SVGFusion: Generating SVGs with Diffusion Models

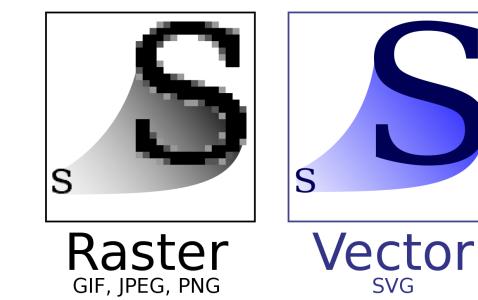
Hassan Jbara - Uni Leipzig

Uses of SVGs

SVGs are an image format used in:

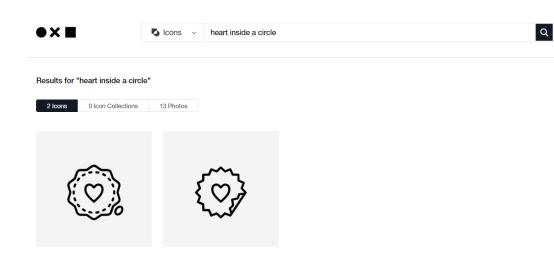
- Websites and Web Development.
- Designs
- Illustrations
- Logos
- Infographics
- ...

SVGs are infinitely scalable and very useful.



Source: https://en.wikipedia.org/wiki/Vector_graphics

The internet doesn't always have what you need.

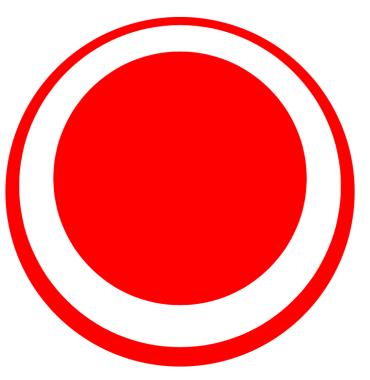


https://thenounproject.com

Popular image generation models so far only generate raster images.

Generated by DALL-E for "heart inside a circle svg"

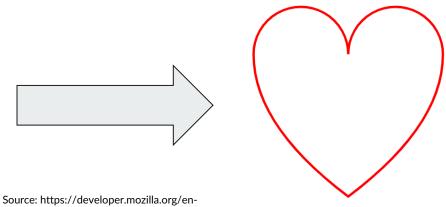
Large Language Models are also no good.



Generated by GPT-3 for "svg of a heart inside a circle"

Understanding SVGs

SVGs are markup, very similar to HTML.



US/docs/Web/SVG/Attribute/d

Understanding SVGs

The SVG code contains:

- Commands for drawing the SVG.
- Coordinates (Arguments) for the commands.
- Other descriptors such aus fill, stroke etc.

<svg xmlns="http://www.w3.org/2000/svg"></svg>		
<path< td=""></path<>		
fill="none"		
<pre>stroke="red"</pre>		
d="M 10,30		
A 20,20 0,0,1 50,30		
A 20,20 0,0,1 90,30		
Q 90,60 50,90		
Q 10,60 10,30 z		
" />		

Source: https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/d

Understanding SVGs

Most common tag is *<path>*, and with its commands:

- MoveTo: M, m
- LineTo: L, I, H, h, V, v
- Cubic Bézier Curve: C, c, S, s
- Quadratic Bézier Curve: Q, q, T, t
- Elliptical Arc Curve: A, a
- ClosePath: Z, z

You can draw almost anything!

Two main parts:

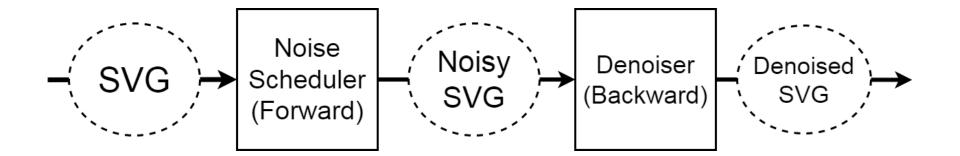
- 1. Forward Process (Noising).
- 2. Backward Process (Denoising).

