Mining Rhetorical Devices by means of Natural Language Processing

Viorel Morari
viorel.morari@uni-weimar.de

Bauhaus-Universität Weimar

Chair of Web Technology and Information Systems Prof. Dr. Benno Stein

Master Thesis Defense
January $23^{\text {rd }}, 2018$

What is Rhetoric?

Bob

What is Rhetoric?

What is Rhetoric?

What is a Rhetorical Device?

Classification

Rhetoric

Feeling down? Open a bottle, open happiness!
Feeling down? Open a bottle, open happiness!
Feeling down? Open a bottle, open happiness!

Classification

Rhetoric

Classification

Rhetoric

Classification

Rhetoric

Classification

Envisioned Applications

Rhetoric-based NLG system

Envisioned Applications

Research Questions

Research Questions

1

Research Questions

Research Questions

Pipeline - UIMA

Pipeline - UIMA

Pipeline - UIMA

Pipeline - UIMA Ruta

Pipeline - Stanford CoreNLP

- Stanford CoreNLP - a suite of tools for linguistic analysis.
- We use:
- Stanford Parser

- Stanford Dependencies

Pipeline - UIMA

Pipeline - UIMA

Pipeline - UIMA

 builder of human happiness. No one rejects, dislikes, or avoids pleasure itself, because it is
pleasure.

Rhetorical Devices

Rhetorical Devices

> Interplay between equivalent ideas

Omission schemes
Deliberate omission of intuitive words

Cause incompleteness

Custom schemes

Rhetorical Devices

Rhetorical Devices

Interplay between equivalent ideas

Control the rhythm of thought

Rhetorical Devices

Balance schemes

- Enumeration
- Pysma
- Isocolon
-bicolon
-tricolon
-tetracolon
Omission schemes
- Asyndeton
- Hypozeugma
- Epizeugma

TV
 Repetition schemes

- Epanalepsis
- Mesarchia
- Epiphoza
- Mesodiplosis
- Anadiplosis
- Diacope
- Epizeuxis
- Polysyndeton

Custom schemes

- If-conditional 0
- If-conditional 1
- If-conditional 2
- If-conditional 3
- If-counterfactual
- Unless-cond.
- Whether-cond.
- Comparative Adjectives/Adverbs
- Superlative Adjectives/Adverbs

Rhetorical Devices

Custom schemes

- If-conditional 0
- If-conditional 1
- If-conditional 2
- If-conditional 3
- If-counterfactual
- Unless-cond.
- Whether-cond.
- Comparative Adjectives/Adverbs
- Superlative

Adjectives/Adverbs

Balance: Enumeration

Enumeration - a rhetorical device used to list a series of details, words or phrases. (literarydevices.net)
Old farmer had a pig, a dog, a cow and a horse.

柬 UIMA Ruta
Old farmer had a pig, a dog, a cow and a horse.

Balance: Enumeration

Enumeration - a rhetorical device used to list a series of details, words or phrases. (literarydevices.net)

Balance: Enumeration

Enumeration - a rhetorical device used to list a series of details, words or phrases. (literarydevices.net)

Balance: Enumeration

Enumeration - a rhetorical device used to list a series of details, words or phrases. (literarydevices.net)

Balance: Enumeration

Enumeration - a rhetorical device used to list a series of details, words or phrases. (literarydevices.net)

Balance: Enumeration

Enumeration - a rhetorical device used to list a series of details, words or phrases. (literarydevices.net)

Balance: Enumeration

Enumeration - a rhetorical device used to list a series of details, words or phrases. (literarydevices.net)

Balance: Enumeration

Enumeration - a rhetorical device used to list a series of details, words or phrases. (literarydevices.net)

Balance: Enumeration

Enumeration - a rhetorical device used to list a series of details, words or phrases. (literarydevices.net)

Balance: Enumeration

Enumeration - a rhetorical device used to list a series of details, words or phrases. (literarydevices.net)

Balance: Enumeration

Enumeration - a rhetorical device used to list a series of details, words or phrases. (literarydevices.net)

Balance: Enumeration

Balance: Enumeration

Enumeration - a rhetorical device used to list a series of details, words or phrases. (literarydevices.net)
Old farmer had a pig, a dog, a cow and a horse.

率 UIMA Ruta
Old farmer had a pig, a dog, a cow and a horse.

