Large-scale Analysis and Comparison of
 Web Page Segmentation Approaches
 Defense of Master's Thesis
 Lars Meyer
 January 28th, 2020

Waterfown ${ }^{2}$ aily Cimes

Watertotom Dailu Cimes

What is a segment?

"A segment is a part of a web page containing the elements that belong together...

... visually,
semantically, and in purpose."

Use cases

- accessibility enhancements
- enhanced screen readers
- adaptation to small screens
e.g: Shumeet Baluja, "Browsing on small screens: recasting web-page segmentation into an efficient machine learning framework", 2006
\qquad
- information retrieval
- content summarization
e.gs: Chitra Pasupathi et al, "Web document segmentation using frequent term sets for summarization", 2012
- page classification/ranking
e.g.: Lidong Bing et al., "Web page segmentation with structured prediction and its application in web page classification", 2012
- similarity assessment
e.g: Marc Teva Law et al., "Structural and visual similarity learning for web page archiving", 2012

Use cases

- accessibility enhancements
- enhanced screen readers
e.g.: Michael Cormier et al., "Towards an improved vision-based web page segmentation algorithm", 2017
- adaptation to small screens
e.g.: Shumeet Baluja, "Browsing on small screens: recasting web-page segmentation into an efficient machine learning framework", 2006
\qquad
- information retrieval
- content summarization
e.g.: Chitra Pasupathi et al., "Web document segmentation using frequent term sets for summarization", 2012
- page classification/ranking
e.g.: Lidong Bing et al., "Web page segmentation with structured prediction and its application in web page classification", 2012
- similarity assessment
e.g: Marc Teva Law et al., "Structural and visual similarity learning for web page archiving", 2012

Use cases

- accessibility enhancements
- enhanced screen readers
e.g.: Michael Cormier et al., "Towards an improved vision-based web page segmentation algorithm", 2017
- adaptation to small screens
e.g.: Shumeet Baluja, "Browsing on small screens: recasting web-page segmentation into an efficient machine learning framework", 2006
- information retrieval
- content summarization
e.g.: Chitra Pasupathi et al., "Web document segmentation using frequent term sets for summarization", 2012
- page classification/ranking
e.g.: Lidong Bing et al., "Web page segmentation with structured prediction and its application in web page classification", 2012
- similarity assessment
e.g.: Marc Teva Law et al., "Structural and visual similarity learning for web page archiving", 2012

Use cases

- accessibility enhancements
- enhanced screen readers
e.g.: Michael Cormier et al., "Towards an improved vision-based web page segmentation algorithm", 2017
- adaptation to small screens
e.g.: Shumeet Baluja, "Browsing on small screens: recasting web-page segmentation into an efficient machine learning framework", 2006
- information retrieval
- content summarization
e.g.: Chitra Pasupathi et al., "Web document segmentation using frequent term sets for summarization", 2012
- page classification/ranking
e.g. Lidong Bing etal, "Web page esgmentation with structured predicition and its application in web page classification", 2012
- similarity assessment
e.g.: Marc Teva Law et al., "Structural and visual similarity learning for web page archiving", 2012

Use cases

- accessibility enhancements
- enhanced screen readers
e.g.: Michael Cormier et al., "Towards an improved vision-based web page segmentation algorithm", 2017
- adaptation to small screens
e.g.: Shumeet Baluja, "Browsing on small screens: recasting web-page segmentation into an efficient machine learning framework", 2006
- information retrieval
- content summarization
e.g.: Chitra Pasupathi et al., "Web document segmentation using frequent term sets for summarization", 2012
- page classification/ranking
e.g.: Lidong Bing et al., "Web page segmentation with structured prediction and its application in web page classification", 2012
- similarity assessment
e.g:: Marc Teva Law et al., "Structural and visual similarity learning for web page archiving", 2012

Use cases

- accessibility enhancements
- enhanced screen readers
e.g.: Michael Cormier et al., "Towards an improved vision-based web page segmentation algorithm", 2017
- adaptation to small screens
e.g.: Shumeet Baluja, "Browsing on small screens: recasting web-page segmentation into an efficient machine learning framework", 2006
- information retrieval
- content summarization
e.g.: Chitra Pasupathi et al., "Web document segmentation using frequent term sets for summarization", 2012
- page classification/ranking
e.g.: Lidong Bing et al., "Web page segmentation with structured prediction and its application in web page classification", 2012
- similarity assessment
e.g.: Marc Teva Law et al., "Structural and visual similarity learning for web page archiving", 2012

Approaches

Category	Name	Document type	Publication
DOM-only	VIPS	Web page	Cai et al., "Extracting Content Structure for Web Pages based on Visual Representation", 2003
	HEPS	Web page	Manabe et al., "Extracting Logical Hierarchical Structure of HTML Documents Based on Headings", 2015
Visual	Cormier et al.	Web page	Cormier et al., "Purely vision-based segmentation of web pages for assistive technology", 2016
	MMDetection	Photo	Chen et al., "MMDetection: Open mmlab detection toolbox and benchmark", 2019
Hybrid	Meier et al.	Newspaper page	Meier et al., "Fully convolutional neural networks for newspaper article segmentation", 2017

Approaches

Category	Name	Document type	Publication
DOM-only	VIPS	Web page	Cai et al., "Extracting Content Structure for Web Pages based on Visual Representation", 2003
	HEPS	Web page	Manabe et al., "Extracting Logical Hierarchical Structure of HTML Documents Based on Headings", 2015
Visual	Cormier et al.	Web page	Cormier et al., "Purely vision-based segmentation of web pages for assistive technology", 2016
	MMDetection	Photo	Chen et al., "MMDetection: Open mmlab detection toolbox and benchmark", 2019
Hybrid	Meier et al.	Newspaper page	Meier et al., "Fully convolutional neural networks for newspaper article segmentation", 2017

Evaluation setup

Webis Web Segments 2020

- first crowd-sourced dataset for Web Page Segmentation

Webis Web Segments 2020

- first crowd-sourced dataset for Web Page Segmentation

Webis Web Segments 2020

- first crowd-sourced dataset for Web Page Segmentation
- assembled through

Amazon Mechanical Turk

Webis Web Segments 2020

- first crowd-sourced dataset for Web Page Segmentation
- assembled through

Amazon Mechanical Turk

- 8490 pages, 5 annotators per page
$\rightarrow 42450$ human segmentations

Webis Web Segments 2020

- first crowd-sourced dataset for Web Page Segmentation
- assembled through

Amazon Mechanical Turk

- 8490 pages, 5 annotators per page
$\rightarrow 42450$ human segmentations
- Fusion of human segmentations for page based on area agreement \rightarrow ground truth

