Beyond the Query Log

Detecting Missions in Personal Web Archives

Ludwig Lorenz March 7, 2024

Research Group for Intelligent Information Systems, Bauhaus-Universität Weimar

Motivation

Personal Knowledge - The Past

Zettelkasten

A box with connected index cards was used by sociologist Niklas Luhmann from 1952 until 1997 to organize personal knowledge. He referred to it as a tool for thought.

Dymaxion Chronofile

... is a collection of scrapbooks by R. Buckminster Fuller that documents his life from 1917 to 1983 detailed up to the hourly level. There is no judge of what is valid to put in or not.

Personal Knowledge - The Past

Zettelkasten

A box with connected index cards was used by sociologist Niklas Luhmann from 1952 until 1997 to organize personal knowledge. He referred to it as a tool for thought.

Dymaxion Chronofile

... is a collection of scrapbooks by R. Buckminster Fuller that documents his life from 1917 to 1983 detailed up to the hourly level. There is no judge of what is valid to put in or not.

Personal Knowledge - The Past

Zettelkasten

A box with connected index cards was used by sociologist Niklas Luhmann from 1952 until 1997 to organize personal knowledge. He referred to it as a tool for thought.

Dymaxion Chronofile

... is a collection of scrapbooks by R. Buckminster Fuller that documents his life from 1917 to 1983 detailed up to the hourly level. There is **no** judge of what is valid to put in or not.

Personal Knowledge - The Present

Second Brain

Advanced personal knowledge management tools like *obsidian.md* or *Notion* allow to create a digital Zettelkasten of connected personal notes.

Lifelogging

... attempts to create personal records of one person's life in all it's aspects. E.g. heart rate, location, step count etc.

Personal Knowledge - The Future?

Figure 1: *Thymeflow* system architecture by David Montoya. [5]

- merging personal knowledge and the different streams of digital traces we produce every day
- *Thymeflow* combines personal data and personal knowledge with a central query interface
- multiple sources
 - location
 - emails
 - calendar
 - contacts
- what about your web history?

Personal Knowledge - The Future?

Figure 1: *Thymeflow* system architecture by David Montoya. [5]

- merging personal knowledge and the different streams of digital traces we produce every day
- Thymeflow combines personal data and personal knowledge with a central query interface
- multiple sources
 - location
 - emails
 - calendar
 - contacts
- what about your web history?

Personal Knowledge - The Future?

Figure 1: *Thymeflow* system architecture by David Montoya. [5]

- merging personal knowledge and the different streams of digital traces we produce every day
- Thymeflow combines personal data and personal knowledge with a central query interface
- multiple sources
 - location
 - emails
 - calendar
 - contacts
- what about your web history?

Thymeflow abstracted stays from a log of location data.

How can we abstract the task behind browsing the web from a log of visited websites?

Thymeflow abstracted stays from a log of location data.

How can we abstract the task behind browsing the web from a log of visited websites?

TABLE OF CONTENTS

- 1. Motivation
- 2. Important Concepts
- 3. Dataset Recording
- 4. Annotation
- 5. Detecting logical sessions
 - Algorithmic Approach
 - Evaluation
- 6. Detecting Missions
- 7. Conclusion

Important Concepts

FROM A QUERY LOG ...

Figure 2: Visual explanation of a query log.

... TO A VISIT LOG

Figure 3: Visual explanation of a visit log.

What is a Physical Session? (ϕ)

Log

What is a Physical Session? (ϕ)

Sessions

What is a logical session? (λ)

Physical Sessions

What is a logical session? (λ)

- $\cdot \,\, \mathcal{VL}$ denotes a visit log
- λ_i is a logical session, Λ is the set of all logical sessions on the visit log \mathcal{VL} .

Definition (Mission μ)

Let $\lambda_i, \lambda_j \in \Lambda$ be any two logical sessions in the visit log. λ_i, λ_j are subsets of the same mission $\mu \subseteq \mathcal{VL}$ iff they were issued for the same task or goal. The set of all missions is denoted as M.