Omission: Hypozeugma

Hypozeugma - placing last, in a construction containing several words or phrases of equal value, the word or words on which all of them depend. (Silva Rhetoricae)

A rooster, a prince and a lion walk into a bar...

Omission: Hypozeugma

Hypozeugma - placing last, in a construction containing several words or phrases of equal value, the word or words on which all of them depend. (Silva Rhetoricae)

```
A rooster, a prince and a lion walk into a bar...
```


Omission: Hypozeugma

Hypozeugma - placing last, in a construction containing several words or phrases of equal value, the word or words on which all of them depend. (Silva Rhetoricae)

A rooster, a prince and a lion walk into a bar...

Stanford Dependencies
A rooster, a prince and a lion walk into a bar...

Omission: Hypozeugma

Hypozeugma - placing last, in a construction containing several words or phrases of equal value, the word or words on which all of them depend. (Silva Rhetoricae)

A rooster, a prince and a lion walk into a bar...

governor-dependent relation

Omission: Hypozeugma

Hypozeugma - placing last, in a construction containing several words or phrases of equal value, the word or words on which all of them depend. (Silva Rhetoricae)

A rooster, a prince and a lion walk into a bar...

Omission: Hypozeugma

Hypozeugma - placing last, in a construction containing several words or phrases of equal value, the word or words on which all of them depend. (Silva Rhetoricae)

A rooster, a prince and a lion walk into a bar...
\downarrow

Omission: Hypozeugma

Hypozeugma - placing last, in a construction containing several words or phrases of equal value, the word or words on which all of them depend. (Silva Rhetoricae)

A rooster, a prince and a lion walk into a bar...

Omission: Hypozeugma

Hypozeugma - placing last, in a construction containing several words or phrases of equal value, the word or words on which all of them depend. (Silva Rhetoricae)

A rooster, a prince and a lion walk into a bar...

Omission: Hypozeugma

Hypozeugma - placing last, in a construction containing several words or phrases of equal value, the word or words on which all of them depend. (Silva Rhetoricae)

A rooster, a prince and a lion walk into a bar...

Omission: Hypozeugma

Hypozeugma - placing last, in a construction containing several words or phrases of equal value, the word or words on which all of them depend. (Silva Rhetoricae)

A rooster, a prince and a lion walk into a bar...

Omission: Hypozeugma

Hypozeugma - placing last, in a construction containing several words or phrases of equal value, the word or words on which all of them depend. (Silva Rhetoricae)

A rooster, a prince and a lion walk into a bar...
\downarrow

Repetition: Epanalepsis

Epanalepsis - repeats the beginning word of a sentence at the end.

Our eyes saw it, but we could not believe our eyes.

Repetition: Epanalepsis

Epanalepsis - repeats the beginning word of a sentence at the end.

Our eyes saw it, but we could not believe our eyes.

Repetition: Epanalepsis

Epanalepsis - repeats the beginning word of a sentence at the end.

Repetition: Epanalepsis

Epanalepsis - repeats the beginning word of a sentence at the end.

Our eyes saw it, but we could not believe our eyes.

Our eyes saw believe our eyes.

Repetition: Epanalepsis

Epanalepsis - repeats the beginning word of a sentence at the end.

Our eyes saw it, but we could not believe our eyes.

Our eyes saw believe our eyes.

Repetition: Epanalepsis

Epanalepsis - repeats the beginning word of a sentence at the end.

Our eyes saw it, but we could not believe our eyes.

Our eyes saw believe our eyes.

Repetition: Epanalepsis

Epanalepsis - repeats the beginning word of a sentence at the end.

Our eyes saw it, but we could not believe our eyes.

Our eyes saw believe our eyes.

Repetition: Epanalepsis

Epanalepsis - repeats the beginning word of a sentence at the end.

Our eyes saw it, but we could not believe our eyes.

Our eyes saw believe our eyes.

Repetition: Epanalepsis

Epanalepsis - repeats the beginning word of a sentence at the end.

Our eyes saw it, but we could not believe our eyes.

Our eyes saw believe our eyes.

Custom: If-conditional 2

If-conditional 2 - expresses consequences that are totally unrealistic or will not likely happen in the future.

If I were president, I would cut taxes.

Custom: If-conditional 2

If-conditional 2 - expresses consequences that are totally unrealistic or will not likely happen in the future.
If I were president, I would cut taxes.

