

UNIVERSITÄT LEIPZIG

Optimizing Perceived Aesthetics of Mobile UIs Using Metric Guided Generative Pipelines

June 24, 2024 Moritz Wörmann

Supervised by Patrick Ebel & Niklas Deckers at Junior Research Group CIAO (Computational Interaction and Mobility) ScaDS.AI, Universität Leipzig

Problem Setting: Creating Aesthetically Pleasing UIs

Background

 Interaction with software is predominately performed using Mobile Applications (Apps)

Background

- Interaction with software is predominately performed using Mobile Applications (Apps)
- The design is specific to the usecase and differs from other apps in order to stick out

Figure 1: Different mobile applications

Aesthetics Are Key to Success

 Whether a UI is considered aesthetically pleasing is a key indicator for user satisfaction [1]

Aesthetics Are Key to Success

- Whether a UI is considered aesthetically pleasing is a key indicator for user satisfaction [1]
- Good products may still be considered bad if the corresponding UI is ugly

Current State of the "Art"

Figure 2: Reproduced from de Souza Lima et al. [2]

Tools like AppInventor lead users to create unaesthetic designs

Design Process of Mobile UIs

Creating complex User Interfaces can be a lengthy process:

Figure 3: The Double Diamond Model, reproduced from Design Council [3]

- Usability and UX of UI is determined by functionality and aesthetics

What Even Is Considered Pretty?

 Without knowing the (potential) userbase, designers don't know what their customers will consider pretty.

What Even Is Considered Pretty?

- Without knowing the (potential) userbase, designers don't know what their customers will consider pretty.
- User studies are the main approach to assess preferences

What Even Is Considered Pretty?

- Without knowing the (potential) userbase, designers don't know what their customers will consider pretty.
- User studies are the main approach to assess preferences
- Users may not agree on what is considered pretty [4]
- User studies beyond scope for developers
- ightarrow Reuse existing datasets and models for determining aesthetics of given UIs

Problem Setting

- Identified arrangement of elements as key factor contributing to perceived aesthetic of UIs [5]
- Given a rudimentary UI layout with functional elements

Problem Setting

- Identified arrangement of elements as key factor contributing to perceived aesthetic of UIs [5]
- Given a rudimentary UI layout with functional elements
- Arrange UI elements in aesthetic way automatically without disrupting functionality

Related Work

Related Work

 Both algorithms focus on (1) generation from scratch and (2) generation based on predefined elements

Transformers for Layout generation: BLT

Figure 4: Reproduced from Kong et al. [6]

Automated Layout Generation: LayoutDM

Figure 5: Reproduced from de Souza Lima et al. [2]

 Related work focuses on layout generation without being guided by metrics like aesthetics

Proposed Methods: Grading & Optimizing

Proposed Solutions

 Identify functional elements of User Interface

- Identify functional elements of User Interface
 - e.g. Buttons, Text, Figures

- Identify functional elements of User Interface
 - e.g. Buttons, Text, Figures
- Automated process comes up with missing pieces

- Identify functional elements of User Interface
 - e.g. Buttons, Text, Figures
- Automated process comes up with missing pieces
 - Layout, Background color

- Identify functional elements of User Interface
 - e.g. Buttons, Text, Figures
- Automated process comes up with missing pieces
 - Layout, Background color
- Automated Grading of UIs via pretrained model to alleviate difficulties of defining what is considered "pretty"

Proposed Methods: Overview

- 1. General Idea & Datasets
- 2. Experiment 1: Finetuning Stable Diffusion
- 3. Experiment 2: Affine Transformation Matrix as latent space
- 4. Experiment 3: Variational Auto-Encoders

General Idea: Grading Aesthetics as a Regression Problem

Create Dataset of existing User Interfaces Ask Users to grade UIs Train Grading Model on what users consider pretty

Figure 6: Grading mechanism

Dataset Collection

Biggest mobile UI Dataset: RICO

Figure 7: Rico Dataset: Automated Dataset collection

Dataset Collection

- Leveraging existing research by de Souza Lima et al. [2]

- User study for grading on scale 1-5
- Proposed model architecture: Finetuning Resnet-50
- Only 2000 datapoints
- Subset of the RICO dataset

General Idea: Optimizing

Figure 8: Optimizing mechanism

Experiment 1

- Operating directly on Pixel space: Fine-tuning Stable Diffusion

Experiment 1

- Operating directly on Pixel space: Fine-tuning Stable Diffusion
- Existing dataset of UI screenshots captioned with Salesforce BLIP