Evaluation metrics

Segments are regarded as clusters of atomic elements:

Evaluation metrics

Segments are regarded as clusters of atomic elements:

- pixels

Evaluation metrics

Segments are regarded as clusters of atomic elements:

- pixels
- edgesfine and $_{\text {edges }}^{\text {coarse }}$ (Canny edge detection)

Evaluation metrics

Segments are regarded as clusters of atomic elements:

- pixels
- edgesfine and edges coarse (Canny edge detection)
- nodes (in the DOM tree)

Evaluation metrics

Segments are regarded as clusters of atomic elements:

- pixels
- edgesfine and $_{\text {edges }}^{\text {coarse }}$ (Canny edge detection)
- nodes (in the DOM tree)
- characters

Evaluation metrics

Segments are regarded as clusters of atomic elements:

- pixels
- edgesfine and edges coarse (Canny edge detection)
- nodes (in the DOM tree)
- characters
\longrightarrow Precision $\left(P_{\mathrm{B}^{3}}\right)$, Recall $\left(R_{\mathrm{B}^{3}}\right)$ and F-score $\left(F_{\mathrm{B}^{3}}\right)$ can be calculated between two segmentations

Evaluation metrics

Segments are regarded as clusters of atomic elements:

- pixels
- edgesfine and edges coarse (Canny edge detection)
- nodes (in the DOM tree)
- characters
\longrightarrow Precision $\left(P_{\mathrm{B}^{3}}\right)$, Recall $\left(R_{\mathrm{B}^{3}}\right)$ and F-score $\left(F_{\mathrm{B}^{3}}\right)$ can be calculated between two segmentations
\longrightarrow different atomic elements cover variety of algorithm performance aspects Kiesel et al., "Web Page Segmentation from First Principles", 2020

Terms

Precision: how many of the elements in an algorithm segment also belong to one segment in the ground truth?

Recall: how many of the elements in a ground truth segment are grouped together in one algorithm segment?

F-score: harmonic mean of precision and recall

Consistency and reproducibility

Consistency and reproducibility

- Webis Web Segments 2020 based on Webis Web Archive 17

Consistency and reproducibility

- Webis Web Segments 2020 based on Webis Web Archive 17
- high level of completeness and reproduction accuracy within Webis Web Archiver

Consistency and reproducibility

- Webis Web Segments 2020 based on Webis Web Archive 17
- high level of completeness and reproduction accuracy within Webis Web Archiver
- archived pages can be reproduced in automated Chromium browser

Consistency and reproducibility

- Webis Web Segments 2020 based on Webis Web Archive 17
- high level of completeness and reproduction accuracy within Webis Web Archiver
- archived pages can be reproduced in automated Chromium browser
- any segmentation algorithm written in JavaScript can be run on the archived web page \rightarrow highly consistent input

Consistency and reproducibility

- Webis Web Segments 2020 based on Webis Web Archive 17
- high level of completeness and reproduction accuracy within Webis Web Archiver
- archived pages can be reproduced in automated Chromium browser
- any segmentation algorithm written in JavaScript can be run on the archived web page \rightarrow highly consistent input
\longrightarrow Contribution: TypeScript/JavaScript port of VIPS

CSSBox (VIPS-Java)

CSSBox（VIPS－Java）

D4－＜＜ $12345678910111213141516171819202122232425262728293031 \gg 06-$

本商會簡介興規章
敬这新老手加入～此商鍺是絾手動玩

劫自己商会的人等等行為，以上凡違反其一者必寀出南侖。

商峇的設施簡介

附柱：以上任何放施部可自由使用，

踚。
大航海時代相關僲結
Database Seasons（啝隻資料參考）巴嗒姆特－攻路百科：索引博文＿夕阳䂽＿（的隻強化参考）管理頁面
＊可直接打烕䱦子搜索文章

```
スポンサーサイト
```


スボンサー広

青追逐自己的婁想－－－－－－－－－－－－－記阿茲特克劇情有感 2013－05－0
泪長的五一假期中 终於可以攸間的欣賞一下自己期待多時的插曲劇情了

狺次介紹的是阿䓎特克歔情

Safari

Summary: Methodology

Summary: Methodology

Webis Web Archive 17

Summary: Methodology

Webis Web Archive 17

Summary: Methodology

Summary: Methodology

Approaches, Evaluations and Results

Overview

1. Evaluation of all algorithms + single-segment baseline against the ground truth
2. Parameter analyses: VIPS and Cormier et al.
3. Visual/hybrid segmentations fit to DOM nodes
4. Cross-evaluation (algorithm similarity)
5. Min-vote ensemble (combining algorithm segmentations)

DOM-only approach: VIPS

DOM-only approach: VIPS

- fixed set of rules down to element level

DOM-only approach: VIPS

- fixed set of rules down to element level
- Permitted Degree of Coherence (PDoC) influences granularity

Results: VIPS

pixels							
PDoC	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
8	$\mathbf{8 0 . 2}$	0.46	0.36	0.32	$\mathbf{0 . 9 3}$	0.41	0.50
5	13.5	0.35	0.70	0.38	0.74	0.76	0.68
Δ	-66.7	-0.11	+0.34	+0.06	-0.19	+0.35	+0.18

- oversegmentation (ground truth: 9.1 segments)

Results: VIPS

pixels							
PDoC	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
8	$\mathbf{8 0 . 2}$	0.46	0.36	0.32	$\mathbf{0 . 9 3}$	0.41	0.50
5	13.5	0.35	0.70	0.38	0.74	0.76	0.68
Δ	-66.7	-0.11	+0.34	+0.06	-0.19	+0.35	+0.18

- oversegmentation (ground truth: 9.1 segments)
\longrightarrow high precision, low recall, low F-score

Results: VIPS

pixels							
PDoC	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
8	$\mathbf{8 0 . 2}$	0.46	0.36	0.32	$\mathbf{0 . 9 3}$	0.41	0.50
5	13.5	0.35	0.70	0.38	0.74	0.76	0.68
Δ	-66.7	-0.11	+0.34	+0.06	-0.19	+0.35	+0.18

