test Generalization of Suffixes Over Multiple Prompts (Upcoming)

Generate optimal suffix on one prompt

Test Generalization of Suffixes Over Multiple Prompts (Upcoming)

- Generate optimal suffix on one prompt
- Test effect over 10 other prompts

Test Generalization of Suffixes Over Multiple Prompts (Upcoming)

- Generate optimal suffix on one prompt
- Test effect over 10 other prompts
 - Repeat for each of the 10 other prompts

Train Prompt Independent Suffix (Upcoming)

If suffix does not generalize in previous experiment:
 use same suffix for different prompts during training

Train Prompt Independent Suffix (Upcoming)

- If suffix does not generalize in previous experiment:
 use same suffix for different prompts during training
- Such a suffix may not be optimal

Train Prompt Independent Suffix (Upcoming)

- If suffix does not generalize in previous experiment:
 use same suffix for different prompts during training
- Such a suffix may not be optimal
 - Find optimal suffix for groups/clusters of prompts

Appendix 4:

Latent Diffusion [3]

Rerpoduced from Rombach et al. [3]