Using Language Models to Detect Errors in Second-Language Learner Writing

Nils Rethmeier

Bauhaus Universität Weimar Web Technology and Information Systems Group

Motivation

MotivationBackgroundPerformance MeasuresTest CollectionsResults

Agenda

Error Detection Background

- \circ Error Types
- Language Model, Class-based Language Model
- \circ Combination Models

Detection Performance Measures

- \circ Precision, recall
- \circ Sentence and word level

Test Collections to determine performance

 \circ English learner errors and artificially generated errors

Evaluation Results

- Influence of algorithmic parameters on detection results
- Comparison to error detection performed by humans

Summary

Motivation

Error Categories

There is no standardized definition for writing errors.

However, we organized errors into one of four general categories.

Grammar and Word Usage Errors¹

• Wrong articles, faulty wording, word countability problems (detected)

• Wrong word order, punctuation mistakes (partially detected)

Spelling Errors²

Non-word errors, e.g. "Wykipedia" (detected)

Real-word errors, e.g. "their", instead of "there" (detected)

Semantic Errors

• Are errors in meaning, e.g. bees are mammals (not detected)

Style Errors

 Writing that hinders understanding and reading, e.g. grandiloquence, overlong sentences (not detected)

2 D. Fossati and B. Di Eugenio, "A mixed Trigrams Approach for Context Sensitive Spell Checking", 2010

¹ C. Leacock, "Automated Grammatical Error Detection for Language Learners," Synthesis Lectures on Human Language Technologies, 2010

Error Detection Approaches

Human Annotation

Professionals (Proofreading Services)
Laymen (Friends, Mechanical Turk¹)

Computational Error Detection

- \circ Rule based
 - Formal grammars²
- Statistical
 - Word language models
 - Class-based language models
 - Combinations of both

1 Amazon Mechanical Turk, https://www.mturk.com, as of Septemper 9, 2011

2 J. Wagner, A Comparative Evaluation of Deep and Shallow Approaches to the Automatic Detection of Common Grammatical Errors, 2007

Performance Measures

Test Collections

Language Model: Frequency

A Language Model represents a natural language as a **frequency distribution** of word sequences (**word n-grams**).

Language Model: Backoff

For some 3-grams $P_w = 0.0\%$, because the frequency is 0.

Problem:

We do not know if the language model is missing the frequency because:

- \circ The n-gram is incorrect language
- Our text collection is incomplete, i.e. does not contain this part of the language

Solution: Estimate a probability using Backoff¹

 P_w ("these knowledge were") = 0.0%

 P_w ("these knowledge were") $\approx 0.4 \cdot P_w$ ("knowledge were")

 P_w ("these knowledge were") $\approx 0.4 \cdot 7.5 \cdot 10^{-4} = .3 \cdot 10^{-4}$

1 Google's Stupid Backoff technique from: "Brants, T and Popat, A.C., Large language models in machine translation, 2007"

Probabilities for binary text classification:

Comparing a text's n-gram probabilities against a predetermined threshold classifies these n-grams into correct and erroneous.

Motivation

Background

Performance Measures

Test Collections

Results

Class-based Language Model: Frequency

A model that represents language as a **frequency distribution** of word class sequences (**class n-grams**).

Example:

"These knowledge are" has the word classes "DT NN BER"

QTag parts-of-speech tags: DT = determiner, NN = noun, singular, BER = are, JJ = adjective, RB = adverb

Motivation	Background	Performance Measures	Test Collections	Results

Combing Models:

Problem:

No Language Model represents a language exactly. This model sparseness leads to false detections.

Improvement:

Class-based models are less sparse¹ and can reduce false detections² when combined with word language models.

Combination methods² for P_c and P_w :

Normalization:

$$P_{norm} = P_w \cdot P_c$$

Interpolation:

$$P_{inter} = \frac{P_w + P_c}{2}$$

1 D. Jurafsky, Speech and Language Processing. Prentice Hall, 2 ed., May 2008

2 C. Samuelsson, "A class-based language model for large-vocabulary speech recognition extracted from part-of-speech statistics," 1999

Test Collections

Language Model Summary:

We looked at three different types of language models.

1 Detection results may differ by model. The above detections are only examples.

Agenda

Error Detection Background

- \circ Error Types
- Language Model, Class-based Language Model
- Combination Models

Detection Performance Measures

- \circ Precision, recall
- \circ Sentence and word level

Test Collections to determine performance • English learner errors and artificially generated errors

Evaluation Results

Influence of algorithmic parameters on detection results
Comparison to error detection performed by humans

Summary

 \circ Summary

Detection Performance Measures

Performance Measures

Recall measures what percentage of reference errors was detected. **Precision** measures how many error detections were indeed detected correctly.

