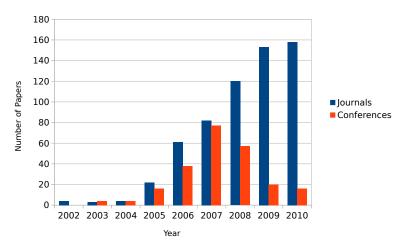
Featured Article Identification in Wikipedia

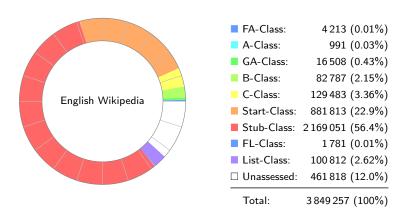
- Thesis Defense -


Christian Fricke christian.fricke@uni-weimar.de

Faculty of Media / Media Systems Bauhaus-Universität Weimar, Germany

October 18, 2012

Why is Wikipedia relevant?


Millions of people use Wikipedia, including authors, readers, researchers, and data analysts.

 $\textbf{Source:} \ \texttt{http://en.wikipedia.org/w/index.php?title=File:Growth_of_Academic_Interest_in_Wikipedia.svg}$

Wikipedia Statistics

The quality assessment of articles is manually unmanageable for the ever-growing encyclopedia.

Automated Solution

- Quality judgement of articles as indicator for improvement
- Most common method: binary classification of featured and non-featured articles represented as vectors of feature values

Featured: FA-Class

Non-featured: all other articles

Outline

- 1. Motivation
- 2. Quality Assessment Models
- 3. Feature Implementation
- 4. Article Classification
- 5. Conclusion

Binary Classification Approaches

- (1) Blumenstock [WWW 2008]
- (2) Dalip et al. [JDIQ 2011]
- (3) Lipka and Stein [WWW 2010]
- (4) Stvilia et al. [IQ 2005]

Problem: Extenuation of results through customized data sets

(1) Blumenstock [WWW 2008]

Features A single metric, the length (word count) of an article

as its sole representation

Dataset Unbalanced, random

Featured: 1554

Non-featured: 9513

Classifier Multi-Layer Perceptron

(2) Dalip et al. [JDIQ 2011]

Features 54 features ranging from simple counts to complex

graph-based metrics

Dataset Unbalanced, random

Featured: 549

Non-featured: 2745

Classifier Support Vector Machine

(3) Lipka and Stein [WWW 2010]

Features Character trigram vector—mapping from substrings

of three tokens to their respective frequencies

Dataset Balanced, domain-specific

Featured: 380

Non-featured: 380

Classifier Support Vector Machine

(4) Stvilia et al. [IQ 2005]

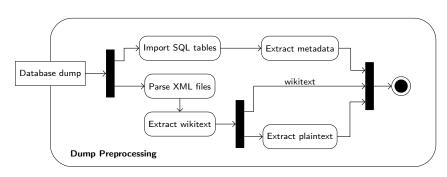
Features Seven distinct metrics based on variable groupings

that contain 19 features

Dataset Unbalanced, random

Featured: 236

Non-featured: 834


Classifier C4.5 Decision Tree

Outline

- 1. Motivation
- 2. Quality Assessment Models
- 3. Feature Implementation
- 4. Article Classification
- 5. Conclusion

Data Preparation

The January 2012 snapshot of the English Wikipedia constitutes 8TB of text data and is processed in less than two hours using the optimized Webis Hadoop cluster.

Feature Categories

Features are organized in four categories:

- Content Length and part of speech rates, readability indices, trigrams . . .
- Structure Lead rate, section distribution, counts for categories, files, images, lists, tables, and templates . . .
 - Network Link counts and PageRank . . .
 - History Age, currency, counts for edits, editors, and reverts . . .

Feature Computation

The runtime for the computation of each feature for all articles depends on its source and complexity.

Category	Features	Runtime	Source
Content	35	< 1h	plaintext
Structure	23	< 1h	wikitext
Network	8	< 12h	metadata
History	9	< 12h	all
Total:	75	~ 1 d	

Experiment Reconstruction

- Implemented most features to accurately replicate results in an easy to use framework incorporating data extraction, feature computation, dataset construction, and model definitions
- ► Employed WEKA to train and evaluate the classifiers
- ▶ Biased dataset selections made exact reproduction difficult

Outline

- 1. Motivation
- 2. Quality Assessment Models
- 3. Feature Implementation
- 4. Article Classification
- 5. Conclusion

Evaluation Measures

```
Precision (Proportion of correctly identified negatives)

Recall (Proportion of correctly identified positives)

F-Measure (Harmonic mean of Precision and Recall)
```

