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A box with connected index
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a tool for thought.



PERSONAL KNOWLEDGE - THE PAST

Zettelkasten

A box with connected index
cards was used by sociologist
Niklas Luhmann from 1952 until
1997 to organize personal
knowledge. He referred to it as
a tool for thought.

Dymaxion Chronofile

.. iIs a collection of scrapbooks
by R. Buckminster Fuller that
documents his life from 1917 to
1983 detailed up to the hourly
level. There is no judge of what
is valid to putin or not.



PERSONAL KNOWLEDGE - THE PRESENT
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Advanced personal knowledge
management tools like
obsidian.md or Notion allow to
create a digital Zettelkasten of
connected personal notes.
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Lifelogging

... attempts to create personal
records of one person’s life in
all it's aspects. E.g. heart rate,
location, step count etc.



PERSONAL KNOWLEDGE - THE FUTURE?

- merging personal
knowledge and the
different streams of digital
traces we produce every
day
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Figure 1: Thymeflow system
architecture by David Montoya. [5]
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- merging personal

knowledge and the
different streams of digital
traces we produce every
day

Thymeflow combines
personal data and
personal knowledge with a
central query interface

- multiple sources

- location
- emails

- calendar
- contacts

- what about your web

history?



Thymeflow abstracted stays from a log of
location data.



Thymeflow abstracted stays from a log of
location data.

How can we abstract the task behind browsing
the web from a log of visited websites?
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Important Concepts



FROM A QUERY LOG ...
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... TOAVISIT LOG
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Figure 3: Visual explanation of a visit log.



WHAT IS A PHYSICAL SESSION? (¢)

Lo ’Phkjs\cal
3 Sessions



WHAT IS A PHYSICAL SESSION? (¢)

L03

’Phas\cal
Sessions

E search weather

(in) ge fo database course
@ check assignment

(in) go fo crypto course

W lookup "eaveso\roP(a\nﬁ“
W lookup "Spﬁware“

® g fo database course

@ submit assignment



WHAT IS A LOGICAL SESSION? ()\)
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WHAT IS A LOGICAL SESSION? ()\)
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WHAT IS A MISSION? (1)

- VL denotes a visit log

- )\ is a logical session, A is the set of all logical sessions on the
visit log VL.
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WHAT IS A MISSION? (1)

- VL denotes a visit log
- )\ is a logical session, A is the set of all logical sessions on the
visit log VL.

Definition (Mission 1)

Let A\, \; € A be any two logical sessions in the visit log. A;, A; are
subsets of the same mission p C VL iff they were issued for the
same task or goal. The set of all missions is denoted as M.
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WHAT IS A MISSION? (1)
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HIERARCHICAL MISSIONS

buy airplane

check ESTA status

research ESTA duration
check ESTA status

ticket

compare flights

check calendar

book airplane

Travel to
New York

research US
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Figure 4: Missions can be defined with varying granularity.



MAIN CHALLENGES

1. Record!

Record a personal web archive
over a time span of one month
as a dataset for the detection.

3. Detect!

Construct and run algorithms to
segment the visit log in logical
sessions and missions.

2. Annotate!

Annotate logical sessions and
(hierarchical) missions as a
ground truth for evaluation.

4. Evaluate!

Define evaluation measures to
compare the results with the
ground truth.
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Dataset Recording




EXPERIMENTAL SETUP
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Figure 5: Experimental setup for dataset recording. The WASP project [3] is
used as a proxy server and to archive the visited web pages. 15



Annotation




ANNOTATION FOR LOGICAL SESSIONS

TorontoView - Session #
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Figure 6: Screenshot of the annotation interface for logical sessions.



ANNOTATION FOR MISSIONS
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Figure 7: Screenshot of the annotation interface for missions.



ANNOTATION

- in a timespan of a month
1418 intentional website
visits 9 were recorded

- during annotation, the log
was segmented into 84
physical sessions, 294
logical sessions and 75
(hierarchical) missions

94561 unintentional visits were cleared
from the log during annotation



ANNOTATION

- in a timespan of a month
1418 intentional website
visits 9 were recorded

- during annotation, the log
was segmented into 84
physical sessions, 294
logical sessions and 75
(hierarchical) missions

94561 unintentional visits were cleared
from the log during annotation

Interesting Observations
During annotation various
phenomena e.g. "information
need digression” or "session
entry points” were identified.