Stanford Dependencies
If I were president, I would cut taxes.

Custom: If-conditional 2

If-conditional 2 - expresses consequences that are totally unrealistic or will not likely happen in the future.

Custom: If-conditional 2

If-conditional 2 - expresses consequences that are totally unrealistic or will not likely happen in the future.
If I were president, I would cut taxes.

Stanford Dependencies
If İ were president, I would cut taxes.

Custom: If-conditional 2

If-conditional 2 - expresses consequences that are totally unrealistic or will not likely happen in the future.

Custom: If-conditional 2

If-conditional 2 - expresses consequences that are totally unrealistic or will not likely happen in the future.

Custom: If-conditional 2

If-conditional 2 - expresses consequences that are totally unrealistic or will not likely happen in the future.

Custom: If-conditional 2

If-conditional 2 - expresses consequences that are totally unrealistic or will not likely happen in the future.

Custom: If-conditional 2

If-conditional 2 - expresses consequences that are totally unrealistic or will not likely happen in the future.

Custom: If-conditional 2

If-conditional 2 - expresses consequences that are totally unrealistic or will not likely happen in the future.

Custom: If-conditional 2

If-conditional 2 - expresses consequences that are totally unrealistic or will not likely happen in the future.

Evaluation dataset

Evaluation dataset

Evaluation measures

$$
\text { Precision }=\frac{t p}{t p+f p} \quad \text { Recall }=\frac{t p}{t p+f n} \quad \text { F1 score }=2 \cdot \frac{\text { precision } \cdot \text { recall }}{\text { precision }+ \text { recall }}
$$

Evaluation Results

Evaluation Results

Evaluation Results

Evaluation Results

Balance schemes
1

Repetition schemes

Omission schemes

Custom schemes

Evaluation Results

Balance schemes
1

Repetition schemes

Omission schemes

Evaluation Results F1-Score

Balance schemes
1

Repetition schemes

Omission schemes

Pipeline

Pipeline

2 Analysis of Rhetorical Devices

Pipeline

Pipeline

Pipeline

Pipeline

Pipeline

Pipeline

Detection Pipeline

Data Preparation

Experiments: datasets

The New York Times

US Presidential Debates 2016

Elfe
 Alvun jork
 Cimes

Ben Wiseman [2016]

Data dimensionality

Language	Mode	Communication	Author	Audience
English	Written	Monological	Identity	U.S.
Type	Genre	Topic	Medium	
Descriptive	Editorial	Education	Newspaper	
Argumentative	Review	Science	Presidential Debates	
	Biography	Art		
	Debate	Politics		

NYT Experiment: data subsampling

NYT Experiment: Findings

"Random" dataset
"Article-length based" dataset

Articles cover multiple dimensions
Hard to deduce particular styles

NYT Experiment: Findings

"Random" dataset
"Article-length based" dataset

Articles cover multiple dimensions

Hard to deduce particular styles

NYT Experiment: Confounding

NYT Experiment: Confounding

NYT Experiment: Matching

Genre 1
Genre 2
Genre 3
Genre 4

NYT Experiment: Matching

Genre 1

$$
\text { Genre } 2
$$

Genre 3
Genre 4

NYT Experiment: Matching

Genre 1

$$
\text { Genre } 2
$$

Genre 3
Genre 4

NYT Experiment: Matching

NYT Experiment: Matching

Genre 1

$$
\text { Genre } 2
$$

Genre 3
Genre 4

NYT Experiment: Matching

Genre 1

$$
\text { Genre } 2
$$

Genre 3
Genre 4

NYT Experiment: Matching

Genre 1

$$
\text { Genre } 2
$$

$$
\text { Genre } 3
$$

Genre 4

NYT Experiment: Matching

NYT Experiment: Matching

3 Analysis
 Experiments

Findings

NYT Experiment: Frequency

Genres: Review distribution

Genres: Editorial distribution

NYT Experiment: Findings

Style-based frequency of rhetorical devices

NYT Experiment: Findings

	Authors	
	EPIPHOZA	REPETITION SCHEMES
Author	Distribution (\%)	Distribution (\%)
Hevesi Dennis	10.74	70.99
Lewis Paul	12.99	81.93
Martin Douglas	6.49	55.49