Precision P

 $P = \frac{\text{Number of matches}}{\text{Number of detected errors}}$

Recall R

 $R = \frac{\text{Number of matches}}{\text{Number of reference errors}}$

Here

$$P = \frac{1 \cdot \boxed{}}{3 \cdot \boxed{}} = 0.33$$

$$R = \frac{1 \cdot \square}{2 \cdot \square} = 0.50$$

Detection Performance Measures

Detection Granularity

Sentence level:

- Flags whole sentence as either grammatical or ungrammatical
- Common for detection evaluation
- No specific error locations

Word level:

- Each word is either grammatical or ungrammatical
- Measures specific error matches

Test Collections

Agenda

Error Detection Background

- \circ Error Types
- Language Model, Class-based Language Model
- \circ Combination Models

Detection Performance Measures

- \circ Precision, recall
- \circ Sentence and word level

Test Collections to determine performance

 \circ English learner errors and artificially generated errors

Evaluation Results

Influence of algorithmic parameters on detection results
Comparison to error detection performed by humans

Summary

Test Collections

English Learner Corpora

Are collections of manually error annotated language learner writing. We use them by extracting reference error positions from each corpus.

MELD¹

- 58 learner essays (6,553 words)
- \circ Sentences related
- Only a simple {error, correction} notation, no types

Artificially generated errors

10% British National Corpus of generated Errors (BNCd)²

- o 9,413,338 words
- Each sentence contains one of four error types, e.g. spelling errors

¹ E. Fitzpatrick and M. Seegmiller, "The Montclair Electronic Language Database project," Language and Computers, 2004 2 Wagner J., A Comparative Evaluation of Deep and Shallow Approaches to Automatic Error Detection, 2007

Agenda

Error Detection Background

- \circ Error Types
- Language Model, Class-based Language Model
- Combination Models

Detection Performance Measures

- \circ Precision, recall
- \circ Sentence and word level

Test Collections to determine performance

English learner errors and artificially generated errors

Evaluation Results

Influence of algorithmic parameters on detection results

• Comparison to error detection performed by humans

Summary

Evaluation Framework:

- Performance measures (precision, recall)
- Trainingset 80% BNCd¹
 - Trained a probability threshold that classify text n-grams with maximum overall performance (F1-score)
- Testsets
 - 10% BNCd (9.4mil words), artificial errors
 - MELD² (6.5k words), learner errors

Influence of algorithmic parameters on detection performance (BNCd):

- N-gram length (3, 4-grams)
- Best detection model (language model, normalization, interpolation)
- Text error density (percent of errors in a text)

Detection performance comparison

algorithmic detection vs. professional annotators (MELD)

1 Wagner J., A Comparative Evaluation of Deep and Shallow Approaches to Automatic Error Detection, 2007

2 E. Fitzpatrick and M. Seegmiller, "The Montclair Electronic Language Database project," Language and Computers, 2004

N-Gram Length (drawn from BNCd)

word level

Motivation Approaches Performance Measures Test Collections Results

Standard vs. Combination Model (BNCd)

word level

MotivationApproachesPerformance MeasuresTest CollectionsResults

Problems at sentence level (BNCd)

■ JEITLETICE IEVELUELECTION IS HOL a good mandator of quanty

Optimal threshold in relation to a text's error density.

Optimum detection threshold changes with error density

text error density

Shown model uses linear interpolation to combine word and part-of-speech probabilities. Model with highest precision.

Motivation	Approaches	Performance Measures	Test Collections	Results

Precision in relation to recall.

• At 95% precision recall is 7-8%,4at 88% precision weiget 18-20% recall recall

Shown model uses linear interpolation to combine word and part-of-speech probabilities. Model with highest precision.

Agreement between professional annotators vs. algorithmic detection (MELD)

 On MELD algorithmic detection has higher recall while annotators achieve significantly higher precision on average

Motivation

Test Collections

Summary

Result Summary

- Investigated impact of model combinations on detection performance
 - combination models outperform word language models
- Explored the impact of a text's error density on language model based error detection (usually not regarded)
- Investigated algorithmic detection performance when compared to humans

Thank you for listening

Performance Measures

Test Collections

Future Work: Model Comparison Revised

Improvement in detection recall compared to the basic word model.

Conclusion:

- Normalizing word models using part-of-speech models produces higher, more stable recall while keeping precision high
- Use normalization if recall is more important

Shown model uses **normalization** to combine **word** and **part-of-speech** probabilities. Model with highest f1-score.

Improvements in error detection precision.

 Interpolation[®] between word and part-of-speech models maximizes precision while increasing recall by 9%.

Shown model uses linear interpolation to combine word and part-of-speech probabilities. Model with highest precision.