Reason:

- PDoC > 6 applies rules targeting specific element types

Results: VIPS

pixels							
PDoC	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
8	$\mathbf{8 0 . 2}$	0.46	0.36	0.32	$\mathbf{0 . 9 3}$	0.41	0.50
5	13.5	0.35	0.70	0.38	0.74	0.76	0.68
Δ	-66.7	-0.11	+0.34	+0.06	-0.19	+0.35	+0.18

Reason:

- PDoC > 6 applies rules targeting specific element types
\longrightarrow outdated, detrimental to segmentation quality

Results: VIPS

pixels							
PDoC	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
8	$\mathbf{8 0 . 2}$	0.46	0.36	0.32	$\mathbf{0 . 9 3}$	0.41	0.50
5	13.5	0.35	0.70	0.38	0.74	0.76	0.68
Δ	-66.7	-0.11	+0.34	+0.06	-0.19	+0.35	+0.18

Example:
HTML <code> element

Results: VIPS

pixels							
PDoC	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
8	$\mathbf{8 0 . 2}$	0.46	0.36	0.32	$\mathbf{0 . 9 3}$	0.41	0.50
5	13.5	0.35	0.70	0.38	0.74	0.76	0.68
Δ	-66.7	-0.11	+0.34	+0.06	-0.19	+0.35	+0.18

Example:
HTML <code> element

Results: VIPS

pixels							
PDoC	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
8	80.2	0.46	0.36	0.32	0.93	0.41	0.50
5	$\mathbf{1 3 . 5}$	0.35	$\mathbf{0 . 7 0}$	0.38	0.74	$\mathbf{0 . 7 6}$	0.68
Δ	-66.7	-0.11	$+\mathbf{0 . 3 4}$	+0.06	-0.19	$+\mathbf{0 . 3 5}$	+0.18

PDoC 5:

- applied rules target only coarse page divisions

Results: VIPS

pixels							
PDoC	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
8	80.2	0.46	0.36	0.32	0.93	0.41	0.50
5	$\mathbf{1 3 . 5}$	0.35	$\mathbf{0 . 7 0}$	0.38	0.74	$\mathbf{0 . 7 6}$	0.68
Δ	$\mathbf{- 6 6 . 7}$	-0.11	$\mathbf{+ 0 . 3 4}$	+0.06	-0.19	$+\mathbf{0 . 3 5}$	+0.18

PDoC 5:

- applied rules target only coarse page divisions
\longrightarrow oversegmentation reduced; lower precision, but much higher recall, increased $F_{B^{3}}$

Results: VIPS

pixels							
PDoC	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
8	80.2	0.46	0.36	0.32	0.93	0.41	0.50
5	$\mathbf{1 3 . 5}$	0.35	$\mathbf{0 . 7 0}$	0.38	0.74	$\mathbf{0 . 7 6}$	0.68
Δ	$\mathbf{- 6 6 . 7}$	-0.11	$\mathbf{+ 0 . 3 4}$	+0.06	-0.19	$+\mathbf{0 . 3 5}$	+0.18

PDoC 5:

- applied rules target only coarse page divisions
\longrightarrow oversegmentation reduced; lower precision, but much higher recall, increased $F_{B^{3}}$
\longrightarrow VIPS (PDoC 5) is best single algorithm

PDoC 8

PDoC 5

ground truth

Visual approach: Cormier et al.

Visual approach: Cormier et al.

- probabilistic algorithm based on edge detection, optimized for locally significant edges

Visual approach: Cormier et al.

- probabilistic algorithm based on edge detection, optimized for locally significant edges
- designed to detect extended lines (visually non-continuous lines that may form segment borders)

Visual approach: Cormier et al.

- probabilistic algorithm based on edge detection, optimized for locally significant edges
- designed to detect extended lines (visually non-continuous lines that may form segment borders)

Visual approach: Cormier et al.

- probabilistic algorithm based on edge detection, optimized for locally significant edges
- designed to detect extended lines (visually non-continuous lines that may form segment borders)

Visual approach: Cormier et al.

- probabilistic algorithm based on edge detection, optimized for locally significant edges
- designed to detect extended lines (visually non-continuous lines that may form segment borders)

Visual approach: Cormier et al.

- probabilistic algorithm based on edge detection, optimized for locally significant edges
- designed to detect extended lines (visually non-continuous lines that may form segment borders)

Visual approach: Cormier et al.

- probabilistic algorithm based on edge detection, optimized for locally significant edges
- designed to detect extended lines (visually non-continuous lines that may form segment borders)

Cormier et al.
$\left(s_{\text {min }}=45, t_{l}=512\right)$

Results: Cormier et al.

	pixels							
(worst)								
Parameters	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	
(best)$s_{\text {min }}=90 p x$ $t_{l}=256 p x$ $s_{\text {min }}=45 p x$ $t_{l}=512 p x$	18.4	$\mathbf{3 8 . 0}$	0.29	0.86	0.35	0.60	0.87	0.63
\triangle								

Primary observations:

- Purely visual approach comes close to VIPS' performance

Results: Cormier et al.

	Parameters		pixels			characters		
		\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
(worst)	$\begin{aligned} & s_{\text {min }}=90 p x \\ & t_{l}=256 p x \end{aligned}$	18.4	0.29	0.86	0.35	0.60	0.87	0.63
(best)	$\begin{gathered} s_{\text {min }}=45 p x \\ t_{l}=512 p x \end{gathered}$	38.0	0.34	0.77	0.36	0.67	0.78	0.62
	\triangle	+ 19.6	+ 0.05	- 0.09	+ 0.01	+ 0.07	- 0.09	- 0.01
	$\begin{gathered} \text { VIPS } \\ (\text { PDoC 5) } \end{gathered}$	13.5	0.35	0.70	0.38	0.74	0.76	0.68

Primary observations:

- Purely visual approach comes close to VIPS' performance
- but: needs more than $3 \mathbf{x}$ segment count to come close

Results: Cormier et al.