Diffusion models: Gradually add Gaussian noise and then reverse

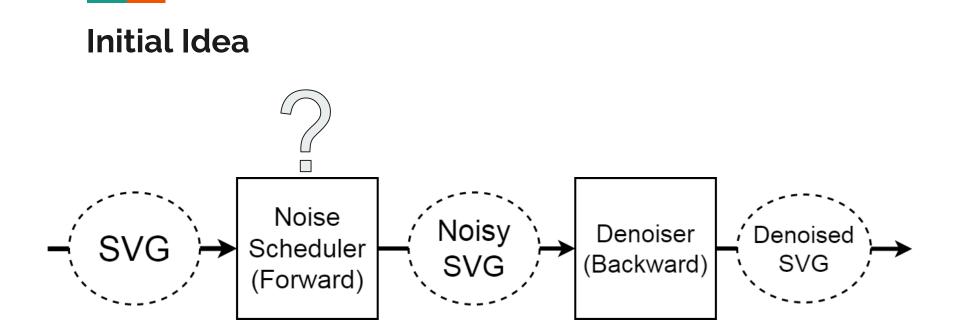
Source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Initial Idea

Our goal is **"Denoised SVG"** ≈ **"SVG"**



Hassan Jbara - Uni Leipzig

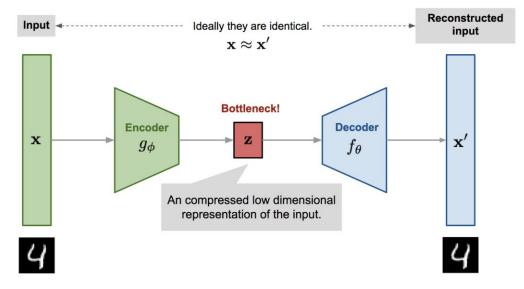


Numerical Representations

Problem: We can't work with SVGs in their original form.

 \rightarrow Use Autoencoders!

We will run the diffusion in the latent (compressed) space.



Related Work

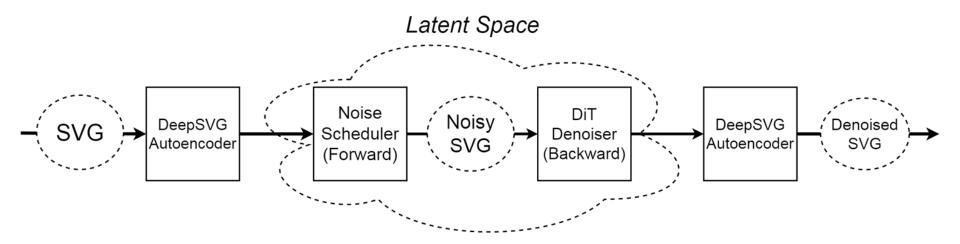
- DeepSVG (Autoencoder for SVG)
 - Embeds SVGs into a continuous latent space.
 - A bijection from SVG-space to a 256-dimensional latent space.
- DiT (Diffusion with Transformers)
 - Is our denoiser.
 - State-of-the-art and is more flexible than U-Nets.

DiT vs U-Nets

U-Nets have been the goto standard for diffusion models, but:

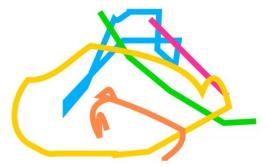
- U-Nets require certain depth in the data.
- U-Nets contain convolution that try to extract semantic meaning from images, which might not be present in SVGs.
- \rightarrow transformers are more flexible and suit our needs better.

