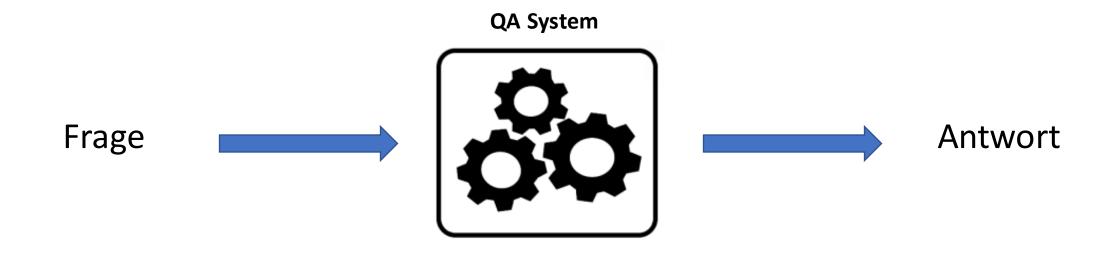
Verbalizations of Entity-based Answers for Question Answering Systems


Deniz Simsek

Supervisor: Marcel Gohsen & Johannes Kiesel

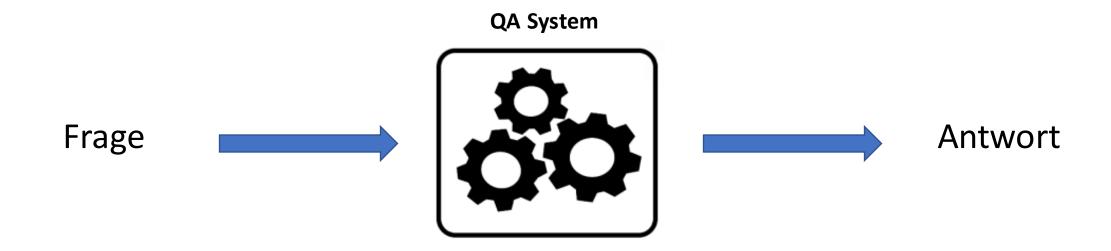
Thema

Verbalizations of Entity-based Answers for Question Answering Systems

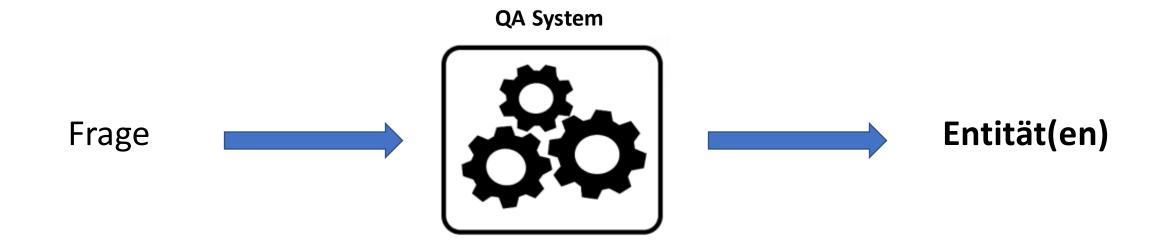
Question Answering Systeme

Thema

Verbalizations of Entity-based Answers for Question Answering Systems

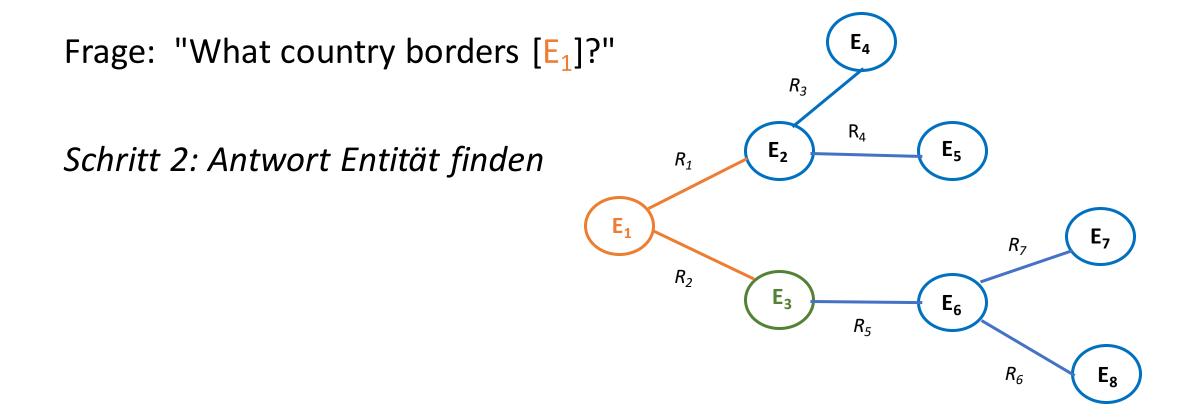

Entitäten

- Was ist eine Entität?
 - "Etwas, das unabhängig von anderen Dingen existiert und seine eigene unabhängige Existenz hat." 1
 - Wichtig für Bedeutung + relevanten Informationen von Texten
 - Gehören zu Kategorien wie: Namen, Orte, Konzepte...


"How tall is the Eiffeltower?"

"How tall is the Eiffeltower?"

Warum Entitäten?


Entitätsbasierte Antworten

Einfaches Beispiel Knowledge Base Question Answering System

Frage: "What country borders [E₁]?" R_3 R_4 E_2 Schritt 1: Topic-Entität finden R_1 $\mathsf{E_1}$ R_7 R_2 E_3

Einfaches Beispiel Knowledge Base Question Answering System