NYT Experiment: Findings

	Authors	
	EPIPHOZA	REPETITION SCHEMES
Author	Distribution (\%)	Distribution (\%)
Hevesi Dennis	10.74	70.99
Lewis Paul	12.99	81.93
Martin Douglas	6.49	55.49
! Same pattern across all articles		

NYT Experiment: Findings

	Authors	
	EPIPHOZA	REPETITION SCHEMES
Author	Distribution (\%)	Distribution (\%)
Hevesi Dennis	10.74	70.99
Lewis Paul	12.99	81.93
Martin Douglas	6.49	55.49

NYT Experiment: Findings

Authors				
	SIGNIFICANCE			
P-value	Independence	Cramer's V value	Effect	
	Datasets	PFFT-SIZE		
Hevesi vs. Lewis	0.015	TRUE*	0.1	SMALL
Lewis vs. Martin	~ 0	TRUE	0.15	SMALL
Martin vs. Hevesi	0.017	TRUE*	0.1	SMALL
${ }^{*}$ for $\alpha>0.001$				

NYT Experiment: Findings

Genres

Comparatives			
Confounders	Distribution (\%)		
Genre:	Biography	Editorial	Review
freedman-news	11.65	25.57	11.75
norris-markets	22.59	30.06	20.99
wade-health		12.04	12.97
			16.40

NYT Experiment: Findings

	Genres	
	COMPARATIVES	CONDITIONALS
Genre	Distribution (\%)	Distribution (\%)
Biography Editorial Review	1407	3.45

NYT Experiment: Findings

	Genres: tests' results				
	SIGNIFICANCE			EFFECT-SIZE	
Datasets	P-value	Independence	Cramer's V value	Effect	
Biography vs. Editorial	~ 0	TRUE	0.16	SMALL	
Editorial vs. Review	~ 0	TRUE	0.14	SMALL	
Review vs. Biography	0.68	FALSE	0.07	SMALL	

NYT Experiment: Findings

NYT Experiment: Findings

Style-based frequency of rhetorical devices

Characteristic style patterns within each dimension

NYT Experiment: Findings

Topics: tests' results					
	SIGNIFICANCE			EFFECT-SIZE	
Datasets	P-value	Independence	Cramer's V value	Effect	
Science vs. Education	0.70	FALSE	0.09	SMALL	
Education vs. Arts	0.26	FALSE	0.10	SMALL	
Arts vs. Science	0.19	FALSE	0.10	SMALL	

NYT Experiment: Findings

Style-based frequency of rhetorical devices

Characteristic style patterns within each dimension

Style is more author- and genre-dependent

Presidential Debates: Datasets

Presidential Debates: Findings

	ASYNDETON	VOICE	BALANCE SCH.
Debate Type	Distribution (\%)	Distribution (\%)	Distribution (\%)
Clinton \rightarrow Trump	15.24	8.07	17.69
Trump \rightarrow Clinton	10.83	5.29	19.92

Presidential Debates: Findings

	ASYNDETON	VOICE	BALANCE SCH.
Debate Type	Distribution (\%)	Distribution (\%)	Distribution (\%)
Clinton \rightarrow Trump	15.24	8.07	17.69
Trump \rightarrow Clinton	10.83	5.29	19.92
Asyndeton $=$ clarity and rhythm			

Presidential Debates: Findings

	ASYNDETON	VOICE	BALANCE SCH.
Debate Type	Distribution (\%)	Distribution (\%)	Distribution (\%)
Clinton \rightarrow Trump	15.24	8.07	17.69
Trump \rightarrow Clinton	10.83	5.29	19.92

Acceptance Speech Analysis by Huffington Post

Candidate	Sent.	Long Sent. (\%)	Passive voice (\%)	Grade Level (US)
Hillary Clinton	413	7.26	3.39	
Donald Trump	341	16.42	8.8	8

Presidential Debates: Findings

		ASYNDETON	VOICE
	BALANCE SCH.		
Debate Type	Distribution (\%)	Distribution (\%)	Distribution (\%)
Clinton \rightarrow Trump	15.24	8.07	17.69
Trump \rightarrow Clinton	10.83	5.29	19.92

Acceptance Speech Analysis by Huffington Post

Candidate	Sent.	Long Sent. (\%)	Passive voice (\%)	Grade Level (US)
Hillary Clinton	413	7.26	3.39	5
Donald Trump	341	16.42	8.8	8