Detecting Logical Sessions




ALGORITHMIC APPROACH

- different features are considered
and measured, if the sum of all
measurings exceeds a certain
"continuation threshold” a
session break is detected and a it
continues with a new session.

- time-based feature

- content-based feature

- Jaccard coefficient of keywords
- Jaccard coefficient of links

19



ALGORITHMIC APPROACH

- different features are considered
and measured, if the sum of all
measurings exceeds a certain
"continuation threshold” a
session break is detected and a it
continues with a new session.

- time-based feature

- content-based feature

- Jaccard coefficient of keywords
- Jaccard coefficient of links

Basic Features

Visit logs are a novel data
structure. Assessing the
effectiveness of basic
features will help to
construct more complex
features.

19



LOGICAL SESSION DETECTION EVALUATION

Precision: How many of the detected breaks are actually session
breaks?

- Here, the time feature scores best. (Precision: 0.507)
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- Here, the time feature scores best. (Precision: 0.507)

Recall: How many of the actual session breaks are detected?

- Here, the content-based features score best. (Recall: 1.0)

20



LOGICAL SESSION DETECTION EVALUATION

Precision: How many of the detected breaks are actually session
breaks?

- Here, the time feature scores best. (Precision: 0.507)

Recall: How many of the actual session breaks are detected?

- Here, the content-based features score best. (Recall: 1.0)

Simple is effective
Although it has no perfect recall, the time feature scores best when
taking both - precision and recall - into account. (F;s: 0.636)
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Detecting Missions




ALGORITHMIC APPROACH FOR MISSION DETECTION

Algorithm 1 WCC Clustering

O O O Require: A C P(VL)

@cosiaorg E
moodie uni-weimar.de &)
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de.wik| Fadva‘orﬂ W

0 O
@
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ALGORITHMIC APPROACH FOR MISSION DETECTION

Algorithm 1 WCC Clustering

Require: A C P(VL)
1 V=A
2 EE=AXxA
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ALGORITHMIC APPROACH FOR MISSION DETECTION

Algorithm 1 WCC Clustering

Require: A CP(VL)

1 V=A

2 EF=AxA

3: forall \; € Vdo
forall \; € Vdo

&

5 d; = distance(\;, )
6: if d; > ¢, then

7

8 end if

o: end for
Threshold

f—_——— 10: end for
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ALGORITHMIC APPROACH FOR MISSION DETECTION

Algorithm 1 WCC Clustering

Require: A C P(VL)
1 V=A
2 E=AxA
3: forall \; € Vdo
4 forall \j € Vdo
5 d; = distance(\;, )
6: if d; > ¢, then
7 E=E\{(A,A)}
8 end if
9: end for
10: end for

O

24



ALGORITHMIC APPROACH FOR MISSION DETECTION

/ ///’/”/////// ~ ) Algorithm 1 WCC Clustering
A~ O/| Require: ACP(VL)

/ 1 V=A
2 E=AxA
3 forall \j € Vdo

4 forall \; € Vdo

5: d; = distance(\;, )
6: if d; > ¢, then

7 E=EN\{(\))
8: end if

9: end for

10: end for

1: M" = Component-DFS(V, E)

25



ALGORITHMIC APPROACH FOR MISSION DETECTION

The distance' is calculated as the harmonic mean of the Jaccard
coefficients for the aggregated keywords and links in a logical
session.

J(Reywords(X;), keywords();)) + J(links(X;), links(\;))
2

distance(A;, \j) = 1—

ANB
J(A,B)=:AUB:

Tthis is not a distance in the notion of a metric space since the triangle inequality is
not fulfilled

26



ALGORITHMIC APPROACH FOR MISSION DETECTION

To evaluate the set of detected missions M’ we calculate the
weighted contribution of each mission’s best jaccard index with the
ground truth M. 2

r}p&}/(u )

Leaf nodes

fixed typo from thesis version, simplified formula

27



MISSION DETECTION EVALUATION
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MISSION DETECTION EVALUATION
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Conclusion




MAIN CHALLENGES

1. Record!

Record a personal web archive
over a time span of one month
as a dataset for the detection.

3. Detect!

Construct and run algorithms to
segment the visit log in logical
sessions and missions.

