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Uses of SVGs

SVGs are an image format used in:

● Websites and Web Development.

● Designs

● Illustrations

● Logos

● Infographics

● …
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Motivation

SVGs are infinitely scalable and very 

useful.
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Source: https://en.wikipedia.org/wiki/Vector_graphics
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Motivation

The internet doesn’t always have 

what you need.
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https://thenounproject.com
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Motivation

Popular image generation models so far only 

generate raster images.
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Generated by DALL-E for “heart inside a circle svg”
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Motivation

Large Language Models are also no good.
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Generated by GPT-3 for “svg of a heart inside a circle”
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Understanding SVGs

SVGs are markup, very similar to HTML.
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Source: https://developer.mozilla.org/en-
US/docs/Web/SVG/Attribute/d
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Understanding SVGs

The SVG code contains:

● Commands for drawing the SVG.

● Coordinates (Arguments) for the commands.

● Other descriptors such aus fill, stroke etc.

Hassan Jbara - Uni Leipzig

Source: https://developer.mozilla.org/en-
US/docs/Web/SVG/Attribute/d
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Understanding SVGs

Most common tag is <path>, and with its 

commands:

● MoveTo: M, m

● LineTo: L, l, H, h, V, v

● Cubic Bézier Curve: C, c, S, s

● Quadratic Bézier Curve: Q, q, T, t

● Elliptical Arc Curve: A, a

● ClosePath: Z, z

You can draw almost anything!
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Source: https://de.wikipedia.org/wiki/Universität_Leipzig
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Understanding Diffusion Models
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Source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Two main parts: 

1. Forward Process (Noising).

2. Backward Process (Denoising).
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Initial Idea

Hassan Jbara - Uni Leipzig

Our goal is “Denoised SVG” ≈ “SVG”
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Initial Idea
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Numerical Representations

Problem: We can’t work with 

SVGs in their original form.

→ Use Autoencoders!

We will run the diffusion in the 

latent (compressed) space.
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Source: https://lilianweng.github.io/posts/2018-08-12-vae/
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Related Work

● DeepSVG (Autoencoder for SVG)

○ Embeds SVGs into a continuous latent space.

○ A bijection from SVG-space to a 256-dimensional latent space.

● DiT (Diffusion with Transformers)

○ Is our denoiser.

○ State-of-the-art and is more flexible than U-Nets.
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DiT vs U-Nets

U-Nets have been the goto standard for diffusion models, but:

● U-Nets require certain depth in the data.

● U-Nets contain convolution that try to extract semantic meaning 

from images, which might not be present in SVGs.

→ transformers are more flexible and suit our needs better.
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Refined Idea
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Results #1

Hassan Jbara - Uni Leipzig

17

Starting with noise 

like this



Results #1
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We get this! →



Results #2
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Starting with noise 

like this



Results #2
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We get this! →



Summary
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● My Work:

○ Built a system for generating SVGs with diffusion models.

○ Explored the possibilities and limitations of generative AI in 

regards to SVGs.

● My Contribution:

○ Extended the generative diffusion model paradigm to an SVG 

specific latent space.



Outlook
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● Current Objectives:

○ Text guidance.

○ Limited user study.

● Future Objectives (beyond thesis):

○ User interfaces.

○ Advance methods to convert user expectations into SVGs 

(RLHF).

○ Generated symbolic images research.

“heart in a circle”

Text guidance example



Outlook - Thanks for Listening!
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● Current Objectives:

○ Text guidance.

○ Limited user study.

● Future Objectives (beyond thesis):

○ User interfaces.

○ Advance methods to convert user expectations into SVGs 

(RLHF).

○ Generated symbolic images research.
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“heart in a circle”

Text guidance example



Extra Slides
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Basic Principle of Diffusion Models
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Source: https://www.youtube.com/watch?v=nv-WTeKRLl0

given the probability density function fX(i.e. 

data distribution) of our data, we can sample 

new points x ~ fX.

Problem: fX is unknown and very 

complicated for high dimensional data.
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Understanding Diffusion Models - Forward

Source: https://arxiv.org/pdf/2006.11239.pdf

Given sample x0 from our distribution x0~q, we produce x1, x2, … , xT noisy samples 

using a noise scheduler:

● q(xt|xt-1): probability of xt given xt-1.
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Source: https://arxiv.org/pdf/2006.11239.pdf

Noise Scheduler:

Where ꞵt ∈ (0,1); ꞵ1 < ꞵ2 < … < ꞵT, is a variance schedule of our choosing.
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Understanding Diffusion Models - Forward
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28Source: https://arxiv.org/pdf/2006.11239.pdf

q(xt-1|xt) is unknown, and pθ(xt-1|xt) is our estimation (our model) of q(xt-1|xt):

● pθ(xt-1|xt): probability of xt-1 given xt, or denoising.

Understanding Diffusion Models - Backward

Hassan Jbara - Uni Leipzig



29

Remember that β is a constant of our choosing, which means the only unknown 

here is ϵ, or the random noise.

Think of it like this: Noisy_image = original_image + noise. If we know the 

amount of noise added, removing it to get the original image should be easy.

Understanding Diffusion Models - Backward
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Understanding Diffusion Models
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Training to predict the noise with a simple loss function:

Lsimple(θ) = ||ϵθ(xt) − ϵt||2
2

Where:

● ϵθ(xt) the model prediction for x at timestep t

● ϵt the added noise (ground truth) for timestep t.

In other word: mean square error of predicted noise against actual noise for each t.
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Understanding Diffusion Models

What does this achieve?

→ We are teaching the model to estimate the 

probability distribution of the data!

(... or technically the gradients of the probability 

distribution)

Source: https://www.youtube.com/watch?v=nv-WTeKRLl0
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Understanding Diffusion Models
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Algorithms for training and sampling are therefore pretty simple, although 

a lot of other variations exist.

Source: https://arxiv.org/pdf/2006.11239.pdf 32



Improvement Potential
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DeepSVG has a lot of shortcomings:

● Bad at reproducing basic shapes such as circles 

and squares.

● Not flexible enough for all types of SVGs.

→ it’s the main limiting factor for the quality of our 

model currently, and a better VAE will help a lot.

Source: https://pwichmann.github.io/deep-learning-with-vector-graphics-
book/03_related_work/papers/Carlier_et_al_2020.html 33



Improvement Potential
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What DeepSVG originally produces. What our model learned to produce
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Improvement Potential
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Two Potential Fixes for DeepSVG:

● A model trained on correcting the inaccuracies that DeepSVG 

produces (e.g. trained on smoothing squiggly lines).

● Sophisticated algorithms for correcting inaccuracies that DeepSVG 

produces (i.e. path correction\smoothing algorithms).
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