Presidential Debates: Findings

	ASYNDETON	VOICE	BALANCE SCH.
Debate Type	Distribution (\%)	Distribution (\%)	Distribution (\%)
Clinton \rightarrow Trump	15.24	8.07	17.69
Trump \rightarrow Clinton	10.83	5.29	19.92

Acceptance Speech Analysis by Huffington Post

Candidate	Sent.	Long Sent. (\%)	Passive voice (\%)	Grade Level (US)
Hillary Clinton	413	7.26	3.39	5
Donald Trump	341	16.42	8.8	8

Presidential Debates: Findings

Significance Test

Debate Type	Clinton \rightarrow Rest \mid	Clinton \rightarrow Trump \mid Trump \rightarrow Clinton \mid Trump \rightarrow Rest		
Clinton \rightarrow Rest		TRUE*	TRUE	TRUE
Clinton \rightarrow Trump	TRUE*		TRUE	TRUE
Trump \rightarrow Clinton	TRUE	TRUE		FALSE †
Trump \rightarrow Rest	TRUE	TRUE	FALSE †	

[^0]
Presidential Debates: Findings

Significance Test

Debate Type	Clinton \rightarrow Rest \mid Clinton \rightarrow Trump	Trump \rightarrow Clinton \mid Trump \rightarrow Rest		
Clinton \rightarrow Rest		TRUE*	TRUE	TRUE
Clinton \rightarrow Trump	TRUE		TRUE	TRIF
Trump \rightarrow Clinton	TRUE	TRUE	FALSE	
Trump \rightarrow Rest	TRUE	TRUE	FALSE	

[^1]Trump doesn't change his style

Summary

Conclusions

System for rhetorical style identification in high-quality text documents
Rule-based algorithms for detection of RD
Vague style patterns across random and articlelength based subsampling: Confounding

Better style identification with Matching
Rhetorical style depends more on author and genre of writings rather than their topics

Debates: candidates employ different styles
Debates: domain experience trains an adaptive rhetorical style

Summary

Conclusions

System for rhetorical style identification in high-quality text documents

Rule-based algorithms for detection of RD
Vague style patterns across random and articlelength based subsampling: Confounding

Better style identification with Matching
Rhetorical style depends more on author and genre of writings rather than their topics

Debates: candidates employ different styles
Debates: domain experience trains an adaptive rhetorical style

Resources

Novel framework for detecting rhetorical devices
Comprehensive dataset for evaluation of rhetoric detection systems

Elaborative style patterns and intriguing findings

Summary

Conclusions
System for rhetorical style identification in high-quality text documents
Rule-based algorithms for detection of RD
Vague style patterns across random and article- length based subsampling: Confounding
Better style identification with $\underline{\text { Matching }}$
Rhetorical style depends more on author and genre of writings rather than their topics
Debates: candidates employ different styles
Debates: domain experience trains an adaptive
rhetorical style

Resources
Novel framework for detecting rhetorical devices
Comprehensive dataset for evaluation of rhetoric detection systems
Elaborative style patterns and intriguing findings
Efficiency
$1^{\text {st }}$ sentence $\rightarrow 5.8 \mathrm{sec}$.
$2^{\text {nd }}$ sentence $\rightarrow 0.4 \mathrm{sec}$.
Initialization $\rightarrow 1.7 \mathrm{sec}$.

Summary

Conclusions

System for rhetorical style identification in high-quality text documents

Rule-based algorithms for detection of RD
Vague style patterns across random and articlelength based subsampling: Confounding

Better style identification with Matching
Rhetorical style depends more on author and genre of writings rather than their topics

Debates: candidates employ different styles
Debates: domain experience trains an adaptive rhetorical style

Resources

Novel framework for detecting rhetorical devices
Comprehensive dataset for evaluation of rhetoric detection systems

Elaborative style patterns and intriguing findings

Efficiency
$1^{\text {st }}$ sentence $\rightarrow 5.8 \mathrm{sec}$.
$2^{\text {nd }}$ sentence $\rightarrow 0.4 \mathrm{sec}$.
Initialization $\rightarrow 1.7 \mathrm{sec}$.

Future Work

Larger dataset for analysis
Focus of semantical rhetoric
Analysis measures like placement and flows of rhetorical devices

Thank you!