Simples Beispiel Knowledge Base Question Answering System

Frage: "What country borders [E₁]?"

Schritt 2.1: Semantisches Parsen

 (E_1, R_2, E_3)

Antwort: E₃

Gibt es nicht schon ChatGPT?

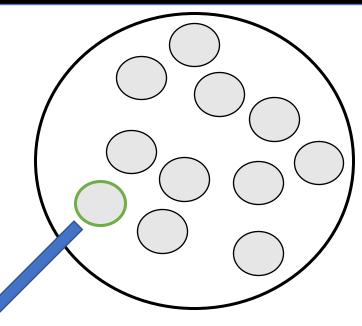
Was ist mit ChatGPT?

- Mein Ansatz
 - Grundgedanke: Verwendung Ausgangsfrage und Knowledge Graph (Entitäten) für Verbalisierung
 - Meine These: Ähnliche Fragen werden von ähnlichen Antworten beantwortet

Verwandte Arbeiten

 Tatsächlich noch nicht allzu viel Forschung zu Verbalisierung solcher Antworten

- Bisherige Forschungsansätze
 - VOGUE: Answer Verbalization through Multi-Task Learning (Kacupaj et al. ,2021)


Thema

Verbalizations of Entity-based Answers for Question Answering Systems

Clustern syntaktisch ähnlicher Fragen

Named Entity Recognition Abstraktion der Fragen Bestimmung Ähnlichkeit

Sammlung Fragecluster

Cluster mit
Sammlung
Frage-Antwort
Paaren

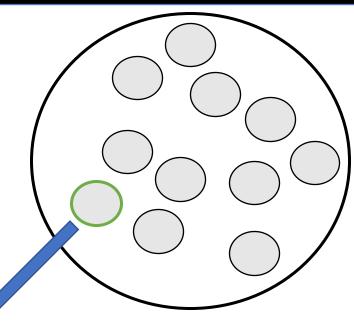
Q: "How tall is the Eiffeltower?"

A: "The Eiffeltower is [ANS] tall"

Q: "How tall is Micheal Jordan?"