	Parameters		pixels			characters		
		\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
(worst)	$\begin{aligned} & s_{\text {min }}=90 p x \\ & t_{l}=256 p x \end{aligned}$	18.4	0.29	0.86	0.35	0.60	0.87	0.63
(best)	$\begin{gathered} s_{\text {min }}=45 p x \\ t_{l}=512 p x \end{gathered}$	38.0	0.34	0.77	0.36	0.67	0.78	0.62
	\triangle	+ 19.6	+ 0.05	- 0.09	+ 0.01	+ 0.07	- 0.09	- 0.01
	$\begin{gathered} \text { VIPS } \\ (\text { PDoC 5) } \end{gathered}$	13.5	0.35	0.70	0.38	0.74	0.76	0.68

Primary observations:

- Purely visual approach comes close to VIPS' performance
- but: needs more than $3 \mathbf{x}$ segment count to come close
\longrightarrow expresses fundamentally different operation (visual vs. DOM-based)

Results: Cormier et al.

			pixels			characters		
	Parameters	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
(worst)	$\begin{gathered} s_{\text {min }}=90 p x \\ t_{l}=256 p x \end{gathered}$	18.4	0.29	0.86	0.35	0.60	0.87	0.63
(best)	$\begin{gathered} s_{\text {min }}=45 p x \\ t_{l}=512 p x \end{gathered}$	38.0	0.34	0.77	0.36	0.67	0.78	0.62
	Δ	+ 19.6	+ 0.05	- 0.09	+ 0.01	+ 0.07	- 0.09	- 0.01
	$\begin{gathered} \text { VIPS } \\ (\text { PDoC 5) } \end{gathered}$	13.5	0.35	0.70	0.38	0.74	0.76	0.68

Parameters:

- t_{l} (max. line length for probability estimation) $\in\{256,512\} p x$
- increasing t_{l} finds extended lines across larger gaps

Results: Cormier et al.

	pixels					characters		
	Parameters	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
(worst)	$\begin{gathered} s_{\text {min }}=90 p x \\ t_{l}=256 p x \end{gathered}$	18.4	0.29	0.86	0.35	0.60	0.87	0.63
(best)	$\begin{gathered} s_{\text {min }}=45 p x \\ t_{l}=512 p x \end{gathered}$	38.0	0.34	0.77	0.36	0.67	0.78	0.62
	Δ	+ 19.6	$+0.05$	- 0.09	+ 0.01	$+0.07$	- 0.09	- 0.01
	$\begin{gathered} \text { VIPS } \\ \text { (PDoC 5) } \end{gathered}$	13.5	0.35	0.70	0.38	0.74	0.76	0.68

Parameters:

- t_{l} (max. line length for probability estimation) $\in\{256,512\} p x$
- increasing t_{l} finds extended lines across larger gaps

Results: Cormier et al.

Results: Cormier et al.

	pixels					characters		
	Parameters	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
(worst)	$\begin{gathered} s_{\text {min }}=90 p x \\ t_{l}=256 p x \end{gathered}$	18.4	0.29	0.86	0.35	0.60	0.87	0.63
(best)	$\begin{gathered} s_{\text {min }}=45 p x \\ t_{l}=512 p x \end{gathered}$	38.0	0.34	0.77	0.36	0.67	0.78	0.62
	Δ	+ 19.6	$+0.05$	- 0.09	+ 0.01	$+0.07$	- 0.09	- 0.01
	$\begin{gathered} \text { VIPS } \\ \text { (PDoC 5) } \end{gathered}$	13.5	0.35	0.70	0.38	0.74	0.76	0.68

Parameters:

- $s_{\text {min }}$ (minimum segment border length) $\in\{45,90\} \mathrm{px}$

(b) $s_{\text {min }}=45, t_{l}=256 \mathrm{px}$

Results: Cormier et al.

	pixels					characters		
	Parameters	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
(worst)	$\begin{gathered} s_{\text {min }}=90 p x \\ t_{l}=256 p x \end{gathered}$	18.4	0.29	0.86	0.35	0.60	0.87	0.63
(best)	$\begin{gathered} s_{\text {min }}=45 p x \\ t_{l}=512 p x \end{gathered}$	38.0	0.34	0.77	0.36	0.67	0.78	0.62
	Δ	+ 19.6	$+0.05$	- 0.09	+ 0.01	$+0.07$	- 0.09	- 0.01
	$\begin{gathered} \text { VIPS } \\ \text { (PDoC 5) } \end{gathered}$	13.5	0.35	0.70	0.38	0.74	0.76	0.68

Parameters:

- $s_{\text {min }}$ (minimum segment border length) $\in\{45,90\} \mathrm{px}$
- influences segmentation granularity directly

(b) $s_{\text {min }}=45, t_{l}=256 \mathrm{px}$

Results: Cormier et al.

			pixels			characters		
	Parameters	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
(worst)	$\begin{gathered} s_{\text {min }}=90 p x \\ t_{l}=256 p x \end{gathered}$	18.4	0.29	0.86	0.35	0.60	0.87	0.63
(best)	$\begin{gathered} s_{\text {min }}=45 p x \\ t_{l}=512 p x \end{gathered}$	38.0	0.34	0.77	0.36	0.67	0.78	0.62
	Δ	+ 19.6	+ 0.05	- 0.09	+ 0.01	+ 0.07	- 0.09	- 0.01
	$\begin{gathered} \hline \text { VIPS } \\ (\text { PDoC 5) } \end{gathered}$	13.5	0.35	0.70	0.38	0.74	0.76	0.68

Parameters:

- $s_{\text {min }}$ (minimum segment border length) $\in\{45,90\} \mathrm{px}$
- influences segmentation granularity directly

(b) $s_{\text {min }}=45, t_{l}=256 \mathrm{px}$
- interaction with t_{l}

Results: Cormier et al.

			pixels			characters		
	Parameters	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
(worst)	$\begin{gathered} s_{\text {min }}=90 p x \\ t_{l}=256 p x \end{gathered}$	18.4	0.29	0.86	0.35	0.60	0.87	0.63
(best)	$\begin{gathered} s_{\text {min }}=45 p x \\ t_{l}=512 p x \end{gathered}$	38.0	0.34	0.77	0.36	0.67	0.78	0.62
	Δ	+ 19.6	+ 0.05	- 0.09	+ 0.01	+ 0.07	- 0.09	- 0.01
	$\begin{gathered} \text { VIPS } \\ (\text { PDoC 5) } \end{gathered}$	13.5	0.35	0.70	0.38	0.74	0.76	0.68

Parameters:

- $s_{\text {min }}$ (minimum segment border length) $\in\{45,90\} p x$

(a) $s_{\text {min }}=90, t_{l}=256 \mathrm{px}$
- influences segmentation granularity directly