- $\cdot \,\, \mathcal{VL}$ denotes a visit log
- λ_i is a logical session, Λ is the set of all logical sessions on the visit log \mathcal{VL} .

Definition (Mission μ)

Let $\lambda_i, \lambda_j \in \Lambda$ be any two logical sessions in the visit log. λ_i, λ_j are subsets of the same mission $\mu \subseteq \mathcal{VL}$ iff they were issued for the same task or goal. The set of all missions is denoted as M.

What is a Mission? (μ)

HIERARCHICAL MISSIONS

Figure 4: Missions can be defined with varying granularity.

1. Record!

Record a personal web archive over a time span of one month as a dataset for the detection.

3. Detect!

Construct and run algorithms to segment the visit log in logical sessions and missions.

2. Annotate!

Annotate logical sessions and (hierarchical) missions as a ground truth for evaluation.

4. Evaluate!

Define evaluation measures to compare the results with the ground truth.

Dataset Recording

EXPERIMENTAL SETUP

Figure 5: Experimental setup for dataset recording. The WASP project [3] is used as a proxy server and to archive the visited web pages.

Annotation

ANNOTATION FOR LOGICAL SESSIONS

TorontoView - Session # 1670516996

Time	Domain	Title	Payload	Session	Mission
16:29:56	luftlinie- berechnen.de	Luftlinie berechnen - Online Rechner mit Karte	26.96kB	0	
16:30:18	luftlinie- berechnen.de	Redirecting to https://luftlinie- berechnen.de/berlin/weimar	809B	0	
16:30:20	luftlinie- berechnen.de	Luftlinie zwischen Berlin und Weimar	21.46kB	0	
16:30:45	luftlinie- berechnen.de	Redirecting to https://luftlinie- berechnen.de/montreal/ toronto	821B	0	
16:30:49	luftlinie- berechnen.de	Luftlinie zwischen Montreal und Toronto	20.33kB	0	
17:19:38	www.ecosia.org	css snowflake pattern - Ecosia - Web	168.38kB	1	
17:20:15	github.com	dmolsen/CSS3-Snowflakes: Some simple CSS for creating snowflakes as well as some JavaScript for quickly adding them to your website.	280.12kB	1	
17:20:19	aithub.com	dmolsen/CSS3-Snowflakes: Some simple CSS for creating snowflakes as well as some	280.12kB	1	

Figure 6: Screenshot of the annotation interface for logical sessions.

ANNOTATION FOR MISSIONS

Submit Annotation (15 left from 294)

				 T015100211-0 Innouncementation
 <u>167888257</u> 	7_8 newsletter CSS			
Time	Domain	Title		A ACTIVATION A 1 show between the all shows
12. Dec 23:08	www.w3schools.com	CSS Text	[<u>T][H]</u>	1671117333_2 Creap International priorie 1670516996_2 Toropto Map
12. Dec 23:08	www.w3schools.com	W3Schools Tryit Editor	(T)(H)	
12. Dec 23:08	www.deepl.com	DeepL API	[<u>T</u>][<u>H</u>]	administrate server + X
12. Dec 23:09	lea.verou.me	CSS WG - Lea Verou	(<u>T</u>][<u>H</u>]	administrate Strato Server 🔹 X
12. Dec 23:09	lea.verou.me	Projects – Lea Verou	$(\underline{T})(\underline{H})$	1678439376 I Strato Server authentificat
12. Dec 23:02	www.webys- traffic.com	Website Traffic, Email Marketing, SEO, & Tips for Businesses	(<u>T</u>](<u>H</u>]	<u>1678864798_4</u> server admin
▶ <u>167258951</u>	• 1672589515 7 Enter session name			• <u>1678864798_6</u> STRATO
167864588	• 1678645887_8 Enter session name			• 1672168577_9 STRATO
167149499	<u>1671494996_3</u> Enter session name			▶ 1678864798_1 STRATO
167851699	• <u>1678516996_1</u> Enter session name			▶ 1678864799_2 caddy setup
167851877	4 8 Enter session nam	e		
167814487	8 Enter session nam	e		study at York University
1678683987_8 Enter session name				Privacy in Societerbonical S + X
167258951	5_2 Enter session nam	re		
167855483	1_0 Enter session nam	e		Final Project * X
• 1671833549_5 Enter session name			Meeting mit Yan + X	
167191159	e Enter session nam	le l		<u>1671833549_0</u> Meeting mit Yan