A: "Micheal Jordan is [ANS] tall"

Allgemeine Antwort Durch Analyse vorhandener Antworten


A: "[ENT] is [ANS] tall"

- Ein Cluster ist ein Fragetyp
- These: Innerhalb eines
 Fragetyps ähnliche
 Antworten
- Finden und Ausnutzung dieser Ähnlichkeiten zur Generierung einer neuen Antwort

Clustern syntaktisch ähnlicher Fragen

Named Entity Recognition Abstraktion der Fragen Bestimmung Ähnlichkeit

Sammlung Fragecluster

Cluster mit
Sammlung
Frage-Antwort
Paaren

Q: "How tall is the Eiffeltower?"

A: "The Eiffeltower is [ANS] tall"

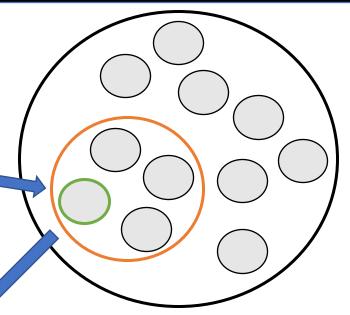
Q: "How tall is Micheal Jordan?"

A: "Micheal Jordan is [ANS] tall"

Allgemeine Antwort
Durch Analyse vorhandener
Antworten

A: "[ENT] is [ANS] tall"

- Ein Cluster ist ein Fragetyp
- These: Innerhalb eines
 Fragetyps ähnliche
 Antworten
- Finden und Ausnutzung dieser Ähnlichkeiten zur Generierung einer neuen Antwort


• •

Q: "How tall is the Mount Everest?"

A: [8848m] (in Form einer Entität)

Neue Frage mit Antwort als Entität

Bestimmung des Clusters über Ähnlichkeitsmaße

Sammlung Fragecluster

Cluster mit
Sammlung
Frage-Antwort
Paaren

Q: "How tall is the Eiffeltower?"

A: "The Eiffeltower is [ANS] tall"

Q: "How tall is Micheal Jordan?"

A: "Micheal Jordan is [ANS] tall"

Allgemeine Antwort

Durch Analyse vorhandener

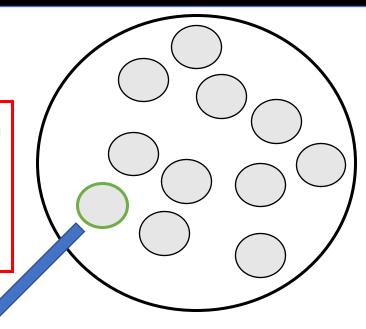
Antworten

A: "[ENT] is [ANS] tall"

Antwort auf Neue Frage

A: "The Mount Everest is [8848m] tall"

• • •


Der 1. Ansatz

- Nutzung eines riesigen Frage-Antwort Datensatzes
 - Web Crawl von Yahoo Answers
 - User generated Content
 - Umfasst ungefähr 14 Millionen englische Fragen und deren Antworten
 - Riesige Datenmenge führt zu hinreichend großen Clustern?

Clustern syntaktisch ähnlicher Fragen

Named Entity Recognition Abstraktion der Fragen Bestimmung Ähnlichkeit

Sammlung Fragecluster

Cluster mit
Sammlung
Frage-Antwort
Paaren

Q: "How tall is the Eiffeltower?"

A: "The Eiffeltower is [ANS] tall"

Q: "How tall is Micheal Jordan?"

A: "Micheal Jordan is [ANS] tall"

Allgemeine Antwort Durch Analyse vorhandener Antworten

A: "[ENT] is [ANS] tall"

- Ein Cluster ist ein Fragetyp
- These: Innerhalb eines
 Fragetyps ähnliche
 Antworten
- Finden und Ausnutzung dieser Ähnlichkeiten zur Generierung einer neuen Antwort