References

- Ben Wiseman, New York Times https://www.nytimes.com/2016/09/25/opinion/campaign-stops/my-debate-nightmare-a-duller-donald-trump.html
- Peter Kluegl and Martin Atzmueller. Textmarker: A tool for rule-based infor-mation extraction, 2009.
- Khalid Al-Khatib, Henning Wachsmuth, Matthias Hagen, and Benno Stein. Patterns of Argumentation Strategies across Topics. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP 17), pages 1362-1368. Association for Computational Linguistics, September 2017. URL http://aclweb.org/anthology/D17-1142.
- https://literarydevices.net/enumeration/
- G. Burton. The forest of rhetoric (silva rhetoricae), 2007.

References - Icons and Images

- advertise by David from the Noun Project
- buy by Arthur Shlain from the Noun Project
- Money by Desbenoit from the Noun Project
- Idea by MRFA from the Noun Project
- arrange by Gregor Cresnar from the Noun Project
- font style by iconsmind.com from the Noun Project
- memories by Henning Gross from the Noun Project
- what by Paffi from the Noun Project
- Translation by Mun May Tee from the Noun Project
- analysis by Chameleon Design from the Noun Project
- like by Bluetip Design from the Noun Project
- analysis by Chameleon Design from the Noun Project
- Folder by AlfredoCreates.com/Icons from the Noun Project
- different by AlfredoCreates.com/Icons from the Noun Project
- Flag by Hare Krishna from the Noun Project
- Map Marker by shashank singh from the Noun Project
- Icon by Llisole from the Noun Project
- Icons made by Freepik on flaticon.com
- Icons made by Becris on flaticon.com
- Icons made by Vectors Market on flaticon.com
- Jar by S. Salinas from the Noun Project
- Check mark designed by Freepik
- Icons made by Smashicons on flaticon.com
- http://community.wikia.com/wiki/File:Aristotle-17.jpg
- https://www.washingtonpost.com/graphics/politics/2016-election/presidential-debate-schedule/

Existing research

- Gawryjołek et al. [2009] - authorship identification system based on rhetorical style.
- Strommer [2011] - authorial intent detection system based on the anaphora usage.
- Java [2015] - machine-learning based authorship identification system using rhetorical devices (based on Gawryjołek et al. [2009])

Evaluation results

| Device | Total No. | Precision | Recall | F1-score | Device | Total No. | Precision | Recall | F1-score |
| :--- | :---: | :---: | :---: | :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| Anadiplosis | 60 | 0.76 | 0.73 | 0.74 | If Conditional Two | 60 | 0.82 | 0.75 | 0.78 |
| Asyndeton | 60 | 0.25 | 0.95 | 0.4 | If Conditional Zero | 60 | 0.71 | 0.76 | 0.73 |
| Comparative Adjective | 67 | 0.51 | 0.61 | 0.56 | If Counterfactual | 60 | 0.84 | 0.87 | 0.85 |
| Comparative Adverb | 71 | 0.6 | 0.62 | 0.61 | Isocolon | 180 | 0.57 | 0.83 | 0.68 |
| Diacope | 60 | 0.75 | 0.73 | 0.74 | Mesarchia | 20 | 0.45 | 0.85 | 0.59 |
| Enumeration | 60 | 0.76 | 0.93 | 0.84 | Mesodiplosis | 40 | 0.28 | 0.68 | 0.4 |
| Epanalepsis | 60 | 0.63 | 0.83 | 0.72 | Passive Voice | 60 | 0.79 | 0.98 | 0.87 |
| Epiphoza | 60 | 0.61 | 0.93 | 0.74 | Polysyndeton | 60 | 0.77 | 0.7 | 0.73 |
| Epizeugma | 60 | 0.68 | 0.7 | 0.69 | Pysma | 60 | 1 | 1 | 1 |
| Epizeuxis | 60 | 0.79 | 0.77 | 0.78 | Superlative Adjective | 70 | 0.62 | 0.73 | 0.67 |
| Hypozeugma | 60 | 0.61 | 0.8 | 0.69 | Superlative Adverb | 70 | 0.63 | 0.5 | 0.56 |
| If Conditional One | 60 | 0.78 | 0.78 | 0.78 | Unless Conditional | 60 | 1 | 1 | 1 |
| If Conditional Three | 60 | 0.86 | 0.65 | 0.74 | Whether Conditional | 60 | 1 | 0.83 | 0.91 |- Balance schemes \square - Omission schemes \square - Repetition schemes \square Custom schemes