Figure 7: Screenshot of the annotation interface for missions.

- in a timespan of a month 1418 intentional website visits ^a were recorded
- during annotation, the log was segmented into 84 physical sessions, 294 logical sessions and 75 (hierarchical) missions

Interesting Observations

During annotation various phenomena e.g. "information need digression" or "session entry points" were identified.

^{*a*}4561 unintentional visits were cleared from the log during annotation

- in a timespan of a month 1418 intentional website visits ^a were recorded
- during annotation, the log was segmented into 84 physical sessions, 294 logical sessions and 75 (hierarchical) missions

Interesting Observations

During annotation various phenomena e.g. "information need digression" or "session entry points" were identified.

^{*a*}4561 unintentional visits were cleared from the log during annotation

Detecting Logical Sessions

ALGORITHMIC APPROACH

- different features are considered and measured, if the sum of all measurings exceeds a certain "continuation threshold" a session break is detected and a it continues with a new session.
- time-based feature
- \cdot content-based feature
 - Jaccard coefficient of keywords
 - Jaccard coefficient of links

Basic Features

Visit logs are a novel data structure. Assessing the effectiveness of basic features will help to construct more complex features.

ALGORITHMIC APPROACH

- different features are considered and measured, if the sum of all measurings exceeds a certain "continuation threshold" a session break is detected and a it continues with a new session.
- time-based feature
- \cdot content-based feature
 - Jaccard coefficient of keywords
 - Jaccard coefficient of links

Basic Features

Visit logs are a novel data structure. Assessing the effectiveness of basic features will help to construct more complex features. **Precision**: How many of the *detected* breaks are actually session breaks?

• Here, the time feature scores best. (Precision: 0.507)

Recall: How many of the actual session breaks are *detected*?

• Here, the content-based features score best. (Recall: 1.0)

Simple is effective

Although it has no perfect recall, the time feature scores best when taking both - precision and recall - into account. ($F_{1.5}$: 0.636)

Precision: How many of the *detected* breaks are actually session breaks?

• Here, the time feature scores best. (Precision: 0.507)

Recall: How many of the actual session breaks are detected?

• Here, the content-based features score best. (Recall: 1.0)

Simple is effective

Although it has no perfect recall, the time feature scores best when taking both - precision and recall - into account. ($F_{1.5}$: 0.636)

Precision: How many of the *detected* breaks are actually session breaks?

• Here, the time feature scores best. (Precision: 0.507)

Recall: How many of the actual session breaks are detected?

• Here, the content-based features score best. (Recall: 1.0)

Simple is effective

Although it has no perfect recall, the time feature scores best when taking both - precision and recall - into account. ($F_{1.5}$: 0.636)

Detecting Missions

Algorithm 1 WCC Clustering					
Require: $\Lambda \subseteq \mathcal{P}(\mathcal{VL})$					
	$V = \Lambda$				
	$E' = \Lambda \times \Lambda$				
	for all $\lambda_i \in V$ do				
	for all $\lambda_j \in V$ do				
	$d_J = distance(\lambda_i, \lambda_j)$				
	if $d_J > c_\mu$ then				
	end if				
	end for				
	end for				
	M' = Component-DFS(V, E')				