Featured	Non-featured	Average
Precision/ Recall/ F-Measure	Precision/ Recall/ F-Measure	<i>F</i> -Measure
0.871 / 0.936 / 0.902 0.781 / 0.877 / 0.826	0.989 / 0.977 / 0.983 0.980 / 0.960 / 0.970	0.970 0.949
	0.980 / 0.981 / 0.980	⊥ 0.967
0.966 / 0.961 / 0.964 0.949 / 0.939 / 0.944		 0.944
0.900 / 0.920 / 0.910 0.859 / 0.907 / 0.882	0.980 / 0.970 / 0.975 0.973 / 0.958 / 0.965	0.957 0.947
	Precision/ Recall/ F-Measure 0.871 / 0.936 / 0.902 0.781 / 0.877 / 0.826	Precision/ Recall/ F-Measure Precision/ Recall/ F-Measure 0.871 / 0.936 / 0.902 0.989 / 0.977 / 0.983 0.781 / 0.877 / 0.826 0.980 / 0.960 / 0.970

(1) Blumenstock (2) Dalip et al. (3) Lipka and Stein (4) Stvilia et al.

Model	Featured Precision/ Recall/ F-Measure	Non-featured Precision/ Recall/ F-Measure	Average F-Measure
(1)	0.871 / 0.936 / 0.902 0.781 / 0.877 / 0.826	0.989 / 0.977 / 0.983 0.980 / 0.960 / 0.970	0.970 0.949
(2)	$^{\perp}_{0.903~/~0.900~/~0.901}$	$_{0.980\ /\ 0.981\ /\ 0.980}^{\perp}$	⊥ 0.967
(3)	0.966 / 0.961 / 0.964 0.949 / 0.939 / 0.944		 0.944
(4)	0.900 / 0.920 / 0.910 0.859 / 0.907 / 0.882	0.980 / 0.970 / 0.975 0.973 / 0.958 / 0.965	0.957 0.947

(1) Blumenstock (2) Dalip et al. (3) Lipka and Stein (4) Stvilia et al.

Model	Featured	Non-featured	Average
	Precision/ Recall/ F-Measure	Precision/ Recall/ F-Measure	<i>F</i> -Measure
(1)	0.871 / 0.936 / 0.902	0.989 / 0.977 / 0.983	0.970
	0.781 / 0.877 / 0.826	0.980 / 0.960 / 0.970	0.949
(2)	\perp	\perp	\perp
	0.903 / 0.900 / 0.901	0.980 / 0.981 / 0.980	0.967
(2)	0.966 / 0.961 / 0.964	\perp	\perp
(3)	0.949 / 0.939 / 0.944	0.940 / 0.950 / 0.945	0.944
(4)	0.900 / 0.920 / 0.910	0.980 / 0.970 / 0.975	0.957
	0.859 / 0.907 / 0.882	0.973 / 0.958 / 0.965	0.947

⁽¹⁾ Blumenstock (2) Dalip et al. (3) Lipka and Stein (4) Stvilia et al.

Model	Featured <i>Precision/ Recall/ F-</i> Measure	Non-featured Precision/ Recall/ F-Measure	Average <i>F</i> -Measure
(1)	0.871 / 0.936 / 0.902 0.781 / 0.877 / 0.826	0.989 / 0.977 / 0.983 0.980 / 0.960 / 0.970	0.970 0.949
(2)			_ 0.967
(3)	0.966 / 0.961 / 0.964 0.949 / 0.939 / 0.944		_ 0.944
(4)	0.900 / 0.920 / 0.910 0.859 / 0.907 / 0.882	0.980 / 0.970 / 0.975 0.973 / 0.958 / 0.965	0.957 0.947

⁽¹⁾ Blumenstock (2) Dalip et al. (3) Lipka and Stein (4) Stvilia et al.

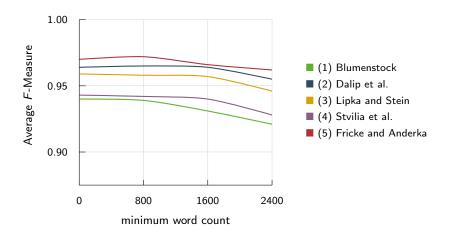
Uniform Dataset

We define four datasets to fairly compare the performance of each proposed model and propose an additional model that combines every implemented feature.

Dataset Balanced, random, corresponding to minimum word counts

of 0, 800, 1600, and 2400

Featured: 3 000


Non-featured: 3 000

(5) Fricke and Anderka:

Features All 75 features from every category

Classifier Support Vector Machine

Uniform Evaluation

Conclusion and Outlook

- ▶ A framework for convenient and consistent evaluation
- A new model utilizing every implemented quality indicator
- ► The most comprehensive collection of article features to date

Conclusion and Outlook

- ▶ A framework for convenient and consistent evaluation
- A new model utilizing every implemented quality indicator
- ► The most comprehensive collection of article features to date
- Exploration of novel quality indicators
- Combination with flaw detection algorithms
- ► Application to other classes (e.g. Start)