• • •

Der 1. Schritt

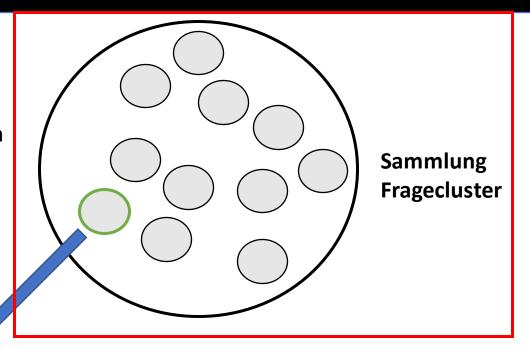
- Zuerst Named Entity Recognition (NER)
 - Finden und Ersetzen der Entitäten in den Fragen durch allgemeine Entitätstokens
 - Abstraktion der Fragen
 - Leichterer Vergleich von Fragen und konzentrieren auf Struktur der Fragen
- Viele verschiedene Wege und Möglichkeiten dies zu tun
 - Entschieden für *TagMe*¹
 - Annotierung von Entitäten

19

Der 1. Schritt

- Datensatz mit den 14 Millionen englischen Fragen und Antworten in jeweils 10 kleinere Datensätze aufgesplittet
 - Aufgrund der enormen Größe und Zeitaufwand

- Für Jeden dieser Datensätze **NER** für die Fragen durchgeführt
 - Durchschnitt 550.000 Fragen mit Entitäten
 - Fragen mit Entitäten häufiger von QA beantwortbar
 - Auffindung vorhandener Entitäten im Graphen/Datenbank
 - Ansonsten keine faktischen Fragen
 - Beispiel: "Why is she not texting back?"


Anzahl Fragen mit Entitäten

Clustern syntaktisch ähnlicher Fragen

Named Entity Recognition Abstraktion der Fragen Bestimmung Ähnlichkeit

Cluster mit
Sammlung
Frage-Antwort
Paaren

Q: "How tall is the Eiffeltower?"

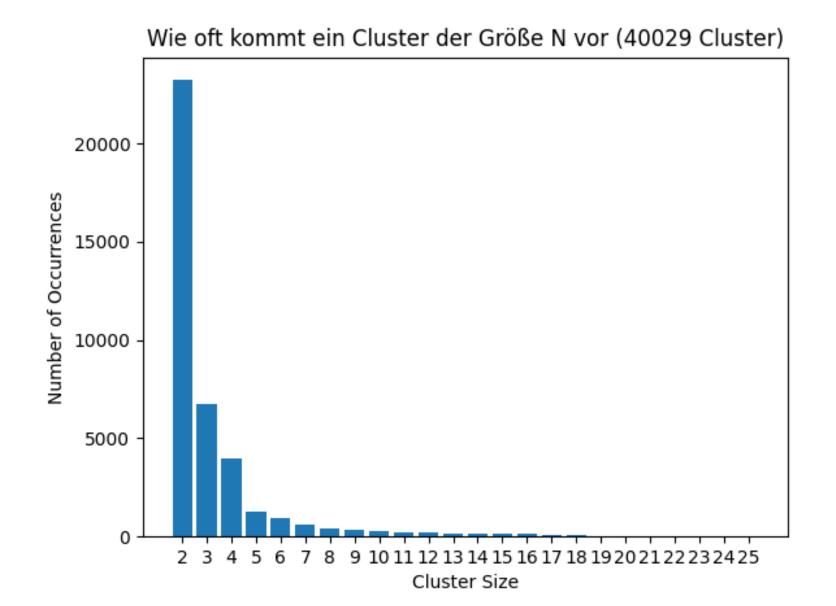
A: "The Eiffeltower is [ANS] tall"

Q: "How tall is Micheal Jordan?"

A: "Micheal Jordan is [ANS] tall"

Allgemeine Antwort Durch Analyse vorhandener Antworten

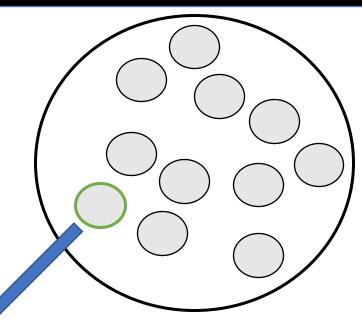
A: "[ENT] is [ANS] tall"