Experiment 1

- Operating directly on Pixel space: Fine-tuning Stable Diffusion
- Existing dataset of UI screenshots captioned with Salesforce BLIP
- Results not satisfiable

Experiment 1

- Operating directly on Pixel space: Fine-tuning Stable Diffusion
- Results not satisfiable

Figure 9: "UI" generated by SD model

Experiment 2: Element Positions as Latent Space

- Latent space: Position of UI elements

Experiment 2: Element Positions as Latent Space

- Latent space: Position of UI elements
- RICO dataset contains these information, translation is therefore straight forward

Experiment 2: Element Positions as Latent Space

- Latent space: Position of UI elements
- RICO dataset contains these information, translation is therefore straight forward
- Practical setup: Vector containing positions of UI elements is considered a trainable parameter of a machine learning model

Experiment 2: Element Positions as Latent Space

- Latent space: Position of UI elements
- RICO dataset contains these information, translation is therefore straight forward
- Practical setup: Vector containing positions of UI elements is considered a trainable parameter of a machine learning model
- Assembly of final user interface and grading via model is done in a differentiable way
 - \rightarrow Task is classic machine learning problem

Experiment 2: Results

Start with random alignment:

Experiment 2: Results (ctd.)

UNIVERSITÄT LEIPZIG

Figure 11: Score progression

Experiment 2: Results (ctd.)

Figure 12: Before vs. After Optimization

Experiment 2: Results (ctd.)

- Hardly anything has changed

- Hardly anything has changed
- Model grades UI as aesthetic, when it is in fact "distorted"

- Hardly anything has changed
- Model grades UI as aesthetic, when it is in fact "distorted"
- Optimizer quickly learns weaknesses of grading model

- Hardly anything has changed
- Model grades UI as aesthetic, when it is in fact "distorted"
- Optimizer quickly learns weaknesses of grading model
- Second (potential) issue: Aesthetics classifier can't distinguish between "real" and "fake" layouts

- Hardly anything has changed
- Model grades UI as aesthetic, when it is in fact "distorted"
- Optimizer quickly learns weaknesses of grading model
- Second (potential) issue: Aesthetics classifier can't distinguish between "real" and "fake" layouts
- Functionality has similar issues

- Hardly anything has changed
- Model grades UI as aesthetic, when it is in fact "distorted"
- Optimizer quickly learns weaknesses of grading model
- Second (potential) issue: Aesthetics classifier can't distinguish between "real" and "fake" layouts
- Functionality has similar issues

Going Forward

– Initial idea: Add additional classifier to detect "random" fake layouts \rightarrow Not conclusive

Going Forward

- Initial idea: Add additional classifier to detect "random" fake layouts \rightarrow Not conclusive
- One (other) approach to alleviate:
 - \rightarrow Reduce dimensions of or change characteristics of latent space

Experiment 3 (WIP)

- Automatically find a suitable latent space \rightarrow Variational autoencoder (VAE)

Experiment 3 (WIP)

- Automatically find a suitable latent space
 - \rightarrow Variational autoencoder (VAE)
- Has the advantage of only producing valid "real" UIs

VAE for Enforcing Valid UI Generation

- General Idea:

UNIVERSITÄT LEIPZIG

Figure 13: VAE Schematic reproduced from mlarchive.com [7]

VAE for Enforcing Valid UI Generatio

- In our case: **X** will be an $m \times 2$ vector containing

- In our case: **X** will be an $m \times 2$ vector containing
 - first 5 clickable elements as relative positions on the canvas
 - first 5 non-clickable elements as relative positions on the canvas

- In our case: **X** will be an $m \times 2$ vector containing
 - first 5 clickable elements as relative positions on the canvas
 - first 5 non-clickable elements as relative positions on the canvas
- **–** (*m* = 10)
- 5 was chosen as sufficient dataset examples exist
- (*m* elements, each two coordinates)

- In our case: **X** will be an $m \times 2$ vector containing
 - first 5 clickable elements as relative positions on the canvas
 - first 5 non-clickable elements as relative positions on the canvas
- **–** (*m* = 10)
- 5 was chosen as sufficient dataset examples exist
- (*m* elements, each two coordinates)
- Optimization happens directly on latent space of the VAE