Evaluation results

Device	Total No.	Precision	Recall	F1-score	Device	Total No.	Precision	Recall
F1-score								
Anadiplosis	60	0.76	0.73	0.74	If Conditional Two	60	0.82	0.75
Asyndeton	60	0.25	0.95	0.4	If Conditional Zero	60	0.71	0.76
Comparative Adjective	67	0.51	0.61	0.56	If Counterfactual	60	0.84	0.87
Comparative Adverb	71	0.6	0.62	0.61	Isocolon	0.85		
Diacope	60	0.75	0.73	0.74	Mesarchia	180	0.57	0.83
Enumeration	60	0.76	0.93	0.84	Mesodiplosis	20	0.68	0.85
Epanalepsis	60	0.63	0.83	0.72	Passive Voice	40	0.28	0.68
Epiphoza	60	0.61	0.93	0.74	Polysyndeton	60	0.79	0.98
Epizeugma	60	0.68	0.7	0.69	Pysma	60	0.77	0.7
Epizeuxis	60	0.79	0.77	0.78	Superlative Adjective	70	0.8	
Hypozeugma	60	0.61	0.8	0.69	Superlative Adverb	70	0.67	0.63
If Conditional One	60	0.78	0.78	0.78	Unless Conditional	60	1	0.73
If Conditional Three	60	0.86	0.65	0.74	Whether Conditional	60	1	0.7

Evaluation results

| Device | Total No. | Precision | Recall | F1-score | Device | Total No. | Precision | Recall | F1-score |
| :--- | :---: | :---: | :---: | :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| Anadiplosis | 60 | 0.76 | 0.73 | 0.74 | If Conditional Two | 60 | 0.82 | 0.75 | 0.78 |
| Asyndeton | 60 | 0.25 | 0.95 | 0.4 | If Conditional Zero | 60 | 0.71 | 0.76 | 0.73 |
| Comparative Adjective | 67 | 0.51 | 0.61 | 0.56 | If Counterfactual | 60 | 0.84 | 0.87 | 0.85 |
| Comparative Adverb | 71 | 0.6 | 0.62 | 0.61 | Isocolon | 180 | 0.57 | 0.83 | 0.68 |
| Diacope | 60 | 0.75 | 0.73 | 0.74 | Mesarchia | 20 | 0.45 | 0.85 | 0.59 |
| Enumeration | 60 | 0.76 | 0.93 | 0.84 | Mesodiplosis | 40 | 0.28 | 0.68 | 0.4 |
| Epanalepsis | 60 | 0.63 | 0.83 | 0.72 | Passive Voice | 60 | 0.79 | 0.98 | 0.87 |
| Epiphoza | 60 | 0.61 | 0.93 | 0.74 | Polysyndeton | 60 | 0.77 | 0.7 | 0.73 |
| Epizeugma | 60 | 0.68 | 0.7 | 0.69 | Pysma | 60 | 1 | 1 | 1 |
| Epizeuxis | 60 | 0.79 | 0.77 | 0.78 | Superlative Adjective | 70 | 0.62 | 0.73 | 0.67 |
| Hypozeugma | 60 | 0.61 | 0.8 | 0.69 | Superlative Adverb | 70 | 0.63 | 0.5 | 0.56 |
| If Conditional One | 60 | 0.78 | 0.78 | 0.78 | Unless Conditional | 60 | 1 | 1 | 1 |
| If Conditional Three | 60 | 0.86 | 0.65 | 0.74 | Whether Conditional | 60 | 1 | 0.83 | 0.91 |

\square - Balance schemes \square - Omission schemes \square - Repetition schemes \square Custom schemes

