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Context: Text to Image Generation

– Users generate an image from a prompt using latent diffusion

– Example: “realistic spaceship rocket design.”
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Most Common Scenario: Improving Aesthetics
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Problem: Descriptive Prompt ↛ Good Aesthetics

– Example: “realistic spaceship rocket design.”
produces a matching, but unappealing image

– Prompt language distinct from user’s language
→ Iterative trial and error (prompt engineering)
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Common Solution: Prompt Modifiers

– Add suffixes (prompt modifiers): “hd”, “high quality”, etc.
→ “realistic spaceship rocket design. high quality”

– Result still not ideal
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Common Solution: Prompt Modifiers

– Iterate with more or other suffixes

Prompt Image

Prompt Engineering
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Manual Prompt Engineering: Flaws

– Highly arbitrary

– Does not generalize

– Inaccessible to non-experts
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Manual Prompt Engineering: Potential Solutions

– User study to find good suffixes

- Highly user dependent
- Does not generalize over prompts

– Use classifier pretrained on user preferences to improve generated images as
in Deckers et al. [1]
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Modifying Prompt Embeddings [1]

“realistic spaceship rocket design.”
Before (left) and after (right) optimization.

Reproduced from Deckers et al. [1]
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Proposed Solution

– Problem with method of Deckers et al. [1]: Does not yield an improved prompt

– Our proposed solution yields a prompt
→ Users can interpret and edit prompt
→ Allows reuse for different prompts
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Proposed Solution

“realistic spaceship rocket design.”

sts crispy affirting fanny dechomo earn ”

Before (left) and after (right) optimization
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– CLIP converts prompt to embedding

– Diffusion model generates latent representation of an image
using the prompt embedding as condition

– Diffusion was trained to have resulting image match the description
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Generating Prompt Embedding Using CLIP
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Computing Aesthetic Score Based on Schuhmann [4]
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Projection to Find Token Representation for Given Prompt Embedding
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Restricting Manipulation to Suffixes

– Not all 77 token embeddings are altered

– We want to change suffix tokens only

– Prevents alteration of displayed objects

– This resembles prompt modifiers in prompt engineering
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1. Add Projection [5] to Deckers et al. [1]
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1. Add Projection [5] to Deckers et al. [1]
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2. Occasional Projection
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2. Occasional Projection
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– Results are sometimes better, but inconclusive
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3. Damped Projection (Upcoming)

– Do not project to real embeddings

– Only nudge embeddings in direction of their discrete counterparts

– Should also make exploration of embedding space easier
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4. Skip Image Generation
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4. Skip Image Generation
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5. & 6. Generalization Experiments (Upcoming)

– Initial latents significantly influence final image

- Train using batches of different initial latents simultaneously
→ Generalize over different initial latents

– Use same suffix for different prompts during training
- Such a suffix may not be optimal for all prompts
- Find optimal suffix for groups/clusters of prompts

→ Generalize over different prompts
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Use Different Optimization Target Metrics

– More granular aesthetics: image composition, contrast, . . .

– Style score: comic, pixel art, film, painting, . . .

– Artist classifier: da Vinci, van Gogh, . . .

– Different classes: cat, dog, fish, . . .

– Safety classifier: SFW, privacy, gender bias, . . .
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Exploration of Embedding Dimensions

Figure 1: Reproduced from Guerrero-Viu et al. [2]

– Let users control embedding dimensions akin to Guerrero-Viu et al. [2]

- Manipulation of texture generation
- Example: given a stone texture, change stone size using slider

– Changes should be resembled in text
→ Useful adapter for the Infinite Index Explorer

Future Work 35
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Exploration of Affix Types

– Explore differences between prefix, infix and suffix

– For infix: choice of insertion in prompt

– Use replacements (beyond affixes)

– Might introduce alteration of displayed objects
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Conclusion

– Assisted prompt engineering required

– Our proposed solution: Generate prompt suffix to optimize aesthetic score
– Results show improvement of aesthetic score
– Current suffixes lack interpretabilty
– Improvements to generalization might increase interpretabilty
– Final goal: Find list of suffixes which work for every prompt and image seed
– Skipping latent diffusion is feasible, further investigation required

Thank you!
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Generalization Over Different Initial Latents (Upcoming)

– Initial latents significantly influence final image

– Users do not typically choose seed or initial latent
– Latent specific suffix has limited use
→ Train using batches of different initial latents simultaneously
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Test Generalization of Suffixes Over Multiple Prompts (Upcoming)

– Generate optimal suffix on one prompt

– Test effect over 10 other prompts
- Repeat for each of the 10 other prompts
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Train Prompt Independent Suffix (Upcoming)

– If suffix does not generalize in previous experiment:
use same suffix for different prompts during training

– Such a suffix may not be optimal
- Find optimal suffix for groups/clusters of prompts
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