Algorithm 1 WCC Clustering					
Require: $\Lambda \subseteq \mathcal{P}(\mathcal{VL})$					
1:	$V = \Lambda$				
2:	$E' = \Lambda imes \Lambda$				
	for all $\lambda_i \in V$ do				
	for all $\lambda_j \in V$ do				
	$d_J = distance(\lambda_i, \lambda_j)$				
	if $d_J > c_\mu$ then				
	end if				
	end for				
	end for				
	M' = Component-DFS(V, E')				

Algorithm 1 WCC Clustering					
Require: $\Lambda \subseteq \mathcal{P}(\mathcal{VL})$					
1: $V = \Lambda$					
2: $E' = \Lambda \times \Lambda$					
3: for all $\lambda_i \in V$ do					
4: for all $\lambda_j \in V$ do					
5: $d_J = \text{distance}(\lambda_i, \lambda_j)$					
6: if $d_J > c_\mu$ then					
7: $E' = E' \setminus \{(\lambda_i, \lambda_j)\}$					
8: end if					
9: end for					
10: end for					
11: $M' = \text{Component-DFS}(V, E')$					

Algorithm 1 WCC Clustering					
Require: $\Lambda \subseteq \mathcal{P}(\mathcal{VL})$					
1: $V = \Lambda$					
2: $E' = \Lambda \times \Lambda$					
3: for all $\lambda_i \in V$ do					
4: for all $\lambda_j \in V$ do					
5: $d_J = \text{distance}(\lambda_i, \lambda_j)$					
6: if $d_J > c_\mu$ then					
7: $E' = E' \setminus \{(\lambda_i, \lambda_j)\}$					
8: end if					
9: end for					
10: end for					
11: $M' = \text{Component-DFS}(V, E')$					

Mission 1

The *distance*¹ is calculated as the harmonic mean of the Jaccard coefficients for the aggregated keywords and links in a logical session.

distance
$$(\lambda_i, \lambda_j) = 1 - \frac{J(keywords(\lambda_i), keywords(\lambda_j)) + J(links(\lambda_i), links(\lambda_j))}{2}$$

$$J(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

¹this is not a distance in the notion of a metric space since the triangle inequality is not fulfilled

To evaluate the set of detected missions M^\prime we calculate the weighted contribution of each mission's best jaccard index with the ground truth M. 2

²fixed typo from thesis version, simplified formula

MISSION DETECTION EVALUATION

MISSION DETECTION EVALUATION

Conclusion

1. Record!

Record a personal web archive over a time span of one month as a dataset for the detection.

3. Detect!

Construct and run algorithms to segment the visit log in logical sessions and missions.

2. Annotate!

Annotate logical sessions and (hierarchical) missions as a ground truth for evaluation.

4. Evaluate!

Define evaluation measures to compare the results with the ground truth.

HOW CAN THE DETECTION BE IMPROVED?

- **Dataset**: connect additional device e.g. smartphone and tablet to the WARC proxy
- Dataset: add other information sources to the dataset like the personal calendar
- Algorithm: combine time and content in a complex feature, e.g. geometric method [1], [2]
- Algorithm: make use of more advanced clustering methods to separate only sparsely connected components [4]

Personal Calendar

During annotation I often referred to my personal calendar to identify ambiguous cases. The dataset is already there.

Dissimilarity Function

Visits that often appear in different missions should be weighted less in the dissimilarity function.

HOW CAN THE DETECTION BE IMPROVED?

- **Dataset**: connect additional device e.g. smartphone and tablet to the WARC proxy
- Dataset: add other information sources to the dataset like the personal calendar
- Algorithm: combine time and content in a complex feature, e.g. geometric method [1], [2]
- Algorithm: make use of more advanced clustering methods to separate only sparsely connected components [4]

Personal Calendar

During annotation I often referred to my personal calendar to identify ambiguous cases. The dataset is already there.

Dissimilarity Function

Visits that often appear in different missions should be weighted less in the dissimilarity function.

HOW CAN THE DETECTION BE IMPROVED?