Evaluation results

| Device | Total No. | Precision | Recall | F1-score | Device | Total No. | Precision | Recall | F1-score |
| :--- | :---: | :---: | :---: | :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| Anadiplosis | 60 | 0.76 | 0.73 | 0.74 | If Conditional Two | 60 | 0.82 | 0.75 | 0.78 |
| Asyndeton | 60 | 0.25 | 0.95 | 0.4 | If Conditional Zero | 60 | 0.71 | 0.76 | 0.73 |
| Comparative Adjective | 67 | 0.51 | 0.61 | 0.56 | If Counterfactual | 60 | 0.84 | 0.87 | 0.85 |
| Comparative Adverb | 71 | 0.6 | 0.62 | 0.61 | Isocolon | 180 | 0.57 | 0.83 | 0.68 |
| Diacope | 60 | 0.75 | 0.73 | 0.74 | Mesarchia | 20 | 0.45 | 0.85 | 0.59 |
| Enumeration | 60 | 0.76 | 0.93 | 0.84 | Mesodiplosis | 40 | 0.28 | 0.68 | 0.4 |
| Epanalepsis | 60 | 0.63 | 0.83 | 0.72 | Passive Voice | 60 | 0.79 | 0.98 | 0.87 |
| Epiphoza | 60 | 0.61 | 0.93 | 0.74 | Polysyndeton | 60 | 0.77 | 0.7 | 0.73 |
| Epizeugma | 60 | 0.68 | 0.7 | 0.69 | Pysma | 60 | 1 | 1 | 1 |
| Epizeuxis | 60 | 0.79 | 0.77 | 0.78 | Superlative Adjective | 70 | 0.62 | 0.73 | 0.67 |
| Hypozeugma | 60 | 0.61 | 0.8 | 0.69 | Superlative Adverb | 70 | 0.63 | 0.5 | 0.56 |
| If Conditional One | 60 | 0.78 | 0.78 | 0.78 | Unless Conditional | 60 | 1 | 1 | 1 |
| If Conditional Three | 60 | 0.86 | 0.65 | 0.74 | Whether Conditional | 60 | 1 | 0.83 | 0.91 |

\square - Balance schemes \square - Omission schemes \square - Repetition schemes \square Custom schemes

Evaluation results

| Device | Total No. | Precision | Recall | F1-score | Device | Total No. | Precision | Recall | F1-score |
| :--- | :---: | :---: | :---: | :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| Anadiplosis | 60 | 0.76 | 0.73 | 0.74 | If Conditional Two | 60 | 0.82 | 0.75 | 0.78 |
| Asyndeton | 60 | 0.25 | 0.95 | 0.4 | If Conditional Zero | 60 | 0.71 | 0.76 | 0.73 |
| Comparative Adjective | 67 | 0.51 | 0.61 | 0.56 | If Counterfactual | 60 | 0.84 | 0.87 | 0.85 |
| Comparative Adverb | 71 | 0.6 | 0.62 | 0.61 | Isocolon | 180 | 0.57 | 0.83 | 0.68 |
| Diacope | 60 | 0.75 | 0.73 | 0.74 | Mesarchia | 20 | 0.45 | 0.85 | 0.59 |
| Enumeration | 60 | 0.76 | 0.93 | 0.84 | Mesodiplosis | 40 | 0.28 | 0.68 | 0.4 |
| Epanalepsis | 60 | 0.63 | 0.83 | 0.72 | Passive Voice | 60 | 0.79 | 0.98 | 0.87 |
| Epiphoza | 60 | 0.61 | 0.93 | 0.74 | Polysyndeton | 60 | 0.77 | 0.7 | 0.73 |
| Epizeugma | 60 | 0.68 | 0.7 | 0.69 | Pysma | 60 | 1 | 1 | 1 |
| Epizeuxis | 60 | 0.79 | 0.77 | 0.78 | Superlative Adjective | 70 | 0.62 | 0.73 | 0.67 |
| Hypozeugma | 60 | 0.61 | 0.8 | 0.69 | Superlative Adverb | 70 | 0.63 | 0.5 | 0.56 |
| If Conditional One | 60 | 0.78 | 0.78 | 0.78 | Unless Conditional | 60 | 1 | 1 | 1 |
| If Conditional Three | 60 | 0.86 | 0.65 | 0.74 | Whether Conditional | 60 | 1 | 0.83 | 0.91 |- Balance schemes \square - Omission schemes \square - Repetition schemes \square Custom schemes

If-conditional Detection

If-counterfactual Detection

Presidential Debates: Findings

Comparatives

Debate Type	Distribution (\%)
Clinton \rightarrow Trump	11.00
Trump \rightarrow Clinton	7.02

[^0]: * for $\alpha>0.01$
 ${ }^{\dagger}$ for $\alpha>0.1$

[^1]: * for $\alpha>0.01$
 ${ }^{\dagger}$ for $\alpha>0.1$