- Ein Cluster ist ein Fragetyp
- These: Innerhalb eines Fragetyps ähnliche Antworten
- Finden und Ausnutzung dieser Ähnlichkeiten zur Generierung einer neuen Antwort

Der 2. Schritt

- Bildung der Fragecluster
 - Syntaktisch ähnliche Fragen werden zusammengefasst
 - 1 Clusters somit ein bestimmter Typ von Frage

- Für jede Frage innerhalb des Datensatzes werden mögliche Kandidaten über Locality-Sensitive Hashing (LSH) gefunden
 - Somit Sammlung von möglichen ähnlichen Kandidaten
 - Daraufhin Berechnung von **BLEU-Score** (*Papineni et al., 2002*) (Bestimmung Ähnlichkeit zwischen Texten über nGramme)
 - Es ergaben sich über diese Wege im Durchschnitt 40000 Cluster mit ähnlichen Fragen


Der 2. Schritt

Clustern syntaktisch ähnlicher Fragen

Named Entity Recognition Abstraktion der Fragen Bestimmung Ähnlichkeit

Sammlung Fragecluster

Cluster mit Sammlung Frage-Antwort Paaren Q: "How tall is the Eiffeltower?"

A: "The Eiffeltower is [ANS] tall"

Q: "How tall is Micheal Jordan?"

A: "Micheal Jordan is [ANS] tall"

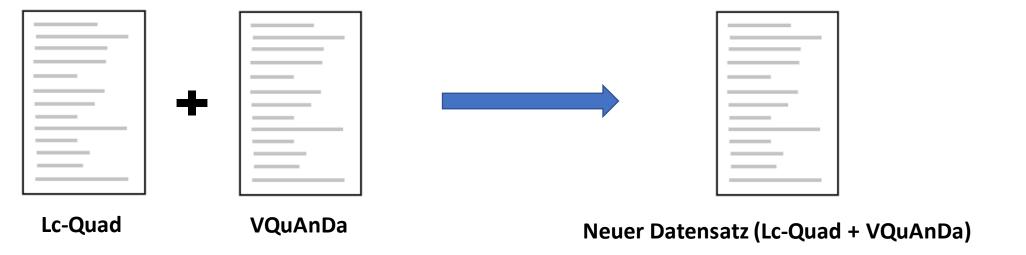
Allgemeine Antwort Durch Analyse vorhandener Antworten

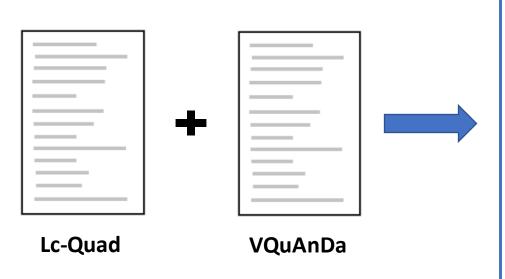
A: "[ENT] is [ANS] tall"

- Ein Cluster ist ein Fragetyp
- These: Innerhalb eines
 Fragetyps ähnliche
 Antworten
- Finden und Ausnutzung dieser Ähnlichkeiten zur Generierung einer neuen Antwort

Der 3. Schritt: Analyse der Antworten auf Ähnlichkeiten

- Cluster wurden gebildet nun Analyse der Antworten
 - Ebenfalls Finden und Ersetzen der Entitäten in den Antworten für Abstraktion
- Untersuchte Eigenschaften
 - **Ngramme** *Unigramme*, *Bigramme*, *Trigramme*, etc...
 - Mögliche Ähnliche Satzstrukturen, die sich oft wiederfinden lassen
 - Satzanfang / Satzenden
 - Beginnen die Antworten normalerweise gleich, enden sie ähnlich
 - Ähnliche Strukturen am Anfang oder Ende?
 - Anzahl der Wörter
 - Wie lange ist normalerweise die Antwort
 - Nutzung von dem 1. Antwortsatz, später Nutzung von der kompletten zusammengefassten Antwort
 - Gibt es da Unterschiede von den Ergebnissen?
 - Gibt es bestimmte Wörter (abgesehen von Stopwörtern) die oft vorkommen?


