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Cluster Analysis: In the Beginning was the Data
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Cluster Analysis: Modeling II
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Cluster Analysis: Modeling II
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Cluster Analysis: Model Evaluation
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Cluster Analysis: Overview
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Clusterability

I Task: calculate a score for a model
I Has to be comparable at least among similar models

(same number of objects)

Test (4.2)

I A clusterable model (high score) has a dominant
structure of mutually separated parts that are
cohesive groups of objects.
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Clusterability I: Salient Clustering

Idea Model selection by cluster evaluation (“one-step”)
I Cluster the model with different algorithms and/or

parameter settings
I Evaluate all clusterings
I Choose best combination of model & clustering

→

two-step one-step
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Clusterability I: Dunn Index

Evaluation
index

Dunn index
family

min( )/max(1/ )
Dunn MST

Minimum spanning tree Dunn index (Dunn MST)
1/ Largest edge length in the minimum spanning tree of

the cluster
Smallest dissimilarity of objects from different clusters

Optimum clustering is feasibly computable
(no other clustering algorithm necessary)
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Clusterability I: Salient Clustering

+
+ Needs no additional
clusterability index
+ Evaluation indices are
better understood

-
- Most evaluation indices
require local optimization
- Not all evaluation indices
can compare clusterings
of different models

→
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Clusterability II: Statistical Tests on Structure

Idea Use a statistical test for unstructured models
I Null hypothesis: model generated from a model

distribution that generates non-clusterable models
(e.g., uniform distribution)

I Calculate a test statistic with known distribution under
the null hypothesis

I Use the probability that a similar large value occurs
under the null hypothesis for the clusterability
assessment
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Clusterability II: Hopkins and Skellam Statistic

x x0

spaced uniform clustered

Compare distribution of original objects (x) and
r uniformly sampled x0 (null hypothesis)

Hr =

∑r
i=1(ψnn(x0

i ))
m∑r

i=1(ψnn(x0
i ))

m +
∑r

i=1(ψnn(xπ(i)))m

ψnn(x) Dissimilarity of x to its nearest neighbor
m Number of dimensions

[Hopkins and Skellam. A New Method for Determining the Type of Distribution of Plant Individuals. 1954] 15
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Clusterability II: Statistical Tests on Structure

+
+ The distribution under
the null hypothesis allows
for an interpretation of the
score
+ Often requires only a
sample

-
- Depends heavily on the
null hypothesis
- Adjustment of statistics
is not trivial
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Clusterability III: Concentration of Dissimilarities

Idea In a clusterable model most object pairs should be
either very dissimilar (different clusters) or very
similar (same clusters)

separation cohesiveness

0 0.2 0.4 0.6 0.8 1
similarity ϕ

Similarity-histogram

I Test if relatively few dissimilarities are of average size
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Clusterability III: Dash et al. score
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Clusterability III: Dash et al. score
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Clusterability III: Concentration of Dissimilarities

+
+ Very general idea
+ Related to the concept
of intrinsic dimensionality

-
- Not clear when the used
heuristic (see right figure)
applies
- Lacks the interpretability
of statistical tests

separation cohesiveness
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[Dash et al. Dimensionality Reduction for Unsupervised Data. 1997] 19



Clusterability: Overview

I A clusterable model has a dominant structure of
mutually separated parts that are cohesive groups
of objects.

Test (4.2)

I Clusterability is related to various other topics in data
analysis

I Evaluation indices (Dunn)
I Tests on model distributions (Hopkins and Skellam)
I Methods of unsupervised feature selection (Dash et al.)
I Estimators of intrinsic dimensionality
I . . . ?
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Experiment: Synthetic Models
Can the clusterability indices identify clusterable models?

Experiment setup:
I 10 model distributions of varying intuitive clusterability

1 model from the uniform distribution

I 1 000 models per distribution (results are means)
I 180 2-dimensional objects per model
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Contributions

A clusterable model has a dominant structure of mutually
separated parts that are cohesive groups of objects.

I Clusterability indices can be used for model selection
I The indices differ, among others, with respect to their

preference for fine or coarse structure
I If models are (somewhat) meaningful for a dataset,

the more clusterable models are assumed to be also
the more meaningful

I Clusterability can incorporate ideas from various
related topics (especially clustering evaluation)

I Formal properties of clustering evaluation indices can
be converted to properties of clusterability indices
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Future Work

I Further formalization of clusterability indices

I Application to large datasets

I Application to high-dimensional problems

I Relation to cluster stability

I Incorporation of additional knowledge
(constraint clustering)
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Thank you
for your attention.
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