(b) $s_{\text {min }}=45, t_{l}=256 \mathrm{px}$
- interaction with t_{l}

Results: Cormier et al. - DOM fitting

	pixels						
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
best	38.0	0.34	0.77	0.36	0.67	0.78	0.62
best, fitted	16.8	0.42	0.77	0.38	0.68	0.81	0.65
Δ	-21.2	+0.08	-	+0.02	+0.01	+0.03	+0.03
VIPS (PDoC 5)	13.5	0.35	0.70	0.38	0.74	0.76	0.68

Results: Cormier et al. - DOM fitting

	pixels						
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
best	38.0	0.34	0.77	0.36	0.67	0.78	0.62
best, fitted	16.8	0.42	0.77	0.38	0.68	0.81	0.65
\triangle	-21.2	+0.08	-	+0.02	+0.01	+0.03	+0.03
VIPS (PDoC 5)	13.5	0.35	0.70	0.38	0.74	0.76	0.68

- pixels: consistently lower $P_{\mathrm{B}^{3}}$ and therefore $F_{\mathrm{B}^{3}}$ than for all other atomic elements

Results: Cormier et al. - DOM fitting

	pixels						
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
best	38.0	0.34	0.77	0.36	0.67	0.78	0.62
best, fitted	16.8	0.42	0.77	0.38	0.68	0.81	0.65
Δ	-21.2	+0.08	-	+0.02	+0.01	+0.03	+0.03
VIPS (PDoC 5)	13.5	0.35	0.70	0.38	0.74	0.76	0.68

- pixels: consistently lower $P_{\mathrm{B}^{3}}$ and therefore $F_{\mathrm{B}^{3}}$ than for all other atomic elements
- primary culprit: blank space

Results: Cormier et al. - DOM fitting

	pixels						
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
best	38.0	0.34	0.77	0.36	0.67	0.78	0.62
best, fitted	16.8	0.42	0.77	0.38	0.68	0.81	0.65
Δ	-21.2	+0.08	-	+0.02	+0.01	+0.03	+0.03
VIPS (PDoC 5)	13.5	0.35	0.70	0.38	0.74	0.76	0.68

- pixels: consistently lower $P_{\mathrm{B}^{3}}$ and therefore $F_{\mathrm{B}^{3}}$ than for all other atomic elements
- primary culprit: blank space
- correct segmentation of blank space important for some uses (e.g. design mining), irrelevant for others (e.g. text extraction tasks)

Results: Cormier et al. - DOM fitting

	pixels						
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
best	38.0	0.34	0.77	0.36	0.67	0.78	0.62
best, fitted	16.8	0.42	0.77	0.38	0.68	0.81	0.65
\triangle	-21.2	+0.08	-	+0.02	+0.01	+0.03	+0.03
VIPS $($ PDoC 5)	13.5	0.35	0.70	0.38	0.74	0.76	0.68

- pixels: consistently lower $P_{\mathrm{B}^{3}}$ and therefore $F_{\mathrm{B}^{3}}$ than for all other atomic elements
- primary culprit: blank space
- correct segmentation of blank space important for some uses (e.g. design mining), irrelevant for others (e.g. text extraction tasks)
- can be somewhat mitigated by fitting to DOM nodes

Results: Cormier et al. - DOM fitting

	pixels						
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
best	38.0	0.34	0.77	0.36	0.67	0.78	0.62
best, fitted	16.8	0.42	0.77	0.38	0.68	0.81	0.65
\triangle	-21.2	+0.08	-	+0.02	+0.01	+0.03	+0.03
VIPS $($ PDoC 5)	13.5	0.35	0.70	0.38	0.74	0.76	0.68

- human segmentations are fit to DOM nodes (containment threshold $\theta_{c}=0.75$)

Results: Cormier et al. - DOM fitting

	pixels						
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
best	38.0	0.34	0.77	0.36	0.67	0.78	0.62
best, fitted	16.8	0.42	0.77	0.38	0.68	0.81	0.65
\triangle	-21.2	+0.08	-	+0.02	+0.01	+0.03	+0.03
VIPS (PDoC 5)	13.5	0.35	0.70	0.38	0.74	0.76	0.68

- human segmentations are fit to DOM nodes (containment threshold $\theta_{c}=0.75$)
\longrightarrow fair treatment: fit visual/hybrid algorithms to DOM nodes, too

DOM fitting: example

original

fitted

Results: Cormier et al. - DOM fitting

	pixels						
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
best	38.0	0.34	0.77	0.36	0.67	0.78	0.62
best, fitted	$\mathbf{1 6 . 8}$	$\mathbf{0 . 4 2}$	0.77	$\mathbf{0 . 3 8}$	0.68	0.81	0.65
Δ	$-\mathbf{2 1 . 2}$	$+\mathbf{0 . 0 8}$	-	+0.02	+0.01	+0.03	+0.03
VIPS (PDoC 5)	13.5	0.35	0.70	0.38	0.74	0.76	0.68

- Reduced oversegmentation and increased precision (pixels) and recall (characters)

Results: Cormier et al. - DOM fitting

	pixels						
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
best	38.0	0.34	0.77	0.36	0.67	0.78	0.62
best, fitted	$\mathbf{1 6 . 8}$	$\mathbf{0 . 4 2}$	0.77	$\mathbf{0 . 3 8}$	0.68	0.81	0.65
\triangle	-21.2	+0.08	-	+0.02	+0.01	+0.03	+0.03
VIPS $($ PDoC 5)	13.5	0.35	0.70	0.38	0.74	0.76	0.68

- Reduced oversegmentation and increased precision (pixels) and recall (characters)
$\longrightarrow F_{B^{3}}$ matches VIPS for pixels and comes closer for characters

Visual approach: MMDetection

Visual approach: MMDetection

- NOT a Web Page Segmentation algorithm!