Der 3. Schritt: Analyse der Antworten auf Ähnlichkeiten - Fazit


- Enttäuschende Ergebnisse
 - Selten (<1%) Ähnlichkeiten zwischen den Antworten innerhalb eines Clusters
 - Selbes Ergebnis sowohl für Nutzung des ersten Antwortsatzes als auch für die Nutzung der kompletten Antwort
 - Dieses Experiment unterstützt nicht die These
- Mögliche Ursachen
 - Es sind immer noch usergenerierte Daten
 - Oft unsauber formatiert
 - Manchmal falsche, kurze, nichtssagende oder humorvolle Antworten als beste Antworten gewählt
 - Rechtschreibfehler
 - ungewöhnliche Formulierungen der Antworten

• Idee 2. Nutzung von Vorgefertigte Templates für Verbalizations

- Datensatz: **VQuAnDa** (Kacupaj et al., 2020)
 - Sammlung von 5000 annotierten Fragen mit verbalisierten Antworten
 - Entstanden aus dem Datensatz Lc-QuAD (Dubey et al. 2019)
 - Gold Standard Dataset f
 ür Question Answering over Knowledge Base mit 5000 Fragen
 - Ergab sich aus 42 SPARQL Queries (42 Fragetypen) über Knowledge Base *DBPedia*²
 - VQuAnDa hat zu diesem Datensatz eine ordentliche Verbalisierung der Antworten hinzugefügt

² https://www.dbpedia.org/resources/

Question

"What is the allegiance of John Kotelawala?"

Question Entities

"What is the <allegiance> of <John Kotelawala>?"

Abstract Question

"What is the [ENT] of [ENT]?"

"What is the [0] of [1] ?"

Answer

"The allegiance of John Kotelawala is [Sri Lanka]."

Abstract Answer

Neue Frage:

"What is the nationality of Angela Merkel?"

Antwort: [German]

Question

"What is the allegiance of John Kotelawala?"

Question Entities

"What is the <allegiance> of <John Kotelawala>?"

Abstract Question

"What is the [ENT] of [ENT]?"

"What is the [0] of [1] ?"

Answer

"The allegiance of John Kotelawala is [Sri Lanka]."

Abstract Answer

Neue Frage:

"What is the nationality of Angela Merkel?"

Abstrahiert:

"What is the [ENT] of [ENT]?"

Antwort: [German]

Question

"What is the allegiance of John Kotelawala?"

Question Entities

"What is the <allegiance> of <John Kotelawala>?"

Abstract Question

"What is the [ENT] of [ENT]?"
"What is the [0] of [1]?"

Answer

"The allegiance of John Kotelawala is [Sri Lanka]."

Abstract Answer

Nutzung der Abstrakten Antwort und Einsetzung der Entitäten aus der Neuen Frage

Neue Frage:

"What is the nationality of Angela Merkel?"

Abstrahiert:

"What is the [ENT] of [ENT]?"

Antwort: [German]

Question

"What is the allegiance of John Kotelawala?"

Question Entities

"What is the <allegiance> of <John Kotelawala>?"

Abstract Question

"What is the [ENT] of [ENT] ?"

"What is the [0] of [1] ?"

Answer

"The allegiance of John Kotelawala is [Sri Lanka]."

Abstract Answer

Neue Frage:

"What is the nationality of Angela Merkel?"

Abstrahiert:

"What is the [ENT] of [ENT]?"

Antwort: [German]

Generierte Antwort:

The nationality of Angela Merkel is German

Question

"What is the allegiance of John Kotelawala?"

Question Entities

"What is the <allegiance> of <John Kotelawala>?"

Abstract Question

"What is the [ENT] of [ENT]?"
"What is the [0] of [1]?"

Answer

"The allegiance of John Kotelawala is [Sri Lanka]."