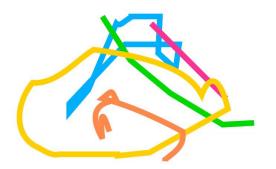
Refined Idea

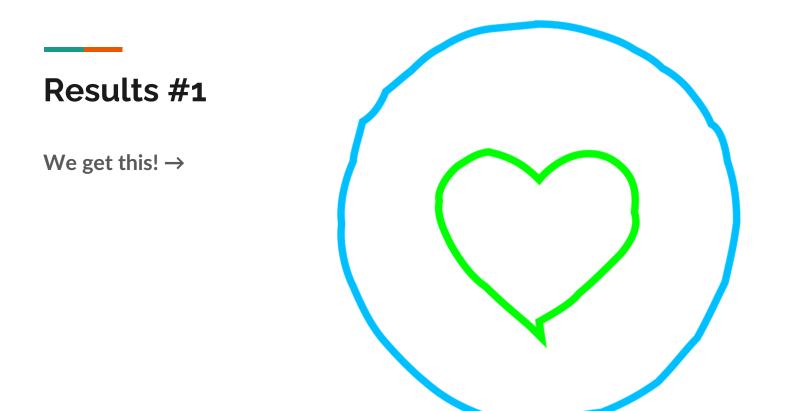


Results #1

Starting with noise like this



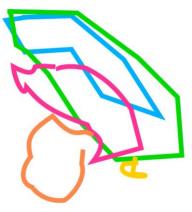


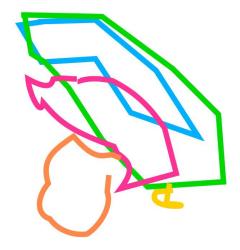


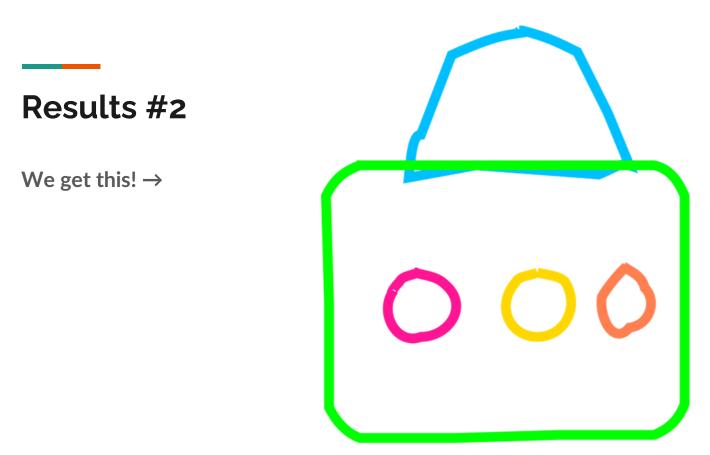
18

Results #2

Starting with noise like this





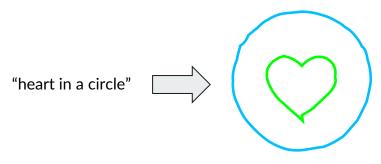


Summary

- My Work:
 - Built a system for generating SVGs with diffusion models.
 - Explored the possibilities and limitations of generative AI in regards to SVGs.
- My Contribution:
 - Extended the generative diffusion model paradigm to an SVG specific latent space.

Outlook

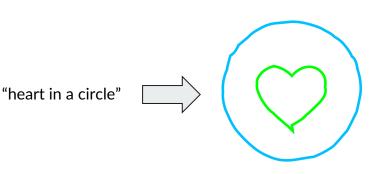
- Current Objectives:
 - Text guidance.
 - Limited user study.
- Future Objectives (beyond thesis):
 - User interfaces.
 - Advance methods to convert user expectations into SVGs (RLHF).
 - Generated symbolic images research.



Text guidance example

Outlook - Thanks for Listening!

- Current Objectives:
 - Text guidance.
 - Limited user study.
- Future Objectives (beyond thesis):
 - User interfaces.
 - Advance methods to convert user expectations into SVGs (RLHF).
 - Generated symbolic images research.



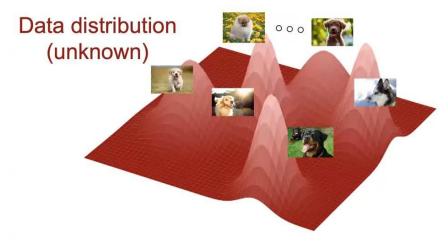
Text guidance example

Extra Slides

Basic Principle of Diffusion Models

given the probability density function f_X (i.e. data distribution) of our data, we can sample new points $x \sim f_X$.

Problem: f_X is unknown and very complicated for high dimensional data.

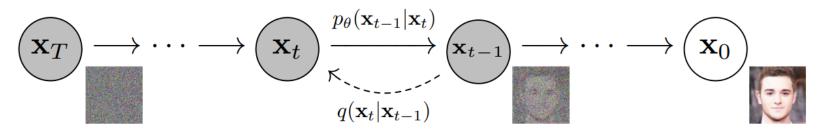


Source: https://www.youtube.com/watch?v=nv-WTeKRLI0

Understanding Diffusion Models - Forward

Given sample x_0 from our distribution $x_0 \sim q$, we produce $x_1, x_2, ..., x_T$ noisy samples using a <u>noise scheduler</u>:

• $q(x_t|x_{t-1})$: probability of x_t given x_{t-1} .