2. Annotate!

Annotate logical sessions and
(hierarchical) missions as a
ground truth for evaluation.

4. Evaluate!

Define evaluation measures to
compare the results with the
ground truth.
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HOW CAN THE DETECTION BE IMPROVED?

- Dataset: connect additional
device e.g. smartphone and
tablet to the WARC proxy

- Dataset: add other information
sources to the dataset like the
personal calendar

- Algorithm: combine time and
content in a complex feature, e.g.
geometric method [1], [2]

- Algorithm: make use of more
advanced clustering methods to
separate only sparsely connected
components [4]
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Personal Calendar
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calendar to identify
ambiguous cases. The
dataset is already there.
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HOW CAN THE DETECTION BE IMPROVED?

- Dataset: connect additional
device e.g. smartphone and
tablet to the WARC proxy

- Dataset: add other information
sources to the dataset like the
personal calendar

- Algorithm: combine time and
content in a complex feature, e.g.
geometric method [1], [2]

- Algorithm: make use of more
advanced clustering methods to
separate only sparsely connected
components [4]

Personal Calendar
During annotation | often
referred to my personal
calendar to identify
ambiguous cases. The
dataset is already there.

Dissimilarity Function
Visits that often appear in
different missions should
be weighted less in the
dissimilarity function.

31



Your Questions
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IMAGE SOURCES

- Slide 2, Left: "Zettelkasten Oerlinghausen” by Niklas Luhmann
Archiv

- Slide 2, Right: "Dymaxion Chronofile” by Sam Green, (Atlas
Obscura)


https://niklas-luhmann-archiv.de/nachlass/zettelkasten
https://niklas-luhmann-archiv.de/nachlass/zettelkasten
https://www.atlasobscura.com/places/dymaxion-chronofile
https://www.atlasobscura.com/places/dymaxion-chronofile
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BACKUP SLIDE: SESSION DETECTION EVALUATION

: Computed evaluation measures for each feature. Best score per column is coloured in green.
Worst score per column is coloured in red.

Feature Precision Recall Fi Fis Inverse Accuracy
Win-
dowdiff
Time 0.507 0.717 0.594 0.636 0.689 0.824
Domain 0.28 0.925 043 0.541 0.407 0.561
URL Keywords (In- 0.281 0.972 0.436 0.554 0.375 0.55
tersection)
URL Keywords (Jac- 0.215 1.0 0.354 0.471 0179 0.347
card)
Title Keywords (In- 0179 1.0 0.304 0.415 0.053 0179
tersection)
Title Keywords (Jac- 0.179 1.0 0.304 0.415 0.053 0179
card)
Joined Similarity 0.281 0.972 0.436 0.554 0.375 0.55
(Intersection)
Joined Similarity 0.215 1.0 0.354 0.471 0179 0.347
(Jaccard)

Linkage 0.22 0.992 0.361 0.477 0186 0.37




BACKUP SLIDE: SESSION DETECTION EVALUATION
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BACKUP SLIDE: SESSION DETECTION EVALUATION
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BACKUP SLIDE: MISSION DETECTION EVALUATION
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BACKUP SLIDE: PRECISION, RECALL AND ACCURACY

. TP
recision =
p TP + FP relevant elements
P false negatives true negatives
recall = ——
TP+ FN *s ¢ ° o
accuracy = TP+ TN
Y

precision - recall

15 = (141.5) (1.52 - precision) + recall

Image Source: Visual Explanation for
Precision and Recall. By Walber - Own
work, CC BY-SA 4.0 P ey i kg

Precision =——— Recall = ——


https://commons.wikimedia.org/w/index.php?curid=36926283
https://commons.wikimedia.org/w/index.php?curid=36926283

BACKUP SLIDE: LIMITATIONS OF PRECISION AND RECALL

Ref JOOO0O0O0OCEOOEEEOERNENRERENE
Ao JOO0OCOOONOONDNEDNEEENRERDNN

=

Ret DOO0OODCDENEENENEERERNENE
a1 DODONENEREREEEERRRREENRNE

Figure 8: Ground truth and outputs of two segmentation algorithms with
equal precision and recall.

Image Source: Assembly Al, use cases for topic segmentation


https://www.assemblyai.com/blog/text-segmentation-approaches-datasets-and-evaluation-metrics/#use-cases-for-topic-segmentation
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