Visual approach: MMDetection

- NOT a Web Page Segmentation algorithm!
- ... in fact, not an algorithm by itself \rightarrow machine learning toolkit

Visual approach: MMDetection

- NOT a Web Page Segmentation algorithm!
- ... in fact, not an algorithm by itself \rightarrow machine learning toolkit
- designed for real-world object detection and instance segmentation (i.e. segmenting real-world images)

Visual approach: MMDetection

- NOT a Web Page Segmentation algorithm!
- ... in fact, not an algorithm by itself \rightarrow machine learning toolkit
- designed for real-world object detection
 and instance segmentation (i.e. segmenting real-world images)

Visual approach: MMDetection

- NOT a Web Page Segmentation algorithm!
- ... in fact, not an algorithm by itself \rightarrow machine learning toolkit
- designed for real-world object detection
 and instance segmentation (i.e. segmenting real-world images)
- offers high-performance, pre-trained, state-of-the-art neural network models

Visual approach: MMDetection

- NOT a Web Page Segmentation algorithm!
- ... in fact, not an algorithm by itself \rightarrow machine learning toolkit
- designed for real-world object detection
 and instance segmentation (i.e. segmenting real-world images)
- offers high-performance, pre-trained, state-of-the-art neural network models
- currently leads Microsoft COCO challenge in instance segmentation

Visual approach: MMDetection

- NOT a Web Page Segmentation algorithm!
- ... in fact, not an algorithm by itself \rightarrow machine learning toolkit
- designed for real-world object detection
 and instance segmentation (i.e. segmenting real-world images)
- offers high-performance, pre-trained, state-of-the-art neural network models
- currently leads Microsoft COCO challenge in instance segmentation
\longrightarrow transfer to Web Page Segmentation possible?

Results: MMDetection

	pixels						
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
original	$\mathbf{2 5 2 . 2}$	0.47	0.41	0.33	0.80	0.44	0.48
fitted	14.7	0.67	0.38	0.35	0.80	0.54	0.56
Δ	-237.5	+0.20	-0.03	+0.02		+0.10	+0.08
VIPS $($ PDoC 5)	13.5	0.35	0.70	0.38	0.74	0.76	0.68

- Real-world image segmentation does not directly transfer well

Results: MMDetection

	pixels						
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
original	$\mathbf{2 5 2 . 2}$	0.47	0.41	0.33	0.80	0.44	0.48
fitted	14.7	0.67	0.38	0.35	0.80	0.54	0.56
\triangle	-237.5	+0.20	-0.03	+0.02		+0.10	+0.08
VIPS $($ PDoC 5)	13.5	0.35	0.70	0.38	0.74	0.76	0.68

- Real-world image segmentation does not directly transfer well
- massive oversegmentation

Results: MMDetection

	pixels						
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
original	$\mathbf{2 5 2 . 2}$	0.47	0.41	0.33	0.80	0.44	0.48
fitted	14.7	0.67	0.38	0.35	0.80	0.54	0.56
Δ	-237.5	+0.20	-0.03	+0.02		+0.10	+0.08
VIPS $($ PDoC 5)	13.5	0.35	0.70	0.38	0.74	0.76	0.68

Reasons:

Results: MMDetection

	pixels						
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
original	$\mathbf{2 5 2 . 2}$	0.47	0.41	0.33	0.80	0.44	0.48
fitted	14.7	0.67	0.38	0.35	0.80	0.54	0.56
Δ	-237.5	+0.20	-0.03	+0.02		+0.10	+0.08
VIPS $($ PDoC 5)	13.5	0.35	0.70	0.38	0.74	0.76	0.68

Reasons:

- segmenting real-world objects found in images on web pages

Results: MMDetection

	pixels						
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
original	$\mathbf{2 5 2 . 2}$	0.47	0.41	0.33	0.80	0.44	0.48
fitted	14.7	0.67	0.38	0.35	0.80	0.54	0.56
\triangle	-237.5	+0.20	-0.03	+0.02		+0.10	+0.08
VIPS $($ PDoC 5)	13.5	0.35	0.70	0.38	0.74	0.76	0.68

Reasons:

- segmenting real-world objects found in images on web pages
- neural network model not trained on web pages

Results: MMDetection - DOM fitting

	pixels						
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
original	252.2	0.47	0.41	0.33	0.80	0.44	0.48
fitted	14.7	0.67	0.38	0.35	0.80	0.54	0.56
Δ	$-\mathbf{2 3 7 . 5}$	$+\mathbf{0 . 2 0}$	-0.03	+0.02	-	$+\mathbf{0 . 1 0}$	+0.08
VIPS $($ PDoC 5)	13.5	0.35	0.70	0.38	0.74	0.76	0.68

Results: MMDetection - DOM fitting

	pixels						
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
original	252.2	0.47	0.41	0.33	0.80	0.44	0.48
fitted	14.7	0.67	0.38	0.35	0.80	0.54	0.56
Δ	$-\mathbf{2 3 7 . 5}$	$+\mathbf{0 . 2 0}$	-0.03	+0.02	-	$+\mathbf{0 . 1 0}$	+0.08
VIPS $($ PDoC 5)	13.5	0.35	0.70	0.38	0.74	0.76	0.68

- $\mathbf{9 4 . 2 \%}$ reduction in segment count

Results: MMDetection - DOM fitting

	pixels						
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
original	252.2	0.47	0.41	0.33	0.80	0.44	0.48
fitted	14.7	0.67	0.38	0.35	0.80	0.54	0.56
Δ	$-\mathbf{2 3 7 . 5}$	$+\mathbf{0 . 2 0}$	-0.03	+0.02	-	$+\mathbf{0 . 1 0}$	+0.08
VIPS $($ PDoC 5)	13.5	0.35	0.70	0.38	0.74	0.76	0.68

- $\mathbf{9 4 . 2 \%}$ reduction in segment count
- best precision for pixels across all single algorithms

Results: MMDetection - DOM fitting

	pixels						
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
original	252.2	0.47	0.41	0.33	0.80	0.44	0.48
fitted	14.7	0.67	0.38	0.35	0.80	0.54	0.56
Δ	$-\mathbf{2 3 7 . 5}$	$+\mathbf{0 . 2 0}$	-0.03	+0.02	-	$+\mathbf{0 . 1 0}$	+0.08
VIPS $(P D o C 5)$	13.5	0.35	0.70	0.38	0.74	0.76	0.68

- $\mathbf{9 4 . 2 \%}$ reduction in segment count
- best precision for pixels across all single algorithms
- $F_{B^{3}}$ approaches VIPS for pixels

Further experiments

Algorithm cross-evaluation

Algorithm cross-evaluation

- $F_{\mathrm{B}^{3}}$ expresses segmentation similarity (interpreted as quality when comparing to ground truth)

Algorithm cross-evaluation

- $F_{\mathrm{B}^{3}}$ expresses segmentation similarity (interpreted as quality when comparing to ground truth)
\longrightarrow possibility of expressing similarity between algorithms