Abstract Answer

- Somit 5000 Antworttemplates
- Nutzung der vorgefertigten Antworten zur Bildung neuer Antworten
 - Finden von ähnlichen Fragen aus dem Datensatz gleicher Ansatz wie Versuch 1
 - Named Entity Recognition, Abstraktion, LSH + BLEU-Score
 - Einsetzen der Entitäten in die Antwort
 - Position wo welche Entitäten stehen sind bekannt
 - Durchführung für jede gefundene ähnliche Fragen aus dem Datensatz
 - Grammatikalisch falsche Sätze werden verworfen
 - Rückgabe aller "richtige" Sätze

Stand Idee 2

- Nutzung der vorgefertigten Antworten zur Bildung neuer Antworten
 - Finden von ähnlichen Fragen aus dem Datensatz gleicher Ansatz wie Versuch 1
 - Named Entity Recognition, Abstraktion, LSH + BLEU-Score
 - Einsetzen der Entitäten in die Antwort
 - Position wo welche Entitäten stehen sind bekannt
 - Durchführung für jede gefundene ähnliche Fragen aus dem Datensatz
 - Grammatikalisch falsche Sätze werden verworfen
 - Rückgabe aller "richtige" Sätze

Fortschritt: ungefähr 90%

Ausblick

- Näher untersuchen, an was meine These im ersten Versuch scheiterte
 - Wie könnte man das erste Experiment verändern (anderer Datensatz?, andere Herangehensweise?, etc...)
- Lässt sich die Verbalisierung von solchen Antworten durch einen Templatebasierten Ansatz lösen (2. Ansatz)?
 - Würde ebenfalls These unterstützen, dass ähnliche Fragen zu ähnlichen Antworten führen
- Falls 2. Ansatz ebenfalls nicht funktioniert wie erwartet
 - Ist die These zu simpel? Führen ähnliche Fragen nicht zu ähnlichen Antworten?
 - Was könnten weitere Ansätze sein um dieses Problem zu lösen?

Diskussion & Anregungen

- Gibt es irgendwelche Ideen und Anregungen?
- An was habe ich vielleicht noch nicht gedacht?
- Fragen über die Folien?

Quellen Paper

- Endri Kapupaj, Shyamnath Premnadh, Kuldeep Singh, Jens Lehmann, and Maria Maleshkova. "VOGUE: Answer Verbalization through Multi-Task Learning", arXiv2106:13316 (2021)
- Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang, Wayne Xin Zhao, and Ji-Rong Wen. "Complex Knowledge Base Question Answering: A Survey", arXiv:2108.06688 (2021)
- Endri Kacupaj, Kuldeep Singh, Maria Maleshkova, and Jens Lehmann. "An Answer Verbalization Dataset for Conversational Question Answerings over Knowledge Graphs", arXiv.2208.06734 (2022)
- Dubey, M., Banerjee, D., Abdelkawi, A., Lehmann, J. (2019). LC-QuAD 2.0: A Large Dataset for Complex Question Answering over Wikidata and DBpedia. In: , et al. The Semantic Web ISWC 2019. ISWC 2019. Lecture Notes in Computer Science(), vol 11779. Springer, Cham. https://doi.org/10.1007/978-3-030-30796-7 5
- Kacupaj, E., Zafar, H., Lehmann, J., Maleshkova, M. (2020). VQuAnDa: Verbalization QUestion ANswering DAtaset. In: , et al. The Semantic Web. ESWC 2020. Lecture Notes in Computer Science(), vol 12123. Springer, Cham. https://doi.org/10.1007/978-3-030-49461-2_31
- Papineni, Kishore & Roukos, Salim & Ward, Todd & Zhu, Wei Jing. (2002). BLEU: a Method for Automatic Evaluation of Machine Translation. 10.3115/1073083.1073135.

Bilder

- Folie 3 und fortfolgend:
 - Zahnräder: https://de.vecteezy.com/vektorkunst/552199-zahnrader-vektor-icon
- Folie 12:
 - OpenAl Logo: https://openai.com/