Learning to Tag Environmental Sounds in Nightlong Audio

Master thesis

Mohd Saif Khan

Overview

- Data and its challenges
- Related work and the model used
- Hypotheses
- Results and the Decision support system

Data

- The German Aerospace Center is investigating effects of aircraft noise on sleep
- Participants consent to sleep in a controlled environment to obtain physiological data.
- 8-10 hours of audio is recorded and each sound class in the audio is tagged manually by annotators.

Challenges with data

- Class imbalance
- Average audio lengths of different classes
- Noise
- Weak labelling and misclassification

Class imbalance

Average audio lengths of different classes

• Due to different audio lengths, the audios must be padded or cut that could lead to loss of information.

Class	Count	Total Duration (hh:mm:ss)	Average Length (s)
Auto	23448	107:37:56	16.52
Probandengeraeusche	14061	139:28:02	35.71
Nachbarschaftslaerm	7088	51:36:58	26.22
Umdrehen im Bett	6920	39:48:37	20.71
Raumknacken	4848	06:27:14	4.79
Flugzeug landend	1821	33:32:15	66.3
Flugzeug startend	1633	32:45:47	72.23
Flugzeug	1109	19:54:25	64.62
	•		
	•		
Wind	1	00:00:11	11

Noise

- Background noise or mixture of multiple sounds simultaneously.
- Some participants snored during the night or used fans during the night.

Weak labelling or misclassification

- All events are not annotated.
- Subjectivity of annotator's perception. The sound of moving fan can be confused with the sound of Auto etc.

Sound classes and their hierarchy

- There was a total of 27 different sound event.
- These 27 classes were grouped together to form 5 broad classes.
- 3 classes (Airplane (Flugzeug), Cars (Autos), and Neighborhood Noise (Nebengeraeusche) along with Silence class are used.

1. https://www.colourbox.com/vector/alzheimer-old-man-cartoon-vector-37220328

- 2. https://www.onallcylinders.com/2015/08/21/our-top-10-cartoon-cars-of-all-time/
- 3. https://www.pngitem.com/middle/iRxbxRJ_vector-illustration-of-commercial-airplane-passenger-airplane-gif/

4. https://freesvg.org/quiet-symbol

Insights on data by dimensionality reduction

Related Work

- Sound event classification
 - Gaussian Mixture models with KL divergence (Aucouturier et al. (2007))
 - KNN and k-medoids clustering to create bag of features and then applied Support vector machine (Briggs et al. (2012) applied)
 - RNN's have been used as they are efficient in modelling sequences (*Phan et al(2017)*)
 - CNN has been used to classify audio signals (Eghbal-zadeh et al(2017), Dorfer et al(2018))

Research questions

- In reference to the challenges, what is the suitable method for classification of sound events?
- What are the optimal window size and overlap sizes in order to meet the target start and end point detection accuracy?
- How can we create semi-automatic decision support system that helps annotators to tag the audio recordings?

Feature- Mel Filter Banks

- It contains information about both time and frequency components of an audio signal.
- The output is a spectrogram that can be represented in a 2D image.

Mel Filter Banks

- Mel filter bank representation with 128 filters
- The repetitive nature of the siren can be observed in Figure 2.

Model- Audio Spectrogram Transformer(AST)

- Transformer based audio classifier that is SOTA on open-source datasets(Audioset, ESC-50, etc.).(Gong et al (2021))
- Uses spectrogram of audios as input.
- Can be trained with audios with different input window lengths without needing to change the entire architecture.
- Trained models with **30**, **15**, **10**, and **5** seconds input window sizes.

Approach for Audio Tagging(non-overlapping windows)

The same prediction 0 in all the windows will be tagged as a single sound event 0 with starting time as 2 seconds and ending time as 6 seconds.

Hypotheses

- *Hypothesis 1*: Different input window sizes would directly affect the performance of classes with different average audio lengths.
- Hypothesis 2: The classification of sound signals with an overlapping window will improve the starting point and ending point accuracy of the target sound.

Hypothesis 2

Results

Results of Different models

Results of different classification models

Results

- Hypothesis 1: Not successful
- AST₃₀ with a window of 30 seconds is better for each class irrespective of the length of the audio.

	Model	Flugzeug	Silence	Nebengeraeusche	Autos
	AST ₅	0.921	0.944	0.869	0.898
Pocall	AST ₁₀	0.908	0.979	0.876	0.909
Recall	AST ₁₅	0.925	0.976	0.857	0.936
	AST ₃₀	0.928	0.981	0.918	0.957
	AST ₅	0.897	0.942	0.882	0.91
Procision	AST ₁₀	0.922	0.936	0.892	0.921
FIECISION	AST ₁₅	0.914	0.959	0.915	0.907
	AST ₃₀	0.949	0.982	0.911	0.942
	AST ₅	0.909	0.943	0.875	0.904
E1 Scoro	AST ₁₀	0.915	0.957	0.884	0.915
FI-Score	AST ₁₅	0.919	0.968	0.885	0.921
	AST ₃₀	0.938	0.982	0.914	0.95
Average audio					
length		68.01		27.35	16.52

Results

- Hypothesis 2: Partially successful as the starting timings of the sound events improved for the events that are **longer** in duration.
- Perform a type of smoothing that negatively impact the sounds with smaller lengths. But it is good for removing noise.

Orange is the ground truth and blue is the ₂₁ prediction.

Decision Support System

Results on a test recording

Overlapping window approach

Window Si Recording (Overla	Window Size	ze PSDS p)	Airplane		Car		Nebengerausche		Silence	
	(Overlap)		F1	TPR	F1	TPR	F1	TPR	F1	TPR
135-0061-210521-225750- indoors	15	0.516	0.251	0.885			0.041	0.25	0.755	0.66
	30	0.682	0.744	0.914			0.2	0.35	0.902	0.821

Non-overlapping window approach

Recording Window Size	Window Sizo	PSDS	Airplane		Car		Nebengerausche		Silence	
	window Size		F1	TPR	F1	TPR	F1	TPR	F1	TPR
	5	0.151	0.101	0.942			0.013	0.35	0.177	0.142
135-0061-210521-225750- indoors	10	0.431	0.176	0.885			0.051	0.55	0.53	0.392
	15	0.565	0.312	0.942			0.054	0.3	0.767	0.678
	30	0.708	0.688	0.914			0.222	0.4	0.92	0.857

Conclusion and Future Work

- AST model achieves high performance
- The first hypothesis is not successful, and the second hypothesis is only partially successful.
- Created a Decision support system to tag the sound events

- More classes can be included.
- Classifier can be organized to predict multiple labels.
- Improved overlapping window approach

Thank you Questions