Algorithm cross-evaluation

- $F_{\mathrm{B}^{3}}$ expresses segmentation similarity (interpreted as quality when comparing to ground truth)
\longrightarrow possibility of expressing similarity between algorithms

$F_{B^{3}}$	S				$F_{B^{3}}$	S			
S^{*}	VIPS	HEPS	Cormie	MMDet.	S^{*}	VIPS	HEPS	Cormier	MMDet
VIPS	1.00	0.41	0.51	0.31	VIPS	1.00	0.48	0.60	0.41
HEPS	0.41	1.00	0.50	0.31	HEPS	0.48	1.00	0.43	0.36
Cormier	0.51	0.50	1.00	0.37	Cormier	0.60	0.43	1.00	0.40
MMDet.	0.31	0.31	0.37	1.00	MMDet.	0.41	0.36	0.40	1.00
pixels					characters				

Min-vote ensemble

- Applying segmentation fusion (used in ground truth creation) to algorithm segmentations

Min-vote ensemble

- Applying segmentation fusion (used in ground truth creation) to algorithm segmentations
- Min-vote@n, $n \in[1,2,3,4]=$ number of algorithm segmentations that put a given element in a segment

Min-vote ensemble

- Applying segmentation fusion (used in ground truth creation) to algorithm segmentations
- Min-vote@n, $n \in[1,2,3,4]=$ number of algorithm segmentations that put a given element in a segment
- Initially evaluated for paper with unoptimized parameters

Min-vote ensemble

- Applying segmentation fusion (used in ground truth creation) to algorithm segmentations
- Min-vote@n, $n \in[1,2,3,4]=$ number of algorithm segmentations that put a given element in a segment
- Initially evaluated for paper with unoptimized parameters
- now: optimized parameters, fitted segmentations \rightarrow what improvements do we see?

Popcash		Repter
\%	Sign Up Now!	
(1)	Stateaning money in less then 10 minuter	
Publishers	furmane	
Maximize your revenue with PopCash.Net	Enat	
now to stanty	Crase Acoout	
Leam More sout Oiv Atianegesal		

$$
n=2
$$

ground truth

Results: Min-vote ensemble

pixels	P^{4}	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$			
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	0.76	0.68
unoptimized $n=2$	32.9	0.39	0.64	0.38	0.76		
optimized $n=2$	16.0	0.37	0.77	$\mathbf{0 . 4 0}$	0.71	0.80	$\mathbf{0 . 6 9}$
Δ	-16.9	-0.02	+0.13	+0.02	-0.05	+0.12	+0.04
VIPS $(P D o C ~ 5)$	13.5	0.35	0.70	0.38	0.74	0.76	0.68

- influence of optimized parameters and fitting

Results: Min-vote ensemble

pixels	P^{4}	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$			
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$		
unoptimized $n=2$	32.9	0.39	0.64	0.38	0.76	0.68	0.65
optimized $n=2$	16.0	0.37	0.77	$\mathbf{0 . 4 0}$	0.71	0.80	$\mathbf{0 . 6 9}$
Δ	-16.9	-0.02	+0.13	+0.02	-0.05	+0.12	+0.04
VIPS $(P D o C ~ 5)$	13.5	0.35	0.70	0.38	0.74	0.76	0.68

- influence of optimized parameters and fitting
- segment count cut in half, only minor losses in precision

Results: Min-vote ensemble

pixels					characters		
Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
$\begin{gathered} \text { unoptimized } \\ n=2 \end{gathered}$	32.9	0.39	0.64	0.38	0.76	0.68	0.65
optimized $n=2$	16.0	0.37	0.77	0.40	0.71	0.80	0.69
Δ	- 16.9	-0.02	+ 0.13	+ 0.02	-0.05	+ 0.12	+ 0.04
$\begin{gathered} \text { VIPS } \\ (\text { PDoC 5) } \end{gathered}$	13.5	0.35	0.70	0.38	0.74	0.76	0.68

- influence of optimized parameters and fitting
- segment count cut in half, only minor losses in precision
- Min-vote@2 beats VIPS, provides best overall results

Summary - Ranking

 pixels characters| Approach / Variant | \# segments | $P_{B^{3}}$ | $R_{B^{3}}$ | $F_{B^{3}}$ | $P_{B^{3}}$ | $R_{B^{3}}$ | $F_{B^{3}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Min-vote@2 (optimized) | 16.0 | 0.37 | 0.77 | 0.40 | 0.71 | 0.80 | 0.69 |
| $\begin{gathered} \text { VIPS } \\ \text { (PDoC 5) } \end{gathered}$ | 13.5 | 0.35 | 0.70 | 0.38 | 0.74 | 0.76 | 0.68 |
| $\begin{gathered} \text { Cormier et al. } \\ \left(s_{\text {min }}=45 p x,\right. \\ t_{l}=512 p x, \\ \text { fitted }) \end{gathered}$ | 16.8 | 0.42 | 0.77 | 0.38 | 0.68 | 0.81 | 0.65 |
| MMDetection (fitted) | 14.7 | 0.67 | 0.38 | 0.35 | 0.80 | 0.54 | 0.56 |
| HEPS | 35.8 | 0.39 | 0.54 | 0.32 | 0.72 | 0.50 | 0.50 |
| Meier et al. (fitted) | 7.0 | 0.56 | 0.39 | 0.26 | 0.66 | 0.48 | 0.42 |

Summary - Ranking

 pixels characters| Approach / Variant | \# segments | $P_{B^{3}}$ | $R_{B^{3}}$ | $F_{B^{3}}$ | $P_{B^{3}}$ | $R_{B^{3}}$ | $F_{B^{3}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Min-vote@2 (optimized) | 16.0 | 0.37 | 0.77 | 0.40 | 0.71 | 0.80 | 0.69 |
| $\begin{gathered} \text { VIPS } \\ (\text { PDoC 5) } \end{gathered}$ | 13.5 | 0.35 | 0.70 | 0.38 | 0.74 | 0.76 | 0.68 |
| Cormier et al. $\left(s_{\text {min }}=45 \mathrm{px}\right.$, $t_{l}=512 p x$, fitted) | 16.8 | 0.42 | 0.77 | 0.38 | 0.68 | 0.81 | 0.65 |
| MMDetection (fitted) | 14.7 | 0.67 | 0.38 | 0.35 | 0.80 | 0.54 | 0.56 |
| HEPS | 35.8 | 0.39 | 0.54 | 0.32 | 0.72 | 0.50 | 0.50 |
| Meier et al. (fitted) | 7.0 | 0.56 | 0.39 | 0.26 | 0.66 | 0.48 | 0.42 |