- **Dataset**: connect additional device e.g. smartphone and tablet to the WARC proxy
- Dataset: add other information sources to the dataset like the personal calendar
- Algorithm: combine time and content in a complex feature, e.g. geometric method [1], [2]
- Algorithm: make use of more advanced clustering methods to separate only sparsely connected components [4]

Personal Calendar

During annotation I often referred to my personal calendar to identify ambiguous cases. The dataset is already there.

Dissimilarity Function

Visits that often appear in different missions should be weighted less in the dissimilarity function.

Your Questions

IMAGE SOURCES

- Slide 2, Left: "Zettelkasten Oerlinghausen" by Niklas Luhmann Archiv
- Slide 2, Right: "Dymaxion Chronofile" by Sam Green, (Atlas Obscura)

REFERENCES I

References

- D. Gayo-Avello. A survey on session detection methods in query logs and a proposal for future evaluation. *Information Sciences*, 179, 5 2009.
- [2] M. Hagen, B. Stein, and T. Rüb. Query session detection as a cascade. *Proceedings of the 20th ACM international conference on Information and knowledge management*, 10 2011.

REFERENCES II

- [3] J. Kiesel, A. de Vries, M. Hagen, B. Stein, and M. Potthast. WASP: Web Archiving and Search Personalized. In O. Alonso and G. Silvello, editors, 1st International Conference on Design of Experimental Search & Information Retrieval Systems (DESIRES 2018), volume 2167 of CEUR Workshop Proceedings, pages 16–21, Aug. 2018.
- [4] C. Lucchese, S. Orlando, R. Perego, F. Silvestri, and G. Tolomei. Identifying task-based sessions in search engine query logs. Proceedings of the fourth ACM international conference on Web search and data mining, 2 2011.
- [5] D. Montoya, T. P. Tanon, S. Abiteboul, and F. M. Suchanek. Thymeflow, a personal knowledge base with spatio-temporal data. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, 10 2016.

BACKUP SLIDE: SESSION DETECTION EVALUATION

: Computed evaluation measures for each feature. Best score per column is coloured in green. Worst score per column is coloured in red.

Feature	Precision	Recall	F ₁	F _{1.5}	Inverse Win- dowdiff	Accuracy
Time	0.507	0.717	0.594	0.636	0.689	0.824
Domain	0.28	0.925	0.43	0.541	0.407	0.561
URL Keywords (In-	0.281	0.972	0.436	0.554	0.375	0.55
tersection)						
URL Keywords (Jac-	0.215	1.0	0.354	0.471	0.179	0.347
card)						
Title Keywords (In-	0.179	1.0	0.304	0.415	0.053	0.179
tersection)						
Title Keywords (Jac-	0.179	1.0	0.304	0.415	0.053	0.179
card)						
Joined Similarity	0.281	0.972	0.436	0.554	0.375	0.55
(Intersection)						
Joined Similarity	0.215	1.0	0.354	0.471	0.179	0.347
(Jaccard)						
Linkage	0.22	0.992	0.361	0.477	0.186	0.37

BACKUP SLIDE: SESSION DETECTION EVALUATION

Time Threshold

BACKUP SLIDE: SESSION DETECTION EVALUATION

BACKUP SLIDE: MISSION DETECTION EVALUATION

BACKUP SLIDE: PRECISION, RECALL AND ACCURACY

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

$$accuracy = \frac{TP + TN}{P + N}$$

$$F_{1.5} = (1+1.5^2) \cdot \frac{precision \cdot recall}{(1.5^2 \cdot precision) + recall}$$

Image Source: Visual Explanation for Precision and Recall. By Walber - Own work, CC BY-SA 4.0

BACKUP SLIDE: LIMITATIONS OF PRECISION AND RECALL

Ref A-0 Ref A-1

Figure 8: Ground truth and outputs of two segmentation algorithms with equal precision and recall.

Image Source: Assembly AI, use cases for topic segmentation