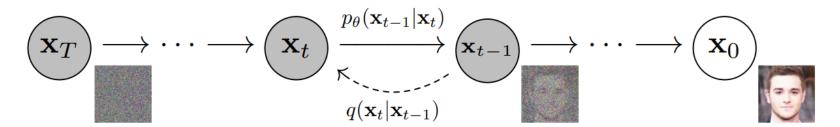


Source: https://arxiv.org/pdf/2006.11239.pdf

Understanding Diffusion Models - Forward

Noise Scheduler: $q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$

Where $\beta_t \in (0,1)$; $\beta_1 < \beta_2 < ... < \beta_T$, is a variance schedule of our choosing.

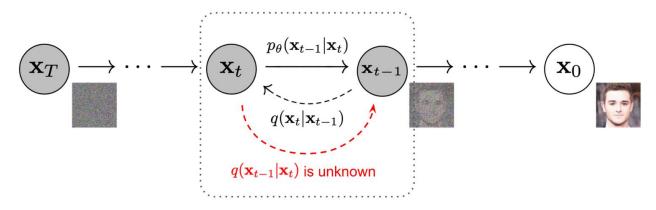


Source: https://arxiv.org/pdf/2006.11239.pdf

Understanding Diffusion Models - Backward

 $q(x_{t-1}|x_t)$ is unknown, and $p_{\theta}(x_{t-1}|x_t)$ is our estimation (our model) of $q(x_{t-1}|x_t)$:

• $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})$: probability of \mathbf{x}_{t-1} given \mathbf{x}_{t} , or denoising.



Understanding Diffusion Models - Backward

Remember that β is a constant of our choosing, which means the only unknown here is ϵ , or the random noise.

Think of it like this: Noisy_image = original_image + noise. If we know the amount of noise added, removing it to get the original image should be easy.

Training to predict the noise with a simple loss function:

$$\mathbf{L}_{\text{simple}}(\boldsymbol{\Theta}) = ||\boldsymbol{\epsilon}_{\boldsymbol{\Theta}}(\mathbf{x}_{t}) - \boldsymbol{\epsilon}_{t}||_{2}^{2}$$

Where:

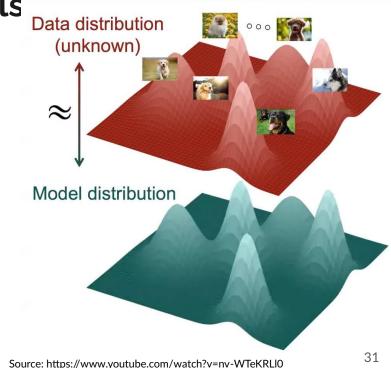
- $\epsilon_{\theta}(x_t)$ the model prediction for x at timestep t
- ϵ_t the added noise (ground truth) for timestep *t*.

In other word: mean square error of predicted noise against actual noise for each t.

What does this achieve?

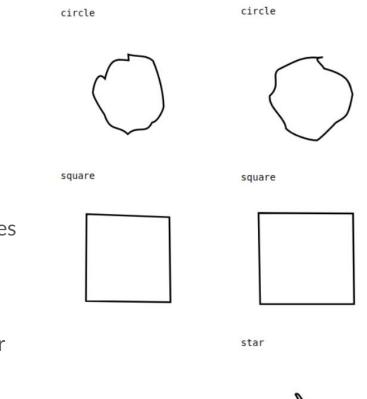
 \rightarrow We are teaching the model to estimate the probability distribution of the data!

(... or technically the gradients of the probability distribution)



Algorithms for training and sampling are therefore pretty simple, although a lot of other variations exist.

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T,, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

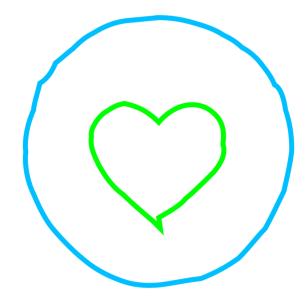


Improvement Potential

DeepSVG has a lot of *shortcomings*:

- Bad at reproducing basic shapes such as circles and squares.
- Not flexible enough for all types of SVGs.
- \rightarrow it's the main limiting factor for the quality of our model currently, and a better VAE will help a lot.

Improvement Potential



What DeepSVG originally produces.

What our model learned to produce

Improvement Potential

Two Potential Fixes for DeepSVG:

- A model trained on correcting the inaccuracies that DeepSVG produces (e.g. trained on smoothing squiggly lines).
- Sophisticated algorithms for correcting inaccuracies that DeepSVG produces (i.e. path correction\smoothing algorithms).