Summary - Ranking

 pixels characters| Approach / Variant | \# segments | $P_{B^{3}}$ | $R_{B^{3}}$ | $F_{B^{3}}$ | $P_{B^{3}}$ | $R_{B^{3}}$ | $F_{B^{3}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Min-vote@2 (optimized) | 16.0 | 0.37 | 0.77 | 0.40 | 0.71 | 0.80 | 0.69 |
| $\begin{gathered} \text { VIPS } \\ (\text { PDoC 5) } \end{gathered}$ | 13.5 | 0.35 | 0.70 | 0.38 | 0.74 | 0.76 | 0.68 |
| Cormier et al. $\left(s_{\text {min }}=45 p x\right.$, $t_{l}=512 p x$, fitted) | 16.8 | 0.42 | 0.77 | 0.38 | 0.68 | 0.81 | 0.65 |
| MMDetection (fitted) | 14.7 | 0.67 | 0.38 | 0.35 | 0.80 | 0.54 | 0.56 |
| HEPS | 35.8 | 0.39 | 0.54 | 0.32 | 0.72 | 0.50 | 0.50 |
| Meier et al. (fitted) | 7.0 | 0.56 | 0.39 | 0.26 | 0.66 | 0.48 | 0.42 |

Summary - Ranking

pixels characters

Approach / Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
Min-vote@2 (optimized)	16.0	0.37	0.77	0.40	0.71	0.80	0.69
$\begin{gathered} \text { VIPS } \\ (\text { PDoC 5) } \end{gathered}$	13.5	0.35	0.70	0.38	0.74	0.76	0.68
Cormier et al. $\left(s_{\text {min }}=45 p x\right.$, $t_{l}=512 p x$, fitted)	16.8	0.42	0.77	0.38	0.68	0.81	0.65
MMDetection (fitted)	14.7	0.67	0.38	0.35	0.80	0.54	0.56
HEPS	35.8	0.39	0.54	0.32	0.72	0.50	0.50
Meier et al. (fitted)	7.0	0.56	0.39	0.26	0.66	0.48	0.42

Summary - Ranking

pixels characters

Approach / Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
Min-vote@2 (optimized)	16.0	0.37	$\mathbf{0 . 7 7}$	$\mathbf{0 . 4 0}$	0.71	$\mathbf{0 . 8 0}$	$\mathbf{0 . 6 9}$
VIPS (PDoC 5)	13.5	0.35	0.70	$\mathbf{0 . 3 8}$	0.74	0.76	$\mathbf{0 . 6 8}$
Cormier et al. (smin 45 px, $t_{t}=512$ px, fitted)	16.8	0.42	$\mathbf{0 . 7 7}$	$\mathbf{0 . 3 8}$	0.68	$\mathbf{0 . 8 1}$	0.65
MMDetection (fitted)	14.7	$\mathbf{0 . 6 7}$	0.38	0.35	$\mathbf{0 . 8 0}$	0.54	0.56
HEPS	35.8	0.39	0.54	0.32	0.72	0.50	0.50
HEP	0.56	0.39	0.26	0.66	0.48	0.42	
Meier et al. (fitted)	7.0						

Summary - Ranking

pixels characters

Approach / Variant	\# segments	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$	$P_{B^{3}}$	$R_{B^{3}}$	$F_{B^{3}}$
Min-vote@2 (optimized)	16.0	0.37	0.77	0.40	0.71	0.80	0.69
$\begin{gathered} \text { VIPS } \\ \text { (PDoC 5) } \end{gathered}$	13.5	0.35	0.70	0.38	0.74	0.76	0.68
Cormier et al. $\left(s_{\text {min }}=45 p x\right.$, $t_{l}=512 p x$, fitted)	16.8	0.42	0.77	0.38	0.68	0.81	0.65
MMDetection (fitted)	14.7	0.67	0.38	0.35	0.80	0.54	0.56
HEPS	35.8	0.39	0.54	0.32	0.72	0.50	0.50
Meier et al. (fitted)	7.0	0.56	0.39	0.26	0.66	0.48	0.42

Summary: Contributions

Summary: Contributions

- First implementation of VIPS in TypeScript/JavaScript (ported from Java)

Summary: Contributions

- First implementation of VIPS in TypeScript/JavaScript (ported from Java)
- First comparison of segmentation performance on large dataset

Summary: Contributions

- First implementation of VIPS in TypeScript/JavaScript (ported from Java)
- First comparison of segmentation performance on large dataset
- Analyses of all algorithms, with in-depth parameter discussions:

Summary: Contributions

- First implementation of VIPS in TypeScript/JavaScript (ported from Java)
- First comparison of segmentation performance on large dataset
- Analyses of all algorithms, with in-depth parameter discussions:
- VIPS: Highlighting relationship between PDoC and rules

Summary: Contributions

- First implementation of VIPS in TypeScript/JavaScript (ported from Java)
- First comparison of segmentation performance on large dataset
- Analyses of all algorithms, with in-depth parameter discussions:
- VIPS: Highlighting relationship between PDoC and rules
- Cormier et al.: Revealing parameter interactions

Summary: Contributions

- First implementation of VIPS in TypeScript/JavaScript (ported from Java)
- First comparison of segmentation performance on large dataset
- Analyses of all algorithms, with in-depth parameter discussions:
- VIPS: Highlighting relationship between PDoC and rules
- Cormier et al.: Revealing parameter interactions
- Promising combination of DOM information with visual segmentation, has benefits beyond fair evaluation treatment

Outlook

Outlook

- There are more approaches to be evaluated!

Outlook

- There are more approaches to be evaluated!
- Analysis of performance by web page genre

Outlook

- There are more approaches to be evaluated!
- Analysis of performance by web page genre
- DOM-based segmentations: incorporate HTML5/ARIA tags

Outlook

- There are more approaches to be evaluated!
- Analysis of performance by web page genre
- DOM-based segmentations: incorporate HTML5/ARIA tags
- New hybrid approaches combining visual segmentation strategies with DOM information

Thank you!

