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Background

– Interaction with software is predominately performed using Mobile
Applications (Apps)

– The design is specific to the usecase and differs from other apps in order to
stick out
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Figure 1: Different mobile applications
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– Whether a UI is considered aesthetically pleasing is a key indicator for user
satisfaction [1]

– Good products may still be considered bad if the corresponding UI is ugly
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Current State of the “Art”

Figure 2: Reproduced from de Souza Lima et al. [2]

– Tools like AppInventor lead users to create unaesthetic designs
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Design Process of Mobile UIs

Creating complex User Interfaces can be a lengthy process:

Figure 3: The Double Diamond Model, reproduced from Design Council [3]
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– Usability and UX of UI is determined by functionality and aesthetics
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What Even Is Considered Pretty?

– Without knowing the (potential) userbase, designers don’t know what their
customers will consider pretty.

– User studies are the main approach to assess preferences
– Users may not agree on what is considered pretty [4]
– User studies beyond scope for developers

→ Reuse existing datasets and models for determining aesthetics of given UIs
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Problem Setting

– Identified arrangement of elements as key factor contributing to perceived
aesthetic of UIs [5]

– Given a rudimentary UI layout with functional elements

– Arrange UI elements in aesthetic way automatically without disrupting
functionality
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Related Work

– Both algorithms focus on (1) generation from scratch and (2) generation
based on predefined elements
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Transformers for Layout generation: BLT

Figure 4: Reproduced from Kong et al. [6]
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Automated Layout Generation: LayoutDM

Figure 5: Reproduced from de Souza Lima et al. [2]
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– Related work focuses on layout generation without being guided by metrics
like aesthetics
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Proposed Methods:
Grading & Optimizing
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Proposed Solutions

– Identify functional elements of User
Interface

– e.g. Buttons, Text, Figures
– Automated process comes up with

missing pieces

– Layout, Background color

– Automated Grading of UIs via
pretrained model to alleviate
difficulties of defining what is
considered ”pretty”
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Proposed Methods: Overview

1. General Idea & Datasets
2. Experiment 1: Finetuning Stable Diffusion
3. Experiment 2: Affine Transformation Matrix as latent space
4. Experiment 3: Variational Auto-Encoders
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General Idea: Grading Aesthetics as a Regression
Problem

Figure 6: Grading mechanism
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Dataset Collection
Biggest mobile UI Dataset: RICO

Figure 7: Rico Dataset: Automated Dataset collection
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Dataset Collection

– Leveraging existing research by de Souza Lima et al. [2]
– User study for grading on scale 1-5
– Proposed model architecture: Finetuning Resnet-50
– Only 2000 datapoints
– Subset of the RICO dataset
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General Idea: Optimizing

Translate UI 
elements into 
latent space

Render UI into 
graphic 
representation

Query Grading 
Model for 
aesthetic

Optimise to 
increase score

0.5

Figure 8: Optimizing mechanism
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Experiment 1

– Operating directly on Pixel space: Fine-tuning Stable Diffusion

– Results not satisfiable
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Experiment 1
– Operating directly on Pixel space: Fine-tuning Stable Diffusion
– Results not satisfiable

Figure 9: “UI” generated by SD model
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Experiment 2: Element Positions as Latent Space

– Latent space: Position of UI elements

– RICO dataset contains these information, translation is therefore straight
forward

– Practical setup: Vector containing positions of UI elements is considered a
trainable parameter of a machine learning model

– Assembly of final user interface and grading via model is done in a
differentiable way
→ Task is classic machine learning problem
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Experiment 2: Results
Start with random alignment:

Figure 10: Random initial alignment

Start optimizing
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Experiment 2: Results (ctd.)

Figure 11: Score progression
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Experiment 2: Results (ctd.)

Figure 12: Before vs. After Optimization
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Experiment 2: Results (ctd.)

– Hardly anything has changed

– Model grades UI as aesthetic, when it is in fact “distorted”
– Optimizer quickly learns weaknesses of grading model
– Second (potential) issue: Aesthetics classifier can’t distinguish between

“real” and “fake” layouts
– Functionality has similar issues
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Going Forward

– Initial idea: Add additional classifier to detect “random” fake layouts
→ Not conclusive

– One (other) approach to alleviate:
→ Reduce dimensions of or change characteristics of latent space
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Experiment 3 (WIP)

– Automatically find a suitable latent space
→ Variational autoencoder (VAE)

– Has the advantage of only producing valid “real” UIs
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VAE for Enforcing Valid UI Generation
– General Idea:

Figure 13: VAE Schematic reproduced from mlarchive.com [7]

https://mlarchive.com/deep-learning/variational-autoencoders-a-vanilla-implementation/
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VAE for Enforcing Valid UI Generatio

– In our case: X will be an m× 2 vector containing

– first 5 clickable elements as relative positions on the canvas
– first 5 non-clickable elements as relative positions on the canvas

– (m = 10)
– 5 was chosen as sufficient dataset examples exist
– (m elements, each two coordinates)
– Optimization happens directly on latent space of the VAE
– Second loss is potentially needed in order to keep the latent vector in the

correct distribution
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Outlook & Remaining Work During the Thesis

– Hardening aesthetics predictor against adversarial attacks

– i.e. evaluating different model architectures
– Increasing aesthetics dataset size

Other issues:
– “Phantom” elements in RICO dataset (potentially requires sanitization)
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Future Work

– Optimization directly on code not only on arrangement
– Integration in production ready application
– Explore different latent spaces
– Optimize for different metrics
– Condition on usecase/functionality
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Conditioning on Usecase

Figure 14: Similarities between apps of similar categories
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Conclusion

– Objective: Optimize UI Layout to increase aesthetics

– Experiments
1. Stable Diffusion: Results not satisfactory
2. Affine matrix as latent space: Too many degrees of freedom, results not

satisfactory
3. VAE: Ensure only “valid” UIs will be generated (In Progress)

Thank you for your attention!
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Experiment 2: Image translation

– Challenge: Differentiable Render

– Solution: Affine transformation:

1 0.5 0
0 1 0
0 0 1



→ latent vector is affine matrix
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