- In our case: **X** will be an $m \times 2$ vector containing
 - first 5 clickable elements as relative positions on the canvas
 - first 5 non-clickable elements as relative positions on the canvas
- **–** (*m* = 10)
- 5 was chosen as sufficient dataset examples exist
- (*m* elements, each two coordinates)
- Optimization happens directly on latent space of the VAE
- Second loss is potentially needed in order to keep the latent vector in the correct distribution

Outlook & Remaining Work During the Thesis

- Hardening aesthetics predictor against adversarial attacks

Outlook & Remaining Work During the Thesis

- Hardening aesthetics predictor against adversarial attacks

- i.e. evaluating different model architectures

Outlook & Remaining Work During the Thesis

- Hardening aesthetics predictor against adversarial attacks
 - i.e. evaluating different model architectures
- Increasing aesthetics dataset size

Outlook & Remaining Work During the Thesis

- Hardening aesthetics predictor against adversarial attacks

- i.e. evaluating different model architectures
- Increasing aesthetics dataset size

Other issues:

- "Phantom" elements in RICO dataset (potentially requires sanitization)

Future Work

- Optimization directly on code not only on arrangement
- Integration in production ready application
- Explore different latent spaces
- Optimize for different metrics
- Condition on usecase/functionality

Conditioning on Usecase

UNIVERSITÄT LEIPZIG

Figure 14: Similarities between apps of similar categories

Conclusion

- Objective: Optimize UI Layout to increase aesthetics

Conclusion

- Objective: Optimize UI Layout to increase aesthetics
- Experiments
 - 1. Stable Diffusion: Results not satisfactory
 - Affine matrix as latent space: Too many degrees of freedom, results not satisfactory
 - 3. VAE: Ensure only "valid" UIs will be generated (In Progress)

Conclusion

- Objective: Optimize UI Layout to increase aesthetics
- Experiments
 - 1. Stable Diffusion: Results not satisfactory
 - 2. Affine matrix as latent space: Too many degrees of freedom, results not satisfactory
 - 3. VAE: Ensure only "valid" UIs will be generated (In Progress)

Thank you for your attention!

References I

- [1] Maria Douneva, Rafael Jaron, and Meinald T. Thielsch. Effects of Different Website Designs on First Impressions, Aesthetic Judgements and Memory Performance after Short Presentation. *Interacting with Computers*, 28(4): 552–567, 06 2016. ISSN 0953-5438. doi: 10.1093/iwc/iwv033. URL https://doi.org/10.1093/iwc/iwv033.
- [2] Adriano Luiz de Souza Lima, Osvaldo P Heiderscheidt Roberge Martins, Christiane Gresse von Wangenheim, Aldo von Wangenheim, Adriano Ferreti Borgatto, and Jean CR Hauck. Automated assessment of visual aesthetics of android user interfaces with deep learning. In *Proceedings of the 21st Brazilian Symposium on Human Factors in Computing Systems*, pages 1–11, 2022.
- [3] Design Council. Design council, 2024.

UNIVERSITY ://www.designcouncil.org.uk/ [Accessed: June 2024].

References II

- [4] Christiane Gresse von Wangenheim, João V. Araujo Porto, Jean C. R. Hauck, and Adriano Ferreti Borgatto. Do we agree on user interface aesthetics of android apps? CoRR, abs/1812.09049, 2018. URL http://arxiv.org/abs/1812.09049.
- [5] Michael Bauerly and Yili Liu. Effects of symmetry and number of compositional elements on interface and design aesthetics. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 50:304–308, 10 **2006**. doi: 10.1177/154193120605000320.
- [6] Xiang Kong, Lu Jiang, Huiwen Chang, Han Zhang, Yuan Hao, Haifeng Gong, and Irfan Essa. BLT: bidirectional layout transformer for controllable layout generation. CoRR, abs/2112.05112, 2021, URL https://arxiv.org/abs/2112.05112. UNIVERSITÄT I FIPZIC

References III

[7] mlarchive.com, 2024. https://mlarchive.com/deep-learning/ variational-autoencoders-a-vanilla-implementation/ [Accessed: June 2024].

Additional Details

Experiment 2: Image translation

- Challenge: Differentiable Render

Experiment 2: Image translation

- Challenge: Differentiable Render
- Solution: Affine transformation:

Optimizing Mobile UIs | Proposed Methods

Experiment 2: Image translation

- Challenge: Differentiable Render
- Solution: Affine transformation:

 \rightarrow latent vector is affine matrix

